JP2023015160A - Paste resin composition, high thermal conductive material, and semiconductor device - Google Patents

Paste resin composition, high thermal conductive material, and semiconductor device Download PDF

Info

Publication number
JP2023015160A
JP2023015160A JP2022172992A JP2022172992A JP2023015160A JP 2023015160 A JP2023015160 A JP 2023015160A JP 2022172992 A JP2022172992 A JP 2022172992A JP 2022172992 A JP2022172992 A JP 2022172992A JP 2023015160 A JP2023015160 A JP 2023015160A
Authority
JP
Japan
Prior art keywords
resin composition
group
metal
meth
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022172992A
Other languages
Japanese (ja)
Other versions
JP2023015160A5 (en
Inventor
直輝 渡部
Naoki Watanabe
弓依 阿部
Yui Abe
真 高本
Makoto Takamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Publication of JP2023015160A publication Critical patent/JP2023015160A/en
Publication of JP2023015160A5 publication Critical patent/JP2023015160A5/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paste resin composition which, when applied to bonding a semiconductor element and a substrate, exhibits good electrical conductivity over a long period of time and can yield a semiconductor device with excellent long-term reliability.
SOLUTION: A paste resin composition according to the present invention includes (A) a (meth)acrylic group-containing compound having at least two functionalities and having two or more repeating units of a linear or branched oxyalkylene group, and (B) metal-containing particles including silver-containing particles or copper-containing particles.
SELECTED DRAWING: None
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、ペースト状樹脂組成物、高熱伝導性材料、および半導体装置に関する。 TECHNICAL FIELD The present invention relates to a paste resin composition, a highly thermally conductive material, and a semiconductor device.

半導体装置の放熱性を高めることを意図して、金属粒子を含む熱硬化性樹脂組成物を用いて半導体装置を製造する技術が知られている。樹脂よりも大きな熱伝導率を有する金属粒子を熱硬化性樹脂組成物に含めることで、その硬化物の熱伝導性を大きくすることができる。 2. Description of the Related Art Techniques for manufacturing a semiconductor device using a thermosetting resin composition containing metal particles are known, with the intention of improving the heat dissipation of the semiconductor device. By including metal particles having a higher thermal conductivity than the resin in the thermosetting resin composition, the thermal conductivity of the cured product can be increased.

半導体装置への適用の具体例として、以下の特許文献1および2のように、金属粒子を含む熱硬化型の樹脂組成物を用いて、半導体素子と基板(支持部材)とを接着/接合する技術が知られている。 As a specific example of application to a semiconductor device, a thermosetting resin composition containing metal particles is used to adhere/join a semiconductor element and a substrate (supporting member), as in Patent Documents 1 and 2 below. technology is known.

特許文献1には、所定の構造の(メタ)アクリル酸エステル化合物、ラジカル開始剤、銀微粒子、銀粉および溶剤を含む半導体接着用熱硬化型樹脂組成物、当該組成物で半導体素子と基材とが接合された半導体装置が開示されている。当該文献には、実装後の温度サイクルに対する接続信頼性を向上させることができると記載されている(0011段落)。 Patent Document 1 discloses a thermosetting resin composition for bonding semiconductors containing a (meth)acrylic acid ester compound having a predetermined structure, a radical initiator, fine silver particles, silver powder, and a solvent; is disclosed. This document describes that connection reliability against temperature cycles after mounting can be improved (paragraph 0011).

特許文献2には、イミドアクリレート化合物、ラジカル開始剤、フィラー、および液状ゴム成分を含む樹脂ペースト組成物、当該組成物で半導体素子と基材とが接合された半導体装置が開示されている。当該文献には、樹脂ペースト組成物を低応力化することによりチップクラックやチップ反りの発生を抑制することができると記載されている(0003段落)。 Patent Document 2 discloses a resin paste composition containing an imide acrylate compound, a radical initiator, a filler, and a liquid rubber component, and a semiconductor device in which a semiconductor element and a substrate are bonded with the composition. This document describes that the generation of chip cracks and chip warpage can be suppressed by reducing the stress of the resin paste composition (paragraph 0003).

特開2014-74132号公報JP 2014-74132 A 特開2000-239616号公報JP-A-2000-239616

しかしながら、特許文献1~2に記載の樹脂組成物で、半導体素子と基材とが接合された半導体装置は、長期に亘って良好な導電性が発現しない場合があり、長期信頼性に改善の余地があった。 However, a semiconductor device in which a semiconductor element and a base material are bonded using the resin compositions described in Patent Documents 1 and 2 may not exhibit good electrical conductivity over a long period of time, and thus long-term reliability cannot be improved. There was room.

本発明者らは、所定の構造を備える(メタ)アクリロイル基含有化合物を用いることで、半導体装置が長期に亘って良好な導電性が発現し、長期信頼性に優れることを見出し、本発明を完成させた。 The present inventors found that by using a (meth)acryloyl group-containing compound having a predetermined structure, a semiconductor device exhibits good conductivity over a long period of time and is excellent in long-term reliability. completed.

本発明は、以下に示すことができる。
本発明によれば、
(A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、
(B)銀含有粒子または銅含有粒子を含む金属含有粒子と、
を含む、ペースト状樹脂組成物
が提供される。
本発明によれば、前記ペースト状樹脂組成物を焼結して得られる高熱伝導性材料が提供される。
本発明によれば、基材と、前記基材上に接着層を介して搭載された半導体素子と、を備え、前記接着層は、前記ペースト状樹脂組成物を焼結してなる、半導体装置が提供される。
The present invention can be shown below.
According to the invention,
(A) a (meth)acryloyl group-containing compound having at least two functionalities and having two or more repeating units of a linear or branched oxyalkylene group;
(B) metal-containing particles, including silver-containing particles or copper-containing particles;
A paste-like resin composition is provided.
According to the present invention, there is provided a highly thermally conductive material obtained by sintering the paste resin composition.
According to the present invention, a semiconductor device comprising a substrate and a semiconductor element mounted on the substrate via an adhesive layer, wherein the adhesive layer is formed by sintering the paste resin composition. is provided.

本発明によれば、半導体素子と基材との接合に適用することにより、長期に亘って良好な導電性が発現し、長期信頼性に優れた半導体装置を得ることができるペースト状樹脂組成物を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a paste-like resin composition that exhibits good conductivity over a long period of time and can provide a semiconductor device with excellent long-term reliability by applying it to the bonding of a semiconductor element and a base material. can be provided.

半導体装置の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a semiconductor device; FIG. 半導体装置の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a semiconductor device; FIG.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」は特に断りがなければ「以上」から「以下」を表す。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. In addition, "~" represents "more than" to "less than" unless otherwise specified.

本実施形態のペースト状樹脂組成物は、(A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、(B)銀粒子または銅粒子を含む金属含有粒子と、を含む。 The paste-like resin composition of the present embodiment includes (A) a (meth)acryloyl group-containing compound having at least two functionalities and having two or more repeating units of a linear or branched oxyalkylene group, and (B) and metal-containing particles comprising silver or copper particles.

[(メタ)アクリロイル基含有化合物(A)]
(メタ)アクリロイル基含有化合物(A)としては、(メタ)アクリロイル基を2官能以上有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である化合物であれば、本発明の効果を発揮し得る範囲で特に限定されず用いることができる。
[(Meth)acryloyl group-containing compound (A)]
As the (meth)acryloyl group-containing compound (A), any compound having two or more functional (meth)acryloyl groups and having two or more repeating units of a linear or branched oxyalkylene group can be used. It can be used without particular limitation as long as the effect can be exhibited.

本実施形態において、当該構造を備える(メタ)アクリロイル基含有化合物(A)を含むペースト状樹脂組成物を用いることにより、当該組成物を焼結して得られる材料は、応力が緩和され、靱性にも優れる(破断エネルギーが高く破断し難い)。したがって、本実施形態のペースト状樹脂組成物により半導体素子と基材とが接合された半導体装置は、接合部の剥離等が抑制され、長期に亘って良好な導電性が発現し、長期信頼性に優れると考えられる。 In the present embodiment, by using a paste-like resin composition containing the (meth)acryloyl group-containing compound (A) having the structure, the material obtained by sintering the composition has a reduced stress and toughness. It is also excellent (breaking energy is high and it is difficult to break). Therefore, the semiconductor device in which the semiconductor element and the base material are bonded by the paste resin composition of the present embodiment suppresses peeling of the bonding portion, etc., exhibits good conductivity over a long period of time, and has long-term reliability. It is considered to be superior to

オキシアルキレン基の繰り返し単位数は、本発明の効果の観点から、2以上、好ましくは4以上、より好ましくは4~30、特に好ましくは8~30とすることができる。 The number of repeating units of the oxyalkylene group can be 2 or more, preferably 4 or more, more preferably 4 to 30, particularly preferably 8 to 30, from the viewpoint of the effects of the present invention.

オキシアルキレン基としては、直鎖または分岐の炭素数2~10のオキシアルキレン基、好ましくは直鎖または分岐の炭素数2~8のオキシアルキレン基、より好ましくは直鎖または分岐の炭素数2~5のオキシアルキレン基を挙げることができる。
本実施形態においては、(メタ)アクリロイル基含有化合物(A)は、下記一般式(1)で表される化合物から選択される少なくとも1種を含むことが好ましい。
The oxyalkylene group is a linear or branched oxyalkylene group having 2 to 10 carbon atoms, preferably a linear or branched oxyalkylene group having 2 to 8 carbon atoms, more preferably a linear or branched oxyalkylene group having 2 to 8 carbon atoms. 5 oxyalkylene groups can be mentioned.
In the present embodiment, the (meth)acryloyl group-containing compound (A) preferably contains at least one compound selected from compounds represented by the following general formula (1).

Figure 2023015160000001
Figure 2023015160000001

一般式(1)中、Rは水素原子または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。
Xは水素原子、ハロゲン原子、水酸基、アミノ基、シアノ基、メルカプト基、カルボキシル基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し、好ましくは水素原子または炭素数1~3のアルキル基である。複数存在するXは同一でも異なっていてもよい。
mは2~10の整数、好ましくは2~8の整数、より好ましくは2~5の整数を示すことができる。
nは4以上30以下の整数を示し、好ましくは8以上30以下の整数と示すことができる。
In general formula (1), R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and multiple R's may be the same or different.
X represents a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a cyano group, a mercapto group, a carboxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, preferably a hydrogen atom or a carbon number 1 to 3 alkyl groups. Multiple X's may be the same or different.
m can represent an integer of 2-10, preferably an integer of 2-8, more preferably an integer of 2-5.
n represents an integer of 4 or more and 30 or less, preferably an integer of 8 or more and 30 or less.

(メタ)アクリロイル基含有化合物(A)としては、ジエチレングルコールジ(メタ)アクリレート、トリエチレングルコールジ(メタ)アクリレート、ポリエチレングリコール♯200ジ(メタ)アクリレート(n:4)、ポリエチレングリコール♯400ジ(メタ)アクリレート(n:9)、ポリエチレングリコール♯600ジ(メタ)アクリレート(n:14)、ポリエチレングリコール♯1000ジ(メタ)アクリレート(n:23)等を挙げることができる。 (Meth)acryloyl group-containing compound (A) includes diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol #200 di(meth)acrylate (n:4), polyethylene glycol # 400 di(meth)acrylate (n:9), polyethylene glycol #600 di(meth)acrylate (n:14), polyethylene glycol #1000 di(meth)acrylate (n:23), and the like.

(メタ)アクリロイル基含有化合物(A)は、本発明の効果の観点から、ペースト状樹脂組成物の不揮発成分全体中に、0.1~15重量%以下、好ましくは0.5~10重量%、より好ましく1.0~8重量%の量で含むことができる。 The (meth)acryloyl group-containing compound (A) is 0.1 to 15% by weight or less, preferably 0.5 to 10% by weight, in the total nonvolatile components of the paste resin composition, from the viewpoint of the effect of the present invention. , more preferably in an amount of 1.0 to 8% by weight.

なお、本発明の効果に影響を与えない範囲で(メタ)アクリロイル基含有化合物(A)とともに、一分子中に(メタ)アクリロイル基を1つのみ備える単官能(メタ)アクリルモノマー等の(メタ)アクリロイル基含有化合物(A)以外の(メタ)アクリロイル基含有化合物を含むこともできる。 In addition to the (meth)acryloyl group-containing compound (A) within a range that does not affect the effects of the present invention, a (meth)acryloyl group-containing monofunctional (meth)acryloyl monomer having only one (meth)acryloyl group in one molecule (meth) ) A (meth)acryloyl group-containing compound other than the acryloyl group-containing compound (A) can also be included.

[金属含有粒子(B)]
金属含有粒子(B)は、適切な熱処理によってシンタリング(焼結)を起こし、粒子連結構造(シンタリング構造)を形成することができる。
金属含有粒子(B)は、銀含有粒子または銅含有粒子を含むことができる。
[Metal-containing particles (B)]
The metal-containing particles (B) can be sintered by appropriate heat treatment to form a particle connecting structure (sintering structure).
Metal-containing particles (B) can include silver-containing particles or copper-containing particles.

特に、ペースト状樹脂組成物中に銀含有粒子が含まれること、特に、粒径が比較的小さくて比表面積が比較的大きい銀粒子が含まれることで、比較的低温(180℃程度)での熱処理でもシンタリング構造が形成されやすい。好ましい粒径については後述する。 In particular, the inclusion of silver-containing particles in the paste-like resin composition, particularly the inclusion of silver particles having a relatively small particle size and a relatively large specific surface area, allows A sintered structure is likely to be formed even by heat treatment. A preferred particle size will be described later.

金属含有粒子(B)の形状は特に限定されない。好ましい形状は球状であるが、球状ではない形状、例えば楕円体状、扁平状、板状、フレーク状、針状などでもよい。
(「球状」とは、完全な真球に限られず、表面に若干の凹凸がある形状等も包含する。本明細書において以下同様。)
The shape of the metal-containing particles (B) is not particularly limited. The preferred shape is spherical, but non-spherical shapes such as ellipsoidal, flattened, plate-like, flake-like, and needle-like are also possible.
(“Spherical” is not limited to a perfect sphere, but also includes a shape with a slight unevenness on the surface, etc. The same shall apply hereinafter in this specification.)

金属含有粒子(B)は、(i)実質的に金属のみからなる粒子であってもよいし、(ii)金属と金属以外の成分からなる粒子であってもよい。また、金属含有粒子として(i)および(ii)が併用されてもよい。 The metal-containing particles (B) may be (i) particles consisting essentially of a metal, or (ii) particles consisting of a metal and a component other than a metal. Moreover, (i) and (ii) may be used together as the metal-containing particles.

本実施形態において、特に好ましくは、金属含有粒子(B)は、樹脂粒子の表面が金属でコートされた金属コート樹脂粒子を含む。これにより、熱伝導性により優れるとともに貯蔵弾性率により優れた硬化物が得られるペースト状樹脂組成物を調製することができる。 In this embodiment, the metal-containing particles (B) particularly preferably include metal-coated resin particles in which the surfaces of resin particles are coated with a metal. As a result, it is possible to prepare a paste-like resin composition from which a cured product having excellent thermal conductivity and excellent storage elastic modulus can be obtained.

金属コート樹脂粒子は、表面が金属であり、かつ、内部が樹脂であるため、熱伝導性が良く、かつ、金属のみからなる粒子と比較して軟らかい。このため、金属コート樹脂粒子を用いることで、熱伝導率や貯蔵弾性率を適切な値に容易に設計することができる。 Since the metal-coated resin particles have a metal surface and a resin inside, they have good thermal conductivity and are softer than particles made only of metal. Therefore, by using the metal-coated resin particles, the thermal conductivity and the storage elastic modulus can be easily designed to appropriate values.

通常、熱伝導性を大きくするためには、金属含有粒子の量を増やすことが考えられる。しかし、通常、金属は「硬い」ため、金属含有粒子の量が多すぎると、シンタリング後の弾性率が大きくなりすぎてしまう場合がある。金属含有粒子の一部または全部が金属コート樹脂粒子であることで、所望の熱伝導率や貯蔵弾性率を有する硬化物を得ることができるペースト状樹脂組成物を容易に設計することができる。 Generally, in order to increase the thermal conductivity, it is conceivable to increase the amount of metal-containing particles. However, since metals are generally "hard", too much metal-containing particles may result in too high a modulus after sintering. By using metal-coated resin particles for part or all of the metal-containing particles, it is possible to easily design a paste-like resin composition capable of obtaining a cured product having desired thermal conductivity and storage elastic modulus.

金属コート樹脂粒子においては、樹脂粒子の表面の少なくとも一部の領域を金属層が覆っていればよい。もちろん、樹脂粒子の表面の全面を金属が覆っていてもよい。 In the metal-coated resin particles, it is sufficient that at least a part of the surface of the resin particles is covered with a metal layer. Of course, the metal may cover the entire surface of the resin particles.

具体的には、金属コート樹脂粒子において、金属層は、樹脂粒子の表面の好ましくは50%以上、より好ましく75%以上、さらに好ましくは90%以上を覆っている。特に好ましくは、金属コート樹脂粒子において、金属層は、樹脂粒子の表面の実質的に全てを覆っている。
別観点として、金属コート樹脂粒子をある断面で切断したときには、その断面の周囲全部に金属層が確認されることが好ましい。
Specifically, in the metal-coated resin particles, the metal layer preferably covers 50% or more, more preferably 75% or more, and still more preferably 90% or more of the surface of the resin particles. Particularly preferably, in the metal-coated resin particles, the metal layer covers substantially the entire surface of the resin particles.
From another point of view, when the metal-coated resin particles are cut along a certain cross section, it is preferable that the metal layer is observed all around the cross section.

さらに別観点として、金属コート樹脂粒子中の、樹脂/金属の質量比率は、例えば90/10~10/90、好ましくは80/20~20/80、より好ましくは70/30~30/70である。 As another aspect, the mass ratio of resin/metal in the metal-coated resin particles is, for example, 90/10 to 10/90, preferably 80/20 to 20/80, more preferably 70/30 to 30/70. be.

金属コート樹脂粒子における「金属」は、前述のとおりである。特に、銀が好ましい。
金属コート樹脂粒子における「樹脂」としては、例えば、シリコーン樹脂、(メタ)アクリル樹脂、フェノール樹脂、ポリスチレン樹脂、メラミン樹脂、ポリアミド樹脂、ポリテトラフルオロエチレン樹脂などを挙げることができる。もちろん、これら以外の樹脂であってもよい。また、樹脂は1種のみであってもよいし、2種以上の樹脂が併用されてもよい。
弾性特性や耐熱性の観点から、樹脂は、シリコーン樹脂または(メタ)アクリル樹脂が好ましい。
The “metal” in the metal-coated resin particles is as described above. Silver is particularly preferred.
Examples of the "resin" in the metal-coated resin particles include silicone resins, (meth)acrylic resins, phenol resins, polystyrene resins, melamine resins, polyamide resins, and polytetrafluoroethylene resins. Of course, resins other than these may be used. Moreover, only one resin may be used, or two or more resins may be used in combination.
From the viewpoint of elastic properties and heat resistance, the resin is preferably a silicone resin or a (meth)acrylic resin.

シリコーン樹脂は、メチルクロロシラン、トリメチルトリクロロシラン、ジメチルジクロロシラン等のオルガノクロロシランを重合させることにより得られるオルガノポリシロキサンにより構成される粒子でもよい。また、オルガノポリシロキサンをさらに三次元架橋した構造を基本骨格としたシリコーン樹脂でもよい。 The silicone resin may be particles composed of organopolysiloxane obtained by polymerizing organochlorosilanes such as methylchlorosilane, trimethyltrichlorosilane and dimethyldichlorosilane. Alternatively, a silicone resin having a basic skeleton structure obtained by further three-dimensionally cross-linking an organopolysiloxane may be used.

(メタ)アクリル樹脂は、(メタ)アクリル酸エステルを含むモノマーを重合させて得られた樹脂を、主成分として50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上含むことができる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-プロピル(メタ)アクリレート、クロロ-2-ヒドロキシエチル(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートおよびイソボロノル(メタ)アクリレートからなる群から選ばれる少なくとも1種の化合物を挙げることができる。また、アクリル系樹脂のモノマー成分には、少量の他のモノマーが含まれていてもよい。そのような他のモノマー成分としては、例えば、スチレン系モノマーが挙げられる。金属コート(メタ)アクリル樹脂については、特開2017-126463号公報の記載なども参照されたい。 The (meth)acrylic resin contains, as a main component, 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more of a resin obtained by polymerizing a monomer containing a (meth)acrylic acid ester. can be done. (Meth)acrylic acid esters, for example, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate , stearyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-propyl (meth)acrylate, chloro-2-hydroxyethyl (meth)acrylate, diethylene glycol mono (meth)acrylate, At least one compound selected from the group consisting of methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate and isoboronol (meth)acrylate can be mentioned. can. Further, the monomer component of the acrylic resin may contain a small amount of other monomers. Such other monomer components include, for example, styrenic monomers. For the metal-coated (meth)acrylic resin, see also the description in JP-A-2017-126463.

シリコーン樹脂や(メタ)アクリル樹脂中に各種官能基を導入してもよい。導入できる官能基は特に限定されない。例えば、エポキシ基、アミノ基、メトキシ基、フェニル基、カルボキシル基、水酸基、アルキル基、ビニル基、メルカプト基等が挙げられる。 Various functional groups may be introduced into the silicone resin or (meth)acrylic resin. Functional groups that can be introduced are not particularly limited. Examples thereof include epoxy group, amino group, methoxy group, phenyl group, carboxyl group, hydroxyl group, alkyl group, vinyl group and mercapto group.

金属コート樹脂粒子における樹脂粒子の部分は、各種の添加成分、例えば低応力改質剤などを含んでもよい。低応力改質剤としては、ブタジエンスチレンゴム、ブタジエンアクリロニトリルゴム、ポリウレタンゴム、ポリイソプレンゴム、アクリルゴム、フッ素ゴム、液状オルガノポリシロキサン、液状ポリブタジエン等の液状合成ゴム等が挙げられる。特に、樹脂粒子の部分がシリコーン樹脂を含む場合、低応力改質剤を含むことで、金属コート樹脂粒子の弾性特性を好ましいものとすることができる。 The resin particle portion of the metal-coated resin particles may contain various additive components such as low stress modifiers. Examples of low-stress modifiers include liquid synthetic rubbers such as butadiene styrene rubber, butadiene acrylonitrile rubber, polyurethane rubber, polyisoprene rubber, acrylic rubber, fluororubber, liquid organopolysiloxane, and liquid polybutadiene. In particular, when the resin particle portion contains a silicone resin, the inclusion of a low-stress modifier can make the elastic properties of the metal-coated resin particles preferable.

金属コート樹脂粒子における樹脂粒子の部分の形状は、特に限定されない。好ましい形状は球状であるが、球状以外の異形状、例えば扁平状、板状、針状などでもよい。金属コート樹脂粒子の形状を球状に形成する場合は、使用する樹脂粒子の形状も球状であることが好ましい。 The shape of the resin particle portion in the metal-coated resin particles is not particularly limited. A preferred shape is spherical, but non-spherical shapes such as flat, plate-like, and needle-like may also be used. When the shape of the metal-coated resin particles is spherical, the shape of the resin particles used is also preferably spherical.

金属コート樹脂粒子の比重は特に限定されないが、下限は、例えば2以上、好ましくは2.5以上、より好ましくは3以上である。また、比重の上限は、例えば10以下、好ましくは9以下、より好ましくは8以下である。比重が適切であることは、金属コート樹脂粒子そのものの分散性や、金属コート樹脂粒子とそれ以外の金属含有粒子を併用したときの均一性などの点で好ましい。 The specific gravity of the metal-coated resin particles is not particularly limited, but the lower limit is, for example, 2 or more, preferably 2.5 or more, and more preferably 3 or more. Further, the upper limit of the specific gravity is, for example, 10 or less, preferably 9 or less, more preferably 8 or less. Appropriate specific gravity is preferable in terms of dispersibility of the metal-coated resin particles themselves and uniformity when the metal-coated resin particles and other metal-containing particles are used together.

金属コート樹脂粒子を用いる場合、金属含有粒子(B)全体中の金属コート樹脂粒子の割合は、好ましくは1~50質量%、より好ましくは3~45質量%、さらに好ましくは5~40質量%である。この割合を適切に調整することで、ヒートサイクルによる接着力の低下を抑えつつ、放熱性を一層高めることができる。 When metal-coated resin particles are used, the proportion of the metal-coated resin particles in the total metal-containing particles (B) is preferably 1 to 50% by mass, more preferably 3 to 45% by mass, and still more preferably 5 to 40% by mass. is. By appropriately adjusting this ratio, it is possible to further improve heat dissipation while suppressing a decrease in adhesive strength due to heat cycles.

ちなみに、金属含有粒子(B)全体中の金属コート樹脂粒子の割合が100質量%ではない場合、金属コート樹脂粒子以外の金属含有粒子は、例えば、実質的に金属のみからなる粒子である。 Incidentally, when the proportion of the metal-coated resin particles in the entire metal-containing particles (B) is not 100% by mass, the metal-containing particles other than the metal-coated resin particles are, for example, particles consisting essentially of metal.

金属含有粒子(B)(複数種の金属含有粒子が併用される場合は全体として)のメジアン径D50は、例えば0.001~1000μm、好ましくは0.01~100μm、より好ましくは0.1~20μmである。D50を適切な値とすることで、熱伝導性、焼結性、ヒートサイクルに対する耐性などのバランスを取りやすい。また、D50を適切な値とすることで、塗布/接着の作業性の向上などを図れることもある。
金属含有粒子の粒度分布(横軸:粒子径、縦軸:頻度)は、単峰性であっても多峰性であってもよい。
The median diameter D50 of the metal-containing particles (B) (as a whole when multiple types of metal-containing particles are used together) is, for example, 0.001 to 1000 μm, preferably 0.01 to 100 μm, more preferably 0.1. ~20 μm. By setting D50 to an appropriate value, it is easy to balance thermal conductivity, sinterability, resistance to heat cycles, and the like. Also, by setting the D50 to an appropriate value, it may be possible to improve the workability of application/adhesion.
The particle size distribution (horizontal axis: particle size, vertical axis: frequency) of the metal-containing particles may be unimodal or multimodal.

実質的に金属のみからなる粒子のメジアン径D50は、例えば0.8μm以上、好ましくは1.0μm以上、より好ましくは1.2μm以上である。これにより、熱伝導性をより高めることができる。 The median diameter D50 of the particles consisting essentially of metal is, for example, 0.8 μm or more, preferably 1.0 μm or more, and more preferably 1.2 μm or more. Thereby, heat conductivity can be improved more.

また、実質的に金属のみからなる粒子のメジアン径D50は、例えば7.0μm以下、好ましくは5.0μm以下、より好ましくは4.0μm以下である。これにより、シンタリングのしやすさの一層の向上、シンタリングの均一性の向上などを図ることができる。 In addition, the median diameter D50 of the particles consisting essentially of metal is, for example, 7.0 μm or less, preferably 5.0 μm or less, more preferably 4.0 μm or less. As a result, it is possible to further improve the ease of sintering and improve the uniformity of sintering.

金属含有粒子(B)のメジアン径D50は、例えば0.5μm以上、好ましくは1.5μm以上、より好ましくは2.0μm以上である。これにより、貯蔵弾性率E'を適切な値にしやすい。 The median diameter D50 of the metal-containing particles (B) is, for example, 0.5 μm or more, preferably 1.5 μm or more, and more preferably 2.0 μm or more. This makes it easy to set the storage elastic modulus E' to an appropriate value.

また、金属含有粒子(B)のメジアン径D50は、例えば20μm以下、好ましくは15μm以下、より好ましくは10μm以下である。これにより、熱伝導性を十分大きくしやすい。 In addition, the median diameter D50 of the metal-containing particles (B) is, for example, 20 μm or less, preferably 15 μm or less, more preferably 10 μm or less. This makes it easy to sufficiently increase the thermal conductivity.

金属含有粒子(B)のメジアン径D50は、例えば、シスメックス株式会社製フロー式粒子像分析装置FPIA(登録商標)-3000を用い、粒子画像計測を行うことで求めることができる。より具体的には、この装置を用い、湿式で体積基準のメジアン径を計測することで、金属含有粒子(B)の粒子径を決定することができる。 The median diameter D 50 of the metal-containing particles (B) can be obtained, for example, by performing particle image measurement using a flow-type particle image analyzer FPIA (registered trademark)-3000 manufactured by Sysmex Corporation. More specifically, the particle diameter of the metal-containing particles (B) can be determined by measuring the volume-based median diameter in a wet manner using this apparatus.

ペースト状樹脂組成物全体中の金属含有粒子(B)(複数種の金属含有粒子を用いる場合は、それらの合計)の割合は、例えば1~98質量%、好ましくは30~95質量%、より好ましくは50~90質量%である。金属含有粒子の割合を1質量%以上とすることで、熱伝導性を高めやすい。金属含有粒子(B)の割合を98質量%以下とすることで、塗布/接着の作業性を向上させることができる。 The proportion of the metal-containing particles (B) in the entire paste-like resin composition (the total of them when using multiple types of metal-containing particles) is, for example, 1 to 98% by mass, preferably 30 to 95% by mass, or more. It is preferably 50 to 90% by mass. By setting the ratio of the metal-containing particles to 1% by mass or more, it is easy to increase the thermal conductivity. By setting the ratio of the metal-containing particles (B) to 98% by mass or less, the workability of coating/adhesion can be improved.

金属含有粒子(B)のうち、実質的に金属のみからなる粒子は、例えば、DOWAハイテック社、福田金属箔粉工業社などより入手することができる。また、金属コート樹脂粒子は、例えば、三菱マテリアル社、積水化学工業社、株式会社山王などより入手することができる。 Among the metal-containing particles (B), particles consisting essentially of metal can be obtained from, for example, DOWA Hi-Tech Co., Ltd., Fukuda Metal Foil & Powder Co., Ltd., and the like. Also, metal-coated resin particles can be obtained from, for example, Mitsubishi Materials Corporation, Sekisui Chemical Co., Ltd., Sanno Co., Ltd., and the like.

[熱硬化性樹脂(C)]
本実施形態のペースト状樹脂組成物は、さらに熱硬化性樹脂(C)を含むことができる。本実施形態において、熱硬化性樹脂(C)は(メタ)アクリロイル基含有化合物(A)を含まない。
[Thermosetting resin (C)]
The paste resin composition of the present embodiment can further contain a thermosetting resin (C). In this embodiment, the thermosetting resin (C) does not contain the (meth)acryloyl group-containing compound (A).

熱硬化性樹脂(C)は、通常、ラジカルなどの活性化学種が作用することで重合/架橋する基、および/または、後述の硬化剤(D)と反応する化学構造を含む。熱硬化性樹脂(C)は、例えば、エポキシ基、オキセタニル基、エチレン性炭素-炭素二重結合を含む基、ヒドロキシ基、イソシアネート基、マレイミド構造などのうち1または2以上を含む。
熱硬化性樹脂(C)としては、好ましくは、エポキシ樹脂を挙げることができる。
エポキシ樹脂は、一分子中にエポキシ基を1つのみ備える化合物であってもよいし、一分子中にエポキシ基を2つ以上備える化合物であってもよい。
The thermosetting resin (C) usually contains groups that polymerize/crosslink under the action of active chemical species such as radicals and/or chemical structures that react with the curing agent (D) described below. The thermosetting resin (C) contains, for example, one or more of an epoxy group, an oxetanyl group, a group containing an ethylenic carbon-carbon double bond, a hydroxy group, an isocyanate group, a maleimide structure, and the like.
The thermosetting resin (C) is preferably an epoxy resin.
The epoxy resin may be a compound having only one epoxy group in one molecule, or a compound having two or more epoxy groups in one molecule.

エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の2官能性または結晶性エポキシ樹脂;クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂およびアルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂等が挙げられる。 Examples of epoxy resins include bifunctional or crystalline epoxy resins such as biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, stilbene type epoxy resins, and hydroquinone type epoxy resins; cresol novolac type epoxy resins; Novolak type epoxy resins such as phenol novolac type epoxy resins and naphthol novolac type epoxy resins; Resin; trifunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin; modified phenol type epoxy resin such as dicyclopentadiene-modified phenol type epoxy resin and terpene-modified phenol type epoxy resin; triazine nucleus Heterocyclic ring-containing epoxy resins such as containing epoxy resins and the like can be mentioned.

また、エポキシ基含有化合物として、4-tert-ブチルフェニルグリシジルエーテル、m,p-クレジルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル等の、単官能のエポキシ基含有化合物を含むこともできる。
本実施形態のペースト状樹脂組成物は、熱硬化性成分を1種のみ含んでもよいし、2種以上含んでもよい。
The epoxy group-containing compound may also include monofunctional epoxy group-containing compounds such as 4-tert-butylphenyl glycidyl ether, m,p-cresyl glycidyl ether, phenyl glycidyl ether, and cresyl glycidyl ether.
The paste-like resin composition of the present embodiment may contain only one type of thermosetting component, or may contain two or more types.

本実施形態においては、熱硬化性樹脂(C)と(メタ)アクリロイル基含有化合物(A)とが併用されることが好ましい。これらを併用する場合の比率(質量比)は特に限定されないが、例えば熱硬化性樹脂(C)/(メタ)アクリロイル基含有化合物(A)=95/5~50/50、好ましくは熱硬化性樹脂(C)/((メタ)アクリロイル基含有化合物(A)=90/10~60/40である。 In the present embodiment, the thermosetting resin (C) and the (meth)acryloyl group-containing compound (A) are preferably used together. The ratio (mass ratio) when these are used in combination is not particularly limited, but for example, thermosetting resin (C) / (meth)acryloyl group-containing compound (A) = 95/5 to 50/50, preferably thermosetting Resin (C)/((meth)acryloyl group-containing compound (A))=90/10 to 60/40.

熱硬化性樹脂(C)としてはエポキシ樹脂が好ましい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が好ましく挙げられる。
本実施形態のペースト状樹脂組成物中の、熱硬化性樹脂(C)の量は、不揮発成分全体中、例えば3~20質量%、好ましくは5~15質量%である。
An epoxy resin is preferred as the thermosetting resin (C). As the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and the like are preferably mentioned.
The amount of the thermosetting resin (C) in the paste resin composition of the present embodiment is, for example, 3 to 20% by mass, preferably 5 to 15% by mass, based on the total nonvolatile components.

[硬化剤(D)]
本実施形態のペースト状樹脂組成物は、さらに硬化剤(D)を含むことができる。
[Curing agent (D)]
The paste resin composition of the present embodiment can further contain a curing agent (D).

硬化剤(D)としては、熱硬化性樹脂(C)と反応する反応性基を有するものを挙げることができる。硬化剤(D)は、例えば、熱硬化性樹脂(C)中に含まれるエポキシ基、マレイミド基、ヒドロキシ基などの官能基と反応する反応性基を含む。 Examples of the curing agent (D) include those having a reactive group that reacts with the thermosetting resin (C). The curing agent (D) contains, for example, reactive groups that react with functional groups such as epoxy groups, maleimide groups, and hydroxy groups contained in the thermosetting resin (C).

硬化剤(D)は、好ましくは、フェノール系硬化剤および/またはイミダゾール系硬化剤を含む。これら硬化剤は、特に、熱硬化性成分がエポキシ基を含む場合に好ましい。
フェノール系硬化剤は、低分子化合物あってもよいし、高分子化合物(すなわちフェノール樹脂)であってもよい。
Curing agent (D) preferably contains a phenolic curing agent and/or an imidazole curing agent. These curing agents are particularly preferred when the thermosetting component contains epoxy groups.
The phenol-based curing agent may be a low-molecular-weight compound or a high-molecular-weight compound (ie, phenolic resin).

低分子化合物であるフェノール系硬化剤としては、例えば、ビスフェノールA、ビスフェノールF(ジヒドロキシジフェニルメタン)等のビスフェノール化合物(ビスフェノールF骨格を有するフェノール樹脂);4,4'-ビフェノールなどのビフェニレン骨格を有する化合物などが挙げられる。 Examples of phenol-based curing agents that are low-molecular-weight compounds include bisphenol compounds (phenolic resins having a bisphenol F skeleton) such as bisphenol A and bisphenol F (dihydroxydiphenylmethane); compounds having a biphenylene skeleton such as 4,4'-biphenol. etc.

フェノール樹脂として具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂等のノボラック型フェノール樹脂;ポリビニルフェノール;トリフェニルメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のフェノールアラルキル型フェノール樹脂などを挙げることができる。
硬化剤(D)を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Specific examples of phenolic resins include novolac-type phenolic resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak resin, and phenol-biphenyl novolak resin; polyvinylphenol; polyfunctional phenolic resins such as triphenylmethane-type phenol resin; modified phenolic resins such as modified phenolic resins and dicyclopentadiene-modified phenolic resins; phenolic aralkyl-type phenolic resins such as phenolaralkyl resins having a phenylene skeleton and/or biphenylene skeleton and naphtholaralkyl resins having a phenylene and/or biphenylene skeleton; be able to.
When using the curing agent (D), only one type may be used, or two or more types may be used in combination.

本実施形態のペースト状樹脂組成物が硬化剤(D)を含む場合、その量は、熱硬化性樹脂(C)の量を100質量部としたとき、例えば10~150質量部、好ましくは20~100質量部である。 When the paste-like resin composition of the present embodiment contains the curing agent (D), the amount thereof is, for example, 10 to 150 parts by mass, preferably 20 parts by mass when the amount of the thermosetting resin (C) is 100 parts by mass. ~100 parts by mass.

(硬化促進剤)
本実施形態のペースト状樹脂組成物は、さらに硬化促進剤を含むことができる。
硬化促進剤は、典型的には熱硬化性樹脂(C)と硬化剤(D)との反応を促進させるものである。
(Curing accelerator)
The paste resin composition of the present embodiment may further contain a curing accelerator.
A curing accelerator typically accelerates the reaction between the thermosetting resin (C) and the curing agent (D).

硬化促進剤として具体的には、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;ジシアンジアミド、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等のアミジンや3級アミン;上記アミジンまたは上記3級アミンの4級アンモニウム塩等の窒素原子含有化合物などが挙げられる。
硬化促進剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Specific examples of curing accelerators include phosphorus atom-containing compounds such as organic phosphines, tetrasubstituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; dicyandiamide, 1 ,8-diazabicyclo[5.4.0]undecene-7, amidines and tertiary amines such as benzyldimethylamine; and nitrogen atom-containing compounds such as quaternary ammonium salts of the above amidines or the above tertiary amines.
When using a hardening accelerator, only 1 type may be used and 2 or more types may be used together.

本実施形態のペースト状樹脂組成物が硬化促進剤を含む場合、その量は、熱硬化性樹脂(C)の量を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~5質量部である。 When the paste resin composition of the present embodiment contains a curing accelerator, its amount is, for example, 0.1 to 10 parts by mass, preferably 0, when the amount of the thermosetting resin (C) is 100 parts by mass. .5 to 5 parts by mass.

(シランカップリング剤)
本実施形態のペースト状樹脂組成物は、さらにシランカップリング剤を含むことができる。これにより、接着力の一層の向上を図ることができる。
(Silane coupling agent)
The paste resin composition of the present embodiment can further contain a silane coupling agent. This makes it possible to further improve the adhesive force.

シランカップリング剤としては、公知のシランカップリング剤を挙げることができ、具体的には、ニルトリメトキシシラン、ビニルトリエトキシシランなどのビニルシラン;
2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシシラン;
p-スチリルトリメトキシシランなどのスチリルシラン;
3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリルシラン;
メタクリル酸3-(トリメトキシシリル)プロピル、3-アクリロキシプロピルトリメトキシシランなどのアクリルシラン;
N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシランなどのアミノシラン;
イソシアヌレートシラン;
アルキルシラン;
3-ウレイドプロピルトリアルコキシシランなどのウレイドシラン;
3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプトシラン;
3-イソシアネートプロピルトリエトキシシランなどのイソシアネートシランなどを挙げることができる。
シランカップリング剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Silane coupling agents include known silane coupling agents, specifically vinylsilanes such as nyltrimethoxysilane and vinyltriethoxysilane;
2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl epoxy silanes such as methyldiethoxysilane, 3-glycidoxypropyltriethoxysilane;
styrylsilanes such as p-styryltrimethoxysilane;
methacryloxysilanes such as 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane;
acrylic silanes such as 3-(trimethoxysilyl)propyl methacrylate, 3-acryloxypropyltrimethoxysilane;
N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, aminosilanes such as 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-γ-aminopropyltrimethoxysilane;
isocyanurate silane;
alkylsilane;
ureidosilanes such as 3-ureidopropyltrialkoxysilane;
Mercaptosilanes such as 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane;
Examples include isocyanatosilanes such as 3-isocyanatopropyltriethoxysilane.
When using a silane coupling agent, only 1 type may be used and 2 or more types may be used together.

本実施形態のペースト状樹脂組成物がシランカップリング剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~5質量部である。 When the paste resin composition of the present embodiment contains a silane coupling agent, the amount thereof is the amount of the thermosetting component (the total amount of the (meth)acryloyl group-containing compound (A) and the thermosetting resin (C) ) is 100 parts by mass, it is, for example, 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass.

(可塑剤)
本実施形態のペースト状樹脂組成物は、可塑剤を含むことができる。可塑剤により、貯蔵弾性率を小さめに設計しやすい。そして、ヒートサイクルによる接着力の低下を一層抑えやすくなる。
(Plasticizer)
The paste resin composition of the present embodiment can contain a plasticizer. The plasticizer makes it easy to design the storage elastic modulus to be small. And it becomes easy to suppress the fall of the adhesive force by a heat cycle further.

可塑剤として具体的には、ポリエステル化合物、シリコーンオイル、シリコーンゴム等のシリコーン化合物、ポリブタジエン無水マレイン酸付加体などのポリブタジエン化合物、アクリロニトリルブタジエン共重合化合物などを挙げることができる。
可塑剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Specific examples of plasticizers include silicone compounds such as polyester compounds, silicone oils and silicone rubbers, polybutadiene compounds such as polybutadiene maleic anhydride adducts, and acrylonitrile-butadiene copolymer compounds.
When using a plasticizer, only 1 type may be used and 2 or more types may be used together.

本実施形態のペースト状樹脂組成物が可塑剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば5~50質量部、好ましくは10~30質量部である。 When the paste-like resin composition of the present embodiment contains a plasticizer, the amount thereof is the amount of the thermosetting component (the total amount of the (meth)acryloyl group-containing compound (A) and the thermosetting resin (C)). When 100 parts by mass, it is, for example, 5 to 50 parts by mass, preferably 10 to 30 parts by mass.

(ラジカル開始剤)
本実施形態のペースト状樹脂組成物は、ラジカル開始剤を含むことができる。
ラジカル開始剤により、例えば、硬化が不十分となることを抑えることができたり、比較的低温(例えば180℃)での硬化反応を十分に進行させることができたり、接着力を一層向上させることができたりする場合がある。
ラジカル開始剤としては、過酸化物、アゾ化合物などを挙げることができる。
(radical initiator)
The paste resin composition of the present embodiment can contain a radical initiator.
The radical initiator can, for example, prevent insufficient curing, allow the curing reaction to proceed sufficiently at relatively low temperatures (e.g., 180°C), and further improve adhesive strength. may occur.
Examples of radical initiators include peroxides and azo compounds.

過酸化物としては、例えば、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタールなどの有機過酸化物を挙げることができ、より具体的には、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等のケトンパーオキサイド;1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ(t-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール;
p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド;
ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-へキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド;
ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド等のジアシルパーオキサイド;
ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネート;
2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-へキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ2-エチルヘキサノネート等のパーオキシエステルなどを挙げることができる。
Examples of peroxides include organic peroxides such as diacyl peroxide, dialkyl peroxide, and peroxyketals, more specifically, ketone peroxides such as methyl ethyl ketone peroxide and cyclohexanone peroxide; Peroxyketals such as 1,1-di(t-butylperoxy)cyclohexane and 2,2-di(4,4-di(t-butylperoxy)cyclohexyl)propane;
Hydroperoxides such as p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide;
di(2-t-butylperoxyisopropyl)benzene, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t- Dialkyl peroxides such as xyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butyl peroxide;
Diacyl peroxides such as dibenzoyl peroxide and di(4-methylbenzoyl) peroxide;
Peroxydicarbonates such as di-n-propyl peroxydicarbonate and diisopropyl peroxydicarbonate;
Peroxyesters such as 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-hexylperoxybenzoate, t-butylperoxybenzoate, t-butylperoxy 2-ethylhexanonate, etc. can be mentioned.

アゾ化合物としては、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)などを挙げることができる。
ラジカル開始剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
Azo compounds include 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2-cyclopropylpropionitrile), 2,2'-azobis(2, 4-dimethylvaleronitrile) and the like.
When using a radical initiator, only 1 type may be used and 2 or more types may be used together.

本実施形態のペースト状樹脂組成物がラジカル開始剤を含む場合、その量は、熱硬化性成分の量((メタ)アクリロイル基含有化合物(A)および熱硬化性樹脂(C)の合計量)を100質量部としたとき、例えば0.1~10質量部、好ましくは0.5~8質量部、さらに好ましくは0.5~5質量部である。 When the paste-like resin composition of the present embodiment contains a radical initiator, the amount thereof is the amount of the thermosetting component (the total amount of the (meth)acryloyl group-containing compound (A) and the thermosetting resin (C)). is 100 parts by mass, for example, 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass, more preferably 0.5 to 5 parts by mass.

(溶剤)
本実施形態のペースト状樹脂組成物は、さらに溶剤を含むことができる。溶剤により、例えば、ペースト状樹脂組成物の流動性の調整、基材上に接着層を形成する際の作業性の向上などを図ることができる。
(solvent)
The paste resin composition of the present embodiment can further contain a solvent. By using the solvent, for example, it is possible to adjust the fluidity of the paste-like resin composition, improve the workability when forming the adhesive layer on the base material, and the like.

溶剤は、典型的には有機溶剤である。
有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコール、ブチルプロピレントリグリコール、グリセリン等のアルコール類;
アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3、5、5-トリメチル-2-シクロヘキセン-1-オン)、ジイソブチルケトン(2、6-ジメチル-4-ヘプタノン)等のケトン類;
酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン、リン酸トリブチル、リン酸トリクレジル、リン酸トリペンチル等のエステル類;
テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタン、1,2-ビス(2-メトキシエトキシ)エタン等のエーテル類;
酢酸2-(2ブトキシエトキシ)エタン等のエステルエーテル類;
2-(2-メトキシエトキシ)エタノール等のエーテルアルコール類;
トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシン、軽油等の炭化水素類;
アセトニトリルもしくはプロピオニトリル等のニトリル類;
アセトアミド、N,N-ジメチルホルムアミド等のアミド類;
低分子量の揮発性シリコンオイル、揮発性有機変成シリコンオイル等のシリコンオイル類など、を挙げることができる。
溶剤を用いる場合、1種のみの溶剤を用いてもよいし、2種以上の溶剤を併用してもよい。
The solvent is typically an organic solvent.
Organic solvents include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl Ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methylmethoxybutanol, α-terpineol, β-terpineol, hexylene glycol, benzyl alcohol, 2-phenylethyl alcohol, isopalmityl alcohol, iso Alcohols such as stearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol, butylpropylene triglycol, glycerin;
Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), Ketones such as diisobutyl ketone (2,6-dimethyl-4-heptanone);
Ethyl acetate, butyl acetate, diethyl phthalate, dibutyl phthalate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octanoate, methyl decanoate, methyl cellosolve acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, 1,2- Esters such as diacetoxyethane, tributyl phosphate, tricresyl phosphate, and tripentyl phosphate;
Tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl ether, 1,2-bis(2-diethoxy)ethane, 1,2-bis(2-methoxyethoxy) ) ethers such as ethane;
Ester ethers such as 2-(2-butoxyethoxy)ethane acetate;
Ether alcohols such as 2-(2-methoxyethoxy)ethanol;
Hydrocarbons such as toluene, xylene, n-paraffin, isoparaffin, dodecylbenzene, turpentine oil, kerosene, light oil;
Nitriles such as acetonitrile or propionitrile;
amides such as acetamide and N,N-dimethylformamide;
Silicone oils such as low molecular weight volatile silicone oils and volatile organically modified silicone oils can be mentioned.
When using a solvent, only one solvent may be used, or two or more solvents may be used in combination.

溶剤を用いる場合、その量は特に限定されない。所望の流動性などに基づき使用量は適宜調整すればよい。一例として、溶剤は、ペースト状樹脂組成物の不揮発成分濃度が50~90質量%となる量で使用される。 When using a solvent, the amount is not particularly limited. The amount used may be appropriately adjusted based on the desired fluidity and the like. As an example, the solvent is used in such an amount that the non-volatile component concentration of the paste-like resin composition is 50 to 90% by mass.

(組成物の性状)
本実施形態のペースト状樹脂組成物は、好ましくは、20℃でペースト状である。すなわち、本実施形態のペースト状樹脂組成物は、好ましくは、20℃で、糊のようにして基板等に塗布することができる。このことにより、本実施形態のペースト状樹脂組成物を、半導体素子の接着剤などとして好ましく用いることができる。
もちろん、適用されるプロセスなどによっては、本実施形態のペースト状樹脂組成物は、比較的低粘度のワニス状などであってもよい。
(Properties of composition)
The paste resin composition of the present embodiment is preferably pasty at 20°C. That is, the paste resin composition of the present embodiment can preferably be applied to a substrate or the like at 20° C. like a paste. As a result, the paste resin composition of the present embodiment can be preferably used as an adhesive for semiconductor elements or the like.
Of course, depending on the applied process, etc., the paste-like resin composition of the present embodiment may be in the form of a relatively low-viscosity varnish.

<高熱伝導性材料>
本実施形態のペースト状樹脂組成物を焼結しことにより高熱伝導性材料を得ることができる。
高熱伝導性材料の形状を変えることにより、自動車、電機分野において熱放散性を必要とする様々な部品に適用することができる。
<High thermal conductivity material>
A high thermal conductivity material can be obtained by sintering the paste resin composition of the present embodiment.
By changing the shape of the high thermal conductivity material, it can be applied to various parts that require heat dissipation in the fields of automobiles and electrical machinery.

<半導体装置>
本実施形態のペースト状樹脂組成物を用いて、半導体装置を製造することができる。例えば、本実施形態のペースト状樹脂組成物を、基材と半導体素子との「接着剤」として用いることで、半導体装置を製造することができる。
<Semiconductor device>
A semiconductor device can be manufactured using the paste resin composition of the present embodiment. For example, a semiconductor device can be manufactured by using the paste resin composition of the present embodiment as an "adhesive" between a substrate and a semiconductor element.

換言すると、本実施形態の半導体装置は、例えば、基材と、上述のペースト状樹脂組成物を熱処理により焼結して得られる接着層を介して基材上に搭載された半導体素子と、を備える。
本実施形態の半導体装置は、ヒートサイクルによっても接着層の密着性などが低下しにくい。つまり、本実施形態の半導体装置の信頼性は高い。
半導体素子としては、IC、LSI、電力用半導体素子(パワー半導体)、その他各種の素子を挙げることができる。
基板としては、各種半導体ウエハ、リードフレーム、BGA基板、実装基板、ヒートスプレッダー、ヒートシンクなどを挙げることができる。
In other words, the semiconductor device of the present embodiment includes, for example, a substrate and a semiconductor element mounted on the substrate via an adhesive layer obtained by sintering the paste resin composition by heat treatment. Prepare.
In the semiconductor device of the present embodiment, the adhesiveness of the adhesive layer is less likely to deteriorate due to heat cycles. That is, the reliability of the semiconductor device of this embodiment is high.
Examples of semiconductor devices include ICs, LSIs, power semiconductor devices (power semiconductors), and various other devices.
Examples of substrates include various semiconductor wafers, lead frames, BGA substrates, mounting substrates, heat spreaders, and heat sinks.

以下、図面を参照して、半導体装置の一例を説明する。
図1は、半導体装置の一例を示す断面図である。
半導体装置100は、基材30と、ペースト状樹脂組成物の熱処理体である接着層10(ダイアタッチ材)を介して基材30上に搭載された半導体素子20と、を備える。
An example of a semiconductor device will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a semiconductor device.
The semiconductor device 100 includes a base material 30 and a semiconductor element 20 mounted on the base material 30 via an adhesive layer 10 (die attach material) that is a heat-treated paste resin composition.

半導体素子20と基材30は、例えばボンディングワイヤ40等を介して電気的に接続される。また、半導体素子20は、例えば封止樹脂50により封止される。 The semiconductor element 20 and the base material 30 are electrically connected via bonding wires 40 or the like, for example. Also, the semiconductor element 20 is sealed with a sealing resin 50, for example.

接着層10の厚さは、5μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。これにより、ペースト状樹脂組成物の応力吸収能が向上し、耐ヒートサイクル性を向上できる。
接着層10の厚さは、例えば100μm以下、好ましくは50μm以下である。
The thickness of the adhesive layer 10 is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. Thereby, the stress absorption capacity of the paste-like resin composition can be improved, and the heat cycle resistance can be improved.
The thickness of the adhesive layer 10 is, for example, 100 μm or less, preferably 50 μm or less.

図1において、基材30は、例えば、リードフレームである。この場合、半導体素子20は、ダイパッド32または基材30上に接着層10を介して搭載されることとなる。また、半導体素子20は、例えば、ボンディングワイヤ40を介してアウターリード34(基材30)へ電気的に接続される。リードフレームである基材30は、例えば、42アロイ、Cuフレーム等により構成される。 In FIG. 1, the base material 30 is, for example, a lead frame. In this case, the semiconductor element 20 is mounted on the die pad 32 or the base material 30 with the adhesive layer 10 interposed therebetween. In addition, the semiconductor element 20 is electrically connected to the outer leads 34 (the base material 30) via bonding wires 40, for example. The base material 30, which is a lead frame, is composed of, for example, 42 alloy, a Cu frame, or the like.

基材30は、有機基板やセラミック基板であってもよい。有機基板としては、例えばエポキシ樹脂、シアネート樹脂、マレイミド樹脂等によって構成されたものを挙げることができる。
基材30の表面は、例えば、銀、金などの金属により被膜されていてもよい。これにより、接着層10と基材30との接着性が向上する。
The substrate 30 may be an organic substrate or a ceramic substrate. Examples of organic substrates include those made of epoxy resin, cyanate resin, maleimide resin, or the like.
The surface of the base material 30 may be coated with a metal such as silver or gold, for example. This improves the adhesiveness between the adhesive layer 10 and the substrate 30 .

図2は、図1とは別の半導体装置100の一例を示す断面図である。
図2の半導体装置100において、基材30は、例えばインターポーザである。インターポーザである基材30のうち、半導体素子20が搭載される一面と反対側の面には、例えば複数の半田ボール52が形成される。この場合、半導体装置100は、半田ボール52を介して他の配線基板へ接続されることとなる。
FIG. 2 is a cross-sectional view showing another example of the semiconductor device 100 different from that in FIG.
In the semiconductor device 100 of FIG. 2, the base material 30 is, for example, an interposer. A plurality of solder balls 52, for example, are formed on the surface of the substrate 30, which is the interposer, opposite to the surface on which the semiconductor element 20 is mounted. In this case, the semiconductor device 100 will be connected to another wiring board through the solder balls 52 .

半導体装置の製造方法の一例について説明する。
まず、基材30の上に、ペースト状樹脂組成物を塗工し、次いで、その上に半導体素子20を配置する。すなわち、基材30、ペースト状樹脂組成物、半導体素子20がこの順で積層される。
ペースト状樹脂組成物を塗工する方法は特に限定されない。具体的には、ディスペンシング、印刷法、インクジェット法などを挙げることができる。
An example of a method for manufacturing a semiconductor device will be described.
First, the base material 30 is coated with a paste resin composition, and then the semiconductor element 20 is arranged thereon. That is, the base material 30, the paste resin composition, and the semiconductor element 20 are laminated in this order.
The method of applying the paste resin composition is not particularly limited. Specifically, a dispensing method, a printing method, an inkjet method, and the like can be mentioned.

次いで、ペースト状樹脂組成物を熱硬化させる。熱硬化は、好ましくは前硬化及び後硬化により行われる。熱硬化により、ペースト状樹脂組成物を熱処理体(硬化物)とする。熱硬化(熱処理)により、ペースト状樹脂組成物中の金属含有粒子が凝集し、複数の金属含有粒子同士の界面が消失した構造が接着層10中に形成される。これにより、接着層10を介して、基材30と、半導体素子20とが接着される。次いで、半導体素子20と基材30を、ボンディングワイヤ40を用いて電気的に接続する。次いで、半導体素子20を封止樹脂50により封止する。このようにして半導体装置を製造することができる。 Next, the paste resin composition is heat-cured. Thermal curing is preferably carried out by pre-curing and post-curing. By thermosetting, the paste-like resin composition is made into a heat-treated product (cured product). By thermosetting (heat treatment), the metal-containing particles in the paste-like resin composition are aggregated, and a structure is formed in the adhesive layer 10 in which interfaces between a plurality of metal-containing particles have disappeared. Thereby, the substrate 30 and the semiconductor element 20 are adhered via the adhesive layer 10 . Next, the semiconductor element 20 and the base material 30 are electrically connected using bonding wires 40 . Then, the semiconductor element 20 is sealed with the sealing resin 50 . Thus, a semiconductor device can be manufactured.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can be adopted. Moreover, the present invention is not limited to the above-described embodiments, and includes modifications, improvements, etc. within the scope of achieving the object of the present invention.

本発明の実施態様を、実施例および比較例に基づき詳細に説明する。本発明は実施例に限定されるものではない。 Embodiments of the present invention will be described in detail based on examples and comparative examples. The invention is not limited to the examples.

<ペースト状樹脂組成物の調製>
まず、後掲の表-1に示される配合量に従って、各原料成分を混合し、ワニスを得た。
次に、得られたワニス、溶剤および金属含有粒子(金属コート樹脂粒子を含む)を、後掲の表-1に示す配合量に従って配合し、常温で、3本ロールミルで混練した。これにより、ペースト状樹脂組成物を作製した。
<Preparation of paste resin composition>
First, each raw material component was mixed according to the compounding amounts shown in Table 1 below to obtain a varnish.
Next, the obtained varnish, solvent, and metal-containing particles (including metal-coated resin particles) were blended according to the blending amounts shown in Table 1 below, and kneaded at room temperature in a three-roll mill. Thus, a paste resin composition was produced.

以下、表-1の原料成分の情報を示す。
(熱硬化性成分)
・エポキシ樹脂1:ビスフェノールF型液状エポキシ樹脂(日本化薬社製、RE-303S)
Information on raw material components in Table 1 is shown below.
(Thermosetting component)
・ Epoxy resin 1: Bisphenol F type liquid epoxy resin (manufactured by Nippon Kayaku, RE-303S)

(硬化剤)
・硬化剤1:ビスフェノールF骨格を有するフェノール樹脂(室温25℃で固体、DIC社製、DIC-BPF)
(curing agent)
Curing agent 1: phenol resin having a bisphenol F skeleton (solid at room temperature 25 ° C., manufactured by DIC, DIC-BPF)

((メタ)アクリロイル基含有化合物)
・アクリルモノマー1:エチレングリコールジメタクリレート(共栄化学社製、ライトエステルEG)
・アクリルモノマー2:ポリエチレングリコール♯600ジメタアクリレート(一般式(1)のnが14)(日油社製、PDE600)
・アクリルモノマー3:ポリエチレングリコール♯600ジメタアクリレート(一般式(1)のnが14)(共栄社化学社製、ライトエステル14EG)
・アクリルモノマー4:ポリエチレングリコール♯1000ジアクリレート(一般式(1)のnが23)(新中村化学社製、A-1000)
((Meth)acryloyl group-containing compound)
・ Acrylic monomer 1: ethylene glycol dimethacrylate (manufactured by Kyoei Chemical Co., Ltd., Light Ester EG)
-Acrylic monomer 2: Polyethylene glycol #600 dimethacrylate (n in general formula (1) is 14) (manufactured by NOF Corporation, PDE600)
-Acrylic monomer 3: Polyethylene glycol #600 dimethacrylate (n in general formula (1) is 14) (Kyoeisha Chemical Co., Ltd., Light Ester 14EG)
-Acrylic monomer 4: polyethylene glycol #1000 diacrylate (n in general formula (1) is 23) (Shin-Nakamura Chemical Co., Ltd., A-1000)

(可塑剤)
・可塑剤1:アリル樹脂(関東化学社製、1,2-シクロヘキサンジカルボン酸ビス(2-プロペニル)とプロパン-1,2-ジオールとの重合体)
(Plasticizer)
- Plasticizer 1: allyl resin (manufactured by Kanto Chemical Co., Ltd., polymer of bis(2-propenyl) 1,2-cyclohexanedicarboxylate and propane-1,2-diol)

(硬化促進剤)
・イミダゾール硬化剤1:2-フェニル-1H-イミダゾール-4,5-ジメタノール(四国化成工業社製、2PHZ-PW)
(Curing accelerator)
- Imidazole curing agent 1: 2-phenyl-1H-imidazole-4,5-dimethanol (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2PHZ-PW)

(重合開始剤)
・ラジカル重合開始剤1:ジクミルパーオキサイド(化薬アクゾ社製、パーカドックスBC)
(Polymerization initiator)
- Radical polymerization initiator 1: Dicumyl peroxide (manufactured by Kayaku Akzo Co., Ltd., Perkadox BC)

(金属含有粒子)
・銀粒子1:銀粉(福田金属箔粉工業社製、HKD-38、フレーク状、D50:4μm)
・銀コート樹脂粒子1:銀メッキシリコーン樹脂粒子(三菱マテリアル社製、耐熱・表面処理10μm品、球形状、D50:10μm、比重:2.3、銀の重量比率50wt%、樹脂の重量比率50wt%)
(Metal-containing particles)
・ Silver particles 1: silver powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., HKD-38, flaky, D 50 : 4 μm)
・Silver-coated resin particles 1: Silver-plated silicone resin particles (manufactured by Mitsubishi Materials Corporation, heat-resistant and surface-treated 10 μm product, spherical shape, D 50 : 10 μm, specific gravity: 2.3, silver weight ratio 50 wt%, resin weight ratio 50 wt%)

(溶剤)
・溶剤1:ブチルプロピレントリグリコール(BFTG)
(solvent)
・ Solvent 1: butyl propylene triglycol (BFTG)

<熱伝導率λの測定>
得られたペースト状樹脂組成物を、テフロン板上に塗布し、窒素雰囲気下で、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ1mmの、ペースト状樹脂組成物の熱処理体を得た(「テフロン」は、フッ素樹脂に関する登録商標である)。
次いで、レーザーフラッシュ法により、熱処理体の厚み方向の熱拡散係数αを測定した。測定温度は25℃とした。
また、示差走査熱量(Differential scanning calorimetry:DSC)測定により、比熱Cpを測定した。
さらに、JIS K 6911に準拠して、密度ρを測定した。
これらの値を用いて、以下の式に基づいて、熱伝導率λを算出した。
熱伝導率λ[W/(m・K)]=α[m/sec]×Cp[J/kg・K]×ρ[g/cm
<Measurement of thermal conductivity λ>
The resulting paste resin composition was applied to a Teflon plate, heated from 30° C. to 200° C. over 60 minutes in a nitrogen atmosphere, and then heat-treated at 200° C. for 120 minutes. As a result, a 1 mm-thick heat-treated body of the paste-like resin composition was obtained ("Teflon" is a registered trademark for fluororesin).
Then, the thermal diffusion coefficient α in the thickness direction of the heat-treated body was measured by the laser flash method. The measurement temperature was 25°C.
Also, the specific heat Cp was measured by differential scanning calorimetry (DSC).
Furthermore, the density ρ was measured according to JIS K 6911.
Using these values, the thermal conductivity λ was calculated according to the following formula.
Thermal conductivity λ [W/(m K)] = α [m 2 /sec] x Cp [J/kg K] x ρ [g/cm 3 ]

<電気抵抗率の測定>
得られたペースト状樹脂組成物をガラス板上に塗布し、窒素雰囲気下で、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.05mmのペースト状樹脂組成物の熱処理体を得た。ミリオームメータ(HIOKI社製)による直流四電極法、電極間隔が40mmの電極を用い、熱処理体表面の抵抗値を測定した。
<Measurement of electrical resistivity>
The resulting paste-like resin composition was applied onto a glass plate, heated from 30° C. to 200° C. over 60 minutes in a nitrogen atmosphere, and then heat-treated at 200° C. for 120 minutes. As a result, a heat-treated paste resin composition having a thickness of 0.05 mm was obtained. The resistance value of the surface of the heat-treated body was measured using a direct current four-electrode method with a milliohmmeter (manufactured by Hioki Co., Ltd.) and electrodes with an electrode spacing of 40 mm.

<25℃での貯蔵弾性率E'の測定>
得られたペースト状樹脂組成物を、テフロン板上に塗布し、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.3mmの、熱伝導性組成物の熱処理体を得た。
得られた熱処理体をテフロン板から剥がして、測定装置(日立ハイテクサイエンス社製、DMS6100)にセットし、引張モード、周波数1Hzでの動的粘弾性測定(DMA)を行った。これにより、25℃における貯蔵弾性率E'(MPa)を測定した。
<Measurement of storage modulus E' at 25°C>
The resulting paste resin composition was applied to a Teflon plate, heated from 30° C. to 200° C. over 60 minutes, and then heat-treated at 200° C. for 120 minutes. As a result, a heat-treated body of the thermally conductive composition having a thickness of 0.3 mm was obtained.
The obtained heat-treated body was peeled off from the Teflon plate, set in a measuring device (DMS6100, manufactured by Hitachi High-Tech Science Co., Ltd.), and subjected to dynamic viscoelasticity measurement (DMA) in a tensile mode at a frequency of 1 Hz. Thereby, the storage elastic modulus E' (MPa) at 25°C was measured.

<破断強度の測定>
得られたペースト状樹脂組成物を、テフロン板上に塗布し、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。これにより、厚さ0.3mm、幅4mmの熱伝導性組成物の熱処理体を得た。そして、各試験サンプルの25℃における破断強度を、引張試験機(島津製作所社製、「MST-1」)を用いて測定した。
<Measurement of breaking strength>
The resulting paste resin composition was applied to a Teflon plate, heated from 30° C. to 200° C. over 60 minutes, and then heat-treated at 200° C. for 120 minutes. As a result, a heat-treated body of the thermally conductive composition having a thickness of 0.3 mm and a width of 4 mm was obtained. Then, the breaking strength of each test sample at 25° C. was measured using a tensile tester (manufactured by Shimadzu Corporation, “MST-1”).

<破断ひずみの測定>
破断ひずみは、伸びの原点(初期チャック間距離)から各試験片の破断点(試験片が破断したときの変位量)までの伸びを、初期チャック間距離で除することによって算出した。
<Measurement of breaking strain>
The breaking strain was calculated by dividing the elongation from the origin of elongation (initial distance between chucks) to the breaking point of each test piece (displacement amount when the test piece breaks) by the initial distance between chucks.

<破断エネルギーの測定>
破断点エネルギーは、伸びの原点(初期チャック間距離)から各試験片の破断点(試験片が破断したときの変位量)までの応力を変位で積分することによって算出した。得られた破断点エネルギーを試験片の体積で割り、単位体積当たりの破断点エネルギー(mJ/mm)を得た。
<Measurement of breaking energy>
The breaking point energy was calculated by integrating the stress from the origin of elongation (initial distance between chucks) to the breaking point of each test piece (displacement amount when the test piece broke) by displacement. The obtained energy at break was divided by the volume of the specimen to obtain the energy at break per unit volume (mJ/mm 3 ).

<ヒートサイクル試験/剥離有無の評価>
ペースト状樹脂組成物を表面銀めっきの基板上に塗布して塗膜を形成し、その塗膜の上に表面金めっきの7×7mmのシリコンチップを載せた。その後、30℃から200℃まで60分間かけて昇温し、続けて200℃で120分間熱処理した。以上により熱伝導性組成物を硬化させ、また、シリコンチップを基板に接合した。
接合後のシリコンチップ・基板を、封止材EME-G700ML-C(住友ベークライト製)で封止した。これを温度サイクル試験用のサンプルとした。
サンプルを、60℃/60%RHの高温高湿槽に入れて、48時間処理し、その後、260℃のリフロー処理にかけた。
リフロー処理後のサンプルを、温度サイクル試験機TSA-72ES(エスペック製)に投入し、(i)150℃/10分、(ii)25℃/10分、(iii)-65℃/10分、(iv)25℃/10分を1サイクルとして、2000サイクル処理を行った。
その後、SAT(超音波探傷)により剥離の有無を確認した。剥離がないものを○(良好)、剥離があるものを×(不良)と評価した。
<Heat cycle test/evaluation of the presence or absence of peeling>
The paste-like resin composition was applied onto a surface-silver-plated substrate to form a coating film, and a 7×7 mm surface-gold-plated silicon chip was placed on the coating film. Thereafter, the temperature was raised from 30° C. to 200° C. over 60 minutes, followed by heat treatment at 200° C. for 120 minutes. As described above, the thermally conductive composition was cured, and the silicon chip was bonded to the substrate.
The bonded silicon chip/substrate was sealed with a sealing material EME-G700ML-C (manufactured by Sumitomo Bakelite). This was used as a sample for the temperature cycle test.
The samples were placed in a 60°C/60% RH high-temperature, high-humidity bath and treated for 48 hours, followed by a 260°C reflow treatment.
The sample after reflow treatment was put into a temperature cycle tester TSA-72ES (manufactured by Espec), (i) 150 ° C./10 minutes, (ii) 25 ° C./10 minutes, (iii) -65 ° C./10 minutes, (iv) 2000 cycles were performed with 25° C./10 minutes as one cycle.
After that, the presence or absence of peeling was confirmed by SAT (ultrasonic flaw detection). Those with no peeling were evaluated as ◯ (good), and those with peeling were evaluated as x (bad).

Figure 2023015160000002
Figure 2023015160000002

表-1の結果から、半導体素子と基材とを本発明のペースト状樹脂組成物を用いて接合することにより、長期に亘って良好な導電性が発現し、長期信頼性に優れた半導体装置を得ることができることが明らかとなった。 From the results of Table 1, by bonding the semiconductor element and the base material using the paste resin composition of the present invention, good conductivity is exhibited over a long period of time, and a semiconductor device with excellent long-term reliability. It was found that it is possible to obtain

Claims (7)

(A)2官能以上を有し、直鎖または分岐のオキシアルキレン基の繰り返し単位数が2以上である(メタ)アクリロイル基含有化合物と、
(B)銀含有粒子または銅含有粒子を含む金属含有粒子と、
を含む、ペースト状樹脂組成物。
(A) a (meth)acryloyl group-containing compound having at least two functionalities and having two or more repeating units of a linear or branched oxyalkylene group;
(B) metal-containing particles, including silver-containing particles or copper-containing particles;
A paste resin composition comprising:
(メタ)アクリロイル基含有化合物(A)は、下記一般式(1):
Figure 2023015160000003
(一般式(1)中、Rは水素原子または炭素数1~3のアルキル基を示し、複数存在するRは同一でも異なっていてもよい。Xは水素原子、ハロゲン原子、水酸基、アミノ基、シアノ基、メルカプト基、カルボキシル基、炭素数1~3のアルキル基、または炭素数1~3のアルコキシ基を示し、複数存在するXは同一でも異なっていてもよい。mは2~10の整数を示す。nは4以上30以下の整数を示す。)
で表される化合物から選択される少なくとも1種を含む、請求項1に記載のペースト状樹脂組成物。
The (meth)acryloyl group-containing compound (A) has the following general formula (1):
Figure 2023015160000003
(In general formula (1), R represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and a plurality of R may be the same or different. X is a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, a cyano group, a mercapto group, a carboxyl group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, wherein multiple X's may be the same or different, m is an integer of 2 to 10; and n is an integer of 4 or more and 30 or less.)
The paste resin composition according to claim 1, comprising at least one selected from the compounds represented by.
さらに熱硬化性樹脂(C)((メタ)アクリロイル基含有化合物(A)を除く)を含む、請求項1または2に記載のペースト状樹脂組成物。 3. The paste resin composition according to claim 1, further comprising a thermosetting resin (C) (excluding the (meth)acryloyl group-containing compound (A)). 熱硬化性樹脂(C)はエポキシ樹脂を含む、請求項3に記載のペースト状樹脂組成物。 The paste resin composition according to claim 3, wherein the thermosetting resin (C) contains an epoxy resin. さらに硬化剤(D)を含む、請求項3または4に記載のペースト状樹脂組成物。 5. The paste resin composition according to claim 3, further comprising a curing agent (D). 請求項1~5のいずれかに記載のペースト状樹脂組成物を焼結して得られる高熱伝導性材料。 A highly thermally conductive material obtained by sintering the paste resin composition according to any one of claims 1 to 5. 基材と、
前記基材上に接着層を介して搭載された半導体素子と、を備え、
前記接着層は、請求項1~5のいずれかに記載のペースト状樹脂組成物を焼結してなる、半導体装置。
a substrate;
A semiconductor element mounted on the base material via an adhesive layer,
A semiconductor device, wherein the adhesive layer is obtained by sintering the paste resin composition according to any one of claims 1 to 5.
JP2022172992A 2020-01-29 2022-10-28 Paste resin composition, high thermal conductive material, and semiconductor device Pending JP2023015160A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020012506 2020-01-29
JP2020012506 2020-01-29
JP2021545737A JP7279802B2 (en) 2020-01-29 2021-01-21 PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE
PCT/JP2021/001980 WO2021153405A1 (en) 2020-01-29 2021-01-21 Paste-like resin composition, highly heat conductive material, and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021545737A Division JP7279802B2 (en) 2020-01-29 2021-01-21 PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE

Publications (2)

Publication Number Publication Date
JP2023015160A true JP2023015160A (en) 2023-01-31
JP2023015160A5 JP2023015160A5 (en) 2023-06-22

Family

ID=77078539

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021545737A Active JP7279802B2 (en) 2020-01-29 2021-01-21 PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE
JP2022172992A Pending JP2023015160A (en) 2020-01-29 2022-10-28 Paste resin composition, high thermal conductive material, and semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021545737A Active JP7279802B2 (en) 2020-01-29 2021-01-21 PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE

Country Status (4)

Country Link
JP (2) JP7279802B2 (en)
CN (1) CN115023453A (en)
TW (1) TW202138507A (en)
WO (1) WO2021153405A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (en) * 1997-11-17 1999-06-02 Nec Corp Conductive paste of superior thermal conductivity and electronic device
JP3428483B2 (en) * 1998-02-17 2003-07-22 凸版印刷株式会社 Pattern forming method, manufacturing method of plasma display rib substrate, manufacturing method of plasma display
JP2004139754A (en) 2002-10-15 2004-05-13 Mitsubishi Paper Mills Ltd Silver oxide paste and manufacturing method of metal silver from silver oxide paste
JP2009295895A (en) * 2008-06-09 2009-12-17 Sumitomo Bakelite Co Ltd Conductive paste for circuit board
JP2011122129A (en) 2009-11-12 2011-06-23 Sekisui Chem Co Ltd Inorganic fine particle dispersed paste composition
JP5616070B2 (en) 2010-01-21 2014-10-29 株式会社フジクラ Electron beam curing conductive paste and circuit board manufacturing method using the same
JP2013026089A (en) 2011-07-22 2013-02-04 Fujikura Ltd Conductive paste for electron beam hardening, and manufacturing method of circuit board using the same
JP2013067673A (en) * 2011-09-20 2013-04-18 Hitachi Chemical Co Ltd Resin paste composition and semiconductor device
JP5567636B2 (en) * 2012-10-05 2014-08-06 京セラケミカル株式会社 Thermosetting resin composition for semiconductor bonding and semiconductor device
WO2016121806A1 (en) * 2015-01-29 2016-08-04 住友ベークライト株式会社 Paste adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat radiation plate
JP6318137B2 (en) * 2015-09-30 2018-04-25 Dowaエレクトロニクス株式会社 Conductive paste and conductive film
JP2017130357A (en) * 2016-01-20 2017-07-27 住友ベークライト株式会社 Conductive paste and method for manufacturing cured body of conductive paste
JP2017130393A (en) * 2016-01-21 2017-07-27 国立大学法人群馬大学 Conductive paste and method for forming silver film
CN109643662B (en) * 2016-08-19 2021-07-13 住友电木株式会社 Chip bonding paste and semiconductor device
JP6455635B2 (en) * 2016-10-31 2019-01-23 住友ベークライト株式会社 Thermally conductive paste and electronic device
JP7201296B2 (en) * 2018-02-06 2023-01-10 ローム株式会社 Semiconductor device and its manufacturing method
CN111788275B (en) * 2018-03-01 2021-12-03 住友电木株式会社 Paste adhesive composition and semiconductor device

Also Published As

Publication number Publication date
CN115023453A (en) 2022-09-06
JP7279802B2 (en) 2023-05-23
WO2021153405A1 (en) 2021-08-05
JPWO2021153405A1 (en) 2021-08-05
TW202138507A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
JP2012236873A (en) Resin paste composition and semiconductor device
JP2022069401A (en) Pasty composition, high thermal conductivity material, and semiconductor device
JP6927455B2 (en) Thermally conductive compositions and semiconductor devices
JP7264211B2 (en) THERMALLY CONDUCTIVE COMPOSITION AND SEMICONDUCTOR DEVICE
JP2013067673A (en) Resin paste composition and semiconductor device
JP7279802B2 (en) PASTE RESIN COMPOSITION FOR HIGH THERMAL CONDUCTIVE MATERIAL, HIGH THERMAL CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE
JP2022018051A (en) Pasty resin composition, high heat-conductive material, and semiconductor device
JP7392876B2 (en) Silver-containing pastes and joints
JP6950848B2 (en) Thermally conductive composition used for semiconductor packages
JP7491463B2 (en) Conductive resin composition, highly thermally conductive material and semiconductor device
WO2022202505A1 (en) Electrically conductive resin composition, material having high thermal conductivity, and semiconductor device
WO2023276690A1 (en) Conductive resin composition, material having high thermal conductivity, and semiconductor device
WO2023132051A1 (en) Paste-like resin composition, high–thermal conductivity material, and semiconductor device
JP7371792B2 (en) Conductive paste and semiconductor devices
JP2023018445A (en) Conductive paste, highly thermal conductive material and semiconductor device
TW202328380A (en) Paste resin composition, high thermal conductivity material, and semiconductor device
JP2022049009A (en) Pasty polymerizable composition and highly thermoconductive material
JP2023016331A (en) Conductive paste and semiconductor device
JP2024011945A (en) Conductive paste, cured product and semiconductor device
JP2023086762A (en) Conductive paste, cured product, sintering accelerator, and method for accelerating sintering
CN117098806A (en) Conductive resin composition, high thermal conductive material, and semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614