JP2022504466A - 試料を光学的に処理するためのシステムおよび方法 - Google Patents

試料を光学的に処理するためのシステムおよび方法 Download PDF

Info

Publication number
JP2022504466A
JP2022504466A JP2021519137A JP2021519137A JP2022504466A JP 2022504466 A JP2022504466 A JP 2022504466A JP 2021519137 A JP2021519137 A JP 2021519137A JP 2021519137 A JP2021519137 A JP 2021519137A JP 2022504466 A JP2022504466 A JP 2022504466A
Authority
JP
Japan
Prior art keywords
cells
particles
sample
binding partner
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021519137A
Other languages
English (en)
Inventor
レナード シャーマン,
ロジャー チェン,
ジョナサン エフ. ハル,
Original Assignee
バイオエレクトロニカ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオエレクトロニカ コーポレイション filed Critical バイオエレクトロニカ コーポレイション
Publication of JP2022504466A publication Critical patent/JP2022504466A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0277Average size only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1422Electrical focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Figure 2022504466000001
試料を処理するためのシステムは、少なくとも1つの入口および少なくとも1つの出口を有するチャンバであって、前記少なくとも1つの入口から少なくとも1つの出口に向かう試料の流れを収容するように構成された、チャンバと、チャンバ内の試料の流れを撮像するように構成されたイメージャアレイであって、少なくとも1つの光源の反対側に設定可能な少なくとも1つのレンズレスイメージセンサを備える、イメージャアレイと、を含む。

Description

関連出願の相互参照
本出願は、2019年6月10日に出願された米国仮出願第62/859,666号、2019年2月1日に出願された米国仮出願第62/800,385号、および2018年10月8日に出願された米国仮出願第62/742,833号に対する優先権を主張し、各々は参照によりその全体が組み込まれる。
本発明は、概して、試料実体を処理するためのアッセイの分野に関する。
アッセイを行うための装置は、一般に、生化学研究、医薬品発見、細胞スクリーニング、医療診断、ならびに、試料の1つまたは複数の成分を検出および/または測定する他の用途の目的に使用される。デジタルアッセイは、各容器が個別の数の生物学的実体を含むように生物学的試料を複数の小さい容器に区画するアッセイの一種である。例えば、デジタルアッセイは、核酸、タンパク質、または他の生物学的内容物を定量化する等のために、単細胞または他の実体を含むマイクロ流体液滴の分析に使用されることがある。
現在のマイクロ流体システムにはいくつかの欠点がある。例えば、従来のマイクロ流体デジタルアッセイは、例えば、測定値を検体濃度と高精度に相関付け、そのような測定値を異なる液滴にまたがって比較するために、実験中に液滴が単分散でありかつ同じ種類(例えばDNAのみ)であることを必要とする。そのような装置は、液滴が適度に均一なサイズであることを確実にするために、液滴を事前に分別することを必要とするが、それは時間を要し、液滴を処理する際の効率を低下させる。加えて、そのような装置は、液滴が処理のために直列に移動する直線状の単一経路のマイクロ流体チャネルを含み、そのことが液滴を分析する効率をさらに制限する。したがって、試料を処理するための新しい改良されたデジタルアッセイシステムおよび方法に対する必要性がある。
概して、試料を処理するためのシステムは、少なくとも1つの入口および少なくとも1つの出口を有するチャンバであって、少なくとも1つの入口から少なくとも1つの出口に向かう試料の流れを収容するように構成された、チャンバを含んでよい。システムは、チャンバ内の試料の流れを撮像するように構成されたイメージャアレイであって、少なくとも1つの光源の反対側に設定可能な少なくとも1つのレンズレスイメージセンサを備える、イメージャアレイをさらに含んでよい。一部の変形形態では、チャンバは、(例えばチャンバのX-Y平面内における)複数方向への移動などの、試料の2次元の流れを収容するように構成されてよい。イメージャは、チャンバ内の試料流れを撮像するためのレンズレスイメージセンサの2次元アレイを含んでよい。別の例として、イメージャは、チャンバ内の試料流れを撮像するためのレンズレスイメージセンサの1次元のまたは単一列のアレイを含んでよい。チャンバをはさんで少なくとも1つの光源の反対側に位置することにより、イメージャアレイは、一部の変形形態では、チャンバ内の試料の流れのシャドウ画像を生成するように構成され得る。
チャンバは、試料流れを受ける間隔を形成するように隔てられた、互いに対向する表面を含んでよい。例えば、チャンバは、第1の表面と、第1の表面から隔てられた第2の表面とを含んでよい。第1の表面と第2の表面との間に複数のスペーサが配設されてよい(例えば第1の表面と第2の表面との間の間隔を強化および/または支持するため)。第1の表面および第2の表面の少なくとも一方が、光学的に透明な材料(例えばポリイミド、ガラス等)を含んでよい。第1の表面および第2の表面の少なくとも一方は、半導体製造プロセスなどの平面処理技術によって形成されてよい。第1の表面および第2の表面は、本明細書でさらに詳しく説明されるように、平坦化された試料または試料実体がチャンバを通って流れ得るように、試料の少なくとも一部分を平坦化させるように構成されてよい。
一部の変形形態では、システムは光源をさらに含んでよく、イメージャアレイと光源とが、チャンバをはさんで互いに対向している。イメージャアレイは、チャンバに隣接する第1の光学的に透明な部分を有する第1の構造に埋め込まれてよい。光源は、チャンバに隣接する第2の光学的に透明な部分を有する第2の構造に埋め込まれてよい。
概して、試料を処理するためのシステムの別の変形形態は、第1の構造と、第1の構造に対向する第2の構造とによって少なくとも部分的に定められるチャンバであって、第1および第2の構造の各々が、光学的に透明である少なくとも一部分を有する、チャンバを含んでよい。システムは、第1の構造に埋め込まれ、チャンバに向けて光を発するように構成された少なくとも1つの光源と、第2の構造に埋め込まれ、チャンバを撮像するように構成されたイメージャアレイと、をさらに含んでよい。イメージャアレイは、少なくとも1つのレンズレスイメージセンサを含んでよい。イメージャアレイは、レンズレスイメージセンサの1次元または2次元アレイを含んでよい。イメージャアレイは、試料の流れのシャドウ画像を生成するように構成されてよい。一部の変形形態では、第1の構造と第2の構造とが一体形成されてよい。
チャンバは、チャンバの少なくとも1つの入口と少なくとも1つの出口との間に試料の2次元の流れを収容するように構成されてよい。チャンバは、試料の少なくとも一部分を平坦化させるように構成されてよい(例えば対向する第1の構造と第2の構造との間で)。一部の変形形態では、複数のスペーサが、チャンバ内の第1の構造と第2の構造との間に配設されてよい。そのようなスペーサの少なくとも1つは、第1の構造と第2の構造とを共に接合する固着材を含んでよい。例えば、一部の変形形態では、固着材は、スペーサ内の1つまたは複数のバイアの中に流れ込んで、第1および第2の構造の向かい合う表面同士を結び付ける、はんだ、ポリマー接着剤、または他の適切な固着材料を含んでよい。
一部の変形形態では、第1の構造および第2の構造の少なくとも一方が、光学的に透明な層の積層積み重ねを含んでよい。例えば、第1の構造および第2の構造の少なくとも一方が、平面処理によって形成されてよい。
試料は、一部の変形形態では、本明細書にさらに記載されるように、少なくとも1つのPODを含んでよい。少なくとも1つのPODは、細胞、DNA、RNA、ヌクレオチド、タンパク質、および/または酵素などの、検体を含んでよい。追加的または代替的に、少なくとも1つのPODは、検体を欠いているか、または検体を含まなくてもよい。使用中、アッセイシステムを使用して、PODおよびそれらの内容物の光学画像を生成し、情報を生成し、それから化学的および/または生物学的情報が導出されてよい。
概して、一部の変形形態では、複数の粒子を含む試料を処理するためのシステムは、試料を収容するように構成されたチャンバを含んでよく、チャンバは、試料中の粒子のうち選択された部分を統合するのに十分な電気エネルギーを送達するように構成された少なくとも1つの電極と、試料の粒子を粒子サイズに基づいて分離するように構成された分別機構とを含む。例えば、一部の変形形態では、チャンバは、チャンバの第1の表面と第2の対向する表面との間に延在する複数の電極を含んでよい(例えば電極機能と併せて構造的支持を提供してよい)。チャンバは、試料の2次元の流れを収容するように構成されてよい。さらに、一部の変形形態では、システムは、チャンバ内の試料の1つまたは複数の画像を生成するように構成されたイメージャアレイ(例えばレンズレスイメージセンサを含む)と、少なくとも1つの電極を作動させて、試料の1つまたは複数の画像に基づいて粒子の選択された部分に電気エネルギーを送達させるように構成されたコントローラと、をさらに含んでよい。
一部の変形形態では、分別機構は、受動的分別機構を含んでよい。例えば、分別機構は、複数のスペーサを含んでよい。スペーサは、千鳥型アレイとして配置され、決定論的横方向置換を介して粒子分離を行うように構成されてよい。別の例として、チャンバは、第1の出口および第2の出口を含んでよく、第1の出口は、所定の閾値粒子サイズを下回る粒子のみを実質的に通過させるサイズであり、第2の出口は、所定の閾値粒子サイズを上回る粒子を通過させるサイズであってよい。追加的または代替的に、チャンバは、流体力学的濾過を介して粒子分離を行うように構成された複数の分岐チャネルを含んでよい。追加的または代替的に、一部の変形形態ではチャンバは、能動的分別機構(例えば能動的流体制御、PDEP力等を介する)を含んでよい。
概して、一部の変形形態では、試料を処理するためのシステムは、試料の流れを収容するように構成されたチャンバであって、試料の少なくとも一部分に選択的に電気エネルギーを送達するように構成された少なくとも1つの電極を含む、チャンバと、チャンバ内の試料の流れを撮像するように構成されたイメージャアレイ(例えばレンズレスイメージセンサを含む)と、1つまたは複数の画像の分析に基づいて少なくとも1つの電極を作動させるように構成されたコントローラと、を含んでよい。
一部の変形形態では、チャンバは、試料の2次元の流れを収容するように構成されてよい。チャンバは、複数の電極を含んでよく、コントローラは、隣接する電極などの電極の対を選択的に作動させるように構成されてよい。作動された電極は、例えば、1つまたは複数の標的粒子と容量的に連結し得、それによって標的粒子が合併し得る。
一部の変形形態では、システムは、試料の粒子を粒子サイズに基づいて分離するように構成された分別機構をさらに含んでよい。分別機構は、受動的分別機構を含んでよい。分別機構は、例えば、千鳥型アレイとして配置されると共に決定論的横方向置換を介して粒子分離を行うように構成された複数のスペーサを含んでよい。別の例として、チャンバは、第1の出口および第2の出口を含んでよく、第1の出口は、所定の閾値粒子サイズを下回る粒子のみを通過させるサイズであり、第2の出口は、所定の閾値粒子サイズを上回る粒子を通過させるサイズであってよい。追加的または代替的に、チャンバは、流体力学的濾過を介して粒子分離を行うように構成された複数の分岐チャネルを含んでよい。追加的または代替的に、一部の変形形態では、チャンバは、能動的分別機構(例えば、能動的流体制御、PDEP力等を介する)を含んでよい。
概して、一部の変形形態では、複数の粒子(例えばPOD)を含む試料を処理するための方法は、少なくとも1つの電極を含むチャンバ内に試料を受けるステップと、試料中の1つまたは複数の粒子を破棄粒子として特徴付けるステップと、少なくとも1つの電極から破棄粒子に電気エネルギーを送達することによって破棄粒子を統合するステップと、試料の粒子を粒子サイズに基づいて分別するステップとを含んでよい。一部の変形形態では、1つまたは複数の粒子を特徴付けるステップが、チャンバ内の試料の1つまたは複数の画像を受け取り、1つまたは複数の画像に基づいて1つまたは複数の粒子を特徴付けることを含んでよい。1つまたは複数の画像は、例えば、試料の光学シャドウ画像を含んでよい。
一部の変形形態では、電気エネルギーを送達するステップが、駆動波形に従って電極の対を作動させることを含んでよい。駆動波形は、例えば、AC波形であってよい。波形は、一部の変形形態では、約0.5V~約10Vの間、または約0.5V~約5Vの間のピーク間電圧を有してよい。さらに、一部の変形形態では、波形は、約1Hz~1MHzの間、または約50Hz~約20kHzの周波数を有してよい。
一部の変形形態では、粒子を分別するステップが、粒子を受動的に分別することを含んでよい。例えば、粒子は、決定論的横方向置換を介して分別されてよい。別の例として、粒子は、第1のサイズの粒子がチャンバの第1の出口を通過することを許し、第2のサイズの粒子がチャンバの第2の出口を通過することを許すことによって分別されてよい。追加的または代替的に、粒子は、流体力学的濾過を介して分別されてよい。
さらに、方法は、一部の変形形態では、粒子の少なくとも一部分が、目的の物質(例えば、抗体、インスリン等)を分泌する1つまたは複数の細胞(例えばCHO細胞、ハイブリドーマ、B細胞、骨髄腫細胞等)を含有している試料を処理するために使用されてよい。これらの変形形態では、試料中の1つまたは複数の粒子を特徴付けるステップが、1つまたは複数の細胞における凝集を特徴付けることなどによって、1つまたは複数の細胞の分泌レベルを特徴付けることを含んでよい。例えば、分泌細胞を欠いている粒子および/または低分泌細胞を含有する粒子が、破棄粒子として特徴付けられてよく、一方、高分泌細胞を含む粒子が、目的の粒子として特徴付けられてよい。破棄対象の粒子と目的の粒子とは、分別され、分離されてよい。例えば、分別することは、閾値サイズを下回る粒子を目的の粒子(例えば、高分泌細胞を含有している粒子)として分別することを含んでよい。一部の変形形態では、試料は、粒子当たり平均で約0.1個の細胞が存在するように調製されてよい。
概して、一部の変形形態では、細胞の集団からの目的の細胞の選択を可能にするためのシステムは、カプセル化試薬であって、約1.0よりも大きい密度を備えるカプセル化試薬と、水溶性媒体中に懸濁した第1の複数の粒子であって、第1の複数の粒子の各粒子は、目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、第1の複数の粒子と、を含んでよい。一部の変形形態では、カプセル化試薬は、界面活性剤を含んでよい。一部の変形形態では、界面活性剤が、フッ素およびポリエチレングリコールの少なくとも一方を含む。一部の変形形態では、第1の複数の粒子の各粒子は、約30nmから約50μmの間の直径を有してよい。一部の変形形態では、第1の複数の粒子の各粒子は、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、および磁気ビーズのうち少なくとも1つを含んでよい。一部の変形形態では、第1のクラスタ部位が、第1の結合相手と第2の結合相手との結合によって形成される。一部の変形形態では、第1の結合相手および第2の結合相手は、第1および第2のタンパク質であってよい。これらの変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。例えば、抗体はIgGであってよい。一部の変形形態では、第1の結合相手および第2の結合相手は、第1および第2のペプチドであってよい。
さらに、一部の変形形態におけるシステムは、第2の複数の粒子も含んでよく、第2の複数の粒子の各粒子は、目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を有する。これらの変形形態では、システムは、第3の結合相手と第4の結合相手との結合によって形成される第2のクラスタ部位をさらに含んでよい。
概して、一部の変形形態では、混合物が、カプセル化試薬と、水溶性媒体中に懸濁した1つまたは複数の第1の粒子であって、各第1の粒子は第1の結合相手を含む、1つまたは複数の第1の粒子と、細胞の集団であって、第2の結合相手を有する目的のタンパク質を分泌する少なくとも1つの目的の細胞を含み、第1の結合相手が第2の結合相手に特異的である、細胞の集団と、を含んでよい。一部の変形形態では、カプセル化試薬は、界面活性剤を含んでよい。一部の変形形態では、界面活性剤は、フッ素およびポリエチレングリコールの少なくとも一方を含む。一部の変形形態では、カプセル化試薬は、混合物の約60体積%~90体積%の間であってよい。一部の変形形態では、1つまたは複数の第1の粒子は、混合物の約5体積%~20体積%の間であってよい。一部の変形形態では、細胞の集団は、混合物の約5体積%~20体積%の間であってよい。一部の変形形態では、第1の複数の粒子の各粒子は、約30nmから約50μmの直径を有してよい。一部の変形形態では、第1の複数の粒子の各粒子は、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、および磁気ビーズの少なくとも1つを含んでよい。一部の変形形態では、混合物は、第1の結合相手と第2の結合相手との結合によって形成される第1のクラスタ部位をさらに含んでよい。一部の変形形態では、第1の結合相手または第2の結合相手は、第1および第2のタンパク質であってよい。これらの変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。例えば、抗体はIgGであってよい。一部の変形形態では、第1の結合相手および第2の結合相手は、第1および第2のペプチドであってよい。一部の変形形態では、細胞の集団は、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞の少なくとも1つまたは複数を含んでよい。一部の変形形態では、1つまたは複数の第1の粒子は、1つまたは複数の細胞を含んでよく、第1の結合相手は、1つまたは複数の細胞上に発現した抗原を含んでよい。一部の変形形態では、第1の複数の粒子は、細胞の第2の集団を含んでよく、第1の結合相手は、細胞の第2の集団上に発現した抗原を含んでよい。
さらに、一部の変形形態では、混合物は、複数の試料実体を含んでもよく、各試料実体は、1つまたは複数の第1の粒子、細胞の集団からの少なくとも1つの細胞、および水溶性媒体、のうちの少なくとも1つまたは複数をカプセル化する。これらの変形形態では、複数の試料実体は、多分散試料実体であってよい。
さらに、一部の変形形態における混合物は、第2の複数の粒子を含んでもよく、第2の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を有する。これらの変形形態では、システムは、第3の結合相手と第4の結合相手との結合によって形成される第2のクラスタ部位をさらに含んでよい。
概して、一部の変形形態では、クラスタリングアッセイシステム用の試料を調製するための方法は、少なくとも1つの目的の細胞を有する細胞の集団を提供するステップと、細胞の集団、第1の複数の粒子、およびカプセル化試薬を組み合わせて混合物を作製するステップであって、第1の複数の粒子の各粒子は、水溶性媒体中に懸濁しており、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、ステップと、混合物を攪拌してエマルジョンを作製し、それにより細胞の集団を複数の多分散試料実体(例えばPOD)内にカプセル化するステップと、を含んでよい。一部の変形形態では、第1の結合相手および第2の結合相手は、第1および第2のタンパク質であってよい。これらの変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。例えば、抗体はIgGであってよい。一部の変形形態では、第1の結合相手および第2の結合相手は、第1および第2のペプチドであってよい。一部の変形形態では、細胞の集団は、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞の少なくとも1つまたは複数を含んでよい。一部の変形形態では、第1の複数の粒子は、細胞の第2の集団を含んでよく、第1の結合相手は、細胞の第2の集団上に発現した抗原を含んでよい。
一部の変形形態では、細胞の集団を提供するステップは、細胞の集団を希釈して、1ミリリットル当たり約100,000~300,000個の間の細胞である所望の細胞濃度を得ることを含んでよい。これらの変形形態では、所望の細胞濃度は、1ミリリットル当たり約220,000個の細胞であってよい。
さらに、一部の変形形態では、細胞の集団、第1の複数の粒子およびカプセル化試薬を組み合わせることは、混合物を作製するために第2の複数の粒子を加えることを含んでもよく、第2の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む。これらの変形形態では、第2の結合相手および第4の結合相手は、それぞれ抗体の第1の構成要素および第2の構成要素であってよい。
さらに、一部の変形形態では、エマルジョンは、λ値によって特徴付けられてよく、λは、複数の多分散試料実体の試料実体当たりの細胞数である。これらの変形形態では、λ値は、試料実体当たり約0~約10個の間の細胞であってよい。
さらに、一部の変形形態における方法は、エマルジョンを所定の長さの時間にわたって培養するステップを含んでもよい。これらの変形形態では、所定の長さの時間が、約1時間~約6時間の間であってよい。
概して、一部の変形形態では、細胞の集団から少なくとも1つの目的の細胞を選択するための方法は、細胞の集団と第1の複数の粒子とを有するエマルジョンを提供するステップであって、細胞の集団および第1の複数の粒子が複数の多分散試料実体(例えばPOD)内にカプセル化され、第1の複数の粒子の各粒子が、水溶性媒体中に懸濁しており、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、ステップと、少なくとも1つの試料実体についてのシグナルを測定するステップであって、シグナルは、第1の結合相手と第2の結合相手との結合に少なくとも部分的に関連する、ステップと、測定されたシグナルに少なくとも部分的に基づいて少なくとも1つの目的の細胞を特定するステップと、を含んでよい。一部の変形形態では、第2の結合相手は、少なくとも1つの目的の細胞によって分泌される目的のタンパク質の第1の成分と連結し得、測定されたシグナルは、少なくとも1つの試料実体内の目的のタンパク質を定量化する。一部の変形形態では、第1の複数の粒子は、細胞の第2の集団を含んでよく、第1の結合相手は、細胞の第2の集団上に発現した抗原を含んでよい。
一部の変形形態では、エマルジョンは、複数の多分散試料実体(例えばPOD)内にカプセル化された第2の複数の粒子を含んでもよく、第2の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む。これらの変形形態では、シグナルは、第1の結合相手と第2の結合相手との結合に少なくとも部分的に関連し、第3の結合相手と第4の結合相手との結合に少なくとも部分的に関連していてよい。これらの変形形態では、第2の結合相手および第4の結合相手は、少なくとも1つの目的の細胞によって分泌される目的のタンパク質に関連していてよく、測定されたシグナルは、第1の結合相手または第3の結合相手に対する目的のタンパク質の結合親和性および/または特異性を定量化してよい。これらの変形形態では、測定されたシグナルは、目的の細胞から分泌される抗体の抗原結合親和性および/または特異性を定量化してよい。
一部の変形形態では、少なくとも1つの目的の細胞を特定するステップが、所定の閾値よりも大きい測定シグナルを有する試料実体の少なくとも一部分を特定することを含んでよい。一部の変形形態では、少なくとも1つの試料実体についてのシグナルを測定するステップが、少なくとも1つの試料実体の少なくとも1つのシャドウ画像を受け取り、少なくとも1つのシャドウ画像に基づいて試料実体内の少なくとも1つの物体のサイズスコアを決定することを含んでよく、測定されたシグナルは、サイズスコアに少なくとも部分的に基づく。
さらに、一部の変形形態では、方法は、少なくとも1つのシャドウ画像を生成するように構成されたイメージャアレイに隣接するチャンバ内にエマルジョンを導入するステップを含んでもよい。
さらに、一部の変形形態では、方法は、多分散試料実体から少なくとも1つの目的の細胞を取り出すステップを含んでもよい。これらの変形形態では、方法は、少なくとも1つの目的の細胞を、PCR、FACS、DNAシーケンシング、およびELISAの少なくとも1つまたは複数で分析するステップを含んでもよい。
図1Aおよび図1Bは、試料を光学的に処理するためのアッセイシステムの例示的変形形態の概略説明図である。 図1Aおよび図1Bは、試料を光学的に処理するためのアッセイシステムの例示的変形形態の概略説明図である。
図2Aは、レンズレスイメージセンサを備えたチャンバ機構の概略説明図である。
図2Bは、図2Aのチャンバ機構内のレンズレスイメージセンサで取得された例示的シャドウ画像である。
図3は、試料を光学的に処理するためのアッセイシステムの例示的変形形態の図である。
図4A~図4Dは、チャンバ機構の例示的変形形態の概略説明図であり、図4Aは、チャンバ機構の変形形態の断面図であり、図4Bは、図4Aに描かれたチャンバ機構の一部分の分解図であり、図4Cは、図4Bに描かれたチャンバ機構の一部分の断面図であり、図4Dは、図4Aに描かれたチャンバ機構の部分上面平面図である。
図5は、図4Aに描かれたチャンバ機構の詳細な部分断面図である。
図6は、図4Aに描かれたチャンバ機構の別の詳細な部分断面図である。
図7Aおよび図7Bは、チャンバ機構の別の例示的変形形態の概略説明図であり、図7Aは、チャンバ機構の変形形態の断面図であり、図7Bは、図7Aに描かれたチャンバ機構の詳細な部分断面図である。
図8Aおよび図8Bは、チャンバ機構の別の例示的変形形態の概略説明図であり、図8Aは、チャンバ機構の変形形態の断面図であり、図8Bは、図8Aに描かれたチャンバ機構の上面平面図である。
図9は、試料を光学的に処理するためのアッセイシステムの例示的変形形態においてレンズレスイメージセンサで撮影された例示的画像の図である。
図10は、試料を光学的に処理するためのアッセイシステムの例示的変形形態においてレンズレスイメージセンサで撮影された別の例示的画像の図である。
図11Aおよび図11Bは、レンズレスイメージセンサを備えるチャンバ機構の別の例示的変形形態の概略説明図である。
図12は、アッセイシステムによって行われ得る例示的アッセイタイプを示すチャートである。
図13Aは、PODおよびPOD内のビーズを検出するためのコンピュータビジョン技術の例示的画像の図である。 図13Bは、様々なサイズのビーズを含む試料からの検出された粒子サイズスコアの分布の説明グラフである。
図14A~図14Cは、3つの異なるタンパク質濃度を含有している試料中でPODおよびタンパク質凝集物を検出するためのコンピュータビジョン技術の例示的画像の図であり、図14Aは、0ng/mLの濃度でIgGを含有しているPODのコンピュータビジョン検出の例示的画像であり、図14Bは、30ng/mLの濃度でIgGを含有しているPODのコンピュータビジョン検出の例示的画像であり、図14Cは、480ng/mLの濃度でIgGを含有しているPODのコンピュータビジョン検出の例示的画像である。
図15A~図15Cは、コンピュータビジョン技術を使用して検出された様々なタンパク質濃度におけるPODの複数のパラメータの分布の説明グラフである。図15Dは、各タンパク質濃度において検出されたPODの数を示す説明棒グラフである。 図15E~図15Hは、様々なタンパク質濃度における、POD内の凝集物および/またはPOD特性の1つまたは複数のパラメータを使用して計算されたBEスコアの分布の説明グラフである。
図16A~図16Dは、タンパク質濃度と相関付けられた様々なBEスコアの平均値および中央値の説明グラフである。
図17Aおよび図17Bは、様々なタンパク質濃度におけるタンパク質に基づくアッセイの精度に関係するBEスコアの説明グラフである。
図18Aは、対照試料を含有しているPODのコンピュータビジョン検出の例示的画像の図である。 図18Bは、ウシ血清および960ng/mLのウサギIgGの試料を含有しているPODのコンピュータビジョン検出の例示的画像の図である。 図18Cは、対照試料および960ng/mL試料におけるPODパラメータスコアの分布を比較する説明グラフである。
図19Aは、抗CD45ナノ粒子でタグ付けされたCD-45+細胞の説明概略図である。 図19Bは、図19Aに示すようにタグ付けされたCD-45+細胞を含有しているPODのコンピュータビジョン検出の2つの例示的画像の図である。
図20Aは、トリパンブルーで染色された酵母細胞を含有しているPODのコンピュータビジョン検出の例示的画像の図である。 図20Bは、コンピュータビジョンによって検出された酵母細胞の粒子数スコアの説明グラフである。 図20Cは、コンピュータビジョンによって検出された酵母細胞の粒子サイズスコアの分布の説明グラフである。
図21A~図21Eは、1つまたは複数のPODの画像を処理し、処理された画像内でPODを特定するための例示的方法を説明する図である。
図22は、細胞分泌アッセイにおいて試料を処理するための別の方法の説明概略図である。
図23Aは、電気的統合を用いて試料を処理するための例示的方法のフローチャートである。
図23Bは、試料を調製する例示的変形形態の説明概略図である。
図23Cは、電気的統合を用いて試料を処理するための方法の例示的変形形態の説明概略図である。
図23Dおよび図23Eは、試料を処理するためのチャンバ内の分別機構の例示的変形形態を示す図である。
図24Aは、電気的統合チャンバ機構の例示的変形形態の説明概略図である。 図24Bは、図24Aに描かれる電気的統合チャンバ機構の変形形態の断面積み重ねの説明概略図である。
図24Cは、電気的統合チャンバ機構およびコントローラの例示的変形形態の説明概略図である。
図25A~図25Cは、本明細書に記載されるイメージャシステムを用いて見られた、時間に伴う例示的ハイブリドーマの増殖率を説明する画像の図である。
図26Aおよび図26Bは、本明細書に記載されるイメージャシステムを用いて見られた、それぞれ低いIgG濃度および高いIgG濃度に関連する例示的ハイブリドーマ分泌範囲を説明する画像の図である。
図27は、様々な培養期間後のハイブリドーマ分泌範囲を査定するための例示的実験における凝集の検出を説明する画像の図である。
図28Aおよび図28Bは、電気的統合チャンバ機構の例示的変形形態における電極の別の変形形態の図である。
図29Aは、例示的電気的統合チャンバ機構およびB細胞を伴う例示的試料についてのシステムパラメータの表である。 図29Bおよび図29Cは、図29Aに記載された試料におけるPODサイズの、それぞれ実際の分布およびモデル化された分布の図である。
図30は、電気的統合チャンバ機構の別の例示的変形形態の説明概略図である。
図31は、電気的統合を用いて試料を処理するためのシステムの例示的変形形態の説明概略図である。
図32Aは、1ビーズアッセイを使用するときにPODの内部で発生し得る結合相互作用の概略図である。 図32Bは、図32Aの一領域の詳細な拡大図であり、単一の粒子を示す図である。
図33Aは、2ビーズアッセイを使用するときにPODの内部で発生し得る結合相互作用の概略図である。 図33Bは、図33AのPODの詳細な拡大図である。 図33Cは、図33A~図33BのPOD内の結合相互作用の詳細な拡大図である。
図34Aは、1ビーズクラスタリングアッセイシステム用の試料を調製する例示的方法を示すフローチャートである。 図34Bは、2ビーズクラスタリングアッセイシステム用の試料を調製する例示的方法を示すフローチャートである。
図35Aは、1ビーズアッセイで使用するために細胞の集団から少なくとも1つの目的の細胞を選択する例示的方法の図である。 図35Bは、2ビーズアッセイで使用するために細胞の集団から少なくとも1つの目的の細胞を選択する例示的方法の図である。
図36A~図36Cは、1ビーズアッセイの試験から得た4X対物レンズ顕微鏡細胞画像の図である。1ビーズアッセイを実証するために、1バッチの抗マウスIgGポリクローナル(pAb)ビーズ(図36A)と、2バッチの抗ヒトIgG pAbビーズ(図36B~図36C)とを、1ビーズアッセイを行うために調製した。図36A~図36Cは、10μg/mlのマウスまたはヒトIgGが存在したときにすべてのビーズのバッチがクラスタリングを示したことを示している。各バッチは、細胞無し(NC)の対照と比較して示されている。
図37は、POD内で単一ハイブリドーマ細胞を分泌するマウスIgGを査定するために使用された、本明細書に記載される1ビーズアッセイを使用して行われた試験から得た画像の図である。
図38は、POD内で単一ハイブリドーマ細胞を分泌する抗原に特異的な抗体を査定するために使用された、本明細書に記載される2ビーズアッセイを使用して行われた試験から得た画像の図である。
図39Aは、HB-123細胞系を使用して実施された試験から得た4X対物レンズ顕微鏡画像の図であり、ここではクラスタリングが予想されなかった。
図39B~図39Dは、時間=0、t=1時間、およびt=3時間における10X対物レンズ顕微鏡画像の図であり、t=1時間からクラスタリングが発生し始めたことを示している。
図40Aは、開いた状態のチャンバ機構の変形形態の上面平面図である。 図40Bは、閉じられた状態の図40Aのチャンバ機構の上面平面図である。 図40Cは、線40C:40Cに沿って取られた、図40Bに示されるチャンバ機構の断面側面図である。
図41は、開いた状態のチャンバ機構の別の変形形態の上面平面図である。
図42Aおよび図42Bは、それぞれ部分的に閉じられた状態および閉じられた状態にあるチャンバ機構の別の変形形態の断面側面図である。
図43Aは、ビオチンで被覆されたビーズおよびストレプトアビジンに共役した抗体を使用した、1ビーズまたは2ビーズアッセイで使用するための第1の結合相手錯体の概略説明図である。図43Bは、ストレプトアビジンで被覆されたビーズおよびビオチンに共役した抗体を使用した、1ビーズまたは2ビーズアッセイで使用するための第1の結合相手錯体の概略説明図である。
本発明の様々な態様および変形形態の非制限例が本明細書に記載され、添付図面に示される。
概して、本明細書に記載されるのは、試料を処理するためのアッセイシステムおよび方法の例示的変形形態である。例えば、そのようなシステムおよび方法は、試料の迅速な実験分析を可能にするなどのために、試料中の多数の実体を実質的に並行して処理してよい。さらに、本明細書に記載されるシステムおよび方法は、不均一なサイズの多分散実体を処理するために使用されてよい。概して、本明細書に記載されるシステムおよび方法は、凝集、コロイド安定性、細胞増殖、細胞表面プロファイリング、細胞サイズプロファイリング、および/またはタンパク質、抗生物質、ヌクレオチド、他の検体等の濃度のプロファイリングなどの、診断および/または研究に関係する事象または試料特性の測定を容易にし得る。用途は、診断、薬物研究、環境研究等を含んでよい。
POD
下記でさらに詳しく説明されるように、本システムおよび方法は、例えば、区画された試料を処理してよい。例えば、本システムおよび方法は、適切な実験用の分散を処理してよく、その一種は、本明細書において多分散偏球分散系(「POD」(Polydisperse Oblate Dispersion System))とも呼ばれる。PODは、その本体の中に、バクテリアもしくは哺乳動物細胞、DNA、RNA、ヌクレオチド、タンパク質、酵素、ならびに/または分析対象となる任意の適切な化学的および/もしくは生物学的内容物などの、任意の適切で実験的に有用な内容物を含み得る。他の例では、PODは、PODをソフトウェアによって処理して有意義な化学的および/または生物学的情報を生じ得るように、1つまたは複数のイメージセンサにシグナルを与えるために使用される試薬を含んでよい。PODは、例えば、ハイブリドーマまたはB細胞からのIgGなどの、哺乳動物細胞から分泌される分子の早期検出のために使用されてよい。適切な試薬または凝集物は、例えば、金、ラテックス、セルロース、アガロース、ポリスチレン、磁気材料、および/または生物学的に活性なタンパク質もしくは足場に結合した他の材料(例えば、ELISAキットや、細胞表面結合および細胞凝集アッセイなどの凝集アッセイに適する材料)で被覆されたビーズを含んでよい。加えて、一部の変形形態では(例えば細胞培養を伴う試料の場合)、細胞を生存可能に保つのを助けるために、L-グルタミンなどの物質がPOD内にカプセル化されてよい。さらに、一部の変形形態では、PODは、捕獲タンパク質または抗体に対するアンカーとして働くヒドロゲルまたは多孔性固相またはポリマー相を含んでよい。そして、捕獲タンパク質に特異的である試料と、西洋ワサビペルオキシダーゼ(HRP)などの検出触媒または酵素に結合した第2の検出抗体とを用いて、サンドイッチ型のアッセイを構築することができる。次いで、PCIBなどの減光基板が追加され得る。
例えば、PODは、約10nmから約50μmの間のサイズを有すると共にバイオマーカー(例えば抗体)で被覆された任意のそのようなビーズを含み得る。別の例として、PODは、約30nmから約50μmの間のサイズを有するビーズを含み得る。本明細書に記載されるアッセイシステムにおけるそのような試薬または凝集物(単分散であっても多分散であってもよい)の自己集合から生じる凝集の度合いは、例えば、タンパク質および/または検体濃度の推測を可能にする。よって、目的の検体は、これらに限定されないが、緩衝液、細胞、組織、溶解質、凝集物、集合タンパク質、薬物、抗体、ヌクレオチド、色素、および/または被覆粒子等を含む、様々な化学的および/または生物学的混合物を含む。本明細書に記載されるシステムおよび方法の例示的用途が図12に示され、下記でさらに詳細に説明される。
一部の変形形態では、各PODが別々の実験と考えられてよく、複数のPODの処理によって、複数の実験を並行して高速かつ効率よく行うことが可能になる。PODを処理することは、PODの1つまたは複数の特性を分析すること、チャンバ内でPODの場所を追跡する、および/もしくはその軌道を予測すること、ならびに/または分別のためにPODを操作することを、制限なしに伴ってよい。
一部の変形形態では、PODは、安定化され、液体や他の流体などの周囲媒体(例えば界面活性剤もしくは脂肪、またはその混合物を含有する非水溶液)に移送可能な水相を含んでよい。一部の変形形態では、アッセイ装置によって処理されるPODは、PODが球形でないことを少なくとも部分的な理由として、液滴と違っていてよい。例えば、処理されるPODは、球状に対称でないことがある。処理されるPODは、1つの寸法(例えば、下記で説明するように電極表面に概ね直交して測定される寸法)が、別の寸法よりも小さくてよい(例えば偏球)。例えば、処理されるPODは、概ね半球型の形状と同様に、少なくとも1つの側で概ね平坦化されてよく、または円盤状もしくは「パンケーキ」形と同じように、少なくとも2つの反対側の側で概ね平坦化されてよい。下記でさらに詳しく説明するように、少なくとも1つの側で平坦化されたPODは、アッセイ装置内の測定電極との増大した接触表面積を有することができ、それにより、電極測定値が、低減されたノイズおよび概して改良されたシグナル品質を有し得る。加えて、下記でさらに詳しく説明するように、少なくとも1つの側で平坦化されたPODは、POD内容物を集中させて、カメラの2次元の焦点面に近似した形状にするように体積的に制約され得、それによりカメラによるPOD内容物の可視性を向上させる。さらに、PODは、アッセイ装置によって同時に処理される複数のPODは、従来は同じサイズである(例えば単分散の特性を有する)と考えられる液滴と対照的に、多分散であってよいということを少なくとも部分的な理由として、液滴と違っていてよい。
例えば、PODは、(例えば、2つの板の間、下記で説明されるようなチャンバの2つの対向する表面間での機械的圧縮、または他の適切なメカニズムにより)、界面活性剤濃度を上げることにより、または任意の適切な方式で、押圧されて平坦化形態にされてよい。
PODの周囲媒体は、例えば非水性連続相を含んでよい。一部の変形形態では、周囲媒体はフルオラスであってよい。例えば、媒体は、フッ素化油または他の液体(例えば、3M(商標)によって製造されるNovec(商標)として入手可能なHFE7500、または3Mによって製造されるFluorinert(商標)として入手可能なFC-40)を含んでよい。別の例として、媒体は炭化水素油を含んでよい。媒体は、さらに他の変形形態では、追加的または代替的にPEGおよびフッ化誘導体(例えば、Chemours Companyによって製造されるKrytox(商標)フッ素化油の誘導体。PEGまたは他の適切なグリコールエーテルと重合または共重合されていてもよい)を含んでよく、脂肪または他のリン酸、カルボキシル化もしくはアミノ末端鎖を含んでよい。
一部の変形形態では、PODは、周囲媒体の密度よりも低い総合密度を有してよく、それにより、媒体中の水溶性PODがより浮揚性になり、周囲媒体中で上昇しやすくなる。例えば、周囲媒体は、HFE-7500および/またはFC-40などの、水よりも密度の高い流体を含んでよく、それらはコブロックポリエチレングリコール/Krytox(商標)ポリマーと混合されてもよい。他の変形形態では、PODは、周囲媒体の密度よりも高い総合密度を有してよく、それにより、媒体中の水溶性PODがより浮揚性でなくなり、周囲媒体中で沈みやすくなる。例えば、周囲媒体は、ヘキサデカンやリン脂質二重層などの、水よりも密度の低い流体を含んでよい。さらに他の変形形態では、PODおよびその周囲媒体は、実質的に同様のまたは等しい密度を有してよい。PODおよび周囲媒体の相対密度の様々な組合せが、周囲媒体中でのPODの種々のレベルの浮力をもたらし得ることが理解されるべきである(例えば、特定の媒体中のPODのセットは、上昇しやすいいくらかのPODおよび沈みやすいいくらかのPODを含んでよい)。例えば、PODの相対浮力は、PODを分別する際に重力を活用する一部の用途において有益であり得る。しかし、PODは、任意の適切な媒体に囲まれていてよい。
1つまたは複数のPODが、適切な周囲媒体との組合せでエマルジョンとしてアッセイ装置に導入され、本明細書に記載されるように処理されてよい。一部の変形形態では、PODを作製するための混合は、アッセイ装置の外側で行われてよく(例えば、装置への導入に先立って装置の入口の外側側部の近くで)、一方、他の変形形態では、そのような混合は、追加的または代替的にアッセイ装置内部で行われてもよい。例えば、PODは、生物学的試薬およびフッ素化液を含む2つの溶液を攪拌することによって生成されてよい。さらに、POD間の多分散性を制御または調整するために、より大きいPODがより小さいPODに変形されてもよい(例えば、下記で説明するようにアッセイ装置内でのスペーサとの相互作用、または任意の他の適切な装置特徴部との相互作用により)。
本アッセイ装置および方法は、多分散試料実体を処理するために使用されてよい。例えば、本明細書に記載される装置および方法の様々な態様は、試料が単分散であることを必要とする従来のシステムと対照的に、異なるサイズのPODを実質的に同時に処理することを可能にし得る。一部の変形形態では、本明細書に記載されるアッセイ装置および方法は、少なくとも5%、少なくとも10%、少なくとも25%、または少なくとも50%のサイズ(例えばPOD直径、POD周囲長、POD表面積、POD体積等)の分散を有する、試料実体を同時に処理し得る。多分散試料を扱える能力は、例えば、より簡易でより効率的な試料分析を提供し得る(例えば、アッセイ装置に導入する前に、時間を要する別個のプロセスで試料実体をサイズによって分別することを必要としないことにより)。
本明細書に記載されるアッセイ装置および方法の例示的用途は、検体濃度を測定する、細胞***を測定する、PODまたは他の試料実体中の細胞もしくは粒子の形態、サイズ、および/または数を測定する、細胞(および/または凝集物)とそれらが含有されているPODの相対サイズ(例えばPODの周囲長とPOD内の細胞の周囲長との比)を測定する等のために、PODを処理することを含む。例えば、本装置および方法は、病理学、腫瘍学、白血球細胞または赤血球数の判定等のために使用されてよい。さらに、本明細書に記載されるアッセイ装置および方法は、各種の凝集試験のいずれを行うためにも使用されてよい。
試料を処理するためのアッセイシステム
概して、図1Aの概略図に示されるように、一部の変形形態では、試料を処理するためのアッセイシステム100は、少なくとも1つの入口122および少なくとも1つの出口124を有するチャンバ120であって、少なくとも1つの入口から少なくとも1つの出口に向かう試料の流れを収容するように構成されたチャンバと、チャンバ120内の試料の流れを撮像するように構成されたイメージャアレイ140とを含む。イメージャアレイ140は、少なくとも1つの光源130の反対側に設定可能な少なくとも1つのレンズレスイメージセンサを含んでよい。一部の変形形態では、アッセイシステム100は、試料の流れを操作するために1つまたは複数のポンプ、弁、および/または流体センサを備えた流体制御システムを含んでよい。システム100は、下記でさらに説明するように、アッセイシステム100の他の構成要素を制御する、および/またはそれらから信号を受信するように構成された電子システム160(例えば1つまたは複数のプロセッサを備えたPCBA等)をさらに含んでよい。一部の変形形態では、電子システム160は、1つまたは複数のリモートプロセッサ180による分析のためにネットワーク170にデータ(例えば画像データ)を通信するように構成された、1つまたは複数の通信構成要素(例えばBluetooth(登録商標)、WiFi等)をさらに含んでよい。追加的または代替的に、データの少なくとも一部は、電子システム160内に位置する1つまたは複数のプロセッサによって分析されてもよい。
図1Bは、チャンバ120の入口に連結されたリザーバ116から試料(例えばエマルジョン)を受け取るように構成されたチャンバ120を含む、試料を処理するためのシステム100の例示的変形形態の概略図を示す。チャンバ120は、イメージャアレイがチャンバ120内の試料の光学シャドウ画像を作り得るように、1つまたは複数の光源130とイメージャアレイとの間に配置されてよい。画像は、本明細書に記載されるものなどの技術を使用して分析されてよく、試料は、処理されてよい(例えば、特徴付けられ、リザーバ156および/または他の貯蔵器156’(例えばエッペンドルフ管)などの1つまたは複数の廃棄物容器に出力される)。さらに、システム100は、目的のものであり得る試料の一部をさらなる分析または他の処理のために抜き出すために、ロボット式または自動化されたピペット190を含んでよい。
チャンバ機構
上記で説明したように、アッセイシステムは、少なくとも1つの入口および少なくとも1つの出口を有するチャンバであって、少なくとも1つの入口から少なくとも1つの出口に向かう試料の流れを収容するように構成されてよいチャンバを含んでよい。概して、チャンバは、POD(または試料中の他の実体)がチャンバのボリューム内で(例えば多方向の流れで)循環し得るように、試料の2次元の流れを収容するように構成されてよい。例えば、チャンバは、概して矩形のボリュームを含んでよい。一部の変形形態では、チャンバは、第1の構造と、第1の構造に対向する第2の構造とによって少なくとも部分的に定められてよく、第1および第2の構造の各々が、光学的に透明である少なくとも一部分を有する。一部の変形形態では、チャンバは少なくとも部分的に、可撓性プリント回路基板(「フレックス」回路)上に実装されてよい。
さらに、少なくとも1つの光源が、チャンバ内の試料流れの一方の側に位置付けられてよく、少なくとも1つのレンズレスイメージセンサを含むイメージャアレイが、チャンバ内の試料の流れの他方の側(光源の反対側)に位置付けられてよい。そのような配置では、イメージャアレイは、少なくとも1つの光源によって背面から照明されたチャンバ内容物の「シャドウ画像」、すなわちシャドウグラフ法による画像、を生成するように構成されてよい。試料に関する情報(例えば化学的情報および/または生物学的情報)が、そのような試料のシャドウ画像から導出されてよい。
一部の変形形態では、アッセイ装置は、追加的または代替的に、試料の電子特性を測定する(例えば、試料に関する化学的情報および/または生物学的情報に相関している可能性のあるインピーダンス測定を行う)、および/または誘電泳動を可能にするための電界を生成するように構成された、1つまたは複数の電極を含んでよい。例えば、チャンバは、この参照により全体が組み込まれる米国特許出願第15/986,416号に記載されるものと同様の電極を含んでよい。そのような電極のさらなる例は、チャンバ機構の例示的変形形態に関して下記でさらに詳しく説明される。
概して、図2Aの概略断面図に示すように、チャンバ機構は、第1の構造210および第2の構造212を有するチャンバ200を含んでよく、第1の構造および第2の構造は、光学的に透明な材料を含み、間隙214を形成するかまたはチャンバボリュームを少なくとも部分的に定めるように互いから隔てられている。第1の構造210と第2の構造212との間の間隔は、一部の変形形態では、本明細書にさらに記載されるように、1つまたは複数のスペーサ216によって支持または強化されてよい。スペーサの厚みは、例えば、チャンバ高さおよび/またはエマルジョンの安定性、PODの流量等の動作パラメータを調整するために決定されてよい。一部の変形形態では、チャンバ高さは、分析が望まれるPODまたは試料の種類に少なくとも部分的に基づいてよい。適切なチャンバ高さは、例えば、約0.1μmから約200μmの間の範囲であってよい。例えば、一部のPODは、25~30μmなどのより高い高さを有するチャンバを使用して最も良好に分析され得る細胞を含み得、一方で一部のPODは、1μm未満などのより低い高さを有するチャンバを使用して最も良好に分析され得るタンパク質を含み得る。
第1の構造210および第2の構造212は、半導体平面処理技術で形成された多層の積み重ねを含んでよい(例えば、堆積、スパッタリング、めっき、および/または浸漬プロセスで基板上に材料を付加し、フォトリソグラフィもしくは他のエッチングプロセス、またはレーザによって定められる撮像プロセス等で材料を減じることでパターン化を導入する)。一つの層は、連続的な構造(例えばパターン化されていない薄膜)であっても、または非連続的な構造(例えば切り抜き、間隙等のある、パターン化された薄膜)であってもよい。そのような平面処理技術を利用することにより、チャンバを形成する各構造が、低コストで寸法的にスケーリングされ得る。平面にわたるスケーラビリティにより、アッセイ装置が多数のPODを同時に撮像または検出することが可能となり、それにより分析スループットまたはある期間の間に検出され得る事象(例えばPOD、またはPOD内の反応等)の総数を増大させる。さらに、これらの製造技術は、チャンバ高さ、形状、および占有面積の正確な制御を可能にし、それにより幅広い用途(例えば異なるPODサイズを伴う試料タイプ)に合わせてアッセイ装置全体をカスタマイズする柔軟性を可能にする。
光源230が、チャンバの一方の側に位置付けられてよく、間隙214に向けて光を発するように構成されてよい。レンズレスイメージセンサ(例えばCMOSイメージャ)を備えたイメージャアレイ240が、光源230と反対側の、チャンバの他方の側に位置付けられ、間隙214の領域を撮像するように構成されてよい。具体的には、レンズレスイメージセンサは、レンズレスイメージセンサとチャンバとの間の視線内に対物レンズまたは他の光学合焦レンズを伴わずに、チャンバ上に直接置かれて(または代替的にチャンバの境界を直接形成するために使用されて)よい。第1の構造210および第2の構造212は、光源230からの光が第1の構造210の光学的に透明な部分を通り、間隙214を越えて進み、第2の構造212の光学的に透明な部分を通り、イメージャアレイ240に入射し得るように、光学的に透明な材料を含んでよい。
試料は、間隙214を通過するPODとして図2Aに表されるように、間隙214を流れてチャンバ200を通過してよい。説明の目的で、PODは、図2Aに示すように凝集物などの検体を含むことができるが、PODは他の種類の検体を含むことができる(または検体を含まない)ことが理解されるべきである。光源230からの光は、チャンバに向けて(およびチャンバ内のPODに向けて)発されて、PODがチャンバ内にあるときにはPODおよびその内容物と相互作用し得る。イメージャアレイ240は、例えば、影、吸光度または発光スペクトル(例えば蛍光)、吸光係数、光の散乱等を含む、そのような相互作用から生じた光学現象を検出し、撮像するように構成されてよい。
例えば、図2Aは、イメージャアレイ240が、チャンバ内の試料流れのシャドウ画像を生成するように構成されたシステムを示す。光源230は、光(例えば可視光)を試料流れに向けて発するように構成されてよい。図2Aに示すように、一部の光線(例えば光線「A」)は、チャンバに入り、比較的擾乱を受けずにPODの水溶性部分を通過し得、それにより、PODの水溶性部分が、イメージャアレイ240により、明るい、背面から照明された領域(例えば図2Bの領域I)として撮像される。一部の光線(例えば光線「B」)は、チャンバに入り、PODの中の凝集物(または他の検体)のために散乱または反射され得、それにより、凝集物(または他の検体)が、イメージャアレイ240により、やや暗くなった、不明確なまたは「ぼやけた」領域(例えば図2Bの領域I)として撮像される。一部の変形形態では、凝集物のサイズ、形状、および/または密度などの、PODおよびその内容物に関する情報が、画像の暗くなった不明確な領域に少なくとも部分的に基づいて(例えば、領域のサイズ、形状、画素強度等に基づいて)決定されてよい。さらに、一部の光線(例えば光線「C」)は、チャンバに入ってPODの境界で回折を受け得、それにより、PODの境界が、暗い影になった境目領域(例えば図2BのI)として撮像される。一部の変形形態では、PODの全体形状および/またはサイズが、境目領域(例えば境目領域の形状、サイズ、画素強度等)に少なくとも部分的に基づいて決定されてよい。したがって、イメージャアレイ240内の1つまたは複数のレンズレスイメージセンサは、チャンバの背面照明された内容物の「シャドウ画像」を生成するように構成されてよい。それらのシャドウ画像から化学的および/または生物学的特質が導出されてよい。
図9は、図2Aに示されるものなどのチャンバ内の試料流れの例示的シャドウ画像である。このシャドウ画像は、チャンバに隣接し、チャンバ内の試料流れの背面照明を提供する光源の反対側にあるレンズレスCMOSイメージセンサによって撮影された未処理のシャドウ画像を処理した結果である。試料流れは、チャンバを通過する複数の多分散PODを含む。それらPODの一部は、直径が約22μmのビーズを含み、これはおよそ循環する腫瘍細胞のサイズであり、抗体と連結し得る。よって、ビーズは、POD内に存在すれば撮像され得る検体を有する(または同様に撮像されることが可能な別の検体を他の形で表す)。例えば、バイオマーカーで被覆されたビーズ(例えばラテックス、ポリスチレン、磁気材料、金等)を含むPODは、PODの内容物が、そのバイオマーカーに反応するかまたは結合する実体(例えばエピトープ、抗原、または他のマーカー)をも含む場合には、視覚的に違ったパターンを有し得る。そのような視覚的におよび/または定量化可能に違うパターン(またはパターンの変化)が、バイオマーカーを計量するために使用されてよい。図9のシャドウ画像に示すように、PODのサイズおよび形状は、POD内の暗くなったパターンの外観に基づいて特定可能かつ測定可能である。加えて、ビーズの存在、サイズ、形状等の、ある特定のPOD内のビーズの特性が特定可能である。さらに、複数のシャドウ画像にまたがって時間の経過に伴うPODおよびその内容物の外観を分析することにより、動的特性(例えば、POD内容物の移動および/または形状もしくはサイズの変化)を分析して、PODの化学的および/または生物学的性質に関する追加的な情報を得ることができる。
図10は、図2Aに示されるものなどのチャンバ内の試料流れの別の例示的シャドウ画像である。試料流れは、チャンバを通過する複数の多分散PODを含む。これらPODの一部(例えばPOD1010)は、1つまたは複数の赤血球を含有していてよく、一方、一部のPOD(例えばPOD1020)は、赤血球または他の検体を欠いているという点で「空」であってよい。図9のシャドウ画像に示すように、PODのサイズおよび形状は、PODの輪郭を描く、暗くなっている線の外観に基づいて特定可能かつ測定可能である。加えて、ある特定のPOD内の赤血球の特性も特定可能である(例えば赤血球の数等)。さらに、図9に関して上記で説明したものと同様に、複数のシャドウ画像にまたがって時間の経過に伴うPODおよびその内容物の外観を分析することにより、動的特性(例えばPOD内容物の移動および/または形状もしくはサイズの変化)を分析して、PODの化学的および/または生物学的性質に関する追加的な情報を得ることができる。
図11Aおよび図11Bは、イメージャアレイがチャンバ内の試料流れの蛍光画像を取得するように構成された別の例示的変形形態を示す。図11Aおよび図11Bは、第1の構造1110と、間隙1114で隔てられた第2の構造1112とを有するチャンバ機構を示しており、これは、下記の点を除いて、前に説明したのと同様であり、図2Aを参照して上記で説明されたチャンバ機構と同様である。図11Aに示すように、光源1130は、蛍光または他の発光スペクトルを誘起するのに適した光1132を試料流れに向けて発するように構成されてよい。発される光1132は、例えば紫外光(UV)を含んでよい。試料流れ中の少なくとも一部のPODは、ビーズもしくは生物学的試料1102、または、発された光を吸収し、それに応答して(例えば異なる波長の)光を発するように構成された他の物質を含んでよい。例えば、図11Bに示すように、少なくとも一部の発された光は、PODまたはその中の内容物によって吸収され得、PODまたは内容物は、蛍光または他の発光1134を発し得る。発された蛍光は、イメージャアレイ1140内のイメージセンサの少なくとも一部分によって、蛍光画像として撮像されてよい。それらの蛍光画像から化学的および/または生物学的特質が導出されてよい(例えば発せられた光の波長、発せられた光の強度等に基づいて)。
さらに、図11Aおよび図11Bのチャンバ機構は、蛍光を誘起するための光を発する光源1130の反対側にあるイメージャアレイ1140を描いているが、他の変形形態では、イメージャアレイ1140は、試料流れからの蛍光または他の発光スペクトルを捕捉するように光源1130に近接した任意の適切な場所に位置してよいことが理解されるべきである。例えば、イメージャアレイ1140の少なくとも一部分および光源1130の少なくとも一部分は、互いに対して直交していてよい(例えば、一方がチャンバ1100の側壁にあり、他方がチャンバ1100の上部構造または下部構造上にある)。別の例として、追加的または代替として、イメージャアレイ1140の少なくとも一部分および光源1130の少なくとも一部分は、互いと隣接していてもよい(例えば、上部構造または下部構造などの同じ表面上に、交互のまたは他の分散したパターンで)。
レンズレス撮像は、レンズを用いる従来の光学系と比べていくつかの利点を提供し得る。例えば、レンズレスイメージセンサは、広い視野にわたる高解像度の撮像を提供し得る。これは、イメージャアレイが、チャンバ内の多数のPOD(例えば100個超、または200個超)を単一の画像フレーム内にうまく撮像することを可能にし得る。さらに、レンズレスイメージセンサは合焦を必要としないため、正確な光学位置合わせおよび光学構成要素の位置決めに対する必要性が低減し得、それにより製造プロセスが容易になり、ユーザおよび/またはソフトウェアがイメージャアレイの焦点を調整する負担が軽減する。レンズが存在しないことは、レンズに一般的である焦点勾配に伴う課題も緩和し得、アッセイ装置の総部品数およびコストを低下させる。したがって、チャンバ機構(本明細書に記載されるものなどの)内へのレンズレスイメージセンサの組み込みはさらに、寸法のスケーラビリティを低コストで可能にし得る。
チャンバ、1つまたは複数の光源、およびイメージャアレイの配置は、様々な適切な方式で構築されてよい。例えば、図3は、試料を処理するためのアッセイシステム300の例示的変形形態を示す。概して、アッセイシステム300は、上記で説明され、図1に示されたアッセイシステム100と同様の構成要素を含んでよい。図3に示すように、アッセイシステム300は、基部380および基部380に連結された光源支柱334を含む、1つまたは複数の支持体をさらに含む。基部380は、チャンバ320、チャンバ320の下方にあるイメージャアレイ(図示せず)、および/または電子システム360の少なくとも一部を受けるための板または他の適切な安定した表面を含んでよい。例えば、基部380は、チャンバ320、イメージャアレイ、および/または電子システム360を相補的に受けるような形状の、少なくとも1つの凹部を含んでよい。チャンバ320、イメージャアレイ、および/または電子システム360は、留め具、エポキシ、噛み合う嵌合特徴部、および/または他の適切な特徴部で基部380に連結されてよい。一部の変形形態では、基部380は、机上、卓上、または他の適切な表面に直接または間接的に(例えば副板などの基部取付け台382を介して)固定されてよい。
光源支柱334が基部380に取り付けられてよい(例えば、留め具または噛み合う特徴部等で)。一部の変形形態では、光源支柱334は、縦方向であり、基部380に対して直交して取り付けられてよい。光源ハウジング332は、光源(例えばLED、またはレーザなどのコヒーレント光源、または他の適切な光源)を収納してよく、光源が基部380上のチャンバ320の上方に位置付けられるように、光源支柱334に連結されてよい(例えばクランプやピンメカニズム等を介して)。光源ハウジング332は、光源とチャンバ320との相対位置の調整を可能にするように、光源支柱334に調整可能に連結されてよい。例えば、調整つまみ336を回すことにより、光源ハウジング332を光源支柱334に連結しているクランプを緩めてよく、それにより、光源ハウジング332が光源支柱334に沿って縦方向に調整されてよい。光源ハウジング332が所望の場所に位置付けられると、調整つまみ336を締めて、光源支柱334上での光源ハウジング332の位置を固定してよい。他の変形形態では、他の適切なメカニズムが、光源ハウジングの調整を可能にしてよい(例えば、ねじ付き取付け具、別個の高さに位置する孔に挿入可能な1つまたは複数のピン等)。さらに、一部の変形形態では、チャンバ320の場所は、追加的または代替的に、(例えば基部380の場所を動かすことにより)光源に相対的に調整されてよいことが理解されるべきである。一部の変形形態では、光源とチャンバとの相対的な場所は、光源から発せられた光がチャンバに入射して入るときに実質的に平行化されるようなものである。一例示的変形形態では、光源ハウジング332に収納された光源は、基部380に取り付けられたチャンバの上方約6インチの距離に位置付けられた、1つまたは複数の白色光LEDを含んでよい。
チャンバ機構の例示的変形形態が図4A~図4Dに示される。図4Bに最もよく示されるように、チャンバ機構は、第1の上部構造410および第2の下部構造430を備えるチャンバ400を含む。例えば、図4Aおよび図4Cに示すように、上部構造410は、光学的に透明な層412、パターン化構造層416(例えば銅または他の適切な金属)、および光学的に透明な層412と構造層416とを共に接合するための接着剤層414(例えばアクリル接着剤)を含む、積層複合体を含んでよい。下部構造430は、光学的に透明な層434と、上部パターン化構造層432と、下部パターン化構造層436と、光学的に透明な層434を上部および下部のパターン化構造層にそれぞれ接合するための接着剤層433および435とを含む、積層複合体を含んでよい。下部構造430内の光学的に透明な層、構造層、および接着剤層は、上部構造410と同様の材料からなってよい。上記で説明された光学的に透明な層のうち1つの少なくとも一部のための例示的材料は、ポリイミドおよびガラス(例えば、Corning(登録商標)により製造される可撓性のWillow(登録商標)ガラス、または他の適切なガラス材料)、他の適切な光学的に透明な基板、またはそれらの任意の組合せを含む。
図4Aに示すように、1つまたは複数の光源490が、チャンバボリュームの一方の側に位置してよく、イメージャアレイ492が、1つまたは複数の光源490の反対側の、チャンバボリュームの別の側に位置してよい。例えば、1つまたは複数の光源490は、上部構造410の上方に位置し、チャンバボリュームに向けて光を発するように方向付けられてよい。一部の変形形態では、光源490は、上部構造410の層の中に埋め込まれたまたは置かれたLEDまたは他の適切な光源であってよく、他の変形形態では、光源490は上部構造410の外部に位置してよい。イメージャアレイ492は、下部構造440の下方に位置し、チャンバボリュームを撮像するように方向付けられてよい。一部の変形形態では、イメージャアレイ492は、1つまたは複数のレンズレスCMOSイメージセンサを含んでよい。代替的に、1つまたは複数の光源490は、下部構造430の下方に位置してよく、イメージャアレイ492は、上部構造の上方に位置してよい。さらに、チャンバ400は、構造410および430を上部および下部構造として図示および説明されるが、チャンバ、光源、およびイメージャアレイの向きは異なってもよい(例えば、向きは図4Aに示されるものから90度または180度回転されてよい)ことが理解されるべきである。
上部構造410と下部構造430は共につながれてよく、それにより、図4Aの向きに示されるように、上部構造410がチャンバ400の上面を提供し、下部構造430がチャンバ400の下面を提供するようになる。例えば、上部構造410と下部構造430とは、介在接着剤層420によって少なくとも部分的に接合されてよく、接着剤層420は、上部構造410と下部構造430との間にチャンバボリュームのための中央の空の空間を提供するチャネル切り抜き422を有してよい。上部構造410および下部構造430の各々にある位置合わせ孔470などの見当合わせ特徴部が、チャンバを形成する構造同士の位置合わせを容易にしてよい。
1つまたは複数のスペーサが、チャンバボリューム内に位置して、上部構造410と下部構造430との間の間隔を支持する、および/または上部構造410と下部構造430との連結を容易にしてよい。図4Dの上部平面図および図4Aの断面図に示すように、1つまたは複数の境界スペーサ426がチャンバボリュームの側壁を形成してよい。例えば、境界スペーサ426は、概して楕円形状または矩形形状であってよい(例えば、図4Dに示すようにチャンバの左側部および右側部上に位置する直線状の側部を含んでよい)。さらに、1つまたは複数のスペーサ支柱424がチャンバボリューム内に配置されてよい。スペーサ支柱424は、一部の変形形態では、チャンバの上部構造と下部構造との間の間隔を強化するための円柱状の支持を提供する。用途によっては、スペーサ支柱424は追加的に、集合したPODを分解し、試料流れに乱流を誘起し、および/またはチャンバ内の試料の流れに他の形で影響を与えるように機能してもよい。スペーサ支柱424は、規則的なアレイ(例えば、図4Dに示すような矩形のアレイ、図24Aに示すような千鳥型アレイ)として、または代替的に不規則なアレイもしくは他の適切なパターンで分散されてよい。
境界スペーサ246は、図4Dでは細長い直線状の細片として描かれているが、他の形状(例えば波状の細片、不規則な長さ)も適切であり得ることが理解されるべきである。さらに、境界スペーサ246は、間欠的な境界スペーサ246の間にチャンバの追加的な試料入口および/または出口を収容するなどのために、チャンバの側部上に間欠的に置かれてもよい。同様に、スペーサ支柱424は、図4Aでは四角形の断面を有するものとして描かれているが、他の変形形態では、スペーサ支柱424は円形または三角形などの他の適切な断面を有してよいことが理解されるべきである。
一部の変形形態では、スペーサ424および/または426は、上部構造410および下部構造430のパターン化構造層から形成されてよい。例えば、上部構造410のパターン化構造層416は、下部構造430のパターン化構造層432の隣にあって、それら構造層が組み合わさってスペーサ424および/または426を形成してもよい。一部の変形形態では、構造層416および432は、各々がスペーサの高さの半分ずつを提供するように、厚みが等しくてよい。他の変形形態では、構造層416および432は、異なる厚みを有してよい(例えば、構造層416が構造層432よりも厚いかまたは薄くてよい)。代替的に、一部の変形形態では、スペーサ424および/または426は、層状構造の任意の組合せから形成されてよい。さらに、追加的または代替的に、非層状の構成要素(例えばビーズ)が、チャンバ400の上面と下面との間の間隔を提供してもよい。
一部の変形形態では、図5の詳細図に示すように、上部構造410と下部構造430との間の介在接着剤層420の厚みに対するスペーサの高さは、上部構造と下部構造との間の連結を強化する、および/またはスペーサを形成するパターン化層を圧縮するために、上部構造410に対する「ぴんと張られた太鼓(stretched drum)」効果を導入するように選択されてよい。例えば、スペーサ424および/または426の高さは、接着剤層420の厚みよりもわずかに大きくてよく、それにより、上部構造410が、チャンバボリュームの境目で下部構造430に向けて全体的に下方に付勢されるようになる。この「ぴんと張られた太鼓」効果は、例えば、チャンバボリュームに流体封止を形成するように、上部構造410および下部構造430を共に接着剤層420に押し付けて圧縮するのを助ける。一部の変形形態では、スペーサの高さと接着剤層420の厚みとの比は、約2~約4の間、または約3であってよい。
さらに、図4Aに示すように、スペーサの少なくとも一部は、下部構造430の各層を通る通路を提供するバイア460を含んでよい。バイア460は、固着材料が上部構造410と下部構造420を共に接合するための通路を提供し得る。例えば、図4Cに示すように、固着材料462が、バイア460の中に導入されて上部構造410および下部構造420に直接接合し、それにより構造同士をつないでよい。一部の変形形態では、固着材料は、はんだまたはポリマー接着剤であってよい。例示的方法では、固着材料は、一つのバイアと位置合わせされた一つの開口部(または複数のバイアと位置合わせされた複数の開口部)を有するパターン化されたステンシルを使用してバイアの中に導入されてよい。ステンシルをバイアの上に(例えば下部構造430の裏面に)置いた後、固着材料をステンシル上にこすりつけて固着材料を強制的にバイアに入れてよい。余分な固着材料がステンシル上に残り、それが、ステンシルを取り外すことにより、および/またはステンシルからこすり落とすことにより、除去され、それによりバイア内の固着材料だけを残す。そのような固着は、上部構造410と下部構造420とを接合するための上記で説明した介在接着剤層420に加えて、またはその代替として使用されてよい。
上記で説明した上部構造および下部構造410および430に加えて、一部の変形形態では、チャンバ機構は、補強材層450と、補強材層450をチャンバ400の残りに(例えば下部構造430の裏面に)接合するための補強材接着剤層440とをさらに含んでよい。補強材層450は、構成要素(例えばチャンバ入口および/またはチャンバ出口のための穴)を操作する、および/またはチャンバ400に接続するための構造的支持を提供してよい。第1の構造410および第2の構造430と同様に、補強材層450および接着剤層440は、積み重ね層の残りとの位置合わせを可能にするための基準特徴部(例えば孔470)を含んでよい。図4Bに示すように、補強材層450はチャネル切り抜き456を含んでよく、接着剤層440はチャネル切り抜き442を含んでよく、チャネル切り抜き456および442は、完全に組み立てられた積み重ねの中でイメージャアレイ492のための空間を提供する。さらなる構造的支持のために、追加的な構造層454(例えば銅または他の金属)も補強材層450に接合されてよい。
図4Aに示されるチャンバ機構の例示的実施形態では、上部構造410は、チャンバボリュームの方を向く一方の側においてアクリル接着剤で0.5oz(18μm厚)の銅箔に接合された1mm厚のポリイミド膜を含む、片面銅張り積層状複合材(DuPont(商標)によって製造される積層複合体LF8510など)を含むことができる。銅箔は、楕円形状の境界スペーサと、楕円形状の境界の内部に矩形グリッドとして配置された複数の部分スペーサ支柱とを形成するようにパターン化される。下部構造430は、両面銅張り積層状複合材(DuPont(商標)によって製造される積層複合体LF7005など)を含むことができ、チャンバボリュームの方を向く上部の銅側部は、0.5oz(18μm厚)の銅箔であり、チャンバボリュームから離れる方を向く下部の銅側部は、1(36μm厚)の銅箔である。チャンバの上部構造および下部構造は可撓性である。楕円形状のチャネル切り抜きを伴う12.5μm厚のポリマー接着剤層が、チャンバの上部構造と下部構造を共に接合するために境界スペーサの外周の外側に位置する。下部構造430の上部銅側部と下部銅側部は両方とも、複数の部分スペーサ支柱を形成するようにパターン化され、それにより、向かい合うパターン化銅箔層同士が組み合わさって、100μm直径の円形バイアを伴う複数のスペーサ支柱を形成する。バイア内のはんだが、ポリマー接着剤と組み合わさって、チャンバの上部構造と下部構造とを共に固着する。さらに、下部構造430は、補強材の裏打ちなどで補強されてもよい。例えば、一方の側に銅箔を有するFR4補強材が、適切な接着剤(例えば1mm厚のポリマー接着剤)などにより、下部構造430の裏面に接合されてよい。
チャンバ機構の別の例示的変形形態が図7Aおよび図7Bに示される。図4A~図4Dに関して上記で説明されたチャンバ機構と同様に、チャンバ機構は、上部構造710と、上部構造710から隔てられた下部構造730とを含むチャンバ700を含むことができる。図7Aに示すように、1つまたは複数の光源750が、チャンバボリュームの一方の側に位置してよく、イメージャアレイ740が、1つまたは複数の光源750と反対側の、チャンバボリュームの別の側に位置してよい。例えば、1つまたは複数の光源750は、上部構造710の上方に位置し、チャンバボリューム(例えば間隙702)に向けて光を発するように方向付けられてよい。一部の変形形態では、光源750は、上部構造710の層の中に埋め込まれたまたは置かれたLEDまたは他の適切な光源であってよく、他の変形形態では、光源750は、上部構造710の外部に位置してよい。イメージャアレイ740は、下部構造740の下方に位置し、チャンバボリュームを撮像するように方向付けられてよい。一部の変形形態では、イメージャアレイ740は、1つまたは複数のレンズレスCMOSイメージセンサを含んでよい。さらに、チャンバ700は、構造710および730を上部および下部構造として図示および説明されるが、チャンバ、光源、およびイメージャアレイの向きは異なってもよい(例えば、向きが図7Aに示されるものから90度または180度回転されてよい)ことが理解されるべきである。
上記で説明したチャンバ機構と同様に、上部構造710と下部構造730とは、間隙702によって隔てられていてよい。間隙702は、1つまたは複数のスペーサ720によって支持または強化されてよい。図4Aに示されるチャンバ機構における上部構造と同様に、上部構造710は、多層の積み重ねを含んでよい。例えば、上部構造710は、光学的に透明な材料および接着剤(例えばポリイミドおよびアクリル接着剤、または他の適切な材料)の積層積み重ねを含んでよい。さらに、上部構造710は、1つまたは複数のスペーサ720を形成する材料(例えば、チャンバの境界の少なくとも一部分を形成する境界スペーサ、チャンバボリューム内に位置するスペーサ支柱)を含んでよい。例えば、スペーサ720は、まとまってスペーサ720を形成する、銅722、金726、および/または他の表面めっき724(例えば無電界ニッケル浸漬金、またはENIG)を含む複数の接合された層を含んでよい。スペーサ720は、上部構造710内の材料の層を含むものとして描かれているが、スペーサ720を形成する材料の層は、追加的または代替的に下部構造730内の材料の層を含んでもよいことが理解されるべきである。
図7Bに示すように、下部構造730は、光学的に透明な材料(例えばポリイミド)および1つまたは複数のバイア732を含んでよい。銅層736が、バイア732を裏打ちしてよい。図4Aを参照して上記で説明されたチャンバ機構におけるバイアと同様に、バイア732は、上部構造710を下部構造730に接合するための固着材料734を収容してよい。例えば、はんだ、接着剤、または別の適切な固着材料が、1つまたは複数のバイア732の中に配され、上部構造710(例えばスペーサ720を形成する材料)を下部構造730と結び付け、それにより上部構造と下部構造とを共に固定してよい。
図7Bに示すように、チャンバ700は、チャンバボリュームに露出され、チャンバ内を流れる試料と相互作用する電極760を含んでよい。電極760は、一般に、例えばアレイとして配置されてよい。一部の変形形態では、少なくとも一部の電極は、試料の電子的特質(例えばインピーダンス)を測定するように構成されてよい。追加的または代替的に、少なくとも一部の電極は、誘電泳動を可能にするための電界を生成するように構成されてよい。図7Bに示すように、電極760は、導電性トレース762(例えばパターン化銅)に接続されてよい。そのようなトレースは、平面表面上に延在し(例えば、図7Bの断面図に対して紙面に入る、または紙面から出るように)、信号が電極760に出入りするのを可能にするようにパターン化されてよい。言い換えると、電極760ならびにそれらのパターン化電気アドおよびトレースは、積み重ねの中に直接一体化されて積み重ね内で電気的に接続されてよく、さらに、アッセイ装置に搭載された、または1つもしくは複数の外部のコンピューティング装置上にある、電子構成要素(例えばコントローラ、プロセッサ等)に接続されてよい。
図7Aおよび図7Bに示す変形形態の例示的実施形態では、チャンバ機構は、交互のポリイミド層および接着剤層からなる積層構造を含む上部構造を含んでよい。上部構造は、約50μmの厚みを有する上部ポリイミド層712、約50μmの厚みを有する介在接着剤層714(DuPont(商標)によって製造されるアクリル接着剤LF0200など)、および約25μmの厚みを有する下部ポリイミド層716を含むことができる。チャンバ機構は、約25μmのポリイミド層を含む下部構造をさらに含む。上部構造と下部構造とは、スペーサのセットによって互いから隔てられ、離間しており、それにより流体が流れることのできるチャンバボリュームを形成する。一連の白色LEDが、白色光をチャンバボリュームに向けて上部構造を通って発するように配置され、レンズレスイメージセンサ(例えば、レンズが取り外された、Omnivision Technologies Inc.によって製造されるOV5640などの1つまたは複数のカラーCMOSセンサ)を含むイメージャアレイが、LEDの反対側に配置されて、チャンバボリュームの内容物を撮像する。上部構造は、上部構造と下部構造との間にスペーサを形成するパターン化銅(ENIG)および金層のセットをさらに含む。スペーサの横方向の間隔は、約450μmであってよい。下部構造内のバイアは、下部構造を通ってそれらのスペーサまで延在するはんだ材料を受け、それにより下部構造と上部構造とを共に接合してよい。加えて、はんだは、つば型特徴部を形成するために下部構造の裏面上で横方向に流れ出るように操作されて、それにより下部構造と上部構造とを共にさらに固定してもよい。さらに、露出した電極のアレイが、チャンバボリュームの内容物と相互作用するように、チャンバボリュームの方を向いた上部構造の側部にパターン化されてよい。電極は、酸化インジウムスズ(ITO)または他の適切な薄膜導電体からなってよく、上部構造全体にわたってパターン化された銅製導電性パッドおよびトレースに接続されてよい。
チャンバ機構の別の例示的変形形態が図8Aおよび図8Bに示される。チャンバ機構は、上記で図4A~図4Dならびに図7Aおよび図7Bに関して説明されたものと同様であるが、下記の追加的な詳細を伴う。例えば、チャンバ機構は、上部構造810と、上部構造810から間隙802によって隔てられた下部構造830とを含むチャンバ800を含むことができる。間隙802は、1つまたは複数のスペーサ支柱820および/または境界スペーサ821によって強化または支持されてよい。
図8Aおよび図8Bに示すチャンバ機構では、1つまたは複数の光源850およびイメージャアレイ840が、チャンバ800の上部構造および下部構造の中に埋め込まれるかまたは一体化される。具体的には、チャンバ800の上部構造810は、接着剤層814と共に積層された光学的に透明な材料の1つまたは複数の層(例えば上部層812および下部層816)を含んでよい。上部構造810は、少なくとも1つの光源850ならびにその導電性パッドおよび/またはトレース852がその中に位置する、1つまたは複数の照明層818をさらに含んでよい。照明層は、例えば、FR4補強材などの補強材材料を含んでよい。同様に、チャンバ800の下部構造830は、光学的に透明な材料の1つまたは複数の層(例えば層830)と、イメージャアレイ840ならびにその導電性パッドおよび/またはトレース842がその中に位置する、1つまたは複数のイメージャ層832とを含んでよい。導電性トレース852および842は、光源850を動作させ、イメージャアレイ840との間で信号を受け渡しするための電源(複数可)およびコントローラ(複数可)に通じていてよい。例えば、導電性トレースは、図8Bに示すように、アッセイ装置の電子領域870(例えばチャンバ800の外部で上部構造の外部表面に配設される)に通じていてよく、電子領域870は、アッセイ装置の動作に関係する電子構成要素を含んでよい。適切な構成要素は、集積回路および受動構成要素、電源、コントローラ、プロセッサ、データ送信器、および/またはメモリ等を含む。一部の変形形態では、電子構成要素は、信号を処理し、結果を外部のコンピューティング装置および/または他の周辺装置に通信してよい。
加えて、電極860を含む電極アレイが、上記のものと同様に上部構造810および/または下部構造830上にパターン化されてよい。導電性パッドおよびトレース862がさらに構造内にパターン化されて、電子領域870、または電極制御構成要素を有する別の適切な領域に通じていてもよい。
上記で説明したチャンバ機構と同様に、積み重ねの部分を通るバイアは、上部構造810と下部構造830とを連結するための固着材料を受けてよい。例えば、上部構造810は、スペーサ支柱820および/または境界スペーサ821を形成するようにパターン化された追加的な層(例えば銅)をさらに含んでよい。スペーサ支柱820および/または境界スペーサ821は、上部構造810の層812~816を通りスペーサ材料を通って延在し、下部構造830に接合するはんだ材料を受けるバイアを含んでよく、それにより上部構造と下部構造とを連結する。
一部の変形形態では、チャンバ機構は、上部構造および下部構造をそれぞれ異なる基板部分に含む基板を含んでよく、基板は、上部構造と下部構造とが互いに対向するように折り曲げられてよい。折り曲げられた基板は、上部構造と下部構造との間にチャンバを形成するように封止され得る。そのようなチャンバ機構の例示的変形形態が、図40A~図40C、図41、および図42A~図42Bの概略説明図によって描かれる。
図40A~図40Eに示されるチャンバ機構の変形形態は、下記で説明される追加的な詳細について以外は、図2Aおよび図2B、図7Aおよび図7B、ならびに図8Aおよび図8Bに関して説明されたものなど、上記のものと同様である。例えば、チャンバ機構は、チャンバ4000を含む一体品流体装置とすることができ、チャンバ4000は、一体形成される(例えば切り出される、または可撓膜などの同じ基板から他の方法で形成される)第1の構造4010および第2の構造4012を含む。これら構造は、1つまたは複数の可撓性ヒンジ4029によって接続された異なる基板部分に形成されてよい(例えば薄膜技術等により配される)。一体品流体装置は、第1の表面と第2の表面との間に封止された流体チャンバを作り出すために折り曲げ可能であってよく、封止は、折り曲げの後に、ねじ、ばねクランプ、トグルクランプ、または任意の他の適切な機械的手段(図示せず)により、小さい外部締め付け圧を印加することによって達成されてよい。追加的または代替的に、第1および第2の表面は、加熱、接着剤、または任意の他の適切な封止プロセスによって封止されてもよい。
図40Aは、折り曲げられていない状態の一体品流体装置の例示的実施形態の上面平面図を示し、第1の構造4010と、第2の構造4012のチャネル4022内に設けられたスペーサ支柱4024とを示している。第1の構造4010は、一体品流体装置が折り曲げられた状態にあるとき(図40Eに示される)にカバーの役目を果たしてよく、スペーサ支柱4024は、例えば図4Aを参照したときに図示され、説明されたように矩形アレイなどのアレイとして、または例えば図23Dを参照したときに図示され、説明されたように千鳥型アレイとして配置されてもよい。この場合も、千鳥型アレイとして配置されたスペーサ支柱4024は、決定論的横方向置換(DLD)により粒子分離を行うように構成されてよい。一体品流体装置は、位置合わせ孔4089を設けられてよく、位置合わせ孔4089は、例えば、折り曲げたときの基板部分同士の位置合わせ(例えば第1の構造および第2の構造の相対位置をガイドするのを助ける)や、第1の構造4010と第2の構造4012を共に締め付けまたは封止するための任意の適切な装置内への装置の設置等を支援し得る。例えば、第2の構造4012の位置合わせ孔4089は、クランピングブロック(図示せず)上に置かれてよく、第1の構造4010が第2の構造4012の上に折り曲げられてよい。次いで、クランピングブロックまたは任意の他の適切な装置を使用して、構造同士を締め付け、封止してよい。第1の構造4010および/または第2の構造4012は、第2の構造タブ4012aなどの構造タブが設けられてよく、これは例えば第1および第2の構造の取り扱いを支援し得る。
境界材料(本明細書では「境界材料」または「境界スペーサ」と呼ばれる)が、第1の構造4010および/または第2の構造4012内に設けられてよい。基板が折り曲げられた後、そのような境界材料は、封止されたチャンバの外周の少なくとも一部分を形成してよい。境界材料は、チャネル4022がそのすべての側から封止され得るように第2の構造4012の外周に沿って延在してよいことが理解されるべきである。一部の変形形態では、境界材料は、第1の構造4010および第2の構造4012の両方の中に任意の適切なパターンで設けられてよい。図40Aに示されるチャンバ機構の例示的実施形態では、第1の構造4010には、リング形状の境界材料4021aが設けられ、これは、装置が折り曲げられた状態にあるとき(図40B)に第2の構造4012の境界材料4021bを受け入れ、それを囲んでよい。チャネル4022は、よって、境界材料4021aの中で第1の構造4010の凹部4022a内に置かれてよい。図40Cに示されるチャンバ機構の例示的実施形態では、第1の構造4010には、構造全体にわたって境界材料4021aが設けられてよく、境界材料4021aは、凹部4022aを除き、カバー全体にわたって延在する。第2の構造4012およびチャネル4022の境界材料4021bは、図40Aに示す実施形態のように、装置が閉じられた状態にあるときに凹部4022a内に置かれてよい。図40Cは、折り曲げられた状態にある図40Aの一体品流体装置の断面図を示す。一体品流体装置が完全に折り曲げられた状態にあるとき、流体チャネルは封止され得る。図40Aに示すように、流体チャンバ4022の少なくとも1つの入口(「I」)および少なくとも1つの出口(「O」)は、例えば一体品流体装置の第2の構造4012など、第1および第2の構造の一方からの流体チャンバ4022への流体アクセスを提供してよい。
言い換えると、一部の変形形態では、第1の構造内の境界材料の少なくとも一部分および第2の構造内の境界材料の少なくとも一部分は、チャンバ機構が閉じられた状態にあるときに嵌合して、嵌合した境界材料内に封止されたチャンバを形成するように、相補的に形成されてよい。さらに、図40Aおよび図40Cに示される例示的パターンに加えて、境界材料の異なる部分およびパターンが、チャンバ機構の第1および第2の構造内に設けられてよいことが理解されるべきである。
一部の変形形態では、境界材料のすべてが第1および第2の構造の一方の中に設けられてよい。例えば、図42Aおよび図42Bに描かれるチャンバ機構の側部断面図(それぞれ部分的に閉じられた状態および閉じられた状態を示す)に示すように、境界材料4021bは、第2の構造4012内だけに設けられてよく、一方、第1の構造4010は、上に境界材料が配されていないカバーを形成してよい。図42Bに示すように、第1の構造4010は、装置が閉じられた状態にあるとき、境界材料4021b(およびスペーサ4024)の上部に対して面一となってよい。ここでも、先に説明したように、一体品流体装置が完全に閉じられた状態にあるとき、流体チャンバ4022は封止され得る。
チャンバ機構の具体的な例示的変形形態が上記で図2A~図8Bおよび図40A~図40C、図41、および図42A~図42Bを参照して説明されたが、これらチャンバ機構の様々な特徴部が任意の適切な方式で組み合わせられてよいことが理解されるべきである。
電気的統合チャンバ
一部の変形形態では、チャンバは、電極による電気エネルギーの印加を通じて試料中の2つまたはそれより多くの実体または粒子を統合する(「電気的統合」)ことなどにより、チャンバ内の試料の少なくとも一部分を変化させるように構成されてよい。そのような電気的統合は、下記でさらに詳しく説明されるように、さらなる処理のために目的の特定の粒子を効率的に隔離するために、サイズによって粒子を分別および分離するなどのさらなる処理を可能にし得る。例えば、電気的統合チャンバ機構は、免疫療法治療の開発のための特定の抗体やインスリン等などの所望の物質の高分泌体である細胞(例えばハイブリドーマ、B細胞、チャイニーズハムスター卵巣(CHO)細胞等)などの、目的の細胞を特定し、分別するために使用されてよい。
例えば、図23Aに示すように、試料を処理する方法2300は、複数の粒子を含む調製されたエマルジョンをチャンバ内に受けるステップ2320と、試料中の1つまたは複数の粒子を破棄粒子として特徴付けるステップ2330と、破棄粒子に電気エネルギーを送達することによって破棄粒子の少なくとも一部分を統合させるステップ2340と、粒子に基づいて粒子を分別するステップ2350と、を含んでよい。さらなる処理2360が、特定の目的の粒子に行われてよく、これは例えば、目的の粒子をリザーバ内に収集すること、PODまたは細胞をウェルプレート内にピペット操作または他の方法で配すること、細胞PCR、DNAシーケンシング、ELISA、FACS、および/または他の処理を行うこと等である。
図23Bは、複数の粒子のうちの目的の粒子(例えばPOD)を含む試料の調製の例示的概略図を描いている。具体的には、この例において、試料は、PODを含むエマルジョンを作製するために界面活性剤(例えばフルオロ油)およびビーズまたは他のマーカーと混合された細胞を含み、各PODが自己完結型のベシクルとして機能し得る。例えば、図31に示すように、フルオロ油3120がエマルジョン3130に加えられてよく、エマルジョン3130が電気的統合チャンバ3110内に導入されてよい。油3120は、追加的に、別個に電気的統合チャンバ3110に導入されてもよい。試料は、異なるサイズのPODと共に多分散であってよい。細胞は、1つまたは複数の抗体を分泌し得る。例えば、図23Bに示すように、細胞C1は第1のタイプの抗体(ab1)を分泌し得、細胞C2は第2のタイプの抗体(ab2)を分泌し得、細胞C3およびC4は第3のタイプの抗体(ab3)を分泌し得る。これらの細胞が、目的の抗体タイプ(例えばab3)に特異的な抗原で被覆されたビーズと混合されてよく、それにより、混合された試料中で、ビーズは目的の分泌細胞と結合し、その結果生じる凝集は、目的の細胞の存在および/または目的の細胞の分泌レベルを示すものとなり得る。結果として生じるエマルジョン中で、各PODは、少なくとも1つの細胞(目的の細胞である場合もそうでない場合もある)を含むか、または細胞を欠いていることがあり得る。例えば、POD P1~P3は、それぞれ細胞C1~C3を含み得、一方、他のPOD(Pe)は細胞を欠いていることがあり得る。一部の変形形態では、界面活性剤に対する細胞の比は、細胞を含むPODの比較的薄い濃度を作るように低くてよい。例えば、POD当たりの細胞の平均数(λ)は、約0.9~約1.1個の間、または約0.1個であってよい(例えば、少なくとも1つの細胞を有するPOD1つにつき、細胞のない「空の」PODが約10個ある)。さらに、それら細胞のうち何分の1かのみが目的の細胞であり得(すなわち目的の抗体を分泌する)、それら細胞のうち何分の1かのみが、免疫療法用などのさらなる処理に適した望ましい目的の細胞(すなわち目的の抗体を十分に高い率で分泌する)であり得る。望ましい目的の細胞をエマルジョンから抽出するための例示的システムおよび方法については、下記で図23A~図24Bに関してさらに説明する。図31は、システムの別の例示的変形形態を示す。
PODと組み合わせた電気的統合チャンバ機構の利点の1つは、各PODが低体積のベシクル(例えば平均して約500ピコリットル~1ナノリットルの間の体積)であることであり、このことは低量の抗体(または他の目的の物質)の読出しおよび特定を可能にする。一部の変形形態では、目的の細胞は、電気的統合チャンバ機構で特定および分別するのに適したものになるまで増殖および分泌するのに最大でも数時間しか必要としない可能性がある。例証として、図25A~図25Cは、本明細書に記載されるようなイメージャおよびチャンバシステムによって捕捉された、細胞分泌アッセイにおける時間の経過に伴うハイブリドーマの増殖(IgGクラスタリングを伴う)を描いた画像である。時間t=0に、目に見える凝集物はない(図25A)。この時、図25Aと図26Aとの間の視覚的類似性によって示唆されるように、IgGの濃度は低く、分泌範囲を下回る(IgG濃度0.5ng/ml)。しかし、わずか2時間後の時間t=2時間には、図25Bと図26Bとの間の視覚的類似性によって示唆されるように、ハイブリドーマの増殖が、ハイブリドーマ分泌範囲内のIgGの十分に高い濃度によってすでに反映されている(IgG濃度5μg/ml)。さらに数時間増殖して時間t=6時間になると、本明細書に記載される撮像およびチャンバシステムを使用してさらに容易に検出可能なIgGクラスタリングが生じる。したがって、電気的統合チャンバ機構は、目的の抗体または他の物質を生産するための大幅に高速な方法を提供し得、これは、多くの日数(例えば10~14日)にわたる注意深い培養を必要とし得、その間、細胞が凝集に関連するシグナルを十分に増幅させるためにクローニングされ、増殖されなければならない、従来の生産プロトコールと対照的である。
加えて、試料は、連続した流れとして電気的統合チャンバ機構に導入され得、それにより高いスループットを可能にする。さらに、電気的統合チャンバ機構の出力は、出力される流体体積内での目的の粒子の希釈がより低い。例えば、一部の変形形態では、ウェルプレートの各ウェルは、有用な細胞を含有している数個のウェルと併せて多数の空のウェルを生じさせることが典型的である従来の生産プロトコールと比べて、出力された流体体積から引き出された高分泌細胞を含有していることが分かっている単一のPODを受け取ってよい。
概して、図23Cおよび図31に示すように、試料は、チャンバが試料の流路内に1つまたは複数の電極を含むことを除いて上述のチャンバと同様であるチャンバに導入されてよい。図23Aに関して上記で説明したように、チャンバ内での処理は、PODの特徴付け、統合、および分別を含む多ステッププロセスとして特徴付けられてよい。PODを特徴付けるために、イメージャアレイが、試料中のPODの1つまたは複数の画像を取得し、それらの画像が、PODをそれらの内容物に基づいて特徴付けるために、コンピュータビジョンおよび/または上記のものなどの他のコンピューティング技術を使用して分析されてよい(2330)。例えば、一部のPODは、それらPOD内に存在する凝集の量に基づいて、目的のPOD(例えば目的の抗体を分泌する、および/または目的の抗体を十分に高い率で分泌する細胞を含有している)として特徴付けられてよい。他のPODは、破棄対象のPODとして特徴付けられてよい。
次いで、破棄PODとして特徴付けられたPODが、破棄PODと接触している1つまたは複数の電極から電気エネルギーを送達することによって統合されて、同じく破棄が意図されるより大きなPODを形成してよい(2340)。電極と破棄PODとは、容量的に連結し得、それにより、電極によって印加される電圧の変動が、PODの界面活性剤表面上に機械的な外乱または他の力を生じさせ、それにより表面を破壊し、隣接するPODを破裂させて互いと統合させる。例えば、PODと接触している電極がAC波形で駆動され得、それにより、交互の変調が、POD界面活性剤表面の周期的な機械的圧縮および減圧を生じさせ、それによりPODを破裂させ、統合させる。適切なAC波形は、下記で図24Bに関してさらに詳しく説明されるものを含む。したがって、統合プロセス(2340)は、目的のPODが概してより小さく、破棄が意図されるPODが概してより大きいエマルジョンを生産し得る。
チャンバ内の電極は、チャンバ内の粒子に電気エネルギーを送達するのに適した任意の適切な形状および/または向きを有してよい。例えば、電極は、チャンバの上面と下面との間に延在するなど、試料の流れ方向を横断するように延在するスペーサ支柱2402であってよい(例えば図24~図24Cに示すように)。別の例として、電極は、図28Aおよび図28Bに示すように互いに入り込んだ電極2810であってよく、これは、チャンバの下面および/または上面上にパターン化される。この例において、図28Aは、互いに入り込んだ電極2810を介して電気エネルギーを送達する前のPODを描いており、図28Bは、互いに入り込んだ電極2810を介して電気エネルギーを送達した後に作製された、より大きい、統合されたPOD(P)を含むPODを描いている。
そのような統合に続いて、エマルジョン中のPODが、概してより小さい目的のPODを濾過し、隔離するために、サイズに基づいて分別されてよい(2350)。分別は、任意の適切な分別機構によって達成されてよい。一部の変形形態では、分別機構は、受動的分別機構を含んでよい。例えば、分別機構は、複数のスペーサ(例えば図4Aに示すチャンバ内にあるようなスペーサ支柱424に類似する)を含んでよく、このスペーサは、千鳥型アレイとして配置されてよく、決定論的横方向置換(DLD)により分離を行うように構成されてよい。DLDでは、支柱の千鳥型アレイが、マーブルマシンと同様の働きをして、PODなどの小さい粒子と大きい粒子とを分離し得る。例えば、図23Dに示すように、小さい粒子および大きい粒子を含む試料が、支柱の千鳥型アレイを通って流体の流れの方向に概して移動するとき、大きい粒子(すなわち臨界閾値直径を上回る粒子)は、流体の流れ方向に対して横方向に向けられ得る。そのようなより大きい粒子の受動的流動は、よって、より小さい粒子(例えば第1の出口で)とより大きい粒子(例えば第2の出口で)を別々に収集することを可能にする。このようにして粒子を分別するための臨界閾値直径は、例えば支柱の直径および/または間隔を調節することにより、調整されてよい。したがって、分別機構の一部の変形形態では、チャンバ内のスペーサ支柱は、決定論的横方向置換によって試料中のPODを受動的に分別するように構築および配置されてよい。
別の例として、分別機構は、異なるサイズの粒子の通過を選択的に許す様々なサイズの1つまたは複数の出口を含んでよい。例えば、図23Cの概略図に示すように、チャンバは、所定の閾値粒子サイズを下回る粒子の通過のみを許し、所定の閾値粒子サイズを上回る粒子の通過を拒否するように構成された複数の小さい出口(例えば「選択ポート」における捕捉に通じる1つまたは複数の選択チャネル)を含んでよい。廃棄物貯蔵器に通じる1つまたは複数のより大きい出口(「廃棄ポート」)が、その前の小さい出口で拒否された、より大きい粒子の通過を許すように構成されてよい。よって、図23Cに示すものなどのチャンバ内で、より小さいPODは、より大きいPODと共に破棄されるための大きい出口(複数可)に到達する前に、より小さい出口からチャンバを出る傾向となり得る。別の例として、図30の概略図に示すように、廃棄物貯蔵器(「廃棄」)に通じる1つまたは複数の出口に通じる複数のチャネルが、より大きい粒子の通過を拒否してよく、それらは、より大きい粒子の通過を許容する捕捉貯蔵器(「選択」)に向かうチャネルによってガイドされてよい。したがって、分別機構の一部の変形形態では、漸進的に増大していくチャンバ出口サイズのアレイが、粒子サイズに従った収集を通じて試料中のPODを受動的に分別し得る。図23Cおよび図31に示すように、目的のものでない粒子は、破棄するために収集されてよい(例えば、図23Cに示す「廃棄ポート」にある廃棄物貯蔵器、または図31に示す廃棄物貯蔵器3140)。さらに、一部の変形形態では、流体流(例えばポンプ、弁、チャンバ表面の輪郭形成等の使用を通じて構築される)が、追加的に粒子を小さい方の出口に向けて(例えば主チャネルの側壁の方へ)付勢して、十分に小さい粒子がより小さい出口を通過するのをさらに助長してよい。
別の例として、図23Eに示すように、分別機構は、追加的に、流体力学的濾過を介して粒子分離を行うように構成された複数の分岐チャネルを含んでよい。流体力学的濾過では、小量の流体が、1つまたは複数の横に分岐するチャネルを通して主チャネルから繰り返し引き抜かれ、そのことで主チャネルの側壁に沿って粒子を徐々に集中させ、位置合わせする。集中させ、位置合わせされた粒子は、次いで、上記で説明され図23Cに示されるのと同様の1つまたは複数の選択チャネルを通じて、粒子サイズに従って収集することができる。
追加的または代替的に、分別機構は、能動的分別機構を含んでよい。例えば、チャンバは、上記の参照により組み込まれた米国特許出願第15/986,416号に記載されるものと同様の誘電泳動を可能にするための電界を生成するように構成された1つまたは複数の電極領域を含んでよい。そのような電極領域は、例えば、選択されたPODを捕捉する、移動させる、および/またはPODの分別を能動的に制御するように動作させてよい。
PODを分別し、目的のPODを収集した後、目的のPODがさらに処理されてよい。例えば、より小さい目的のPODは、(例えば下記で説明するように真空または他の態様の流体制御システムを介して)リザーバ内に方向付けられてよく(2360)、そこから個々のPODまたは細胞がピペットまたは他の器具で引き抜かれてよい(2363)。目的のPODは、さらなる処理および/または分析(例えばPCR、シーケンシング等)のためにウェルプレート内に配されてよい。例えば、最大で単一の細胞が各ウェルに配されてよい。プログラム可能ロボットが、自動的に各ウェルを充填し、それにより効率をさらに向上させてよい。
図24A~図24Cは、電気的統合チャンバ機構の例示的変形形態の概略説明図である。図24Aに示すように、試料を処理するためのシステムは、(例えば配管および適切な流体接続を通じて)試料を受け取るための少なくとも1つの入口2410と、試料の少なくとも一部分がチャンバ2400を出られるようにするための2つまたはそれより多くの出口(例えば2420および2422)と、を含むチャンバ2400を含んでよい。入口2410と出口2420、2422との間の流路に沿って、チャンバは、撮像および統合領域2402と、撮像および統合領域2402から下流の分別領域2404とを含んでよい。チャンバ2400は、チャンバの上面と下面との間の間隙距離を支持および/または維持する、それぞれ領域2402および2404全体にわたって分散された複数のスペーサ支柱2432および2434を含んでよい。例えば、断面の積み重ねの概略図である図24Bに示すように、スペーサ支柱2432、2434は、透明ポリイミド表面(約25μmの厚みまたは他の適切な厚みを有する)間の間隔(例えば75μmまたは他の適切な間隙距離)の間に延在して、間隔を支持してよい。チャンバは、一部の変形形態では、ポリイミド表面同士を少なくとも部分的には適切な接着剤でつなぐ積層プレスで形成されてよい。
下記でさらに詳しく説明するように、撮像および統合領域2402内の少なくともスペーサ支柱2402は、選択されたPODを統合するために電気エネルギーを送達する電極として機能してよい。スペーサ支柱2432、2434は、例えば、銅などの導電性材料を含んでよい。少なくとも分別領域内のスペーサ支柱2404は、サイズに従ってPODを分別するように機能してよい。
概して、撮像および統合領域2402は、イメージャアレイが、チャンバに入ったPODまたは他の粒子のシャドウ画像を取得し得るように、1つまたは複数の光源および/またはイメージャアレイ間に位置付けられてよい。1つまたは複数の画像は、図21A~図21Eに関して本明細書で説明されるものなどのコンピューティング技術を使用して分析されてよい。そのような画像の分析に基づいて、目的のものでないPOD(例えば細胞を含まない、またはIgGもしくは他の凝集を欠いている細胞を含む)は、破棄対象のPODとして特徴付けられてよい。そのような破棄PODは、次いで、システム内の1つまたは複数のプロセッサにより、電気的統合向けに指定されてよい。
電気的統合は、電極として機能するスペーサ支柱2402を用いて達成されてよい。図24Cに示すように、電極は、電極の作動を制御するように構成されたコントローラ2450に導電連結されてよい(例えばトレースまたは配線などの導電性接続を通じて)。図24Cは4つの電極それぞれに4つの導電性接続を示しているが、一部の変形形態では、5つ以上のスペーサ支柱2402が電極として機能してよく、各電極が、独自のそれぞれの導電性接続を有してよい(または代替的に、少なくとも何らかの数nの電極が、適切な多重化手法を通じてn個よりも少ない導電性接続によって制御されてもよい)ことが理解されるべきである。
この例では、コントローラ2450は、電極を駆動するための1つまたは複数の適切な波形を生成するように構成された信号生成器2456を含んでよい。一部の変形形態では、信号生成器2456は、AC波形(例えば矩形、三角、正弦波等)を用いて電極を駆動するように構成されてよく、電極の対(例えば隣接する対)の間のPODが、電極と容量的に連結され、交互の極性を有する電気エネルギーを受け取る。そのような電気エネルギーを受け取ると、PODは、周期的な圧縮力を受け、それがPODを破壊し、隣接し合う、影響されたPODを統合してより大きいPOD(複数可)にする。AC波形の固有パラメータは、用途に応じて(例えばPODのサイズ、電極のサイズおよび材料、電極間の間隔等)異なってよいが、概して、駆動波形は、結果として試料の損傷を生じさせる(例えば泡、黒点等を生じさせる)ほど過剰にならずに、統合効果を引き出すのに十分な電圧を有するべきである。例えば、一部の変形形態では、波形は、約0.5V~約10Vの間、約0.5V~約5Vの間、または約2.5Vのピーク間電圧を有してよい。さらに、一部の変形形態では、波形は、約1Hz~1MHzの間、約10Hz~約20kHzの間、または約50Hz~約20kHzの間の周波数を有してよい。PODを統合する1つの事例では、駆動波形のパルスは、約1~20回の間など、任意の適切な回数だけ反復されてよく、パルス幅は、一部の変形形態では、継続時間が約10ms~10sの間で変動してよい。しかし、駆動波形は、任意の適切なパルス幅、サイクル数等を有してよい。
信号生成器2456は、トレース、配線、または他の適切な接続で各電極に導電連結されてよい。それらの導電性接続に沿って、シグナル処理回路2454(例えば増幅器)が、各個々の導電性接続ごとに、またはすべての導電性接続に対してまとめて、駆動信号を増幅するか、またはその他の方法で適宜変更してよい。さらに、各導電性接続に対するスイッチを含むスイッチアレイ2452が、各スイッチの対応する電極の作動を選択的にオン/オフするように制御されてよい。したがって、コントローラ2450は、スペーサ支柱2402(電極として機能する)の少なくとも一部から、統合のために特定され(例えば目的のものでないPOD)、スペーサ支柱2402と接触しているかまたは容量的に連結されているPODを電気的統合するために、適切な電気エネルギーを送達させてよい。
上記で説明したように、試料がチャンバの撮像および統合領域2402を通過した後、より大きいPODは、概して目的のものでないPOD(例えば高分泌細胞を含まない)であり、一方、より小さいPODは目的のものであり、保持することが望ましい。したがって、チャンバの分別領域2404は、より小さいPODをより大きいPODから収集のために分離するように機能する。図24~図24Cに描かれる変形形態に示されるように、分別領域2404は、千鳥型アレイとして配置されたスペーサ支柱2434を含んでよく、それらは、より大きいPODを出口2422に向けて横方向に(左右の流れ方向に対して)受動的に分別するように構成されてよい。より小さいPODは、同時に出口2420に向けて受動的に分別され得る。しかし、他の変形形態では、電気的統合チャンバは、追加的または代替的に、任意の適切な受動的および/または能動的粒子分別機構を含んでよいことが理解されるべきである。
したがって、撮像および統合領域2402および分別領域2404を越えて試料を誘導することにより、電気的統合チャンバ機構2400は、目的のPODの濃縮された出力(出口2422において収集可能)と、別個の目的のものでないPODの廃棄物出力(出口2420において収集可能)とを提供し得、これは目的のPODの希釈を回避する。さらに、チャンバ2400を通る連続的な試料の流れは、高スループットのPODを可能にし、それにより、非常に効率的な試料の処理にさらに寄与し、これは本明細書に記載される電気的統合システムおよび方法の実行可能性を示唆する。
流体制御システム
図1Aの概略図および図1Bの例示的変形形態を示す図に示されるように、システム100は、圧力差を用いてPODを操作するように構成された流体制御システムを含んでよい。流体圧力差は、1つまたは複数のPODを、チャンバ入口122を通ってチャンバに入るようにさせ、1つまたは複数のPODを、チャンバを横切るようにさせ、および/または1つまたは複数のPODを、チャンバ出口124を通ってチャンバから出るようにさせ得る。例えば、システム100は、チャンバ入口122に流体連結された(または他の方法でそれに関連付けられた)少なくとも1つの陽圧ポンプ110、および/またはチャンバ出口124に流体連結された(または他の方法でそれに関連付けられた)少なくとも1つの陰圧ポンプ150を含んでよい。ポンプ110および/または150は、エマルジョン(例えばPODを含む)を、リザーバ116(例えばタンク、エッペンドルフ管、他の適切な容器等)から、配管および少なくとも1つのチャンバ入口122を介してチャンバ120内に引き込むように構成されてよい。ポンプ110および/または150は、追加的または代替的に、エマルジョンの少なくとも一部分を、少なくとも1つのチャンバ出口124を通じてチャンバ120から引き出すように構成されてもよい。一部の変形形態では、廃棄物容器156が、チャンバ120を出たエマルジョンを受け取って保持するためにチャンバ出口124とポンプ150との間にインラインに連結されてよい。図1の概略図は、1つのチャンバ入口112に関連付けられた1つのポンプ110およびチャンバ出口124に関連付けられた1つのポンプ150を示しているが、他の変形形態では、システムは、任意の適切な数のチャンバ入口、チャンバ出口、およびポンプを含んでよいことが理解されるべきである。さらに、一部の変形形態では、チャンバ120は、他の流体制御システムと一体化するために着脱可能であってよい。チャンバ120は、使い捨ての構成要素であってよく、一方、流体制御システムの残りは、再使用可能および/または殺菌可能であってよい。
加えて、アッセイシステム100は、アッセイシステム100内のさらなる流体制御を可能にし得る1つまたは複数の弁を含んでよい。例えば、弁112は、1つまたは複数のチャンバ入口への流体流とインラインに位置してよく、チャンバ120に入る試料流れを規制するように制御されてよい。追加的または代替的に、弁152は、1つまたは複数のチャンバ出口からの流体流とインラインに位置してよく、チャンバ120から出る試料流れを規制するように制御されてよい。さらに、アッセイシステム100は、流体システムの圧力および/または他のパラメータを監視するように構成された1つまたは複数の圧力センサ114、154(または流量センサまたは任意の適切なセンサ)を含んでよい。
一部の変形形態では、上記のポンプ、弁、および/またはセンサを含む流体制御システムの構成要素は、1つまたは複数のコントローラによって制御されることが可能である。例えば、電子システム160は、圧力センサからのセンサ入力に少なくとも部分的に基づいて1つまたは複数のポンプおよび/または弁を動作させて、チャンバ120に入る所望の流量を維持するための任意の適切な制御システムを実装するように構成された1つまたは複数のコントローラを含んでよい。さらに、制御システムは、上記の参照により組み込まれた米国特許出願第15/986,416号にさらに記載されるように、チャンバ内での試料の分別を容易にするべく、これらの構成要素を動作させることができる。
電子システム
図1に示すように、システム100は、電子システム160を含んでよい。電子システム160は、例えば、本明細書にさらに記載されるように、アッセイシステム100の他の構成要素を制御する、および/または他の構成要素から信号を受信するように構成された1つまたは複数のプロセッサ等を備えるPCBAを含んでよい。一部の変形形態では、電子システム160は、1つまたは複数のリモートプロセッサ180による分析のためにネットワーク170にデータ(例えば画像データ)を通信するように構成された1つまたは複数の通信構成要素(例えばBluetooth(登録商標)、WiFi等)をさらに含んでよい。例えば、ネットワーク170は、1つまたは複数のコンピューティング装置との任意の適切な有線または無線接続を含んでよい。追加的または代替的に、少なくともデータの一部は、電子システム160内に位置する1つまたは複数のプロセッサによって分析されてよい。
概して、コンピューティング装置は、プロセッサ(例えばCPU)と、メモリ(1つまたは複数のコンピュータ可読記憶媒体を含むことができる)とを含むコントローラを含んでよい。プロセッサは、メモリおよびユーザ入力から受け取られたデータを組み込んでよい。メモリは、プロセッサに、本明細書に記載される方法に関連するモジュール、プロセス、および/または機能を実行させるストア命令を含んでよい。一部の変形形態では、メモリおよびプロセッサは単一のチップ上に実装されてよく、他の変形形態では、別々のチップ上に実装されることが可能である。
プロセッサは、命令またはコードのセットを走らせる、および/または実行するように構成された任意の適切な処理装置であってよく、1つまたは複数のデータプロセッサ、画像プロセッサ、グラフィック処理ユニット、物理処理ユニット、デジタルシグナルプロセッサ、および/または中央演算処理装置を含んでよい。プロセッサは、例えば、汎用プロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、特定用途集積回路(ASIC)、および/または類似のものであってよい。プロセッサは、アプリケーションプロセスおよび/もしくは他のモジュール、プロセス、ならびに/または本システムおよび/またはそれに関連付けられたネットワークに関連するプロセスおよび/もしくは機能を走らせる、および/または実行するように構成されてよい。基礎となる装置技術は、各種の構成要素タイプ(例えば相補金属酸化物半導体(CMOS)のようなMOSFET技術、エミッタ結合論理(ECL)のようなバイポーラ技術、ポリマー技術(例えば、シリコンと共役したポリマーおよび金属と共役したポリマー-金属構造)、アナログとデジタルの混合、および/または類似のもので提供されてよい。
1つまたは複数のプロセッサは、例えば、適切な画像処理技術および/またはコンピュータビジョン技術を使用して、画像(例えば本明細書に記載されるように獲得されるシャドウ画像)を分析して、撮像された試料を査定するように構成されたコンピュータビジョンシステムを提供してよい。例えば、図21A~図21Eを参照すると、一部の変形形態では、1つまたは複数のプロセッサは、元の(未処理の)シャドウ画像(図21A)を処理して、(例えばフィルタプロセスを通じて)ノイズを低減し、背景内容物を除去してよい(図21B)(例えば、空のときの、もしくは同じもしくは類似する照明条件下の試料がないときのチャンバの対照画像を通じて、またはソフトウェアアルゴリズムを用いて取得される)。試料画像を背景画像から減算して、減算画像(図21C)を取得してよい。減算後、元の画像に暗い物体があれば、それが減算画像内でより明るく見え得る。減算画像を画素強度で閾値処理して、1つまたは複数のPODの2値の白黒画像(図21D)を取得してよい。例えば、POD内に物体があれば、それが2値画像内で白く見え得、他の領域は黒く見え得る(またはその逆)。最後に、適切なコンピュータビジョン技術(例えば輪郭検索アルゴリズム)を適用して、物体(例えばPOD、細胞または粒子などのPOD内容物)の境界を見つけ、それにより物体の特定を可能にしてよい。一部の変形形態では、そのような輪郭検索アルゴリズムは、1つまたは複数の訓練済みの機械学習モデルを組み込んでよい。適切なコンピュータビジョン技術に基づくPODおよび/またはPOD内容物の1つまたは複数の特性が、処理後の画像内で特定され得る(例えば図21E内でハイライトされるように)。例えば、面積、粒子サイズ、粒子形状、グレースケール(例えば強度)、移動率、POD内での流れ、それらの比および/もしくは動的変化、ならびに/またはそれらの任意の組合せなどの、多くの特質が分析されてよい。
一部の変形形態では、メモリは、データベースを含んでよく、例えば、ランダムアクセスメモリ(RAM)、メモリバッファ、ハードドライブ、消去可能プログラム可能読出し専用メモリ(EPROM)、電気的に消去可能な読出し専用メモリ(EEPROM)、読出し専用メモリ(ROM)、フラッシュメモリ等であってよい。メモリは、プロセッサに、モジュール、プロセス、および/または測定データ処理、測定装置制御、通信、および/または装置設定などの機能を実行させる命令を記憶してよい。本明細書に記載される一部の変形形態は、様々なコンピュータ実装動作を行うための命令またはコンピュータコードを有する非一時的なコンピュータ可読媒体(非一時的なプロセッサ可読媒体とも呼ばれることがある)を備えたコンピュータストレージ製品に関する。コンピュータ可読媒体(またはプロセッサ可読媒体)は、一時的な伝搬シグナルそのもの(例えば空間やケーブルなどの伝送媒体上で情報を搬送する伝搬電磁波)を含まないという意味で非一時的である。媒体およびコンピュータコード(コードまたはアルゴリズムと呼ばれることもある)は、1つまたは複数の特定の目的のために設計され、構築されたものであってよい。
非一時的なコンピュータ可読媒体の例は、これらに限定されないが、ハードディスク、フロッピー(登録商標)ディスク、および磁気テープなどの磁気記憶媒体、コンパクトディスク/デジタルビデオディスク(CD/DVD)、コンパクトディスク読出し専用メモリ(CDROM)、およびホログラフィック装置などの光学記憶媒体、光ディスクなどの光磁気記憶媒体、固体状態ドライブ(SSD)および固体状態ハイブリッドドライブ(SSHD)などの固体状態記憶装置、搬送波シグナル処理モジュール、ならびに特定用途集積回路(ASIC)、プログラム可能論理装置(PLD)、読出し専用メモリ(ROM)、およびランダムアクセスメモリ(RAM)装置などの、プログラムコードを記憶し、実行するように特別に構成されたハードウェア装置を含む。本明細書に記載される他の変形形態は、コンピュータプログラム製品に関し、これは、例えば、本明細書に開示される命令および/またはコンピュータコードを含んでよい。
本明細書に記載されるシステム、装置、および/または方法は、ソフトウェア(ハードウェア上で実行される)、ハードウェア、またはそれらの組合せによって行われてよい。ハードウェアモジュールは、例えば、汎用プロセッサ(またはマイクロプロセッサもしくはマイクロコントローラ)、フィールドプログラマブルゲートアレイ(FPGA)、および/または特定用途集積回路(ASIC)を含んでよい。ソフトウェアモジュール(ハードウェア上で実行される)は、C、C++、Java(登録商標)、Python、Ruby、Visual Basic(登録商標)、および/または他のオブジェクト指向、手続き型、もしくは他のプログラミング言語および開発ツールを含む、各種のソフトウェア言語(例えばコンピュータコード)で表されてよい。コンピュータコードの例は、これらに限定されないが、マイクロコードまたはマイクロ命令、コンパイラによって作られるような機械命令、ウェブサービスを作るために使用されるコード、およびインタープリタを使用してコンピュータによって実行される高水準命令を含んでいるファイルを含む。コンピュータコードの追加的な例は、これらに限定されないが、制御信号、暗号化されたコード、および圧縮されたコードを含む。
一部の変形形態では、コンピューティング装置が、患者および/または他のユーザがコンピューティング装置を制御するのを許すように構成された通信インターフェースをさらに含んでよい。通信インターフェースは、コンピューティング装置を有線または無線接続によって別のシステム(例えばインターネット、リモートサーバ、データベース)に接続するように構成されたネットワークインターフェースを含んでよい。一部の変形形態では、コンピューティング装置は、1つまたは複数の有線または無線ネットワークを介して他の装置と通信してよい。一部の変形形態では、通信インターフェースは、1つまたは複数の装置および/またはネットワークと通信するように構成された、無線周波受信器、送信器、ならびに/または光学(例えば赤外線)受信器および送信器を含んでよい。
ワイヤレス通信は、複数の通信規格、プロトコール、および技術の任意のものを使用してよく、それらには、これらに限定されないが、モバイル通信のためのグローバルシステム(GSM)、Enhanced Data GSM Environment(EDGE)、高速ダウンリンクパケットアクセス(HSDPA)、高速アップリンクパケットアクセス(HSUPA)、Evolution,Data-Only(EV-DO)、HSPA、HSPA+、Dual-Cell HSPA(DC-HSPDA)、ロングタームエボリューション(LTE)、近距離通信(NFC)、広帯域符号分割多重接続(W-CDMA)、符号分割多重接続(CDMA)、時分割多重接続(TDMA)、Bluetooth(登録商標)、Wireless Fidelity(WiFi)(例えばIEEE 802.11a、IEEE 802.11b、IEEE 802.11g、IEEE 802.11n等)、ボイスオーバーインターネットプロトコール(VoIP)、Wi-MAX、電子メール用のプロトコール(例えばインターネットメッセージアクセスプロトコール(IMAP)および/またはポストオフィスプロトコール(POP))、インスタントメッセージング(例えば拡張可能メッセージングおよびプレゼンスプロトコール(XMPP)、インスタントメッセージングのためのセッション開始プロトコールおよび存在を活用した拡張(SIMPLE)、インスタントメッセージングおよびプレゼンスサービス(IMPS))、および/またはショートメッセージサービス(SMS)、または任意の他の適切な通信プロトコールが含まれる。一部の変形形態では、本明細書における装置は、ネットワークを通じてデータを送信することなく、互いと直接通信してもよい(例えばNFC、Bluetooth(登録商標)、WiFi、RFID等を通じて)。
クラスタリングアッセイ
上述したように、本明細書に記載されるものなどのシステムおよび方法は、例えば、細胞試料の処理のために使用されてよい。例えば特定の標的に対する抗体の高分泌体または生産体である細胞を特定するために、クラスタリングアッセイが使用されることがある。細胞の集団中で、集団中のある特定の細胞は、集団のその他の細胞と比べて、目的のタンパク質などの目的の標的の高分泌体であることがある。クラスタリングアッセイのためのシステムおよび方法の例示的変形形態が下記でさらに詳しく説明される。
「1ビーズ」アッセイ
1ビーズシステムを使用したクラスタリングアッセイ(「1ビーズアッセイ」または「1ビーズクラスタリングアッセイ」)は、細胞の集団の中で高分泌細胞を特定するために使用され得る。「1ビーズアッセイ」は下記で主として1つまたは複数のビーズをマーカー粒子として含むものとして説明されるが、他の粒子が使用されてよい(例えば下記でさらに詳しく説明されるように細胞)ことが理解されるべきである。1ビーズクラスタリングアッセイは、POD内にカプセル化された分泌細胞を標的タンパク質(またはペプチド等)の高分泌体として特定するために使用され得る。例えば、このアッセイは、ある細胞の目的の抗体の分泌レベルを示すシグナルを提供する第1のタイプの1つまたは複数の粒子を利用してよい。
図32Aは、1ビーズアッセイを使用するときにPOD3218などの試料実体の内部で発生し得る結合相互作用の概略図を描いている。POD328は、細胞3217によって分泌される第2の結合相手に特異的であり得る結合相手を伴う1つまたは複数の粒子を含んでよい。図32Bは、図32Aの領域3220の詳細な拡大図を描いており、単一の粒子3211aを示している。例として示されるように、1ビーズクラスタリングアッセイは、POD3218の中にカプセル化された抗体分泌細胞3217を、目的の抗体3213の高分泌体として特定するために使用されてよい。1ビーズクラスタリングアッセイは、カプセル化試薬と、水溶性媒体中に懸濁した第1の複数の粒子とを利用してよい。カプセル化試薬は、約1.0よりも大きい密度を備えてよく、これは、例えば、水溶性媒体を含むPODなどの個別の試料実体を形成するのを助け得る。第1の複数の粒子の各粒子は、目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含み得る。
この場合も、先に図23Bを参照したときに説明したように、1ビーズアッセイで使用するための試料は、試料実体を含むエマルジョンを作製するためにフルオロ油などの界面活性剤およびビーズまたは他のマーカーと混合された細胞を含んでよく、各試料実体は、自己完結型のベシクルとして機能し得る。カプセル化試薬は、界面活性剤を含んでよく、これは、試料の一部分を試料実体内にカプセル化することを少なくとも部分的に可能にし得る。カプセル化試薬が界面活性剤を含む配合の例が表1~表3に示される。PODは、分析に使用される試料中で多分散であってよい。第1の複数の粒子の粒子は、例として図32Bに示されるように、ポリクローナル抗体3212aがその表面に連結した、抗体と連結したビーズ3211aなどのビーズであってよい。第1の複数の粒子の粒子は、細胞上に発現した抗原または任意の他の適切なマーカーが、目的の細胞によって分泌される抗体と結合し得るように、細胞であってよい。細胞上のマーカーもしくは抗原またはビーズ上のポリクローナル抗体3212aは、よって、第2の結合相手に特異的である第1の結合相手として働き得、第2の結合相手は、細胞3217によって分泌される抗体3213の結合ドメインまたは任意の適切な成分3213aであってよい。一部の変形形態では、第1の結合相手は第1のタンパク質を含んでよく、第2の結合相手は第2のタンパク質を含んでよい。一部の変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。一部の変形形態では、第1の結合相手は第1のペプチドを含んでよく、第2の結合相手は第2のペプチドを含んでよい。
第1の結合相手3212aと第2の結合相手3213aとが結合したとき、結合の部位は、クラスタ部位、または図32Bに示されるように第1のクラスタ部位3214aと呼ばれ得る。第1の結合相手と第2の結合相手との結合によって形成されるこのようなクラスタ部位が、本明細書に記載されるものなどのシステムおよび方法によって検出され得る。さらに、一部の変形形態では、ある特定の細胞が、抗体3213の高分泌体であることによって目的の細胞であるとして選択されてよく、高分泌細胞同士がより大きいクラスタを生成してよい。第1の結合相手3212aおよび第2の結合相手3213aによって形成されたクラスタは、例えば上記のようにレンズレスイメージャシステムによって観察可能であり得、よって高分泌細胞の選択を可能にし得る。高分泌細胞は、本明細書に記載される撮像方法のいずれかを使用して測定または検出されてもよい。
よって、クラスタリングアッセイは、目的の細胞(例えば、十分に高い量の目的の物質を分泌する細胞)を含むPODの特定を可能にし得る。例えば、ある細胞からより多量の目的の抗体が分泌されることは、図32Bの3213aによって示される第1のクラスタ部位のような、より大きい量のクラスタ部位が形成されることから、より大きいクラスタにつながり得る。ビーズ3211aに連結したポリクローナル抗体3212aと、当該細胞によって分泌される抗体3213の結合領域3213aとの間の相互作用の量が大きいほど、よって、より多数のクラスタが形成される結果となり得、それは次いで1つまたは複数の大きいクラスタとして検出可能であり得る。形成されたクラスタは、次いで、視覚的に検出されるか、または本明細書に記載される撮像方法のいずれかによって測定可能であり得、そのクラスタが検出されたPODが、目的の細胞を含有しているPODであるというシグナルとして解釈され得る。
一般に、より大きいクラスタは、目的の抗体をより多く分泌する細胞を有するPODを生じさせる結果となる。それらのクラスタのサイズがより大きければ、例えば4Xの顕微鏡対物レンズを使用してクラスタを視覚化することが可能であり得る。別の例として、クラスタは、上記で図2A、図9、図10、および図14A~図14Cを参照して説明されたシステムによって撮影されたもののようなシャドウ画像中で観察されてもよい。検出可能または測定可能なシグナルを生成するのに十分な量の目的の抗体を分泌または生産する細胞の例が、図32Aの第1のPOD3218aに示される。
一部の変形形態では、1つまたは複数のクラスタ部位を含むPODに、粒子サイズスコア(PSS)が割り当てられてよい。例えば、PSSは、下記の実施例で説明するようにしてPODに対して決定され、PODに割り当てられてよい。例えば、より高いPSSをもつPODは、目的の細胞(例えば高分泌細胞)を含むものとして特定されてよく、細胞の集団から目的の細胞を分離するために分別されてよい(例えば上記で説明したように電気的統合および分別プロセス等を通じて)。分別された細胞の少なくとも一部は、ELISA、FACS、DNAシーケンシング、PCR、他の適切な分析等のさらなる処理を受けてよい。一部の変形形態では、目的の細胞は、そのようなさらなる処理のためにPOD3218から取り出されてよい。
クラスタリングアッセイは、目的の細胞を含まないPOD(例えば目的の物質を全く分泌しないか、または低量分泌する)の特定も可能にする。例えば、POD中の細胞が目的の抗体を分泌していない場合は、ビーズ3211aに連結したポリクローナル抗体3212aと目的の抗体との間に相互作用が発生しないために、クラスタが形成されない場合がある。また、POD中の細胞が低量の目的の抗体を分泌している場合は、分泌された抗体と、ビーズ3211aに連結したポリクローナル抗体3212aとの間に相互作用が発生し得るが、結合相互作用の量または数が、検出可能または測定可能なシグナルを生成するには低過ぎる場合がある。一部の変形形態では、「低い」シグナルは、約0.5nLの平均体積を有するPODを含む試料の場合、約3時間にわたって目的の抗体の分泌量が約1pg未満であることを示し得る。例えば、低分泌細胞を含むPOD内の形成された任意のクラスタは、閾値サイズを下回り得、および/または、4Xの顕微鏡対物レンズを使用して、もしくは上記で図2A、図9、図10、および図14A~14Cを参照して説明されたものなどのシャドウ画像内で視覚化されるには小さ過ぎる場合がある。検出可能または測定可能なシグナルを生成するのに不十分な量の目的の抗体を分泌または生産している細胞の例が、図32Aの第2のPOD3218bに示される。
図32Bの3212aによって示されるように第1の結合相手として働き得る結合相手の例は、IgA、IgD、IgE、IgG、およびIgMなどの1つまたは複数の抗体のクラスのうちのポリクローナル抗体を含んでよい。
1ビーズアッセイを使用するために選択され得る目的の細胞の例は、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞等のうちの任意の1つまたは複数を含んでよい。
1ビーズアッセイを使用するために選択され得る目的の抗体の例は、IgA、IgD、IgE、IgE、およびIgM等の1つまたは複数の抗体のクラスのうちの抗体を含んでよい。
目的のタンパク質およびペプチドの例は、インスリン、NT-pro-BNP、Pro-GRP、β-CTX、PINP、膵臓ポリペプチド、オステオカルシン、β-ミクログロブリン、カルシトニン、シスタチンC、C-ペプチド、VIP、ANF、NTX、β-アミロイド(1-42)、PSA、K-RAS、CA125、CA 15-3、MUC-1、HER-2/neu、エストロゲン受容体、プロゲステロン受容体等の、任意の適切な標準的バイオマーカーを含む。
「2ビーズ」アッセイ
一部の変形形態では、目的の標的(ここでも目的のタンパク質など)の高分泌体であるだけでなく、目的の標的が相手抗原に結合する高い親和性および/または特異性を示す細胞を、特定し、収集することも役に立ち得る。2ビーズシステムを使用したクラスタリングアッセイ(「2ビーズアッセイ」または「2ビーズクラスタリングアッセイ」)は、標的細胞からの抗体分泌のレベル、ならびに分泌される抗体の抗原結合親和性を査定するために使用され得る。よって、2ビーズアッセイは、高い量の目的の抗体を分泌する目的の細胞を選択するために使用され得、その場合、分泌される抗体は、高い抗原結合親和性も示す。例えば、アッセイは、ある細胞の目的の抗体の分泌レベルを示すシグナルを提供する第1のタイプの1つまたは複数の粒子と、任意のそのような分泌される抗体についての抗原結合親和性のレベルを示すシグナルを提供する第2のタイプの1つまたは複数の粒子とを利用してよい。「2ビーズアッセイ」は、下記では主として1つまたは複数のビーズをマーカー粒子として含むものとして説明されるが、他の粒子が使用されてよい(例えば下記でさらに詳しく説明されるように細胞)ことが理解されるべきである。
上記で説明した1ビーズアッセイと同様に、2ビーズアッセイは試料の分析に使用され得、試料は、試料実体を含むエマルジョンを作製するためにフルオロ油などの界面活性剤およびビーズまたは他のマーカーと混合された細胞を含んでよく、各試料実体は、自己完結型のベシクルとして機能し得る。2ビーズアッセイは、カプセル化試薬と、水溶性媒体中に懸濁した第1の複数の粒子および同じく水溶性媒体中に懸濁した第2の複数の粒子とを利用してもよい。カプセル化試薬は、約1.0よりも大きい密度を備えてよい。カプセル化試薬は、試料実体内への試料の一部分のカプセル化を少なくとも部分的に可能にし得る界面活性剤を含んでよい。試料実体はPODであってよい。
上記で説明した1ビーズアッセイと同じように、第1の複数の粒子の各粒子は、目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含んでよい。しかし、2ビーズアッセイは第2の複数の粒子も利用してよく、第2の複数の粒子の各粒子は、目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む。
図33Aは、2ビーズアッセイを使用するときにPOD3318の内部で発生し得る結合相互作用の概略図を描いている。例として示されるのは、本明細書でさらに詳しく説明されるように、POD3318a、3318b、および3318dである。POD3318aは、目的の抗体3313の高分泌体である目的の細胞として細胞3317が特定されたために検出可能または測定可能なシグナルが生成される例であり、抗体3313は高い抗原結合親和性を有する。POD3318bは、細胞3317が目的の抗体の低生産体であるために、検出可能または測定可能なシグナルが生成されない例である。POD3318dは、細胞3317が目的の抗体の高分泌体であるが、抗体3313が低い抗原結合親和性を有するために、検出可能または測定可能なシグナルが生成されない例である。
図33Bは、図33AのPOD3318aの詳細な拡大図を描いており、図33Cは、図33A~図33BのPOD3318a内での結合相互作用の詳細な拡大図を示している。
2ビーズアッセイでは、第1の複数の粒子の粒子は、抗原3312bがその表面に連結した、抗原に連結したビーズ3311bなどのビーズであってよい。抗原3312bは、よって、第2の結合相手に特異的である第1の結合相手として働き得、第2の結合相手は、細胞3317によって分泌される抗体3313の結合ドメインまたは任意の適切な第1の成分3313aであり得る。第1の成分3313aは、抗原結合ドメインであってよい。第2の複数の粒子の粒子も、抗体がその表面に連結した、抗体に連結したビーズ3315bなどのビーズであってよい。抗体3316は、モノクローナル抗体であってよく、第4の結合相手に特異的である第3の結合相手として働き得、第4の結合相手は、細胞3317によって分泌される抗体3313の結合ドメインまたは任意の適切な成分3313bであり得る。図33Cに詳しく示されるように、抗体3313が、第1の複数の粒子3311bを構成するビーズに連結した抗原3312bに対して高い抗原結合親和性を示す場合、結合相互作用が発生し得る。抗原(第1の結合相手として働く)3312bと、抗体の結合ドメイン(第2の結合相手として働く)3313aとが結合したとき、その結合の部位は、クラスタ部位、または第1のクラスタ部位3314aと呼ばれ得る。高い量の目的の抗体3313が細胞3317によって分泌されると、抗体3313と抗原3312bとの間の相互作用によってより大きいサイズのクラスタを形成させ得る。
加えて、抗体3313の第2の結合ドメイン3313bは、第2の複数の粒子3315bを構成するビーズに連結したモノクローナル抗体3316に結合し得る。第2のクラスタ部位3314bが、抗体3316の結合ドメイン(第3の結合相手として働く)とモノクローナル抗体(第4の結合相手として働く)3313bとの結合により形成され得る。
したがって、2ビーズクラスタリングアッセイは、目的の細胞(例えば目的の物質の高分泌体であると共に、別の目的の物質に対して高い一定レベルの結合親和性を有する細胞)を含むPODの特定を可能にし得る。高レベルの目的の抗体を分泌し、分泌される目的の抗体が高い抗原結合親和性を有する細胞を有するPODは、結果として大きいクラスタを生じさせ得る。第1のクラスタ部位と第2のクラスタ部位の両方が、図33Aに例として示されるPOD3318aなどのPOD全体にわたって存在するときに、大きいクラスタが形成され得る。
また、2ビーズクラスタリングアッセイは、目的の細胞を含まないPOD(例えば目的の物質を全く分泌しないか、もしくは低量分泌する細胞、および/または目的の物質を分泌するが、分泌される目的の物質が、別の目的の物質に対する低い結合親和性を有する細胞)の特定も可能にする。図33Aに示すPOD3318bのような、目的の抗体を分泌しない細胞、または低量の目的の抗体を分泌する細胞を有するPODは、閾値サイズを下回るクラスタを生じさせる、および/または測定可能もしくは検出可能なクラスタリングを生じさせない可能性がある。さらに、図33Aに示すPOD3318dのような、目的の抗体の高分泌体であるが、目的の抗体が低い抗原結合親和性を有する細胞を含有するPODも、閾値サイズを下回るクラスタを生じさせる、および/または測定可能もしくは検出可能なクラスタリングを生じさせない可能性がある。2ビーズアッセイを使用して試料を分析する場合、モノクローナル抗体に連結したビーズのみに抗体が結合することによって形成されるクラスタは、結果として、閾値サイズを下回る(例えば本明細書に記載されるものなどの粒子サイズスコアによって測定される)、または検出可能となるには小さ過ぎるクラスタを生じさせ得る。2ビーズアッセイは、例示的なPOD3318aでのように、数個の結合相互作用を共にグループ化することによって生じる増幅されたシグナルを可能にし、その場合、目的の抗体は、抗原3312bに対するその高い親和性により数個のビーズを共にグループ化することができる。よって、2ビーズアッセイは、目的の抗体の高分泌体であり、高い抗原結合親和性および/または特異性を有する細胞を検出するための有用なツールとなり得る。
一部の変形形態では、第1の結合相手は第1のタンパク質を含んでよく、第2の結合相手は第2のタンパク質を含んでよい。一部の変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。一部の変形形態では、第1の結合相手は第1のペプチドを含んでよく、第2の結合相手は第2のペプチドを含んでよい。さらに、下記でさらに詳しく説明されるように、一部の変形形態では、第1の複数の粒子および/または第2の複数の粒子の粒子は、1つまたは複数の抗原または抗体を含む細胞などの細胞であってよい。
ある特定の細胞は、抗体3313の高分泌体であることによって目的の細胞であるとして選択されてよく、その場合、抗体3313は、高い抗原結合親和性および/または特異性を有し、よって、本明細書に記載される撮像方法を使用して検出可能なシグナルの生成によって選択されてよい。シグナルの検出または測定は、モノクローナル抗体3316の特異的検出によって行われてよい。クラスタ部位は、本明細書に記載されるコンピュータビジョンシステムおよび方法によって検出または測定されてもよい。
一部の変形形態では、1つまたは複数のクラスタ部位を含むPODに、粒子サイズスコア(PSS)が割り当てられてよい。例えば、PSSは、下記の実施例で説明するようにしてPODに対して決定され、PODに割り当てられてよい。例えば、より高いPSSをもつPODは、目的の細胞(例えば高分泌細胞)を含むものとして特定されてよく、細胞の集団から目的の細胞を分離するために分別されてよい(例えば上記で説明したように電気的統合および分別プロセス等を通じて)。分別された細胞および/またはそれらの内部の内容物の少なくとも一部は、ELISA、FACS、DNAシーケンシング、PCR、他の適切な分析等のさらなる処理を受けてよい。一部の変形形態では、目的の細胞は、そのようなさらなる処理のためにPOD3318から取り出されてよい。
第1の結合相手として働き得る結合相手の例は、図33Cの3312bによって示すように抗原を含んでよい。
2ビーズアッセイを使用するために選択され得る目的の細胞の例は、チャイニーズハムスター卵巣(CHO)細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞等を含んでよい。
2ビーズアッセイを使用するために選択され得る目的の抗体の例は、IgA、IgD、IgE、IgE、およびIgM等の1つまたは複数の抗体のクラスのうちの抗体を含んでよい。
2ビーズアッセイを使用するために選択され得る目的のタンパク質およびペプチドの例は、インスリン、NT-pro-BNP、Pro-GRP、β-CTX、PINP、膵臓ポリペプチド、オステオカルシン、β-ミクログロブリン、カルシトニン、シスタチンC、C-ペプチド、VIP、ANF、NTX、β-アミロイド(1-42)、PSA、K-RAS、CA125、CA 15-3、MUC-1、HER-2/neu、エストロゲン受容体、プロゲステロン受容体等を含んでよい。
クラスタリングアッセイ用の試料の調製
図34Aおよび図34Bは、クラスタリングアッセイ用の試料を調製する方法の例示的変形形態を描いている。例えば、図34Aは、1ビーズクラスタリングアッセイシステム用の試料を調製する例示的方法を示すフローチャートを描いている。方法は、1ビーズアッセイで使用するための第1の複数の粒子を調製するステップ(3428a)を含んでよく、これは、ビーズをポリクローナル抗体と連結させ、ビーズを所望の作業濃度に正規化することを含んでよい。方法は、少なくとも1つの目的の細胞を含み得る細胞の集団を提供するステップも含んでよい(3421)。細胞の集団は、媒体中で洗浄し、所望の細胞濃度に希釈して細胞希釈液を作製することによって調製され得る。次に、方法は、ボルテックス器、スターラ(例えば磁気スターラ)、繰り返されるピペット操作、攪拌等などで、細胞の集団、第1の複数の粒子、およびカプセル化試薬を組み合わせて混合物を作製するステップ(3422)を含んでよい。第1の複数の粒子の各粒子は、上記でさらに説明したように、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含んでよい。方法は、混合物を攪拌してエマルジョンを作製し、それにより細胞の集団を試料実体内にカプセル化するステップ(3423)を含んでよい。試料実体は、多分散であってよい(例えば図32Bに例として示されるPOD3218cなどのPOD)。方法は、エマルジョンを培養するステップを含んでよい(3427)。エマルジョンの培養は、例えば、目的の細胞が、マーカー粒子(例えば第1の複数の粒子)と相互作用し得る目的の物質を(存在する場合)分泌するのに十分な時間を与え得る。培養されると、試料実体内にカプセル化された細胞が、視覚化、査定、統合、および/または分別等のために、上記で詳しく説明されたように試料実体を処理チャンバの中に導入することなどによって、さらに分析されてよい。
図34Bは、2ビーズクラスタリングアッセイシステム用の試料を調製する例示的方法を示すフローチャートを描いている。方法は、2ビーズアッセイで使用するための第1の複数の粒子および第2の複数の粒子を調製するステップ(3428b)を含んでよく、これは、第1の複数のビーズを抗原と連結させ、第2の複数のビーズを抗体と連結させ、両方のビーズのバッチを所望の作業濃度に正規化することを含んでよい。一部の変形形態では、ビーズ濃度は、0.5nLの平均体積を有するPODを含む試料中で1時間の間に生産される、典型的には>1ng/mLまたは最大で100ug/mLでクラスタリングが観察されるように調整される。方法は、少なくとも1つの目的の細胞を含み得る細胞の集団を提供するステップ(3421)を含んでよい。細胞の集団は、媒体中で洗浄し、所望の細胞濃度に希釈して細胞希釈液を作製することによって調製され得る。方法は、細胞の集団、第1の複数の粒子、第2の複数の粒子、およびカプセル化試薬を組み合わせて混合物を作製するステップ(3422b)を含んでよい。上記のものと同様に、混合は、ボルテックス器またはスターラ(例えば磁気スターラ、繰り返されるピペット操作等)で行われてよい。第1の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含んでよく、第2の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含んでよい。方法は、混合物を攪拌してエマルジョンを作製し、それにより細胞の集団を多分散試料実体内にカプセル化するステップ(3423)を含んでよい。ここでも、多分散試料実体は、PODであってよい。攪拌ステップ(3423)は、結果として、例として図33Aに示されるPOD3318cなどのPODを生じさせ得る。方法は、上記で1ビーズアッセイに関して説明したものと同様の、エマルジョンを培養するステップ(3427)を含んでよい。培養されると、試料実体内にカプセル化された細胞が、視覚化、査定、統合、および/または分別等のために、上記で詳しく説明されたように試料実体を処理チャンバの中に導入するなどによって、さらに分析されてよい。
一部の変形形態では、1ビーズおよび2ビーズアッセイ用の試料を調製するのに使用されるカプセル化試薬は、界面活性剤を含んでよい。一部の変形形態では、界面活性剤は、フッ素およびポリエチレングリコール(PEG)の少なくとも一方を含んでよい。一部の変形形態では、カプセル化試薬は、混合物の約60%~90%の間であってよい。一部の変形形態では、混合物は、水溶性媒体中に懸濁した1つまたは複数の第1の粒子を含んでよく、各第1の粒子は第1の結合相手を含む。一部の変形形態では、1つまたは複数の第1の粒子は、混合物の約5体積%~20体積%の間であってよい。一部の変形形態では、細胞の集団は、混合物の約5体積%~20体積%の間であってよい。一部の変形形態では、試料実体は、多分散試料実体を含んでよい。一部の変形形態では、多分散試料実体は、PODであってよい。一部の変形形態では、第1の結合相手は第1のタンパク質を含んでよく、第2の結合相手は第2のタンパク質を含んでよい。一部の変形形態では、第1の結合相手または第2の結合相手は、抗原または抗体であってよい。一部の変形形態では、第1の結合相手は、第1のペプチドを含んでよく、第2の結合相手は第2のペプチドを含んでよい。一部の変形形態では、細胞の集団は、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、またはT細胞であってよい。
表1は、図34による方法において、または本明細書に記載されるシステムまたは方法のいずれにおいても使用され得る、分析実行を行うために1.5mlエッペンドルフを使用した、エマルジョン試料の例示的配合を示す。表2は、図34~図35による方法において、または本明細書に記載されるシステムまたは方法のいずれにおいても使用され得る、250mlのPODの試料の例示的配合を示す。表1および表2は、試料中に存在し得る担体流体は加味していない。表3は、ここに記載されるシステムおよび方法のいずれにおいても使用され得る、完成した試料の試験的運用の例示的配合を示す。一部の変形形態では、表3に要約される配合は、本明細書に記載されるように減光基板を使用してアッセイを行うために使用され得る。
Figure 2022504466000002
Figure 2022504466000003
Figure 2022504466000004
先に本明細書に記載されたように、1ビーズまたは2ビーズアッセイで使用される第1または第2の複数の粒子の粒子は、ビーズであってよい。そのようなビーズは、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、または磁気ビーズであってよい。ビーズは、ステップ3422で細胞の集団と組み合わせられる前およびその間に水溶性媒体中に懸濁していてよい。第1および第2の複数の粒子として働くビーズは、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、または磁気ビーズであってよく、10nm~約50μmのサイズであってよい。
一部の変形形態では、ビーズは、カルボン酸塩を含んでよく、約0.3μmから約6μmの間、約0.05μm~約20μmの間、または約0.1μm~0.3μmの間の直径を有してよい。一部の変形形態では、ビーズは、ユウロピウムカルボン酸塩を含んでよく、約0.10μmから約0.30μmの間の直径を有してよい。一部の変形形態では、ビーズは、カルボキシル-ポリスチレンを含んでよく、約0.05μmから約8μmの間、または約1から約1.4μmの間の直径を有してよい。一部の変形形態では、ビーズは、カルボン酸基を含んでよく、約0.2μmから約5μmの間の直径を有してよく、または約0.85μm、もしくは約0.4μmの直径を有してよい。
一部の変形形態では、細胞が、第1および第2の複数の粒子の粒子として働いてよい。細胞は、天然に、抗原、タンパク質、または他のそのようなマーカーをその細胞表面上に発現させ得、それらの細胞表面マーカーが、図32Bおよび図33Cに描かれる相互作用の場合のように第1の結合相手として、または図33Cに描かれる相互作用の場合のように第3の結合相手として働き得る。したがって、その表面にマーカーを発現する細胞は、本明細書に記載される1ビーズまたは2ビーズアッセイにおいてビーズの代わりとなり得る。
一部の変形形態では、既知の結合相手または他のタンパク質との既知の相互作用を有するタンパク質が、1ビーズまたは2ビーズアッセイで利用されてよい。それらの変形形態では、図32Bに示される例示的実施形態のように、抗体が第1の結合相手として働き得、既知の結合相手間の結合(4343に示される)を使用してビーズ4311aに連結され得る。図32Bに示される実施形態と同様に、抗体4312aが、例えばある細胞によって分泌される目的のタンパク質によって結合され得、それにより、アッセイのための測定可能または検出可能なシグナルを生成し得る。ここでも、このことは、目的のタンパク質を分泌する細胞が、高分泌細胞であり得、よって目的の細胞であり得ることを示し得る。それらの変形形態では、第1の結合相手4312aとして働く抗体は、既知の結合相手を有するタンパク質に共役し得る。図43Aに例として示されるように、ビーズ4311aは、ビオチン4344に連結され得る。ビオチン4344の既知の結合相手であるストレプトアビジン4345は、第1の結合相手4312aとして働く抗体に共役し得る。ビオチン化ビーズは、第1の結合相手として働く抗体とは別に提供され得る。例えば、複数のビオチン化ビーズがキットの一部として提供され得、ビオチン化ビーズは、第1の結合相手として働くストレプトアビジンに共役した抗体と混合され得る。代替的に、ビオチン化ビーズおよび抗体は共に提供されてもよく、第1の結合相手は、ビーズ4311a、ビオチン4344、ストレプトアビジン4345、および抗体4312aを含む錯体中で提供され、ビオチン4344とストレプトアビジン4345は結合している(矢印4343に示される)。図43Bに別の例として示されるように、ストレプトアビジン4345はビーズ4311aに連結してもよく、ビオチン4344は抗体4312aに共役してもよい。図43Aに示される例と同様に、ストレプトアビジンを含む複数のビーズ4311aが、キットの一部として提供されてよく、ビーズ4311aは、第1の結合相手として働くビオチンに共役した抗体と混合され得る。代替的に、ストレプトアビジンに連結されたビーズ4311aおよび抗体が共に提供されてよく、第1の結合相手は、ビーズ4311a、ストレプトアビジン4345、ビオチン4344、および抗体4312aを含む錯体中で提供され、ストレプトアビジンとビオチンは結合している(4343に示される)。これらの例では、複数のビーズは、1ビーズまたは2ビーズアッセイで使用され得、複数のビーズの各ビーズ4311aは、ビオチンやストレプトアビジンなどのタンパク質に関連し、ビオチンやストレプトアビジンなどのタンパク質は、既知の結合相手(図43A~図43Bに示される例など)に結合し、よって、1ビーズまたは2ビーズアッセイの第1の結合相手4312aとして働く抗体に関連付けられる。
一部の変形形態では、ある細胞によって分泌される目的の抗体は、IgGまたは他の免疫グロブリン(例えばIgA、IgD、IgE、IgM等)であってよい。
一部の変形形態では、1ビーズおよび2ビーズアッセイで使用される試薬は、MESナトリウム塩、Tris、NaCl、Tween-20、およびBSA、ならびにそれらの様々な組合せを含んでよい。
例示的な試料調製
1ビーズクラスタリングアッセイシステムで使用するための試料を調製する例示的方法は、以下のように実施されてよい。例として、また先に説明されたように、第1の複数の粒子は、ビーズを含んでよい。第1の複数の粒子としてのビーズの調製は、ビーズを抗体と連結させ、ビーズ濃度を正規化することを含んでよい。最初に、プロセスは、ビーズを低結合管内にアリコートし、ビーズをペレット化し、上澄み液を除去することを含んでよい。次に、ビーズが、MESヘミナトリウム塩などの緩衝液で洗浄されてよく、ビーズは次に新鮮な緩衝液中に再懸濁されてよい。数個のビーズ再懸濁液がこのようにして調製されてよい。EDAC(水溶性カルボジイミド誘導体)を室温で使用して、EDAC溶液を含む20X MES緩衝液を作ってよい。その結果生じるEDAC溶液が各ビーズ再懸濁液に加えられてよく、それが次いで静かに混合され、回転しながら室温で培養されてよい。次に、ビーズは、遠心分離によってペレット化され、MES緩衝液で洗浄され、新鮮な緩衝液および抗体中に再懸濁され、培養されてよい。およそ1時間半の培養後、ブロッキング緩衝液が加えられてよい。次に、繰り返される洗浄および培養のステップを実施して、抗体連結プロセスを完了してよい。最後に、ビーズが洗浄されて保管緩衝液中に再懸濁されてよく、この段階で、抗体と連結したビーズが、将来の使用のために4℃で保管されてよい。
次に、1ビーズクラスタリングアッセイで使用するための適当な正規化された濃度を有するビーズを得るために、ビーズが、濃度の表現としてのそれらの吸光度を測定することによって正規化されてよい。例えば、NanodropのOD600機能を使用して吸光度を得てよい。市販されるマウスIgGビーズ標準などの濃度標準が、ビーズ濃度を得るために使用されてよい。ビーズは、ボルテックスによって混合され、例えばNanodropを使用して測定され、遠沈され、次に所望の濃度に希釈されるかまたは濃縮される。
少なくとも1つの目的の細胞を含む細胞の集団を提供するステップ(3421)は、細胞試料の調製および細胞希釈液の作製を含んでよい。このプロセスは、試料中に懸濁している細胞を数え、細胞生存率を調べ、次に細胞を氷冷の媒体で2回洗浄し、細胞を新鮮な氷冷の媒体と共に再懸濁して作業濃度にすることを含んでよい。作業濃度は、例えば、1ml当たり4.4x10個の細胞であってよい。作業細胞濃度は、次いで、この最終的な細胞濃度から作られてよい。例えば、20倍の希釈を行って、1ml当たり2.2x10個の細胞の作業細胞濃度を有する細胞希釈液を得てよい。
細胞の集団、第1の複数の粒子およびカプセル化試薬を組み合わせることは、例えば、初めに、細胞の集団(上記のようにして調製された細胞希釈液として提供されてよい)と、第1の複数の粒子(上記のようにして調製された、抗体と連結したビーズとして提供されてよい)とを共に混合することによって行われてよい。上記のように緩衝液などの水溶性媒体中に懸濁したある体積のビーズが、等しい体積の細胞希釈液と混合されてよい。例えば、ポリクローナル抗体(IgGなど)と連結した30μlのビーズが、30μlの細胞希釈液と組み合わせられてよい。細胞希釈液とビーズの混合は、繰り返される静かなピペット操作、スターラ(例えば磁気スターラ)等によって行われてよい。
次に、カプセル化試薬を、混合された細胞希釈液および抗体と連結したビーズに加えて、エマルジョンを作製する際に使用する混合物を得てよい。カプセル化試薬は、界面活性剤を含んでよく、界面活性剤は例えばフッ素系界面活性剤であってよい。界面活性剤の成分の例は、フッ素およびポリエチレングリコール(PEG)を含んでよく、さらなる例示的配合が下記の表1~表3に与えられる。エマルジョンは、混合物を攪拌することによって得られてよく、攪拌はボルテックスによって行われてよい。結果として生じるエマルジョンは、細胞およびビーズが含有された試料実体を含み得る。試料実体は、本明細書に記載されるようにPODなどの多分散試料実体であってよい。よって、攪拌ステップ(3423)は、結果として、図32Aに例として示されるPOD3218cなどのPODを生じ得る。
エマルジョンは、細胞培養器の中で、カプセル化試薬と共に新鮮な管(例えば15ml円錐管)内で、緩く蓋をして、所定の長さの時間にわたり、5%のCOと共に37℃で培養されてよい。所定の長さの時間は、約1時間から約6時間の間であってよい。培養後、エマルジョンは次いで、目的の細胞を細胞の集団から選択できるように、分析されてよい。例えば、エマルジョンは、PODを読み取って分析するために、本明細書に記載されるようにチャンバ内に投入されてよい。また、エマルジョンは、例えば適切な対物レンズ系または上記のようにレンズレスイメージャシステムを使用して視覚的に観察されてもよい。
2ビーズクラスタリングアッセイで使用するための試料を調製する例示的方法は、下記の点を除いて、図34Aに示される1ビーズクラスタリングアッセイシステム用の試料を調製する方法に関して説明されたものと同様であってよい。
第1の複数の粒子および第2の複数の粒子は、ビーズのバッチを含んでよい。上記の方法と同様に、第1の複数の粒子は、抗原と共に培養されてよく、第2の複数の粒子は、モノクローナル抗体と共に培養されてよい。2ビーズアッセイ用の各ビーズのバッチは、次に、説明されたように所望の濃度に正規化されてよく、先に説明されたように細胞希釈液も調製されてよい。例として、混合物を作製する際、約15μlの抗体と連結したビーズを約15μlの抗原と連結したビーズと混合して、30μlのビーズ体積を得てよい。第1および第2の複数の粒子を含む30μlのビーズは、次いで、等しい体積の細胞希釈液と組み合わせられてよい。
クラスタリングアッセイの実施
図35Aおよび図35Bは、クラスタリングアッセイを行う方法の例示的変形形態を描いている。図35Aは、1ビーズアッセイで使用するために細胞の集団から少なくとも1つの目的の細胞を選択する例示的方法を描いている。例として、少なくとも1つの目的の細胞は、以下の例示的方法を使用して細胞の集団から選択されてよい。方法は、細胞の集団と第1の複数の粒子とを含むエマルジョンを提供するステップ(3524)を含んでよく、これは、図34Aを参照したときに説明した方法に従って調製されたエマルジョンであってよい。次に、方法は、少なくとも1つの試料実体についてシグナルを測定するステップであって、シグナルは、第1の結合相手と第2の結合相手の結合に少なくとも部分的に関連する、ステップ(3525)と、測定されたシグナルに少なくとも部分的に基づいて少なくとも1つの目的の細胞を特定するステップ(3526)とを、1ビーズアッセイを行うために含んでよい。
第1の複数の粒子は、水溶性媒体中に懸濁した状態で提供されてよく、第1の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含んでよい。第1の結合相手は、例えばポリクローナル抗体であってよい(図32Bを参照して説明したように)。第2の結合相手は、目的の細胞によって分泌される抗体の結合ドメインであってよい(図32Bを参照して説明したように)。粒子、細胞試料、およびカプセル化試薬は、エマルジョン中で提供されてよく、それがシグナルを分析するために培養されてよい。次いで、検出可能なクラスタを生じさせ得る、第1の結合相手と第2の結合相手との間で発生する結合相互作用に基づいてシグナルが測定されてよい(3525)。クラスタは、例えば、本明細書に記載されるものなどのレンズレスイメージャ、または顕微鏡対物レンズを使用して視覚化されてよい。クラスタは、少なくとも1つの目的の細胞の特定を可能にし得(3526)、また少なくとも1つの目的の細胞を含有しているPODの選択を可能にし得る。例えば、少なくとも1つの目的の細胞を含有している1つまたは複数のPODが、上記で説明されたものなどのシステムおよび方法(例えば電気的統合、分別)を使用して分別されてよい。アッセイは、よって、目的の細胞のさらなる処理のために少なくとも1つの目的の細胞を含有しているPODを選択することを可能にし得る。
図35Bは、2ビーズアッセイで使用するために細胞の集団から少なくとも1つの目的の細胞を選択する例示的方法を描いている。方法は、細胞の集団、第1の複数の粒子、および第2の複数の粒子を含むエマルジョンを提供するステップ(3524b)を含んでよく、これは、図34Bを参照したときに説明した方法に従って調製されたエマルジョンであってよい。次に、方法は、少なくとも1つの試料実体についてシグナルを測定するステップであって、シグナルは、第1の結合相手と第2の結合相手の結合および第3の結合相手と第4の結合相手の結合に少なくとも部分的に関連する、ステップ(3525)と、測定されたシグナルに少なくとも部分的に基づいて少なくとも1つの目的の細胞を特定するステップ(3526)とを、2ビーズアッセイを行うために含んでよい。
第1の複数の粒子および第2の複数の粒子は、水溶性媒体中に懸濁した状態で提供されてよく、第1の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含んでよい。第1の結合相手は、例えば、抗原であってよい(図33Cを参照して説明したように)。第2の結合相手は、目的の細胞によって分泌される抗体の結合ドメインであってよい(図33Cを参照して説明したように)。第2の複数の粒子の各粒子は、目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含んでよい。第3の結合相手は、例えば、モノクローナル抗体であってよい(図33Cを参照して説明したように)。第4の結合相手は、例えば、目的の細胞によって分泌される抗体の結合ドメインであってよい(図33Cを参照して説明したように)。粒子、細胞試料、およびカプセル化試薬は、エマルジョン中で提供されてよく、それがシグナルについて分析するために培養されてよい。次いで、検出可能なクラスタを生じさせ得る、第1の結合相手と第2の結合相手との間で発生する結合相互作用に基づいてシグナルが測定されてよい(3525)。クラスタは、例えば、本明細書に記載されるものなどのレンズレスイメージャ、または顕微鏡対物レンズを使用して視覚化されてよい。クラスタは、少なくとも1つの目的の細胞の特定を可能にし得(3526)、また少なくとも1つの目的の細胞を含有しているPODの選択を可能にし得る。例えば、少なくとも1つの目的の細胞を含有している1つまたは複数のPODが、上記で説明されたものなどのシステムおよび方法(例えば電気的統合、分別)を使用して分別されてよい。アッセイは、よって、目的の細胞のさらなる処理のために少なくとも1つの目的の細胞を含有しているPODを選択することを可能にし得る。
一部の変形形態では、細胞の集団および第1の複数の粒子は、複数の多分散試料実体内にカプセル化され、第1の複数の粒子の各粒子は、水溶性媒体中に懸濁し、少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む。
一部の変形形態では、方法は、第2の複数の粒子を提供するステップをさらに含んでよい。第2の複数の粒子は、第1の複数の粒子と共に多分散試料実体内にカプセル化されてもよい。第2の複数の粒子の各粒子は、少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含んでよい(3527)。
例示的用途
図12は、本明細書に記載されるシステムおよび方法の様々な研究および/または診断の用途の例を示している。一部の変形形態では、アッセイシステムは、タンパク質に基づくアッセイを行って様々なタンパク質を検出し得る。例えば、システムは、免疫グロブリンG(IgG)、アルファフェトタンパク質(AFP)、がん抗原(例えばCA125、CA 15-3)、糖鎖抗原(例えばCA 19-9)、がん胎児性ゴナドトロピン(例えばhCGまたはベータ-hCG)、前立腺特異的抗原(PSA)等(例えば免疫学に関係する研究のため)、乳酸デヒドロゲナーゼ(LDH)(例えば心臓ストレスなどの組織損傷を査定する、および/またはがん等を査定するため)、Beta 2ミクログロブリン(B2M)(例えばがんの検出を助けるため)、TNFα、IL-1、IL-2、IL-10、IL-12、タイプIインターフェロン(例えばIFN-α、IFN-β)、IFN-γ、ケモカイン等のサイトカイン(例えば炎症を査定するため)、ならびにストレプトアビジン(例えばビオチン化等を査定するため)などのマーカーを検出するために使用されてよい。本明細書に記載されるシステムは、細胞に基づく検出アッセイも行い得る。例えば、アッセイシステムは、白血球細胞(例えば、白血病および/またはがん転移を査定するなどのために抗CD45マーカーを使用する)、赤血球(例えば血液学のため)、および酵母細胞(例えば発現ベクターを特徴付けるため)等を検出するために使用されてよい。また、アッセイシステムは、発現に基づくアッセイを行うために使用されてもよい。例えば、アッセイシステムは、薬物標的の特定などのために、ハイブリドーマ、B-細胞、およびファージディスプレイ等の発現を検出するために使用されてよい。
(実施例1)
本明細書に記載されるシステムを使用して、複数のサイズのマイクロスフィアを検出し、それらの区別を行った。例えば、図13Aは、コンピュータビジョンを使用して検出された、POD(1300)内にカプセル化されたミクロンビーズ粒子(1310)の注釈付き画像である。2μm、5μm、10μm、および15μmのガラスビーズを含有している試料をカプセル化試薬と組み合わせて、試料をPOD内にカプセル化した。特定サイズのミクロンビーズを含むPODを含有している各試料を、アッセイシステムの撮像チャンバ内に導入した。レンズレスイメージセンサは、試料がチャンバを通って流れるのに伴い、試料のシャドウ画像を生成した。POD(1300)とミクロンビーズ(1310)の境界を検出するために、画像を分析した。PODおよびミクロンビーズを特定するのに加えて、コンピュータビジョンシステムは、POD内のミクロンビーズの相対サイズを測定して、粒子サイズスコア(PSS)を生成した(例えば実施例2~5に関して下記で説明されるように)。図13Bは、既知のサイズのミクロンビーズを含有している各試料に対して生成された分布、平均値、および中央値の粒子サイズスコアのグラフである。図13Bは、例えば、15μmのビーズを含有している試料中でシステムによって測定された粒子サイズスコアの分布(1320)を示し、また粒子スコアサイズの平均値(1330)および中央値(1340)を表している。システムによって測定された分布、平均値、および中央値の粒子サイズスコアは、2μm、5μm、10μm、および15μmのビーズ試料の各々についてプロットされている。したがって、システムは、2μm、5μm、10μm、および15μmのビーズを区別し得る。2~15μmのサイズ範囲内で区別できる能力は、POD内のタンパク質および/または細胞集団の検出に基づくものなどの様々なアッセイを行う能力をシステムに与え得る。
(実施例2)
本明細書に記載されるシステムを適用して、例えば試料中のIgGの濃度を定量化するために、定量的タンパク質アッセイを行った。例えば、図14A~図14Cは、様々な濃度におけるPOD(1410)内のIgGタンパク質(1400)のコンピュータビジョンによる検出を示す画像である。IgGの定量的タンパク質アッセイを行うために、特定の濃度のウサギIgGを各々が含む複数の試料を、ウサギIgGに特異的である1~2ミクロンのラテックスビーズに共役した抗原と組み合わせた。図15Dに示すように、7つの試料各々からおよそ100万個のPODが生成され、各試料は、0ng/mL~480ng/mLの範囲の異なるIgG濃度を含有していた。IgGおよび抗体に共役したビーズ混合物試料の各々を、フルオロカーボン油とボルテックスして、タンパク質をPOD内にカプセル化した。抗体がIgGタンパク質と結合した結果、IgGの凝集と、POD内でのIgGタンパク質集団(「凝集物」)の形成とが生じた。次いでPODをアッセイシステムの撮像チャンバ内に導入した。PODがチャンバを通過するのに伴い、レンズレスイメージセンサが、試料のシャドウ画像を生成した。各濃度で10分未満の間におよそ100万個のPODが分析された。画像を分析してPOD内のタンパク質集団を検出し、PODのサイズおよび形状ならびに凝集物のグレースケール値などの、PODおよび凝集物の様々なパラメータを画像から測定した。凝集物はシャドウ画像上でより暗く現れ、POD内の凝集物の検出を可能にする。
例えば、図15A~図15Cは、複数の試験されたIgGの濃度についてコンピュータビジョン技術を使用して検出されたPOD面積、POD半径、およびPOD真円度のPODパラメータを描いている。図15Aは、試験されたIgGの濃度各々についてのPODの分布、平均値、および中央値面積を示す。図15Bは、試験された各濃度で検出されたPODの分布、平均値、および中央値半径を示す。図15Cは、試験された各濃度で検出されたPODの真円度値の分布、平均値、および中央値を示す。
様々なPODパラメータスコア(「BEスコア」)が、集合体、細胞、粒子のサイズ、ならびに/またはPOD内のそれら集合体、細胞および/もしくは粒子の変化などの、PODの1つまたは複数の測定されたパラメータおよび/またはPOD内の目的の特徴から導出された。例えば、図15E~図15Hは、レンズレスイメージセンサによって生成された試料の画像から検出され得る特定のPODパラメータから導出されたBEスコアの例を示す。図15Eは、各濃度において各POD内で検出された集合体の平均値グレースケール値の測定値である、BEスコア1の分布、平均値および中央値を示す。図15Fは、試験された各濃度においてPOD内の検出された集合体のグレースケール標準偏差の測定値である、BEスコア2の分布、平均値および中央値を示す。図15Gは、試験された各濃度におけるPOD内の検出された集合体のグレースケール最小値の測定値である、BEスコア3の分布、平均値および中央値を示す。図15Hは、試験された各濃度におけるPOD内の検出された集合体のグレースケール最大値の測定値である、BEスコア4の分布、平均値および中央値を示す。
さらに、PODの複数の測定されたパラメータおよび/またはPOD内の目的の特徴(例えば集合体、細胞、他の粒子等)から、様々なPODパラメータスコアが複合スコアとして導出された。複合PODパラメータスコアは、単一の測定されたパラメータに基づいて導出されたPODパラメータスコアからは本来入手できない情報(例えばIgG濃度との相関の傾向)を提供し得る。例えば、図16A~図16Dは、複数の測定されたPOD特性の組合せから計算されたBEスコア、および/または特定のPODパラメータから導出されたBEスコアの例を示す。上記の試験されたIgG試料の画像から合計11個のBEスコアが計算され、図16A~図16Dに描かれるように、そのうちの4つを使用して画像特性をIgG濃度に相関付けた。BEスコア5(図16Aに示す)は、一般に、凝集の指標であり、2値の白黒画像(例えばPOD内の物体が白色として描かれ、背景画素が黒いか、またはその逆)に基づく。例えば、BEスコア5は、POD面積に合わせてスケーリングされた(例えばPOD面積で割った)、背景画素に対する物体画素の比に基づいていた。BEスコア6(図16Bに示す)は、一般に、上記で説明したような2値の白黒画像の距離変換に基づく、凝集の別の指標であり、ここで、BEスコア6は、POD面積に合わせてスケーリングされた、得られたグレースケール画像の画素値に基づいていた。BEスコア7(図16Cに示す)は、一般に、POD内で検出された別々の物体の数に基づく粒子数スコアである。BEスコア8(図16Dに示す)は、一般に、撮像されたPOD内で特定されるすべての物体の平均面積に関係する、粒子サイズスコアである。概して、BEスコア5~8は、実験の検出範囲内でIgG濃度の増大に伴って増大することが判明した。図16A~図16Dに描かれるように、BEスコアに基づくIgGの検出範囲は、約30~約480ng/mLの間であった。図16A~図16Dのグラフは、IgG検出範囲内で、BEスコア5~8の各々がIgG濃度と相関している可能性があることを実証している。BEスコア5~8に適用された数学的アルゴリズムを使用して、各試料中のIgGの濃度を査定した。よって、POD内のタンパク質集団のサイズは概してタンパク質濃度と共に増大するため、PODの画像から2~15μmのレベルでタンパク質集団のサイズを測定できるプラットフォームの能力は、プラットフォームが、レンズレスイメージセンサによって生成された画像から導出された特性を使用してタンパク質濃度を計量することを可能にし得る(例えば、1つまたは複数のBEスコアを濃度に相関付ける、1つまたは複数のBEスコアを1つまたは複数の所定の閾値と比較する等を行う、経験的モデルおよび/または計算されたモデルに基づく)。
これらの結果は、試料のシャドウ画像から測定されたPODおよび凝集物のパラメータを使用して、上記のものなどの1つまたは複数のBEスコアの組合せに基づいて試料中のタンパク質濃度を計量し得ることを実証している。よって、本明細書に記載されるアッセイシステムを使用して、抗体に共役したビーズを使用して、タンパク質に基づくアッセイを行って、試料中のタンパク質の濃度を、迅速にかつ蛍光ラベルを使用せずに定量化し得る。
(実施例3)
本明細書に記載されるシステムを使用して、ビーズ仲介IgGアッセイにおいてアッセイ間精度分析を行った。アッセイ間精度分析は、本明細書に記載されるアッセイシステムの再現性および一貫性の査定、ならびに異なるIgG濃度にまたがるアッセイの感度の評価を可能にした。この情報を使用して、異なるタンパク質濃度における誤差の余裕を計算した。例えば、アッセイ間精度分析は、上記で説明したIgGアッセイで使用された各IgG濃度の3つの複製(R1、R2、R3)を試験することによって行った。図17Aは、試験された各濃度における3つの複製の各々における中央値粒子サイズスコアの測定値である、BEスコア8の範囲を描いている。図17Bは、試験された各濃度における3つの複製の各々におけるPOD内の検出された集合体の中央値グレースケールの標準偏差の測定値である、BEスコア2の範囲を描いている。図17Aおよび図17Bによって実証されるように、異なるレベルのIgG濃度は、それら2つのパラメータが測定され得る異なるレベルの精度を呈した。例えば、図17Aおよび図17Bは、少なくとも一部のBEスコアについては、アッセイシステムの感度が、検出された範囲の異なる区間において、検出された検体の濃度と共に変動することを実証している。例えば、図17Aおよび図17Bは、粒子サイズスコアの中央値およびグレースケール標準偏差の中央値の測定値の精度が、概して、IgG濃度が増大するのに従って低下する(値の範囲が濃度の増大と共に増大する)ことを示唆している。
(実施例4)
本明細書に記載されるシステムを使用して、ウシ血清がアッセイの特異性に干渉するかどうかを判定するためにウサギIgGアッセイを試験した。対照試料および実験用試料をアッセイシステムで別々に分析した。対照試料は、500倍に希釈されたウシ血清を含んでいた。次いで、対照試料をシステムの撮像チャンバ内に導入し、レンズレスイメージセンサが、対照試料を含むPODのシャドウ画像を生成した(図18A)。実験用試料は、960ng/mLのウサギIgG血清を500倍に希釈したウシ血清およびIgGに特異的な抗体に共役したビーズと混合することによって調製され、IgGタンパク質をPOD内にカプセル化するためにカプセル化試薬(例えば界面活性剤)と組み合わせられた。実験用のウサギIgG試料をシステムの撮像チャンバ内に導入し、レンズレスイメージセンサが、実験用試料を含むPODのシャドウ画像を生成した(図18B)。
図18Cは、対照試料および実験用試料についてのBEスコア8(上記で図16Dに関して説明したように粒子サイズスコア)の分布、平均値、および中央値を描いている。対照試料と実験用試料との間におけるBEスコア8の分布、平均値、および中央値の差は、ウサギIgGがウシ血清に対して著しい異種間反応性を示さないことを実証した。言い換えると、この例は、ウシ血清がアッセイの特異性に干渉しない可能性があることを示唆している。
(実施例5)
本明細書に記載されるシステムを、細胞に基づく検出アッセイ(例えば細胞タイプおよび細胞数アッセイ)で使用することに成功した。例えば、本明細書に記載されるアッセイシステムを使用して、他の細胞に基づく検出アッセイの実例として、試料中の白血球の存在を検出した。図19Aの概略説明図に示されるように、CD-45+白血球(白血球細胞)が、抗CD45ナノ粒子(例えばガラスビーズ)でタグ付けまたは「装飾」された。試料中のCD-45+白血球の存在を特定するために、CD-45細胞を含有した試料を抗CD45ナノ粒子と混合した。ナノ粒子はCD-45細胞上の特有の表面マーカーと選択的に結合し、それにより、CD-45細胞を他の細胞から区別する手段がもたらされた。ナノ粒子に結合したCD-45細胞を含む試料をカプセル化試薬と混合し、ボルテックスして、CD-45細胞をPOD内にカプセル化した。抗CD45ナノ粒子がCD-45細胞と結合した結果、CD-45細胞の凝集と、POD内のCD-45凝集物の形成とが生じた。次いでPODを装置の撮像チャンバ内に導入し、レンズレスイメージセンサが、PODがチャンバを通過するのに伴ってPODのシャドウ画像を生成した。コンピュータビジョンシステムは、PODの画像(図19B)を分析して、CD-45凝集物の増大したグレースケール値に基づいてCD-45細胞の存在を検出した。POD(1900)内のCD-45細胞凝集物(1910)は、シャドウ画像内で他の細胞と比べて暗く現れ、そのことにより、コンピュータビジョンシステムによるCD-45細胞の検出および計数が可能になる。ナノ粒子でタグ付けされたCD-45細胞を特定するためのアッセイシステムの使用は、このシステムが、細胞表面マーカーへのナノ粒子の選択的な結合に基づいて細胞の検出および計数を行い得ることを実証している。このシステムが、表面マーカーを呈する様々な細胞の検出および計数を行うためにも使用され得ることが推測され得る。
(実施例6)
本明細書に記載されるシステムは、試料中の死細胞と生細胞を迅速かつ効率的に判別するためにも使用することができる。例えば、本明細書に記載されるアッセイシステムを使用して、死んだ酵母細胞の検出および/または計数を行った。図20Aは、死んだ酵母細胞(2010)を含有しているPOD(2000)のコンピュータビジョン検出を描いている。死細胞数アッセイを行うために、酵母細胞をトリパンブルーで染色し、試薬と共にPOD内にカプセル化した。染色した酵母細胞を含有するPODの試料をアッセイシステムの撮像チャンバ内に導入し、撮像システムが、PODがチャンバを通過するのに伴ってPODのシャドウ画像を生成した。コンピュータビジョンシステムは、死んだ酵母細胞は生細胞と比べて多孔性が増大しているために青色色素をより多く吸収することに基づいて、シャドウ画像内の死んだ酵母細胞を特定した。染色した酵母細胞はシャドウ画像内でより暗く現れ、そのことにより、コンピュータビジョンシステムが、低下したグレースケール値に基づいて、色が飽和した死んだ酵母細胞を特定することが可能になる。コンピュータビジョンシステムは、画像を分析して、図20Bに示されるように死細胞粒子数スコア、および図20Cに示されるように粒子サイズスコアを提供した。死んだ酵母細胞の死細胞数およびサイズスコアを提供できるアッセイシステムの能力は、システムが、細胞染色技術の使用に基づいて死細胞を検出、計数、および/または測定し得ることを実証する。この能力を、染色に基づく細胞の区別を使用して様々な細胞タイプの計数を行うように外挿してよい。さらに、生細胞と死細胞とを判別した後、本明細書に記載されるような流体システムを使用して、生細胞と死細胞が分別されてよい(例えば、さらなる分析および/または培養のために目的の細胞をウェルプレートなどの適切な入れ物の中に分注するため)。
(実施例7)
追加的または代替的に、試料を処理するための方法は、試料中で1つまたは複数の細胞分泌(または細胞自体)を検出するステップを含んでよい。例えば、一般に、細胞分泌アッセイでは、1つまたは複数の検体(例えばサイトカインやモノクローナル抗体(mAb)などの目的のタンパク質)が、1つまたは複数の細胞によって分泌され得、どの検体が分泌されるのかを判定することが望ましいことがある。図22を参照すると、分泌細胞および少なくとも1つの検出試薬を含む試料が、POD内に分散され、上記のようにアッセイシステムに通されて、PODのシャドウ画像を作る。細胞から分泌される1つまたは複数の目的の検体は、検出試薬に特異的であり得、結果的に生じた集合が、シャドウ画像内で検出可能な、暗い、影になった集団を生じさせる。よって、POD内の集合した集団の特定は、1つまたは複数の目的の検体が細胞から分泌されたことを示し得る。複数の検体(例えば、試料と混合された異なる試薬に特異的な)が、アッセイシステムを使用して並行してさらに特定可能であり得る。
(実施例8)
ハイブリドーマ細胞は、特定の抗原をマウスに注射し、抗体を生産するB-細胞をマウスから収集し、そのB-細胞を腫瘍細胞と融合して「不死」にすることによって生産され得る。著しい量の所望の抗体を生産するハイブリドーマ細胞を特定し、収集することは有益である。例えば、著しい量のIgG抗体(Ab)を生産するハイブリドーマ細胞は、治療目的のために特定し収集するのが有益な細胞であり、IgG Abは、ある特定の抗原に対して特異的であり、高い親和性および/または特異性を有する。しかし、そのような高分泌体のハイブリドーマ細胞をスクリーニングするための従来のプロトコールは、入念に制御された環境下で何日間かにわたってハイブリドーマ細胞を複製し、繁殖させなければならないため、高費用で時間を要する。
一例では、本明細書に記載されるものなどのチャンバおよびイメージャアレイシステムを使用して試料を処理するための方法が、特定の標的に対する抗体の高分泌体または生産体であるハイブリドーマ細胞を特定するために使用され得る。ハイブリドーマ細胞(マウス細胞)を、界面活性剤を含む担体油と共に、抗マウスIgGpAbに連結した1μmポリスチレンビーズと共にボルテックスして、PODを含むエマルジョンを形成することによって試料を調製し、PODの各々に、2つ以上の細胞を充填した(POD当たりの平均細胞数がλ>1となるように)。試料は、上記で説明したチャンバおよびイメージャアレイシステムを使用して、t=0、t=1時間(1時間の培養後)、およびt=4時間(4時間の培養後)に撮像した。これらの画像(図27、4X対物レンズおよび10X対物レンズの倍率の両方)に示されるように、POD内の大きいクラスタがわずか1時間後に観察可能であり、4時間後にはさらに観察可能であった。よって、図27の画像は、ハイブリドーマ細胞が、わずか1時間という短い培養期間の後ですらPOD内で検出可能な範囲内のIgGを分泌しており、そのため、十分に強い生体シグナルを持つハイブリドーマ細胞(例えば画像内で特定可能な集まりとして現れる)がPOD内で特定され得ることを示唆している。一部の変形形態では、そのような高分泌ハイブリドーマ細胞が、高濃度の高分泌ハイブリドーマ細胞を有する出力としてさらに分別され、収集されてよい。
(実施例9)
図29Aは、電気的統合チャンバ機構およびPODを含む例示的試料の例示的変形形態についての例示的システムパラメータの表である。例示的試料は、(i)およそ1000万個のB細胞を有する、示された体積の水溶性細胞媒体と、(ii)界面活性剤を含む、示された体積の担体油と、の混合物を含み、その結果、図29Aに概説される組成となり、示されたPOD特性を有する、合計およそ1億5400万個のPODを含んでいた。試料中のPODの一部は、35μmのチャンバ間隙間隔よりも小さく、チャンバ内にあるときに球状であった(偏球形状に平坦化されない)。これらPODの形状のために、それらに含有されている細胞を検出することがより難しくなり、目的の細胞が非故意に失われる、または破棄されることがあり得る。
確率的モデル化を行って、電気的統合チャンバ機構によって検出されない細胞の数を推定した。試料についての実際のPOD直径の分布が図29Bに示され、ガンマ分布(図29C)に近いものとしてモデル化され得る。図29Aに示される平均POD特性に照らして確率的モデル化を使用すると、見落とされるかもしれないが実際には空でない「小さい」POD(すなわち35μmよりも小さく、かつ22pL未満の体積を有する)の予想百分率は、約0.017%となる。言い換えると、1つの見落とされるPOD当たり1つの細胞の最大数を仮定すると、チャンバ内で試料を処理する結果、100万個のPOD当たりおよそ170個の細胞、または合計で約2615個の細胞、を検出し損なう可能性があることになる。元の試料中にある合計B細胞集団が1540万個とすると、これは、試料中の細胞の約0.017%を検出し損なう可能性があることを意味する。よって、図29A~図29Cに関連する試料およびシステムに関する分析は、本明細書に記載されるチャンバを使用すると、細胞のうち無視できる割合のみが非故意に未検出となり得ることを示唆する。
(実施例10)
上記で説明したように、本明細書に記載される1ビーズおよび/または2ビーズクラスタリングアッセイは、細胞の集団内の特定の目的の細胞を特定するために行われてよい。目的の細胞は、抗体などの標的検体の高分泌体であっても、またはある抗原に対する高い親和性を有する標的検体の高分泌体であってもよい。実験試験を行って、本明細書に記載される1ビーズまたは2ビーズアッセイを使用して、B細胞およびCHO細胞が、指定された時間枠内にPOD内で測定可能かつ検出可能なシグナルを生成できることを実証した。
図36A~図36Cは、1ビーズアッセイの試験から得た4X対物レンズ顕微鏡細胞画像を描いている。1ビーズアッセイを実証するために、1バッチの抗マウスIgGポリクローナル(pAb)ビーズ(図36A)と、2バッチの抗ヒトIgGpAbビーズ(図36B~図36C)とを、1ビーズアッセイを行うために調製した。図36A~図36Cは、10μg/mlのマウスまたはヒトIgGが存在したときにすべてのビーズのバッチがクラスタリングを示したことを示している。各バッチは、細胞無し(NC)の対照と比較して示されている。
図37は、POD内でマウスIgGを分泌する単一ハイブリドーマ細胞を査定するために使用された、本明細書に記載される1ビーズアッセイを使用して行われた試験から得た画像を描いている。4Xおよび10Xの対物レンズ両方における顕微鏡画像が、培養から、時間=0、t=1時間、t=2時間、t=4時間、およびt=6時間に示されている。画像は、t=1時間から始まるすべての時点においてクラスタリングを示している。
図38は、POD内で抗原に特異的な抗体を分泌する単一ハイブリドーマ細胞を査定するために使用された、本明細書に記載される2ビーズアッセイを使用して行われた試験から得た画像を描いている。ウシIgM抗原に特異的な抗体を試験で分析した。4Xおよび10Xの対物レンズ両方における顕微鏡画像が、培養から、時間=0、t=1時間、t=3時間、およびt=5時間に示されている。画像は、t=1時間から始まるすべての時点においてクラスタリングを示している。
特定の抗原に対抗しない抗体を分泌する細胞系を使用して、非特異的な背景クラスタリングを調べるための試験を行った。抗ウシインスリンを分泌するハイブリドーマ細胞(HB-123細胞系)を、ウシIgM抗原2ビーズアッセイにおいて対照として使用した。ウシIgM抗原ビーズを使用した。特異的なクラスタリングについて試験するためにCRL-1894細胞系も使用し、CRL-1894細胞は、抗ウシIgMモノクローナル抗体を分泌することが知られている。試験全体を通じて細胞の生存率を監視するために0.005%のトリパンブルーを加えた。
図39Aは、HB-123細胞系を使用して実施された試験から得た4X対物レンズ顕微鏡画像を描いており、ここではクラスタリングが予想されなかった。画像は、時間=0、t=1時間、およびt=3時間において、背景クラスタリングが発生しなかったことを示している。対照的に、図39B~図39Dは、時間=0、t=1時間、およびt=3時間における10X対物レンズ顕微鏡画像を示し、t=1時間からクラスタリングが発生し始めたことを示している。細胞生存率は約84%と測定された。
説明を目的とした前述の記載は、本発明の完全な理解を提供するために特定の学術用語を使用した。しかし、当業者には、本発明を実施するために具体的な詳細事項は必須ではないことが明らかとなろう。よって、前述の本発明の特定の実施形態の記載は、例示および説明の目的で与えられる。それらは、徹底的なものでも、本発明を開示される通りの形態に限定するものでもなく、明らかなように、上記の教示に照らして多くの変更形態および変形が可能である。実施形態は、本発明の原理およびその実際的な用途を説明するために選択され、記載され、それにより、当業者が本発明および様々な実施形態を、企図される特定の使用に適した様々な変更と共に利用することを可能にする。以下の特許請求の範囲およびその相当物が本発明の範囲を定めることが意図される。

Claims (144)

  1. 試料を処理するためのシステムであって、
    少なくとも1つの入口および少なくとも1つの出口を有するチャンバであって、前記少なくとも1つの入口から前記少なくとも1つの出口に向かう前記試料の流れを収容するように構成された、チャンバと、
    前記チャンバ内の前記試料の前記流れを撮像するように構成されたイメージャアレイであって、少なくとも1つの光源に近接して設定可能な少なくとも1つのレンズレスイメージセンサを備える、イメージャアレイと
    を含むシステム。
  2. 前記チャンバが、前記試料の2次元の流れを収容するように構成される、請求項1に記載のシステム。
  3. 前記イメージャアレイが、レンズレスイメージセンサの2次元アレイを含む、請求項2に記載のシステム。
  4. 前記チャンバが、第1の表面と、前記第1の表面から隔てられた第2の表面とを含み、前記第1の表面および前記第2の表面の少なくとも一方が、光学的に透明な材料を含む、請求項1に記載のシステム。
  5. 第1の構造および第2の構造の少なくとも一方が、平面処理によって形成される、請求項4に記載のシステム。
  6. 前記第1の表面および前記第2の表面が、前記試料の少なくとも一部分を平坦化させるように構成される、請求項4に記載のシステム。
  7. 前記第1の表面と前記第2の表面との間に配設された複数のスペーサをさらに含む、請求項4に記載のシステム。
  8. 前記システムが光源をさらに含み、前記イメージャアレイと前記光源とが、前記チャンバをはさんで互いに対向している、請求項1に記載のシステム。
  9. 前記イメージャアレイが、前記チャンバに隣接する第1の光学的に透明な部分を有する第1の構造に埋め込まれ、前記光源が、前記チャンバに隣接する第2の光学的に透明な部分を有する第2の構造に埋め込まれている、請求項8に記載のシステム。
  10. 前記第1の構造および前記第2の構造の少なくとも一方が、光学的に透明な層の積層スタックを含む、請求項9に記載のシステム。
  11. 前記光源が、可視光を発するように構成される、請求項8に記載のシステム。
  12. 前記イメージャアレイが、前記試料の前記流れのシャドウ画像を生成するように構成される、請求項11に記載のシステム。
  13. 前記光源が、紫外光を発するように構成され、前記イメージャアレイが、前記試料の前記流れの蛍光画像を生成するように構成される、請求項8に記載のシステム。
  14. 前記第1の構造と前記第2の構造とが一体形成される、請求項4に記載のシステム。
  15. 前記試料が少なくとも1つのPODを含む、請求項1に記載のシステム。
  16. 前記少なくとも1つのPODが検体を含む、請求項15に記載のシステム。
  17. 前記検体が、細胞、DNA、RNA、ヌクレオチド、タンパク質、および酵素からなる群の少なくとも1つを含む、請求項16に記載のシステム。
  18. 前記少なくとも1つのPODが検体を含まない、請求項15に記載のシステム。
  19. 試料を処理するためのシステムであって、
    第1の構造と、前記第1の構造に対向する第2の構造とによって少なくとも部分的に定められるチャンバであって、前記第1および第2の構造の各々が、光学的に透明である少なくとも一部分を有する、チャンバと、
    前記第1の構造に埋め込まれ、前記チャンバに向けて光を発するように構成された少なくとも1つの光源と、
    前記第2の構造に埋め込まれ、前記チャンバを撮像するように構成されたイメージャアレイであって、少なくとも1つのレンズレスイメージセンサを含む、イメージャアレイと
    を含む、システム。
  20. 前記チャンバが、少なくとも1つの入口と少なくとも1つの出口との間に前記試料の2次元の流れを収容するように構成される、請求項19に記載のシステム。
  21. 前記チャンバが、前記試料の少なくとも一部分を平坦化させるように構成される、請求項20に記載のシステム。
  22. 前記イメージャアレイが、レンズレスイメージセンサの2次元アレイを含む、請求項20に記載のシステム。
  23. 前記イメージャアレイが、前記試料の前記流れのシャドウ画像を生成するように構成される、請求項19に記載のシステム。
  24. 前記光源が、可視光を発するように構成される、請求項23に記載のシステム。
  25. 前記イメージャアレイが、前記試料の前記流れの蛍光画像を生成するように構成される、請求項19に記載のシステム。
  26. 前記光源が、紫外光を発するように構成される、請求項19に記載のシステム。
  27. 前記第1の構造および前記第2の構造の少なくとも一方が、光学的に透明な層の積層スタックを含む、請求項19に記載のシステム。
  28. 前記第1の構造および前記第2の構造の少なくとも一方が、平面処理によって形成される、請求項27に記載のシステム。
  29. 第1の表面および第2の表面が、前記試料の少なくとも一部分を平坦化させるように構成される、請求項19に記載のシステム。
  30. 前記チャンバ内で、前記第1の構造と前記第2の構造との間に配設された複数のスペーサをさらに含む、請求項27に記載のシステム。
  31. 前記複数のスペーサの中の少なくとも1つのスペーサが、前記第1の構造と前記第2の構造とを接合する固着材を含む、請求項30に記載のシステム。
  32. 前記固着材が金属を含む、請求項31に記載のシステム。
  33. 前記固着材がポリマー接着剤を含む、請求項31に記載のシステム。
  34. 前記試料が、少なくとも1つのPODを含む、請求項19に記載のシステム。
  35. 前記少なくとも1つのPODが検体を含む、請求項34に記載のシステム。
  36. 前記検体が、細胞、DNA、RNA、ヌクレオチド、タンパク質、および酵素からなる群の少なくとも1つを含む、請求項35に記載のシステム。
  37. 前記少なくとも1つのPODが検体を含まない、請求項34に記載のシステム。
  38. 複数の粒子を含む試料を処理するためのシステムであって、
    前記試料を収容するように構成されたチャンバを含み、前記チャンバが、
    前記試料中の粒子のうち選択された部分を統合するのに十分な電気エネルギーを送達するように構成された少なくとも1つの電極と、
    前記試料の粒子を粒子サイズに基づいて分離するように構成された分別機構と
    を含む、システム。
  39. 前記チャンバが、前記試料の2次元の流れを収容するように構成される、請求項38に記載のシステム。
  40. 前記チャンバが、前記チャンバの第1の表面と第2の対向する表面との間に延在する複数の電極を含む、請求項38に記載のシステム。
  41. 前記分別機構が、受動的分別機構である、請求項38に記載のシステム。
  42. 前記分別機構が、複数のスペーサを含む、請求項41に記載のシステム。
  43. 前記複数のスペーサが、千鳥型アレイとして配置され、決定論的横方向置換を介して粒子分離を行うように構成される、請求項42に記載のシステム。
  44. 前記チャンバが、第1の出口および第2の出口を含み、前記第1の出口は、所定の閾値粒子サイズを下回る粒子のみを実質的に通過させるサイズであり、前記第2の出口は、前記所定の閾値粒子サイズを上回る粒子を通過させるサイズである、請求項41に記載のシステム。
  45. 前記チャンバが、流体力学的濾過を介して粒子分離を行うように構成された複数の分岐チャネルを含む、請求項41に記載のシステム。
  46. 前記試料が複数のPODを含む、請求項38に記載のシステム。
  47. 前記チャンバ内の前記試料の1つまたは複数の画像を生成するように構成されたイメージャアレイと、前記少なくとも1つの電極を作動させて、前記試料の前記1つまたは複数の画像に基づいて粒子の前記選択された部分に電気エネルギーを送達させるように構成されたコントローラと、をさらに含む、請求項38に記載のシステム。
  48. 前記イメージャアレイが、少なくとも1つのレンズレスイメージセンサを含む、請求項47に記載のシステム。
  49. 試料を処理するためのシステムであって、
    試料の流れを収容するように構成されたチャンバであって、前記試料の少なくとも一部分に選択的に電気エネルギーを送達するように構成された少なくとも1つの電極を含む、チャンバと、
    前記チャンバ内の前記試料の前記流れを撮像するように構成されたイメージャアレイと、
    1つまたは複数の画像の分析に基づいて前記少なくとも1つの電極を作動させるように構成されたコントローラと
    を含む、システム。
  50. 前記チャンバが、前記試料の2次元の流れを収容するように構成される、請求項49に記載のシステム。
  51. 前記チャンバが複数の電極を含む、請求項49に記載のシステム。
  52. 前記コントローラが、電極の対を選択的に作動させるように構成される、請求項51に記載のシステム。
  53. 前記コントローラが、1つまたは複数の標的粒子と容量的に結合した1つまたは複数の電極を選択的に作動させるように構成される、請求項51に記載のシステム。
  54. 前記イメージャアレイが、少なくとも1つのレンズレスイメージセンサを含む、請求項49に記載のシステム。
  55. 前記試料の粒子を粒子サイズに基づいて分離するように構成された分別機構をさらに含む、請求項49に記載のシステム。
  56. 前記分別機構が、受動的分別機構である、請求項55に記載のシステム。
  57. 前記分別機構が、千鳥型アレイとして配置されると共に決定論的横方向置換を介して粒子分離を行うように構成された複数のスペーサを含む、請求項56に記載のシステム。
  58. 前記チャンバが、第1の出口および第2の出口を含み、前記第1の出口は、所定の閾値粒子サイズを下回る粒子のみを実質的に通過させるサイズであり、前記第2の出口は、前記所定の閾値粒子サイズを上回る粒子を通過させるサイズである、請求項56に記載のシステム。
  59. 前記チャンバが、流体力学的濾過を介して粒子分離を行うように構成された複数の分岐チャネルを含む、請求項56に記載のシステム。
  60. 複数の粒子を含む試料を処理するための方法であって、
    少なくとも1つの電極を含むチャンバ内に試料を受けるステップと、
    前記試料中の1つまたは複数の粒子を破棄粒子として特徴付けるステップと、
    前記少なくとも1つの電極から前記破棄粒子に電気エネルギーを送達することによって前記破棄粒子を統合するステップと、
    前記試料の粒子を粒子サイズに基づいて分別するステップと
    を含む、方法。
  61. 1つまたは複数の粒子を特徴付けるステップが、前記チャンバ内の前記試料の1つまたは複数の画像を受け取ること、および前記1つまたは複数の画像に基づいて1つまたは複数の粒子を特徴付けることを含む、請求項60に記載の方法。
  62. 前記1つまたは複数の画像が、前記試料の光学画像を含む、請求項61に記載の方法。
  63. 前記光学画像が、前記試料のシャドウ画像である、請求項62に記載の方法。
  64. 電気エネルギーを送達するステップが、波形に従って電極の対を作動させることを含む、請求項62に記載の方法。
  65. 前記波形が、約0.5V~約10Vの間のピーク間電圧を有する、請求項64に記載の方法。
  66. 前記波形が、約0.5V~約5Vの間のピーク間電圧を有する、請求項65に記載の方法。
  67. 前記波形が、約1Hz~1MHzの間の周波数を有する、請求項64に記載の方法。
  68. 前記波形が、約50Hz~約20kHzの間の周波数を有する、請求項67に記載の方法。
  69. 粒子を分別するステップが、決定論的横方向置換を介して分別することを含む、請求項60に記載の方法。
  70. 粒子を分別するステップが、第1のサイズの粒子が前記チャンバの第1の出口を通過することを許すこと、および第2のサイズの粒子が前記チャンバの第2の出口を通過することを許すことを含む、請求項60に記載の方法。
  71. 粒子を分別するステップが、流体力学的濾過を介して分別することを含む、請求項60に記載の方法。
  72. 前記試料中の前記粒子がPODである、請求項60に記載の方法。
  73. 前記粒子の少なくとも一部分が、目的の物質を分泌する1つまたは複数の細胞を含有し、前記試料中の1つまたは複数の粒子を特徴付けるステップが、前記1つまたは複数の細胞の分泌レベルを特徴付けることを含む、請求項60に記載の方法。
  74. 分泌レベルを特徴付けることが、前記1つまたは複数の細胞における凝集を特徴付けることを含む、請求項73に記載の方法。
  75. 前記試料が、粒子当たり平均で約0.1個の細胞を含む、請求項73に記載の方法。
  76. 分泌細胞を欠いている粒子が、破棄粒子として特徴付けられる、請求項73に記載の方法。
  77. 低分泌細胞を含有する粒子が、破棄粒子として特徴付けられる、請求項73に記載の方法。
  78. 前記1つまたは複数の細胞が、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞からなる群から選択される、請求項73に記載の方法。
  79. 前記目的の物質が抗体である、請求項73に記載の方法。
  80. 前記目的の物質がインスリンである、請求項73に記載の方法。
  81. 分別するステップが、閾値サイズを下回る粒子を、高分泌細胞を含む粒子として分別することを含む、請求項73に記載の方法。
  82. 細胞の集団からの目的の細胞の選択を可能にするためのシステムであって、
    約1.0よりも大きい密度を備えるカプセル化試薬と、
    水溶性媒体中に懸濁した第1の複数の粒子であって、前記第1の複数の粒子の各粒子は、前記目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、第1の複数の粒子と
    を含む、システム。
  83. 前記カプセル化試薬が界面活性剤を含む、請求項82に記載のシステム。
  84. 前記界面活性剤が、フッ素およびポリエチレングリコール(PEG)のうちの少なくとも1つを含む、請求項83に記載のシステム。
  85. 前記第1の結合相手と前記第2の結合相手との結合によって形成される第1のクラスタ部位をさらに含む、請求項82に記載のシステム。
  86. 前記第1の複数の粒子の各粒子が、約30nmから約50μmの間の直径を備える、請求項82に記載のシステム。
  87. 前記第1の複数の粒子が、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、および磁気ビーズからなる群から選択される少なくとも1つを含む、請求項82に記載のシステム。
  88. 前記第1の結合相手が第1のタンパク質を含み、前記第2の結合相手が第2のタンパク質を含む、請求項82に記載のシステム。
  89. 前記第1の結合相手または前記第2の結合相手が、抗原または抗体である、請求項88に記載のシステム。
  90. 前記第1の結合相手が第1のペプチドを含み、前記第2の結合相手が第2のペプチドを含む、請求項82に記載のシステム。
  91. 第2の複数の粒子をさらに含み、前記第2の複数の粒子の各粒子は、前記目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む、請求項82に記載のシステム。
  92. 前記細胞の集団からの前記目的の細胞の選択を可能にするための第1のクラスタ部位および第2のクラスタ部位をさらに含み、前記第1のクラスタ部位は、前記第1の結合相手と前記第2の結合相手との結合によって形成され、前記第2のクラスタ部位は、前記第3の結合相手と前記第4の結合相手との結合によって形成される、請求項91に記載のシステム。
  93. 前記第2の結合相手および前記目的の細胞によって分泌される前記第4の結合相手が、それぞれ抗体の第1の構成要素および第2の構成要素である、請求項92に記載のシステム。
  94. 前記抗体がIgGである、請求項93に記載のシステム。
  95. 前記第1の複数の粒子が、細胞の第2の集団を含み、前記第1の結合相手が、前記細胞の第2の集団上に発現した抗原を含む、請求項82に記載のシステム。
  96. カプセル化試薬と、
    水溶性媒体中に懸濁した1つまたは複数の第1の粒子であって、各第1の粒子は第1の結合相手を含む、1つまたは複数の第1の粒子と、
    細胞の集団であって、第2の結合相手を有する目的のタンパク質を分泌する少なくとも1つの目的の細胞を含み、前記第1の結合相手が前記第2の結合相手に特異的である、細胞の集団と
    を含む、混合物。
  97. 前記カプセル化試薬が界面活性剤を含む、請求項96に記載の混合物。
  98. 前記界面活性剤が、フッ素およびポリエチレングリコール(PEG)のうちの少なくとも1つを含む、請求項97に記載の混合物。
  99. 前記カプセル化試薬が、前記混合物の約60体積%~90体積%の間である、請求項96に記載の混合物。
  100. 前記1つまたは複数の第1の粒子が、前記混合物の約5体積%~20体積%の間である、請求項99に記載の混合物。
  101. 前記細胞の集団が、前記混合物の約5体積%~20体積%の間である、請求項99に記載の混合物。
  102. 複数の試料実体を含み、各試料実体が、前記1つまたは複数の第1の粒子、前記細胞の集団からの少なくとも1つの細胞、および前記水溶性媒体、からなる群の少なくとも1つをカプセル化する、請求項96に記載の混合物。
  103. 前記複数の試料実体が多分散試料実体を含む、請求項102に記載の混合物。
  104. 前記第1の結合相手と前記第2の結合相手との結合によって形成される第1のクラスタ部位をさらに含む、請求項96に記載の混合物。
  105. 前記第1の結合相手が第1のタンパク質を含み、前記第2の結合相手が第2のタンパク質を含む、請求項96に記載の混合物。
  106. 前記第1の結合相手または前記第2の結合相手が、抗原または抗体である、請求項105に記載の混合物。
  107. 前記第1の結合相手が第1のペプチドを含み、前記第2の結合相手が第2のペプチドを含む、請求項96に記載の混合物。
  108. 前記1つまたは複数の第1の粒子が、約30nmから約50μmの間の直径を備える、請求項96に記載の混合物。
  109. 1つまたは複数の第2の粒子をさらに含み、各第2の粒子が、前記少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む、請求項96に記載の混合物。
  110. 前記細胞の集団からの前記細胞の選択を可能にするための第1のクラスタ部位および第2のクラスタ部位をさらに含み、前記第1のクラスタ部位は、前記第1の結合相手と前記第2の結合相手との結合によって形成され、前記第2のクラスタ部位は、前記第3の結合相手と前記第4の結合相手との結合によって形成される、請求項109に記載の混合物。
  111. 前記第2の結合相手および前記第4の結合相手が、それぞれ抗体の第1の構成要素および第2の構成要素である、請求項110に記載の混合物。
  112. 前記抗体がIgGである、請求項106に記載の混合物。
  113. 前記細胞の集団が、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞からなる群から選択される少なくとも1つの細胞を含む、請求項96に記載の混合物。
  114. 前記1つまたは複数の第1の粒子が、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、および磁気ビーズからなる群から選択される少なくとも1つを含む、請求項96に記載の混合物。
  115. 前記1つまたは複数の第1の粒子が、1つまたは複数の細胞であり、前記第1の結合相手が、前記1つまたは複数の細胞上に発現した抗原を含む、請求項96に記載の混合物。
  116. クラスタリングアッセイシステム用の試料を調製する方法であって、
    細胞の集団を提供するステップであって、前記細胞の集団が、少なくとも1つの目的の細胞を含む、ステップと、
    前記細胞の集団、第1の複数の粒子、およびカプセル化試薬を組み合わせて混合物を作製するステップであって、前記第1の複数の粒子の各粒子は、水溶性媒体中に懸濁しており、前記少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、ステップと、
    前記混合物を攪拌してエマルジョンを作製し、それにより前記細胞の集団を複数の多分散試料実体内にカプセル化するステップと
    を含む、方法。
  117. 前記細胞の集団を提供するステップが、前記細胞の集団を希釈して、1ミリリットル当たり約100,000~1,000,000個の間の細胞である所望の細胞濃度を得ることをさらに含む、請求項116に記載の方法。
  118. 前記所望の細胞濃度が、1ミリリットル当たり約220,000個の細胞である、請求項117に記載の方法。
  119. 前記細胞の集団が、CHO細胞、B細胞、ハイブリドーマ細胞、形質細胞、HEK293細胞、骨髄腫細胞、およびT細胞からなる群から選択される、請求項116に記載の方法。
  120. 前記第1の複数の粒子が、ポリスチレン、金、セルロース、ラテックス、アガロース、ポリエチレングリコール(PEG)、ガラス、および磁気ビーズからなる群から選択される少なくとも1つを含む、請求項116に記載の方法。
  121. 前記第1の複数の粒子の各粒子が、約30nmから約50μmの間の直径を備える、請求項116に記載の方法。
  122. 前記第1の結合相手が第1のタンパク質を含み、前記第2の結合相手が第2のタンパク質を含む、請求項116に記載の方法。
  123. 前記第1の結合相手または前記第2の結合相手が、抗原または抗体である、請求項122に記載の方法。
  124. 前記第1の結合相手が第1のペプチドを含み、前記第2の結合相手が第2のペプチドを含む、請求項116に記載の方法。
  125. 前記細胞の集団、前記第1の複数の粒子および前記カプセル化試薬を組み合わせることが、前記混合物を作製するために第2の複数の粒子を加えることをさらに含み、第2の複数の粒子の各粒子は、前記少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む、請求項116に記載の方法。
  126. 前記第2の結合相手および前記第4の結合相手が、それぞれ抗体の第1の構成要素および第2の構成要素である、請求項124に記載の方法。
  127. 前記エマルジョンが、試料実体当たり約0~約10個の間の細胞であるλ値によって特徴付けられ、λは、前記複数の多分散試料実体の試料実体当たりの細胞数である、請求項116に記載の方法。
  128. λが、試料実体当たり約0.1~約1個の間の細胞である、請求項126に記載の方法。
  129. 前記エマルジョンを所定の長さの時間にわたって培養するステップをさらに含む、請求項116に記載の方法。
  130. 前記所定の長さの時間が、約1時間~約6時間の間である、請求項129に記載の方法。
  131. 前記第1の複数の粒子が、細胞の第2の集団を含み、前記第1の結合相手が、前記細胞の第2の集団上に発現した抗原を含む、請求項116に記載の方法。
  132. 細胞の集団から少なくとも1つの目的の細胞を選択する方法であって、
    前記細胞の集団と第1の複数の粒子とを含むエマルジョンを提供するステップであって、前記細胞の集団および前記第1の複数の粒子が複数の多分散試料実体内にカプセル化され、前記第1の複数の粒子の各粒子が水溶性媒体中に懸濁しており、前記少なくとも1つの目的の細胞によって分泌される第2の結合相手に特異的である第1の結合相手を含む、ステップと、
    少なくとも1つの試料実体についてのシグナルを測定するステップであって、前記シグナルは、前記第1の結合相手と前記第2の結合相手との結合に少なくとも部分的に関連する、ステップと、
    前記測定されたシグナルに少なくとも部分的に基づいて前記少なくとも1つの目的の細胞を特定するステップと
    を含む、方法。
  133. 前記第2の結合相手が、前記少なくとも1つの目的の細胞によって分泌される目的のタンパク質の第1の成分と連結し、前記測定されたシグナルが、前記少なくとも1つの試料実体内の前記目的のタンパク質を定量化する、請求項132に記載の方法。
  134. 前記少なくとも1つの目的の細胞を特定するステップが、所定の閾値よりも大きい測定シグナルを有する前記試料実体の少なくとも一部分を特定することを含む、請求項133に記載の方法。
  135. 前記少なくとも1つの目的の細胞が、少なくとも閾値量の前記目的のタンパク質を分泌する、請求項133に記載の方法。
  136. 前記少なくとも1つの試料実体についての前記シグナルを測定するステップが、前記少なくとも1つの試料実体の少なくとも1つのシャドウ画像を受け取り、前記少なくとも1つのシャドウ画像に基づいて前記試料実体内の少なくとも1つの物体のサイズスコアを決定することを含み、前記測定されたシグナルが、前記サイズスコアに少なくとも部分的に基づく、請求項132に記載の方法。
  137. 前記少なくとも1つのシャドウ画像を生成するように構成されたイメージャアレイに隣接するチャンバ内に前記エマルジョンを導入するステップをさらに含む、請求項136に記載の方法。
  138. 前記エマルジョンが、前記複数の多分散試料実体内にカプセル化された第2の複数の粒子をさらに含み、前記第2の複数の粒子の各粒子が、前記少なくとも1つの目的の細胞によって分泌される第4の結合相手に特異的である第3の結合相手を含む、請求項132に記載の方法。
  139. 前記シグナルが、前記第1の結合相手と前記第2の結合相手との結合に少なくとも部分的に関連し、前記第3の結合相手と前記第4の結合相手との結合に少なくとも部分的に関連する、請求項138に記載の方法。
  140. 前記第2の結合相手および前記第4の結合相手が、前記少なくとも1つの目的の細胞によって分泌される目的のタンパク質に関連し、前記測定されたシグナルが、前記第1の結合相手または前記第3の結合相手に対する前記目的のタンパク質の結合親和性を定量化する、請求項139に記載の方法。
  141. 前記測定されたシグナルが、目的の細胞から分泌される抗体の抗原結合親和性を定量化する、請求項140に記載の方法。
  142. 前記多分散試料実体から前記少なくとも1つの目的の細胞を取り出すステップをさらに含む、請求項132に記載の方法。
  143. 前記少なくとも1つの取り出された目的の細胞を、PCR、FACS、DNAシーケンシング、およびELISAの少なくとも1つで分析するステップをさらに含む、請求項142に記載の方法。
  144. 前記第1の複数の粒子が、細胞の第2の集団を含み、前記第1の結合相手が、前記細胞の第2の集団上に発現した抗原を含む、請求項132に記載の方法。
JP2021519137A 2018-10-08 2019-10-08 試料を光学的に処理するためのシステムおよび方法 Pending JP2022504466A (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862742833P 2018-10-08 2018-10-08
US62/742,833 2018-10-08
US201962800385P 2019-02-01 2019-02-01
US62/800,385 2019-02-01
US201962859666P 2019-06-10 2019-06-10
US62/859,666 2019-06-10
PCT/US2019/055268 WO2020076872A1 (en) 2018-10-08 2019-10-08 Systems and methods for optically processing samples

Publications (1)

Publication Number Publication Date
JP2022504466A true JP2022504466A (ja) 2022-01-13

Family

ID=70164389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021519137A Pending JP2022504466A (ja) 2018-10-08 2019-10-08 試料を光学的に処理するためのシステムおよび方法

Country Status (5)

Country Link
US (3) US11154863B2 (ja)
EP (1) EP3864392A4 (ja)
JP (1) JP2022504466A (ja)
CN (1) CN113167715A (ja)
WO (1) WO2020076872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163162A1 (ja) * 2022-02-25 2023-08-31 株式会社オンチップ・バイオテクノロジーズ 液滴内の粒子の検出方法と、その粒子を含む液滴の分取と分注方法と分注後に液滴から粒子を外部に取り出す方法と、その装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3864392A4 (en) 2018-10-08 2022-08-10 Bioelectronica Corporation OPTICAL SAMPLE PROCESSING SYSTEMS AND METHODS
CN114198389B (zh) * 2021-11-15 2022-07-05 哈尔滨工业大学 一种用于工件台微转动的柔性铰链组件
US20240024551A1 (en) * 2022-07-25 2024-01-25 William M. Gosney Apparatus utilizing venting for processing of blood to remove pathogen cells therein
US11872333B1 (en) 2022-07-25 2024-01-16 William M. Gosney Cassette apparatus utilizing venting for processing of blood to remove pathogen cells therein
US20240024552A1 (en) * 2022-07-25 2024-01-25 William M. Gosney Apparatus utilizing electric energy for processing of blood to neutralize pathogen cells therein
US20240024555A1 (en) * 2022-07-25 2024-01-25 William M. Gosney Apparatus for processing of blood to neutralize pathogen cells therein

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE139341T1 (de) 1989-08-23 1996-06-15 Canon Kk Methode zur messung eines immunologisch aktiven materials und dazu geeignete vorrichtung
US5681752A (en) 1995-05-01 1997-10-28 The Regents Of The University Of California Method and apparatus for determining the size and chemical composition of aerosol particles
US6259807B1 (en) 1997-05-14 2001-07-10 Applied Imaging Corp. Identification of objects of interest using multiple illumination schemes and finding overlap of features in corresponding multiple images
US7004184B2 (en) * 2000-07-24 2006-02-28 The Reagents Of The University Of Michigan Compositions and methods for liquid metering in microchannels
WO2002023163A1 (en) 2000-09-15 2002-03-21 California Institute Of Technology Microfabricated crossflow devices and methods
US7001322B2 (en) 2000-10-04 2006-02-21 Zymequest, Inc. Multiple processing chamber set and use thereof
DE50200275D1 (de) * 2002-02-01 2004-04-08 Leister Process Technologies S Mikrofluidisches Bauelement und Verfahren für die Sortierung von Partikeln in einem Fluid
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US7776584B2 (en) 2003-08-01 2010-08-17 Genetix Limited Animal cell colony picking apparatus and method
US7298478B2 (en) 2003-08-14 2007-11-20 Cytonome, Inc. Optical detector for a particle sorting system
US8974652B2 (en) 2004-05-28 2015-03-10 Board Of Regents, The University Of Texas System Programmable fluidic processors
US7126134B2 (en) 2004-08-19 2006-10-24 Palo Alto Research Center Incorporated Sample manipulator
US7351603B2 (en) * 2004-08-20 2008-04-01 Integrated Sensing Systems, Inc. Process of making a microtube and microfluidic devices formed therewith
US7968287B2 (en) * 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
JP4185904B2 (ja) 2004-10-27 2008-11-26 株式会社日立ハイテクノロジーズ 液体搬送基板、分析システム、分析方法
EP1859330B1 (en) 2005-01-28 2012-07-04 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
US7901947B2 (en) * 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US7635420B1 (en) 2006-11-21 2009-12-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Dielectrophoresis-based particle sensor using nanoelectrode arrays
GB0701201D0 (en) 2007-01-22 2007-02-28 Cancer Rec Tech Ltd Cell mapping and tracking
US7738094B2 (en) * 2007-01-26 2010-06-15 Becton, Dickinson And Company Method, system, and compositions for cell counting and analysis
US7882726B2 (en) 2007-05-08 2011-02-08 Porous Materials, Inc. Compression vacuapore for determination of pore structure characteristics of hydrophobic materials under compressive stress
US20090068170A1 (en) 2007-07-13 2009-03-12 President And Fellows Of Harvard College Droplet-based selection
CN201075104Y (zh) 2007-07-13 2008-06-18 东南大学 基于复合介电泳的单细胞介电谱自动测试装置
WO2009037680A2 (en) 2007-09-20 2009-03-26 Jean-Louis Viovy Encapsulation microfluidic device
EP2511708B1 (en) 2007-10-05 2016-09-14 Affymetrix, Inc. Highly multiplexed particle-based assays
JP5324598B2 (ja) 2007-12-04 2013-10-23 パーティクル・メージャーリング・システムズ・インコーポレーテッド 非直角粒子検出システム及び方法
WO2009076414A2 (en) 2007-12-10 2009-06-18 Advanced Liquid Logic, Inc. Droplet actuator configurations and methods
WO2010005593A1 (en) * 2008-07-11 2010-01-14 President And Fellows Of Harvard College Systems and methods of droplet-based selection
WO2010009365A1 (en) * 2008-07-18 2010-01-21 Raindance Technologies, Inc. Droplet libraries
US9156010B2 (en) 2008-09-23 2015-10-13 Bio-Rad Laboratories, Inc. Droplet-based assay system
EP2432869B1 (en) 2009-05-21 2020-08-12 Essen Instruments, Inc. d/b/a Essen BioScience, Inc. System and method for separating samples in a continuous flow
EP2259045A1 (en) 2009-06-05 2010-12-08 Koninklijke Philips Electronics N.V. Multi-frequency impedance method and apparatus for discriminating and counting particles expressing a specific marker
WO2011020011A2 (en) 2009-08-13 2011-02-17 Advanced Liquid Logic, Inc. Droplet actuator and droplet-based techniques
FR2950699A1 (fr) 2009-09-29 2011-04-01 Centre Nat Rech Scient Dispositif a usage unique pour la detection de particules d'interet, telles que des entites biologiques, systeme de detection comprenant ledit dispositif et procede de mise en oeuvre
JP5639654B2 (ja) 2009-10-20 2014-12-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア オンチップでの非干渉性のレンズフリーのホログラフィおよび顕微鏡法
WO2011139641A2 (en) 2010-05-03 2011-11-10 The Regents Of The University Of California Wide-field lensless fluorescent imaging on a chip
CA2714638C (en) 2010-09-03 2013-08-27 Schlumberger Canada Limited Phase behavior analysis using a microfluidic platform
US9999886B2 (en) 2010-10-07 2018-06-19 The Regents Of The University Of California Methods and systems for on demand droplet generation and impedance based detection
EP2661603A4 (en) 2011-01-06 2014-07-23 Univ California Lensless Tomographic Imaging Devices and Methods
US20120196770A1 (en) 2011-01-28 2012-08-02 Amyris, Inc. Gel-encapsulated microcolony screening
US8866063B2 (en) 2011-03-31 2014-10-21 The Regents Of The University Of California Lens-free wide-field super-resolution imaging device
AU2015264833B2 (en) 2011-04-14 2017-09-14 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
JP5848458B2 (ja) 2011-10-27 2016-01-27 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 化学種をフィルタリングする装置
WO2013096804A2 (en) 2011-12-23 2013-06-27 Abbott Point Of Care Inc Optical assay device with pneumatic sample actuation
EP2807475A4 (en) 2012-01-27 2015-10-07 Univ Tennessee Res Foundation METHODS AND APPARATUS FOR DETECTION OF AN ALTERNATING CURRENT ELECTROKINETIC BIOMARKER
RU2015101834A (ru) * 2012-06-22 2016-08-10 Малверн Инструментс Лимитед Определение характеристик гетерогенных флюидных проб
US20140067342A1 (en) 2012-08-28 2014-03-06 Numerica Corporation Particle tracking in biological systems
US20140093911A1 (en) 2012-09-28 2014-04-03 Tao Sun Method and apparatus for image-based prediction and sorting of high-performing clones
EA201591800A1 (ru) * 2013-03-15 2016-04-29 Ричард Гарри Тернер Система и способы обнаружения частиц и растворимых химических структурных элементов in vitro в физиологических текучих средах
FR3009084B1 (fr) 2013-07-23 2015-08-07 Commissariat Energie Atomique Procede pour trier des cellules et dispositif associe.
US20160231324A1 (en) 2013-09-24 2016-08-11 The Regents Of The University Of California Encapsulated sensors and sensing systems for bioassays and diagnostics and methods for making and using them
DK3071704T3 (da) * 2013-11-20 2022-04-19 Brigham & Womens Hospital Inc System og fremgangsmåde til sortering af sperm
CA3158669A1 (en) * 2013-12-17 2015-06-25 Alentic Microscience Inc. Dosimeters including lensless imaging systems
CN107075441A (zh) * 2014-07-30 2017-08-18 卡斯西部储备大学 诊断血红蛋白病症和监测血细胞的生物芯片
US10871745B2 (en) 2014-08-01 2020-12-22 The Regents Of The University Of California Device and method for iterative phase recovery based on pixel super-resolved on-chip holography
EP3201309A4 (en) 2014-09-30 2018-07-11 Dxnow Inc. Systems and methods for determining probative samples and isolation and quantitation of cells
CA3001986C (en) * 2014-10-22 2023-02-21 The Regents Of The University Of California High definition microdroplet printer
DE112016000842T5 (de) 2015-02-20 2017-11-23 Artium Technologies, Inc. Gekreuzte-Strahlen-Abbildung mittels Mehrfachstrahl- und Konvergentes-Licht-Beleuchtung
EP3086155A1 (en) * 2015-04-23 2016-10-26 Fundació Institut de Ciències Fotòniques Image cytometer for characterization and quantification of particulate samples
WO2016174229A1 (en) * 2015-04-30 2016-11-03 European Molecular Biology Laboratory Microfluidic droplet detection and sorting
WO2017037078A1 (en) 2015-09-02 2017-03-09 Illumina Cambridge Limited Systems and methods of improving droplet operations in fluidic systems
GB201521383D0 (en) * 2015-12-03 2016-01-20 Ucb Biopharma Sprl And Ucb Celltech Method
FR3047077B1 (fr) 2016-01-25 2020-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d’observation d’un echantillon par imagerie sans lentille
US10718004B2 (en) 2016-12-20 2020-07-21 Lawrence Livermore National Security, Llc Droplet array for single-cell analysis
EP3631414A4 (en) 2017-05-22 2021-03-10 Bioelectronica Corporation ASSAY SYSTEMS AND METHODS FOR PROCESSING SAMPLE ENTITIES
CN107828654B (zh) 2017-10-20 2019-12-03 江苏大学 基于无透镜衍射成像的细胞活性无标记监测装置与方法
EP3814749A4 (en) 2018-07-31 2022-04-06 The Regents Of The University Of Colorado SYSTEMS AND METHODS FOR APPLYING MACHINE LEARNING TO ANALYZE MICROSCOPY IMAGES IN HIGH-THROUGHPUT SYSTEMS
GB2576191B (en) 2018-08-08 2022-11-16 Sphere Fluidics Ltd Droplet processing methods and systems
EP3864392A4 (en) 2018-10-08 2022-08-10 Bioelectronica Corporation OPTICAL SAMPLE PROCESSING SYSTEMS AND METHODS
EP3870952A4 (en) 2018-10-22 2022-10-26 Bioelectronica Corporation MULTIPLEXED TEST SYSTEMS AND METHODS
US20220212188A1 (en) 2019-05-02 2022-07-07 The Regents Of The University Of California Laser-induced confocal microscope and microfluidic device for dielectrophoretic fluorescence-activated droplet sorting
CA3137746A1 (en) 2019-05-14 2020-11-19 Christian SILTANEN Platform for the deterministic assembly of microfluidic droplets
CA3141069A1 (en) 2019-05-31 2020-12-03 Amberstone Biosciences, Inc. Microfluidic determination of low abundance events

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163162A1 (ja) * 2022-02-25 2023-08-31 株式会社オンチップ・バイオテクノロジーズ 液滴内の粒子の検出方法と、その粒子を含む液滴の分取と分注方法と分注後に液滴から粒子を外部に取り出す方法と、その装置

Also Published As

Publication number Publication date
US20200200729A1 (en) 2020-06-25
US11253858B2 (en) 2022-02-22
US11154863B2 (en) 2021-10-26
US20200179929A1 (en) 2020-06-11
US20220331801A1 (en) 2022-10-20
WO2020076872A1 (en) 2020-04-16
EP3864392A4 (en) 2022-08-10
CN113167715A (zh) 2021-07-23
EP3864392A1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP2022504466A (ja) 試料を光学的に処理するためのシステムおよび方法
JP6576374B2 (ja) 集団検出によるアリコート選別
CN107110854B (zh) 分析液滴内容物的方法及相关装置
US20130260396A1 (en) Holographic fluctuation microscopy apparatus and method for determining mobility of particle and/or cell dispersions
CN108593916A (zh) 基于外泌体的癌症检测***及方法
JP2020098202A (ja) アッセイシステムおよびカートリッジデバイス
CN109142756B (zh) 一种单分子蛋白的检测方法
CN108593416B (zh) 微纳粒子检测***及方法
JP2008003074A (ja) マイクロ流体デバイス、計測装置及びマイクロ流体撹拌方法
CN108593910A (zh) 基于微球载体的粒子检测***及方法
CN109709035A (zh) 一种微流控芯片的sers检测方法及***
EP4336168A2 (en) Device and method for microdroplet detection of cells
Sista Development of a digital microfluidic lab-on-a-chip for automated immunoassay with magnetically responsive beads
CN208140539U (zh) 基于微球载体的粒子检测***
US20200158628A1 (en) Multiplexed assay systems and methods
Piao et al. Digital microfluidic platform for automated detection of human chorionic gonadotropin
CN110967513B (zh) 样本初筛芯片、样品检测方法及筛选芯片装置
CN207991930U (zh) 微纳粒子检测***
Wiklund et al. Fluorescence-microscopy-based image analysis for analyte-dependent particle doublet detection in a single-step immunoagglutination assay
JP5812469B2 (ja) 細胞分離チップ
Hung et al. A simple microfluidics for real-time plasma separation and hCG detection from whole blood
EP3629020B1 (en) Microfluidic droplet-based assay process and apparatus
JP7157132B2 (ja) 測定方法
Kirmani Detection and Quantification of Rare Analytes in Biological Samples using Dielectrophoretic Spectroscopy