JP2023022372A - 負極集電体、および、電池 - Google Patents

負極集電体、および、電池 Download PDF

Info

Publication number
JP2023022372A
JP2023022372A JP2021127110A JP2021127110A JP2023022372A JP 2023022372 A JP2023022372 A JP 2023022372A JP 2021127110 A JP2021127110 A JP 2021127110A JP 2021127110 A JP2021127110 A JP 2021127110A JP 2023022372 A JP2023022372 A JP 2023022372A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
layer
barrier layer
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021127110A
Other languages
English (en)
Inventor
幸久 片山
Yukihisa Katayama
博司 陶山
Hiroshi Toyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021127110A priority Critical patent/JP2023022372A/ja
Priority to CN202210856981.4A priority patent/CN115706232A/zh
Publication of JP2023022372A publication Critical patent/JP2023022372A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】負極集電体を備えた負極において水素が発生することを抑制して、負極の外表面に水素が付着することを抑制する技術を提供する。【解決手段】電解液を用いる電池の負極集電体は、導電性を有する金属を主成分とする下地層と、下地層上に積層され、遷移金属を主成分とするバリア層と、バリア層上に積層され、遷移金属と、錫とが合金化された合金層と、合金層上に積層され、錫を主成分とするめっき層と、バリア層の遷移金属と、めっき層の錫とが合金化された合金層と、を備える。【選択図】図2

Description

本開示は、負極集電体、および、電池の技術に関する。
従来、負極集電体において、銅を主成分とする下地層と、下地層上に形成され、錫を主成分とするめっき層とを焼成して、下地層とめっき層との間に合金層を形成する技術が知られている(特許文献1)。この技術では、合金層は、銅と錫とによって構成される化合物である。
特表2010-541183号公報
負極集電体と、負極集電体の周囲に配置された負極活物質と、を含む負極を備えた電池において、水系電解液を用いた場合に、負極において水素が発生し得る。この場合、発生した水素が負極の外表面に付着することで、電池の機能を低下させる場合がある。よって、負極集電体を備えた負極において水素が発生して、負極の外表面に水素が付着することを抑制する技術が望まれる。
本開示は、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、電解液を用いる電池の負極集電体が提供される。この負極集電体は、導電性を有する金属を主成分とする下地層と、前記下地層上に積層され、遷移金属を主成分とするバリア層と、前記バリア層上に積層され、前記遷移金属と、錫とが合金化された合金層と、前記合金層上に積層され、前記錫を主成分とするめっき層と、を備える。この形態によれば、負極集電体は、遷移金属を主成分とするバリア層と、遷移金属と錫とが合金化された合金層と、錫を主成分とするめっき層と、を備える。これにより、負極集電体を備えた負極において水素が発生することを抑制できるので、負極の外表面に水素が付着することを抑制できる。また、負極において水素が発生した場合に、負極集電体の外表面よりも内側に位置する合金層などの層において水素を保持できる。そのため、負極の外表面に水素が付着することを抑制できる。よって、負極集電体を備えた負極において水素が発生して、負極の外表面にその水素が付着することによって、電池の機能が低下することを抑制できる。
(2)上記形態であって、前記電解液は、アルカリ性の水系電解液であってもよい。この形態によれば、電解液がアルカリ性であるため、酸性や中性の電解液を用いる場合と比べて、電解液中により多くのヒドロキシイオンが存在する。このヒドロキシイオンと、負極活物質との反応により生じる電子が正極側に流れることで電池の放電機能を実現する。一方で、ヒドロキシイオンと負極活物質との反応により生じた電子が正極側に流れることなく、電解液中の水の還元反応に寄与することで、電解液中の水が酸化されて負極において水素が発生する場合が生じ得る。この場合においても、負極集電体が、バリア層と、合金層と、めっき層と、を備えることによって、負極集電体の外表面よりも内側に位置する合金層などの層において、発生した水素を保持できる。そのため、負極において水素が発生することを抑制できる。
(3)上記形態であって、前記遷移金属は、ニッケルと、鉄と、クロムと、ジルコニウムと、ランタンと、の少なくとも1つであってもよい。この形態によれば、負極において水素が発生した場合に、水素発生反応に係る交換電流密度が金よりも小さい遷移金属によって、バリア層を形成できる。そのため、この形態では、上記水素発生反応に係る交換電流密度が金よりも大きい遷移金属によってバリア層が形成される場合と比べて、負極における水素発生反応が起こりづらい。すなわち、負極において水素が発生することを抑制できる遷移金属によって、バリア層を形成できる。
(4)上記形態であって、前記バリア層の厚さは、2μm以上10μm以下であってもよい。この形態によれば、下地層をバリア層によって欠落無く覆うことができる。そのため、下地層がバリア層上に露出する可能性を低減できる。よって、下地層に含まれる金属が負極集電体の外表面側へ拡散する可能性を低減できる。
(5)上記形態であって、前記めっき層の厚さは、2μm以上5μm以下であってもよい。この形態によれば、合金層をめっき層によって欠落無く覆うことができる。そのため、負極において水素が発生した場合に、水素を保持する機能を有する合金層などの層が負極集電体の外表面に露出する可能性を低減できる。よって、負極において水素が発生することをさらに抑制できる。
(6)上記形態であって、前記バリア層は、前記遷移金属とは異なる異種元素であって、ホウ素と、アルミニウムと、リンと、チタンと、コバルトと、の少なくとも1つの異種元素を含有してもよい。この形態によれば、バリア層に異種元素が含有されることで、電解液中における負極活物質の溶解度を減少させるなどの付加的な機能を付与できる。
(7)上記形態であって、前記めっき層は、さらに、インジウムとビスマスとの少なくとも一方の元素を含有してもよい。この形態によれば、めっき層は、上記水素発生反応に係る交換電流密度が錫と同程度以下の金属を含有する。これにより、上記水素発生反応に係るめっき層の交換電流密度を小さくすることができる。よって、負極において水素が発生することをさらに抑制できる。
(8)本開示の他の形態によれば、電池が提供される。この電池は、上記形態に記載の負極集電体と、負極活物質とを含む負極と、正極集電体と、正極活物質とを含む正極と、前記負極と前記正極とを隔てるセパレータと、前記負極と、前記正極と、前記セパレータと、が配置された領域に収容された電解液と、を備える。この形態によれば、電池を構成する負極集電体は、遷移金属を主成分とするバリア層と、遷移金属と錫とが合金化された合金層と、錫を主成分とするめっき層と、を備える。これにより、負極集電体を備えた負極において水素が発生することを抑制できる。また、負極において水素が発生した場合に、負極集電体の外表面よりも内側に位置する合金層などの層において水素を保持できる。そのため、負極の外表面に水素が付着することを抑制できる。よって、負極の外表面に水素が付着することによって、電池の機能が低下することを抑制できる。
本開示は、上記の負極集電体、および、電池以外の種々の形態で実現することが可能である。例えば、負極集電体の製造方法や負極集電体を備えた電池の制御方法、その制御方法を実現するコンピュータプログラム、そのコンピュータプログラムを記録した一時的でない記録媒体等の形態で実現することができる。
本実施形態の電池の内部構造を概略的に示した断面模式図。 図1の領域の拡大図。 作製した負極を用いたサイクリックボルタンメトリによる測定結果を示す図。 サイクル耐久試験の条件を示す図。 サイクル耐久試験の結果を示す図。
A.実施形態:
A-1.電池の構成:
図1は、本実施形態の電池1の内部構造を概略的に示した断面模式図である。図1は、電池1を長手方向に沿った平面で切断した図を示している。本実施形態では、電池1は、電池容器本体を上蓋と下蓋とによって密閉した円筒型のニッケル亜鉛二次電池である。なお、電池1の種類および外形はこれに限られるものではない。電池1は、例えば、ニッケルカドミウム蓄電池であってもよい。また、電池1の外形は、例えば、積層型や角型、パック型であってもよい。
電池1は、負極2と、正極5と、2つのセパレータC1,C2と、電解液8、とを含む。負極2と、正極5と、2つのセパレータC1,C2と、電解液8とは、電池容器本体と上蓋と下蓋とによって囲まれた電池1の内部空間に収容されている。負極2と、正極5と、セパレータC1、C2とは、電池1の内部空間において、電解液8に浸った状態である。
負極2は、負極集電体20と、負極活物質28と、を含む。負極集電体20は、導電性を有する。負極集電体20は、図示しない負極端子と電気的に接続されている。負極集電体20の詳細については、図2を用いて後述する。
負極活物質28は、負極2において酸化還元反応に寄与する。本実施形態では、負極活物質28は、亜鉛(Zn)と亜鉛の酸化物との少なくとも一方を主成分とする。具体的には、負極活物質28の主成分として、例えば、単体としての亜鉛(Zn)と、酸化亜鉛(ZnO)と、の少なくとも一方を用いる。負極活物質28の主成分を亜鉛とする場合には、例えば、亜鉛を含む亜鉛合金を用いてもよい。本開示において、「主成分」とは「50質量%より大きい割合」であることを意味する。
負極活物質28は、さらに、増粘剤やバインダ、その他無機物などの添加剤を含んでもよい。増粘剤は、例えば、カルボキシメチルセルロース(CMC)などのセルロース系ポリマーである。バインダは、例えば、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂である。なお、負極活物質28を構成する成分および組成は、これに限られるものではない。また、負極活物質28の添加剤は、耐腐食性、浸潤性、導電性などを高める性質を有する成分であってもよい。
正極5は、正極集電体50と、正極活物質58と、を含む。正極集電体50は、導電性を有する。正極集電体50は、図示しない正極端子と電気的に接続されている。正極集電体50は、導電性を有する金属を主成分とする。正極集電体50に用いられる導電性を有する金属は、例えば、アルミニウム(Al)と、アルミニウムを主成分とする合金と、ニッケル(Ni)と、チタン(Ti)と、のいずれかである。本実施形態では、正極集電体50は、ニッケルを主成分としている。なお、正極活物質58には、負極活物質28と同様に、増粘剤やバインダ、その他無機物などの添加剤を含んでもよい。
正極活物質58は、正極5において酸化還元反応に寄与する。本実施形態では、正極活物質58は、ニッケル(Ni)またはニッケルの水酸化物を主成分とする。正極活物質58は、例えば、水酸化ニッケル(Ni(OH))である。
セパレータC1,C2は、負極2と正極5とを隔てる。具体的には、セパレータC1,C2は、負極2と正極5との接触による内部短絡を防止するために、負極2と正極5との間に設けられる壁である。本実施形態では、第1セパレータC1が負極2側に配置され、第2セパレータC2が正極5側に配置されている。セパレータC1,C2は、絶縁性を有し、電解液8を透過させる。セパレータC1,C2は、例えば、ポリプロピレン(PP)やポリエチレン(PE)などのポリオレフィンによって形成された多孔質膜である。セパレータC1,C2は、さらに、化学繊維によって形成された不織布などを含んでもよい。化学繊維は、例えば、ポリプロピレン繊維と、セルロース繊維と、ポリビニルアルコール(PVA)繊維と、エチレン酢酸ビニル(EVA)繊維と、のいずれかである。
電解液8は、電気伝導性を有する液体である。電解液8は、アルカリ性の水溶液などの水系電解液と、リチウム塩などの有機電解質を含む非水系電解液と、のいずれか一方によって構成される。本実施形態では、電解液8は、アルカリ性の水系電解液である。電解液8としてのアルカリ性の水系電解液は、アルカリ金属の水酸化物と水とを含む。電解液8は、例えば、水酸化カリウム(KOH)水溶液、水酸化ナトリウム(NaOH)水溶液、水酸化リチウム(LiOH)水溶液である。電解液8は、複数のアルカリ性の水溶液を混合して用いてもよい。本実施形態では、電解液8は、水酸化カリウムを主成分として、水酸化ナトリウムと水酸化リチウムとを加えたアルカリ性の混合水溶液である。電解液8は、さらに、その他の無機添加剤および有機添加剤を含んでもよい。
図2は、図1の領域R2の拡大図である。負極集電体20は、下地層210と、バリア層230と、合金層250と、めっき層270と、を備える。負極集電体20は、これらの層210,230,250,270が積層された積層体である。負極集電体20において、下地層210と、バリア層230と、合金層250と、めっき層270とは、負極集電体20の内側から負極集電体20の外表面である集電体外表面20aに向かってこの順に積層されている。下地層210は、積層体である負極集電体20の内側としての中心部に位置する。バリア層230は、下地層210上に積層されている。合金層250は、バリア層230上に積層されている。めっき層270は、合金層250上に積層されており、集電体外表面20aを形成する。つまり、めっき層270は、図1に示すように、電解液8と負極活物質28との少なくとも一方に接触する位置に設けられる。
負極2においては、電解液8として水系電解液を用いた場合に、以下の式(1)に示す充放電反応が起こる。具体的には、負極活物質28としての亜鉛(Zn)が、電解液8中に電離した状態で存在するヒドロキシイオン(OH)と反応して酸化される。これにより、水酸化亜鉛(Zn(OH))が生成されると共に、電子(e)が発生する。以下の式(1)において、左辺から右辺への反応が放電反応である。また、以下の式(1)において、右辺から左辺への反応が充電反応である。
Zn+2OH→Zn(OH)+2e 式(1)
下地層210は、上記式(1)の反応によって生じる電子を集める集電部としての機能と、他の層230,250,270とを支持する支持部としての機能と、を有する。下地層210は、導電性を有する金属を主成分とした導電体である。本実施形態では、下地層210は、銅(Cu)を主成分とする。下地層210の厚さは、集電部および支持部として機能し得る範囲において任意の厚さとすればよい。なお、下地層210の主成分は、これに限られるものではない。下地層210は、例えば、銅と錫との合金であってもよい。また、下地層210の形状は、例えば、板状、箔状、メッシュ状、スポンジ状、繊維状であってもよい。
ここで、負極2においては、電解液8として水系電解液を用いた場合に、以下の式(2)に示すように、負極2において水素(H)が発生する場合が生じ得る。具体的には、上記式(1)において発生した電子が正極5側へ流れることなく、電解液8中の水分子(HO)を還元する反応に寄与することによって、水素が発生する。負極2において水素が発生した場合、発生した水素が負極2の外表面2aに付着することで、電池1の機能を低下させる場合がある。そこで、本実施形態では、負極2を構成する負極集電体20において、負極2における水素の発生を抑制するために、バリア層230とめっき層270との間に、合金層250を設ける。合金層250は、第1の基材としてのバリア層230と、第2の基材としてのめっき層270と、を合金化した層である。バリア層230と、合金層250と、めっき層270と、を設けることによって負極2における水素の発生を抑制できる。この詳細は、後述する。なお、吸湿した非水系電解液を用いた場合にも負極2において水素が発生し得る。
2HO+2e→H+2OH 式(2)
バリア層230は、下地層210を覆うことによって、下地層210に含まれる導電性を有する金属(本実施形態では銅)が集電体外表面20a側へと拡散することを抑制する。バリア層230は、さらに、合金層250を形成するための第1の基材となる。バリア層230は、欠落無く下地層210の表面全域を覆う。バリア層230は、例えば、電気めっきによって下地層210上に形成される。なお、バリア層230は、溶融めっきや気相めっき、化学めっきなどの他の方法によって、下地層210上に形成されてもよい。
バリア層230は、下地層210に含まれる銅を電解液8が存在する集電体外表面20a側に拡散させない程度の厚さを有することが好ましい。具体的には、バリア層230の厚さは、2μm以上10μm以下であることが好ましい。バリア層230の厚さを2μm以上とすることで、下地層210をバリア層230によって欠落無く覆うことができる。また、バリア層230の厚さの上限は、下地層210をバリア層230によって覆うために電気めっきを行う場合の操作性やコストを鑑みて、10μmとしている。なお、バリア層230の厚さは、これに限られるものではない。バリア層230の厚さは、例えば、10μmを超えていてもよい。
バリア層230は、遷移金属を主成分とする。本実施形態において、遷移金属は、例えば、ニッケル(Ni)と、鉄(Fe)と、クロム(Cr)と、ジルコニウム(Zr)と、ランタン(La)と、の少なくとも1つである。バリア層230の主成分とする遷移金属は、銅を主成分とする下地層210の保護を実現するために、以下の条件(i)を満たすことが好ましい。また、バリア層230の主成分とする遷移金属は、上記式(2)の反応式によって生じる水素の発生を抑制するために、以下の条件(ii)を満たすことが好ましい。負極2における水素発生を抑制するためには、上記式(2)に示すような水素を発生させる反応(以下、水素発生反応)を起こりにくくする方法が考えられる。以下の条件(ii)は、上記式(2)に示す水素発生反応を起こりにくくする方法を実現するための条件の一例である。
(i)銅を主成分とする下地層210をバリア層230によって覆う場合に、下地層210から集電体外表面20aを形成するめっき層270側へと銅が拡散することを抑制できる遷移金属
(ii)上記式(2)に示す水素発生反応における交換電流密度が金(Au)よりも小さい遷移金属
上記条件(i)に示すように、下地層210の主成分である銅が集電体外表面20aを形成するめっき層270側へと拡散することを抑制するために、下地層210を覆うバリア層230として適した遷移金属を選択することが好ましい。下地層210に含まれる銅がめっき層270側へと拡散することを抑制するために、めっき層270に好適に用いられる遷移金属は、例えば、ニッケル(Ni)と、鉄(Fe)と、のいずれかである。また、下地層210に含まれる銅がめっき層270側へと拡散することを抑制するために、めっき層270に用いる遷移金属として適さない遷移金属は、例えば、インジウム(In)と、錫(Sn)と、ビスマス(Bi)と、のいずれかである。
上記条件(ii)に示すように、バリア層230の主成分として、上記式(2)に示す水素発生反応が起こりづらい遷移金属を選択することが好ましい。本実施形態では、上記式(2)に示す水素発生反応に係る交換電流密度の大小に応じて、遷移金属を3つの群に分けて考える。具体的には、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも大きい一群を第1群、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも小さい一群を第2群および第3群とする。第2群は、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも小さいが、第3群に属する金属よりも上記式(2)に示す水素発生反応に係る交換電流密度が大きい遷移金属である。なお、第3群に属する元素の一部は、遷移金属に該当しない元素も存在するが、めっき層270において、後述する際に必要となるため、予めここで説明しておく。
第1群に属する遷移金属は、例えば、ロジウム(Rh)と、レニウム(Re)と、イリジウム(Ir)と、白金(Pt)と、のいずれかである。第2群に属する遷移金属は、例えば、ニッケル(Ni)と、鉄(Fe)と、コバルト(Co)と、のいずれかである。第3群に属する金属は、例えば、インジウム(In)と、錫(Sn)と、ビスマス(Bi)と、チタン(Ti)と、のいずれかである。第1群に属する遷移金属は、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも大きく、第2群および第3群に属する遷移金属よりも相対的に大きいため、上記式(2)に示す反応が起こりやすい場合が生じ得る。これに対して、第2群および第3群に属する遷移金属は、上記式(2)に示す水素発生反応に係る交換電流密度が第1群に属する金属よりも相対的に小さいため、上記式(2)に示す反応が第1群の遷移金属を用いた場合と比べて起こりづらい。そのため、第2群および第3群に属する遷移金属をバリア層230の主成分とした場合には、上記式(2)に示す水素発生反応が起こる可能性を低減できる。よって、上記条件(ii)に示すように、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも小さい第2群および第3群に属する遷移金属をバリア層230の主成分として選択することが好ましい。
以上のことから、上記条件(i)および上記条件(ii)を満たす遷移金属として、本実施形態では、ニッケルを用いている。
なお、バリア層230は、バリア層230の主成分となる遷移金属とは異なる異種元素であって、ホウ素と、アルミニウムと、リンと、チタンと、コバルトと、の少なくとも1つの異種元素を含有してもよい。バリア層230にリンなどの異種元素が含有されることで、電解液8中の負極活物質28の溶解度を減少させるなどの付加的な機能を付与できる。
めっき層270は、集電体外表面20aに形成されて、内側の層、例えば合金層250を保護する。めっき層270は、さらに、合金層250を形成するための第2の基材となる。めっき層270は、欠落無くバリア層230の表面全域を覆う。ここで言うバリア層230の表面とは、バリア層230のうちで、下地層210と接触している面とは反対側の面を指す。めっき層270は、例えば、電気めっきによってバリア層230上に形成される。なお、めっき層270は、溶融めっきや気相めっき、化学めっきなどの他の方法によって、バリア層230上に形成されてもよい。
めっき層270は、合金層250を保護することができ、かつ、めっき層270とバリア層230とを合金化した場合において所望の合金層250の厚さを得られる程度の厚さを有することが好ましい。具体的には、めっき層270の厚さは、2μm以上5μm以下であることが好ましい。めっき層270の厚さが薄い場合、例えば、2μm未満の場合には、バリア層230の表面を覆う際に、ピンホールが生じたり、バリア層230上に形成されためっき層270がバリア層230の表面上で不均一となったりする。その結果、バリア層230が電解液8と接触するように露出する場合が生じ得る。また、めっき層270の厚さの上限は、バリア層230をめっき層270によって覆うために電気めっきを行う場合の操作性やコストを鑑みて、5μmとしている。なお、めっき層270の厚さは、これに限られるものではない。めっき層270の厚さは、例えば、10μmを超えていてもよい。
めっき層270は、錫(Sn)を主成分とする。めっき層270の主成分として錫を選択した理由は、以下の4つである。1つ目として、本願発明者らは、ニッケルと錫とを合金化した合金層250を負極集電体20に設けることで、負極2における水素の発生が抑制できることを見出した。2つ目として、錫は、前述したように、上記式(2)に示す水素発生反応に係る交換電流密度が小さく、水素を発生させにくい。3つ目として、錫は、めっき材料として汎用的に用いられており、対象物(本実施形態では、バリア層230および合金層250)に形成された被膜の柔軟性や、めっき作業における操作性において優れている。4つ目として、対象物を錫で覆うことによって、対象物の耐腐食性を向上させることができる。以上のことから、本実施形態では、めっき層270の主成分として、錫を用いている。
めっき層270は、添加剤として、インジウム(In)と、ビスマス(Bi)と、の少なくとも一方を含んでもよい。インジウムとビスマスとは、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも小さい第3群に属する遷移金属である。そのため、めっき層270にインジウムとビスマスとの少なくとも一方を含まない場合と比べて、めっき層270の交換電流密度をより小さくすることができる。また、インジウムやビスマスは、一般に、負極活物質28の耐腐食性の向上に寄与し得る。
合金層250は、負極2における水素発生を抑制することに寄与する。具体的には、負極集電体20は、集電体外表面20aよりも内側に位置する合金層250などの層において、負極2の外表面2aに発生した水素を保持する。合金層250は、下地層210と、バリア層230と、めっき層270と、を内側から集電体外表面20aに向かってこの順に積層した積層状態において、予め定められた時間だけ積層状態を維持することによって形成される。具体的には、積層状態を維持した場合に、バリア層230の主成分であるニッケルと、めっき層270の主成分である錫と、が自然拡散により合金化される。これにより、バリア層230とめっき層270との間に合金層250が形成される。本実施形態では、合金層250は、ニッケルと錫との合金である。
合金層250を形成させる際に、積層状態においてめっき層270に対して熱処理を行ってもよい。例えば、熱処理として、めっき層270を220℃で10分間加熱する。めっき層270に対する熱処理は、いわゆるリフロー処理である。めっき層270に対して熱処理を行うことで、めっき層270を均一化することができる。これにより、めっき層270が不均一となったり、ピンホールが生じたりすることを抑制できる。よって、バリア層230とめっき層270との間に形成された合金層250が、負極集電体20の集電体外表面20aに露出する可能性を低減できる。なお、めっき層270に対して行われる熱処理における加熱時間、加熱温度などの条件は、これに限られるものではない。熱処理における加熱温度は、220℃よりも低くてもよい。また、熱処理における加熱時間は、10分よりも長くても短くてもよい。
上記実施形態によれば、負極集電体20は、下地層210と、遷移金属を主成分とするバリア層230と、バリア層230の遷移金属とめっき層270の錫とが合金化された合金層250と、錫を主成分とするめっき層270と、を備える。下地層210と、バリア層230と、合金層250と、めっき層270とは、内側から集電体外表面20aに向かってこの順で積層されている。このとき、少なくともバリア層230と、合金層250と、めっき層270と、が負極集電体20に含まれることによって、負極2において水素が発生することを抑制できる。また、負極2において水素が発生した場合に、集電体外表面20aよりも内側に位置する合金層250などの層において水素を保持できる。そのため、負極2の外表面2aに水素が付着することを抑制できる。よって、負極2の外表面2aに水素が付着することによって、電池1の機能が低下することを抑制できる。
また、上記実施形態によれば、電解液8としてアルカリ性の水系電解液を用いる。このとき、本実施形態の電解液8は、液性が酸性や中性の電解液を用いる場合と比べて、電解液中により多くのヒドロキシイオンが存在する。このヒドロキシイオンと、負極活物質28との上記式(1)に示す反応により生じる電子が正極側に流れることで、電池1は、放電機能を実現する。一方で、このヒドロキシイオンと負極活物質28との反応により生じた電子が正極側に流れることなく、上記式(2)に示す電解液中の水の還元反応に寄与することで、上記式(2)に示す反応が起こり、負極2において水素が発生する場合がある。この場合においても、負極集電体20が、少なくともバリア層230と、合金層250と、めっき層270と、を備えることによって、集電体外表面20aよりも内側に位置する合金層250などの層において、水素を保持できる。そのため、負極2において水素が発生することを抑制できる。よって、負極2の外表面2aに水素が付着することによって、電池1の機能が低下することを抑制できる。
また、上記実施形態によれば、ニッケルと、鉄と、クロムと、ジルコニウムと、ランタンと、の少なくとも1つの遷移金属を、バリア層230の主成分とする。この場合、上記式(1)に示す反応により生じる電子に起因して、上記式(2)に示すように電解液8中の水が酸化されて水素が発生する。負極2において水素が発生した場合に、水素発生反応に係る交換電流密度が金よりも小さい遷移金属によって、バリア層230を形成できる。そのため、水素発生反応に係る交換電流密度が金よりも大きい遷移金属によってバリア層230が形成される場合と比べて、上記式(2)に示す水素発生反応が起こりづらい。よって、負極2において水素が発生することを抑制できる遷移金属によって、バリア層230を形成できる。
また、上記実施形態では、バリア層230の厚さを2μm以上10μm以下としている。このようにすると、下地層210をバリア層230によって欠落無く覆うことができる。そのため、下地層210がバリア層230上に露出する可能性を低減できる。よって、下地層210に含まれる金属が集電体外表面20a側へ拡散する可能性を低減できる。
また、上記実施形態では、めっき層270の厚さを2μm以上5μm以下としている。このようにすると、合金層250をめっき層270によって欠落無く覆うことができる。そのため、負極2において水素が発生した場合に、水素を保持する機能などを有する合金層250などの層が集電体外表面20aに露出する可能性を低減できる。よって、負極2において水素が発生することをより確実に抑制できる。
また、上記実施形態によれば、バリア層230は、バリア層230の主成分となる遷移金属とは異なる異種元素であって、ホウ素と、アルミニウムと、リンと、チタンと、コバルトと、の少なくとも1つの異種元素を含有してもよい。バリア層230にリンなどの異種元素が含有されることで、電解液8中の負極活物質28の溶解度を減少させるなどの付加的な機能を付与できる。
また、上記実施形態によれば、めっき層270は、インジウムとビスマスとの少なくとも一方の元素を含む構成とすることができる。すなわち、めっき層270は、上記式(2)に示す水素発生反応に係る交換電流密度が金よりも小さい金属であって、錫と同程度以下の金属を含有する。これにより、上記式(2)に示す水素発生反応に係るめっき層270の交換電流密度を小さくすることができる。よって、負極2において水素が発生することをさらに抑制できる。
また、上記実施形態によれば、下地層210と、バリア層230と、めっき層270とが内側から集電体外表面20aに向かってこの順に積層された積層状態において、めっき層270に対して熱処理を行う。これにより、めっき層270を均一化することができる。すなわち、めっき層270が不均一となったり、ピンホールが生じたりする可能性を低減できる。よって、バリア層230とめっき層270との間に合金層250が形成された状態において、合金層250が集電体外表面20aに露出する可能性を低減できる。
A-2.実験例:
A-2-1.実験例1:
以上において説明した構成を前提として、本実施形態の負極2としてのサンプルX1~X4と、比較例としてのサンプルY1と、を作製した。本実験では、比較例としてのサンプルY1と本実施形態のサンプルX1~X4とを比較することで、バリア層230、合金層250、および、めっき層270の有無による負極2における水素の発生の差異を確認した。比較例としてのサンプルY1は、負極集電体20における構成がサンプルX1~X4とは異なる。具体的には、サンプルY1の負極集電体20は、バリア層230とめっき層270とを設けていない。これにより、サンプルY1の負極集電体20は、バリア層230と、合金層250と、めっき層270とが存在しない。
サンプルX1は、以下のようにして作製した。導電性および加工性の観点から、下地層210は、無酸素銅(C1020)によって形成されたパンチングメタルを用いた。下地層210上にバリア層230を欠落無く形成させた。バリア層230の厚さは2μmとした。次に、バリア層230上にめっき層270を欠落無く形成させた。めっき層270の厚さは3μmとした。次に、下地層210と、バリア層230と、めっき層270とが内側から集電体外表面20aに向かってこの順に積層された積層状態において、予め定められた時間だけ積層状態を維持した。これにより、バリア層230と、めっき層270と、の間に合金層250を形成させた。これらの層210,230,250,270が積層された積層体を負極集電体20として用いた。
負極活物質28の作製にあたり、粉状の酸化亜鉛と、粉状の亜鉛と、カルボキシメチルセルロースと、ポリテトラフルオロエチレンを分散させた分散液とを、重量比で90:10:1:2の割合で混合して第1混合液を得た。第1混合液に、水とイソプロパノール(IPA)とを重量比で1:1の割合で混合した溶液を適量滴下して第2混合液を得た。第2混合液をシンキー社製の自転・公転ミキサーを用いて15分間攪拌して得られたスラリ状のインクを負極活物質28とした。
負極2の作製にあたり、1cmの上記負極集電体20に対して、100mg程度の上記負極活物質28が塗布されるように、上記負極集電体20に対して上記負極活物質28を塗布することによって負極合材を得た。負極合材を80℃で2時間乾燥させた後に、タクミ技研社製のロールプレス機を用いて線圧0.75tでプレスして負極2とした。
第1セパレータC1は、ポリプロピレン性の多孔質膜と、ポリビニルアルコール繊維とセルロース繊維とが混合された混合不織布と、によって形成した。負極2の一端に対して、厚さが120μmである銅箔を抵抗溶接機で溶接した後に、負極2を第1セパレータC1によって包んで負極-セパレータ複合体を形成した。
正極集電体50は、ニッケルを主成分とした多孔質金属である住友電工社製「セルメット(登録商標)」を用いた。正極集電体50と、正極活物質58としての水酸化ニッケルとによって構成された正極5に、正極端子を溶接したものを重ねて、正極合材を得た。第2セパレータC2は、不織布によって形成した。正極合材を第2セパレータC2で溶着包埋させて正極-セパレータ複合体を形成した。
負極-セパレータ複合体と、正極-セパレータ複合体とを、電池容器本体と下蓋とによって形成された空間に収容して、予め定められた量の電解液8を添加した。電解液8は、水酸化カリウム水溶液を主成分とし、水酸化ナトリウム水溶液と水酸化リチウム水溶液とを混合したアルカリ性の混合水溶液を用いた。これにより、負極-セパレータ複合体と、正極-セパレータ複合体とが電解液8に浸漬する状態とした。その後、上蓋によって封止して、サンプルX1を得た。
サンプルX2は、サンプルX1の負極集電体20におけるめっき層270に対して熱処理を実行したサンプルである。サンプルX2は、下地層210と、バリア層230と、めっき層270とが内側から集電体外表面20aに向かってこの順に積層された積層状態において、めっき層270に熱処理を行った。具体的には、積層状態において、めっき層270を220℃で10分間加熱して、めっき層270を溶融させた。その後、加熱しためっき層270を急冷して、サンプルX2を得た。サンプルX2の他の構成要素、および、サンプルX2の作製方法は、サンプルX1と同一である。
サンプルX3は、サンプルX1の負極集電体20におけるバリア層230に、バリア層230の主成分とは異なる異種元素としてのリンを含有するサンプルである。サンプルX3の他の構成要素、および、サンプルX3の作製方法は、サンプルX1と同一である。
サンプルX4は、サンプルX1の負極集電体20におけるバリア層230の厚さと、めっき層270の厚さとをそれぞれ薄くしたサンプルである。サンプルX4は、バリア層230の厚さを1μm、めっき層270の厚さを2μmとした。サンプルX4の他の構成要素、および、サンプルX4の作製方法は、サンプルX1と同一である。
比較例としてのサンプルY1は、サンプルX1の負極集電体20に設けられているバリア層230と合金層250とめっき層270とを設けていないサンプルである。サンプルY1の他の構成要素、および、サンプルY1の作製方法は、サンプルX1と同一である。
図3は、作製した負極2を用いたサイクリックボルタンメトリによる測定結果を示す図である。図3では、サンプルX1~X4と、比較例としてのサンプルY1との測定結果を図示している。
サイクリックボルタンメトリとは、電極電位を繰り返し掃引して、掃引時の応答電流を測定する電気化学分野における基本的な計測手法である。図3に係る測定では、サンプルX1~X4,Y1のいずれか1つと、ニッケル対極と、参照極としての水銀-酸化水銀電極と、を電気化学セルに設置した。この電気化学セルに、電解液8として6mol/Lの水酸化カリウム水溶液を添加した。この状態において、参照極の電位(SHE比+0.10V)に対して、-1.2V~-1.9Vの間で1往復掃引した。つまり、図3に係る測定では、参照極の電位(SHE比+0.10V)に対して、-1.2Vから-1.9Vまでの負方向の掃引と、-1.9Vから-1.2Vまでの正方向の掃引と、を1回ずつ行った。
図3の横軸は、参照極の電位を表している。図3では、参照極の電位の単位を[V]としている。図3の縦軸は、電位に対する応答電流値を表している。図3では、応答電流値の単位を[mA]としている。図3のグラフは、特定の電位における応答電流値の変化の推移を表す、いわゆるサイクリックボルタモノグラムである。図3では、-1.2V~-1.9Vの間における正方向の掃引と負方向への掃引との平均値を1本のグラフとして示している。サイクリックボルタモノグラムでは、酸化還元電位付近に電位差を表すピークが生じる。図3では、応答電流値が負となる方向に形成されるピークが還元側電流の変動によって生じる還元波である。応答電流値が正となる方向に形成されるピークが酸化側電流の変動によって生じる酸化波である。
図3において、負極集電体20にバリア層230と合金層250とめっき層270とが設けられていないサンプルY1では、参照極の電位が-1.9V付近となる時点において、還元側電流が大きく減少している。これに対して、負極集電体20にバリア層230と合金層250とめっき層270とが設けられたサンプルX1では、参照極の電位が-1.9Vとなる時点における還元側電流は、-3.0mA付近となっている。つまり、参照極の電位が-1.9Vとなる時点において、サンプルX1は、サンプルY1と比べて、還元側電流が小さい。換言すると、参照極の電位が-1.9Vとなる時点において、サンプルX1は、サンプルY1と比べて、還元波が小さい。なお、本実施形態では、参照極の電位が-1.9V付近となる時点は、上記式(2)に示す水素発生反応の酸化還元電位に相当する。
ここで、還元波の大小は、負極2側への電子の供給量と比例する。すなわち、還元波が大きい場合には、負極2に供給される電子が多く、還元反応が活発に進行している。一方で、還元波が小さいほど、負極2に供給される電子が少なく、還元反応は抑制されている。そのため、サンプルX1は、サンプルY1と比べて、負極集電体20を含む負極2において、水素が発生することを抑制できている。すなわち、負極2を構成する負極集電体20において、バリア層230と合金層250とめっき層270とを設けた場合には、負極2における水素の発生を抑制できる。
さらに、図3において、サンプルX1では、参照極の電位が-1.5~-1.4V付近となる時点において、酸化側電流に変動が見られ、酸化波が形成されている。これに対して、サンプルY1では、参照極の電位が-1.5~-1.4Vとなる時点において、酸化側電流に変動は見られず、酸化波は形成されていない。
酸化波の大小は、負極2側から失われる電子の量と比例する。具体的には、酸化波が形成された場合には、負極2側において、電子が失われる反応として酸化反応が生じている。そのため、サンプルX1は、負極2において水素が発生した場合であっても、参照極の電位が-1.5~-1.4V付近となる時点において生じた酸化反応に起因して、負極2の外表面2aに水素が付着することを抑制できていると考えられる。参照極の電位が-1.5~-1.4V付近となる時点において生じた酸化反応は、例えば、以下の式(3)に示すように、水素が酸化されて水を生成する反応が生じる反応が考えられる。集電体外表面20aよりも内側に位置する合金層250などの層が、酸化還元能を有するとも言える。
2H+O→2HO 式(3)
参照極の電位が-1.5~-1.4V付近となる時点における酸化波が大きいほど、上記式(3)に示す酸化反応が活発に進行していると考えられる。つまり、上記酸化波が大きいほど、上記式(2)の反応式によって生じた水素のうち、酸化されて水を生じる割合が多くなるため、負極2の外表面2aに付着する水素の量が減少することが考えられる。
また、負極集電体20において、バリア層230と、合金層250と、めっき層270とを設けることによって、集電体外表面20aよりも内側に位置する合金層250などの層が水素吸蔵合金のような機能を果たしているとも考えられる。具体的には、負極2において発生した水素を負極集電体20が吸蔵して金属水素化物を形成する。換言すると、集電体外表面20aよりも内側に位置する合金層250などの層が、水素を保持している。このように、負極集電体20内に金属水素化物となった状態で水素を貯めることによって、負極2における水素の発生を抑制している可能性も考え得る。
参照極の電位が-1.5~-1.4V付近となる時点における酸化波が大きいほど、金属水素化物の形成が活発に進行していると考えられる。つまり、上記酸化波が大きいほど、集電体外表面20aよりも内側に位置する合金層250などの層における吸蔵量が多くなり、負極2の外表面2aに付着する水素の量が減少することが考えられる。また、集電体外表面20aよりも内側に位置する合金層250などの層において保持された水素が、上記式(3)の反応式によって酸化された可能性も考え得る。
また、熱処理が施されたサンプルX2では、参照極の電位が-1.9Vとなる時点における還元側電流は、-2.5mA付近となっている。つまり、参照極の電位が-1.9Vとなる時点において、サンプルX2は、サンプルX1と同様に、比較例としてのサンプルY1と比べて、還元側電流が小さい。また、参照極の電位が-1.9Vとなる時点において、サンプルX2の還元側電流は、サンプルX1の還元側電流より小さい。図3に示すように、サンプルX2では、参照極の電位が-1.5~-1.4V付近となる時点において、サンプルX1と同様に、酸化側電流に変動が見られ、酸化波が形成されている。このとき、サンプルX2の酸化波は、サンプルX1の酸化波よりも大きなピークとなっている。このことから、合金層250を形成する過程において、めっき層270に対して熱処理を行うことで、負極2における水素の発生をさらに抑制できる。
バリア層230にリンが添加されたサンプルX3では、参照極の電位が-1.9Vとなる時点における還元側電流は、-2.4mA付近となっている。つまり、参照極の電位が-1.9Vとなる時点において、サンプルX3は、サンプルX1と同様に、比較例としてのサンプルY1と比べて、還元側電流が小さい。また、参照極の電位が-1.9Vとなる時点において、サンプルX3の還元側電流は、サンプルX1およびサンプルX2の還元側電流より小さい。図3に示すように、サンプルX3では、参照極の電位が-1.5~-1.4V付近となる時点において、サンプルX1と同様に、酸化側電流に変動が見られ、酸化波が形成されている。このことから、バリア層230の主成分とは異なる異種元素としてのリンがバリア層230に含有されることで、負極2における水素の発生をさらに抑制できる。
バリア層230の厚さと、めっき層270の厚さとをそれぞれ、サンプルX1と比べて薄くしたサンプルX4では、参照極の電位が-1.9V付近となる時点における還元側電流は、-4.5mA付近となっている。つまり、参照極の電位が-1.9Vとなる時点において、サンプルX4の還元側電流は、比較例としてのサンプルY1よりも小さい一方で、サンプルX1~X3よりも大きい。また、参照極の電位が-1.9Vとなる時点において、サンプルX4の還元側電流値は、サンプルX1~X3よりもサンプルY1に近い値を示している。このことから、バリア層230の厚さを1μm、めっき層270の厚さを2μmとした場合にも、負極集電体20において、バリア層230と、合金層250と、めっき層270とを設けることで、負極2における水素の発生を抑制できる。一方で、バリア層230の厚さを2μm、めっき層270の厚さを3μmとした場合と比べて、バリア層230の厚さを1μm、めっき層270の厚さを2μmとした場合には、負極2における水素の発生を抑制する効果が得られにくい。そのため、バリア層230の厚さは2μm以上、めっき層270の厚さは3μm以上とすることがより好ましい。
A-2-2.実験例2:
さらに、電池1の性能を比較するために、サンプルX1~X4およびサンプルY1のサイクル耐久試験を行った。図4は、サイクル耐久試験の条件を示す図である。本試験では、本実施形態の電池1としてのサンプルX1~X4および比較例としてのサンプルY1を繰り返し充放電させた場合に、サンプルX1~X4,Y1の機能が低下する時点までの充放電回数を測定することによって、サンプルX1~X4,Y1の性能を評価している。なお、サンプルX1~X4,Y1は、本試験を開始する前の初期状態において、満充電容量を120mAh、残容量(SOC)を100%とする。
図4に示すように、本試験では、充電工程と放電工程とを繰り返し実施した。充電工程と放電工程との間にはそれぞれ、充電工程と放電工程とのいずれも実行しない待機時間を5分間設けた。本試験では、充電工程と、充電工程後かつ放電工程前の第1待機時間と、放電工程と、放電工程後かつ次のサイクルを開始する時点としての充電工程前の第2待機時間と、を1サイクルとした。充電工程は、定電流充電と定電圧充電とを組み合わせたCC-CV方式によって実行した。具体的には、充電工程は、サンプルX1,Y1に対して、電圧が2.00Vとなるまで1Cで電流を供給した後に、電圧を2.00Vを維持した状態において、60mAの電流を供給した。充電が完了したことを示す予め定められた終止条件に達した時点で、本サイクルにおける充電工程を終了した。放電工程は、定電流放電(CC)方式によって実行した。具体的には、放電工程では、サンプルX1,Y1に対して、電圧が1.1Vとなるまで1Cで電流を供給した。
図5は、サイクル耐久試験の結果を示す図である。図5では、本実施形態の電池1としてのサンプルX1~X4および比較例としてのサンプルY1に係る試験結果を記載している。本試験では、開始時における電池容量を100%とした場合に、サンプルX1~X4,Y1の電池容量比が30%に低下するまでのサイクル数を測定して、サンプルX1~X4,Y1の充放電機能の低下時点を判定した。図5に示すように、負極集電体20において、バリア層230と合金層250とめっき層270とを設けていないサンプルY1は、25サイクルで電池容量比が30%に達した。これに対して、負極集電体20において、バリア層230と合金層250とめっき層270とを設けたサンプルX1は、154サイクルで電池容量比が30%に達した。すなわち、負極集電体20において、バリア層230と合金層250とめっき層270とを設けることで、電池容量比が30%に低下するまでのサイクル数を増やすことができる。よって、電池1の機能の低下を抑制できる。
熱処理が施されたサンプルX2は、160サイクルで電池容量比が30%に達した。このことから、負極集電体20において、めっき層270に対して熱処理を行うことで、電池容量比が30%に低下するまでのサイクル数をさらに増やすことができる。
バリア層230にリンが添加されたサンプルX3は、255サイクルで電池容量比が30%に達した。このことから、バリア層230に異種元素を含有することで、電池容量比が30%に低下するまでのサイクル数をさらに増やすことができる。
バリア層230の厚さと、めっき層270の厚さとをそれぞれ、サンプルX1と比べて薄くしたサンプルX4は、60サイクルで電池容量比が30%に達した。このことから、バリア層230の厚さを1μm、めっき層270の厚さを2μmとした場合にも、バリア層230と、合金層250と、めっき層270とを設けることで、電池容量比が30%に低下するまでのサイクル数を増やすことができる。一方で、サンプルX4は、サンプルX1~X3と比べて、サンプルY1に対するサイクル数の増加量が小さい。すなわち、バリア層230の厚さを2μm、めっき層270の厚さを3μmとした場合と比べて、バリア層230の厚さを1μm、めっき層270の厚さを2μmとした場合には、サンプルY1に対してサイクル数を増加させにくい。そのため、バリア層230の厚さは2μm以上、めっき層270の厚さは3μm以上とすることがより好ましい。
B.他の実施形態:
上記実施形態では、電池1の種類はニッケル亜鉛二次電池であったが、本開示はこれに限られるものではない。電池1は、例えば、一次電池であってもよい。このような形態であっても、負極集電体20を備えた負極2において水素が発生して、負極2の外表面2aにその水素が付着することを抑制できる。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
1…電池、2…負極、2a…外表面、5…正極、8…電解液、20…負極集電体、20a…集電体外表面、28…負極活物質、50…正極集電体、58…正極活物質、210…下地層、230…バリア層、250…合金層、270…めっき層、C1…第1セパレータ、C2…第2セパレータ

Claims (8)

  1. 電解液を用いる電池の負極集電体であって、
    導電性を有する金属を主成分とする下地層と、
    前記下地層上に積層され、遷移金属を主成分とするバリア層と、
    前記バリア層に積層され、前記遷移金属と、錫とが合金化された合金層と、
    前記合金層上に積層され、前記錫を主成分とするめっき層と、を備える、負極集電体。
  2. 請求項1に記載の負極集電体であって、
    前記電解液は、アルカリ性の水系電解液である、負極集電体。
  3. 請求項1または請求項2に記載の負極集電体であって、
    前記遷移金属は、ニッケルと、鉄と、クロムと、ジルコニウムと、ランタンと、の少なくとも1つである、負極集電体。
  4. 請求項1から請求項3までのいずれか一項に記載の負極集電体であって、
    前記バリア層の厚さは、2μm以上10μm以下である、負極集電体。
  5. 請求項1から請求項4までのいずれか一項に記載の負極集電体であって、
    前記めっき層の厚さは、2μm以上5μm以下である、負極集電体。
  6. 請求項1から請求項5までのいずれか一項に記載の負極集電体であって、
    前記バリア層は、前記遷移金属とは異なる異種元素であって、ホウ素と、アルミニウムと、リンと、チタンと、コバルトと、の少なくとも1つの異種元素を含有する、負極集電体。
  7. 請求項1から請求項6までのいずれか一項に記載の負極集電体であって、
    前記めっき層は、さらに、インジウムとビスマスとの少なくとも一方の元素を含有する、負極集電体。
  8. 電池であって、
    請求項1から請求項7までのいずれか一項に記載の負極集電体と、負極活物質とを含む負極と、
    正極集電体と、正極活物質とを含む正極と、
    前記負極と前記正極とを隔てるセパレータと、
    前記負極と、前記正極と、前記セパレータと、が配置された領域に収容された電解液と、を備える、電池。
JP2021127110A 2021-08-03 2021-08-03 負極集電体、および、電池 Pending JP2023022372A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021127110A JP2023022372A (ja) 2021-08-03 2021-08-03 負極集電体、および、電池
CN202210856981.4A CN115706232A (zh) 2021-08-03 2022-07-20 负极集电器和电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021127110A JP2023022372A (ja) 2021-08-03 2021-08-03 負極集電体、および、電池

Publications (1)

Publication Number Publication Date
JP2023022372A true JP2023022372A (ja) 2023-02-15

Family

ID=85180753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021127110A Pending JP2023022372A (ja) 2021-08-03 2021-08-03 負極集電体、および、電池

Country Status (2)

Country Link
JP (1) JP2023022372A (ja)
CN (1) CN115706232A (ja)

Also Published As

Publication number Publication date
CN115706232A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
JP5258554B2 (ja) ニッケル亜鉛電池構造
JP5644873B2 (ja) 空気二次電池
WO2017020860A1 (zh) 电池、电池组以及不间断电源
JP6148472B2 (ja) 金属空気二次電池および電極製造方法
WO2012177350A2 (en) Active material for rechargeable battery
JP2018045931A (ja) 二次電池、電池パック及び車両
CN112786844B (zh) 锌二次电池
JP4250809B2 (ja) リチウム二次電池とその正極板の製造法
US8822071B2 (en) Active material for rechargeable battery
JP2017124951A (ja) 遮水性ナトリウムイオン伝導膜およびナトリウム電池
JP2017027654A (ja) 炭素材料被覆金属多孔体、集電体、電極及び蓄電デバイス
US11367877B1 (en) Aqueous battery current collectors
JP5557385B2 (ja) プロトンを挿入種とする蓄電デバイス
CN106469803A (zh) 电极端子、电化学装置和含电化学装置的电化学装置模块
JP2023022372A (ja) 負極集電体、および、電池
WO2012097457A1 (en) Cylindrical shaped ion-exchange battery
JP5329066B2 (ja) 二次電池用負極活物質およびこれを用いた二次電池
CN113474920B (zh) 用于可再充电储能设备的电极
JP3533032B2 (ja) アルカリ蓄電池とその製造方法
JP6015330B2 (ja) リチウムイオン二次電池用正極およびその製造方法
WO2023074846A1 (ja) リチウム二次電池
US20230078710A1 (en) Secondary battery, battery pack, vehicle, and stationary power supply
WO2022239205A1 (ja) プロトン伝導型二次電池
JP5748178B2 (ja) 溶融塩電池
US20220294077A1 (en) Electrode group, secondary battery, battery pack, vehicle, and stationary power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231026