JP2022190786A - Bipolar electrode and power storage device - Google Patents

Bipolar electrode and power storage device Download PDF

Info

Publication number
JP2022190786A
JP2022190786A JP2021099226A JP2021099226A JP2022190786A JP 2022190786 A JP2022190786 A JP 2022190786A JP 2021099226 A JP2021099226 A JP 2021099226A JP 2021099226 A JP2021099226 A JP 2021099226A JP 2022190786 A JP2022190786 A JP 2022190786A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
layer
bipolar
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021099226A
Other languages
Japanese (ja)
Inventor
佑介 杉山
Yusuke Sugiyama
隆弘 杉岡
Takahiro Sugioka
まどか 大谷
Madoka Otani
修一 安田
Shuichi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2021099226A priority Critical patent/JP2022190786A/en
Priority to PCT/JP2022/005495 priority patent/WO2022264499A1/en
Publication of JP2022190786A publication Critical patent/JP2022190786A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To improve the capacity maintenance rate of a power storage device.SOLUTION: A bipolar electrode 10 includes a bipolar current collector 20, a positive electrode active material layer 30 provided on the surface of a positive electrode current collector 21, and a negative electrode active material layer 40 provided on the surface of a negative electrode current collector 22. The bipolar current collector 20 includes the positive electrode current collector 21 having an aluminum layer 21a and the negative electrode current collector 22 having a copper layer 22a. On the surface of the negative electrode current collector 22, at a portion bonded to the negative electrode active material layer 40, an oxide film 23 containing magnesium oxide is provided.SELECTED DRAWING: Figure 1

Description

本発明は、バイポーラ電極及び蓄電装置に関する。 The present invention relates to bipolar electrodes and power storage devices.

近年、バイポーラ電極を用いた蓄電装置に関する研究が行われている。バイポーラ電極は、正極集電体及び負極集電体を備えるバイポーラ集電体と、正極集電体の表面に設けられた正極活物質層と、負極集電体の表面に設けられた負極活物質層とを備える。バイポーラ電極を用いた蓄電装置は、体積エネルギー密度及び出力の向上の観点において他の蓄電装置よりも優位であることが期待されている。 In recent years, research has been conducted on power storage devices using bipolar electrodes. The bipolar electrode includes a bipolar current collector having a positive electrode current collector and a negative electrode current collector, a positive electrode active material layer provided on the surface of the positive electrode current collector, and a negative electrode active material provided on the surface of the negative electrode current collector. a layer; Power storage devices using bipolar electrodes are expected to be superior to other power storage devices in terms of improvement in volumetric energy density and output.

特許文献1には、厚さ20μmのアルミニウム箔と厚さ10μmの銅箔を圧延加工してなるクラッド材をバイポーラ集電体に用いたバイポーラ電極が開示されている。特許文献1のバイポーラ集電体の場合、アルミニウム箔を圧延してなるアルミニウム層が正極集電体となり、銅箔を圧延してなる銅層が負極集電体となる。 Patent Literature 1 discloses a bipolar electrode in which a clad material obtained by rolling an aluminum foil with a thickness of 20 μm and a copper foil with a thickness of 10 μm is used as a bipolar current collector. In the case of the bipolar current collector of Patent Document 1, an aluminum layer formed by rolling an aluminum foil serves as a positive electrode collector, and a copper layer formed by rolling a copper foil serves as a negative electrode collector.

特開平08-007926号公報Japanese Patent Application Laid-Open No. 08-007926

本発明者らは、アルミニウム層及び銅層を有するバイポーラ集電体の表面における負極活物質層が設けられる部分に、酸化マグネシウムを含有する酸化被膜を設けたバイポーラ電極を作製した。そして、作製バイポーラ電極を用いた蓄電装置の電池特性を測定したところ、蓄電装置の容量維持率が向上することを見出した。 The present inventors produced a bipolar electrode in which an oxide film containing magnesium oxide was provided on a portion of the surface of a bipolar current collector having an aluminum layer and a copper layer, where the negative electrode active material layer was provided. Then, when the battery characteristics of the power storage device using the manufactured bipolar electrode were measured, it was found that the capacity retention rate of the power storage device was improved.

本発明のバイポーラ電極は、アルミニウム層を有する正極集電体及び銅層を有する負極集電体を備えるバイポーラ集電体と、前記正極集電体の表面に設けられた正極活物質層と、前記負極集電体の表面に設けられた負極活物質層とを備えるバイポーラ電極であって、前記負極集電体の表面における前記負極活物質層との接着部分には、酸化マグネシウムを含有する酸化被膜が設けられている。 The bipolar electrode of the present invention comprises: a bipolar current collector comprising a positive electrode current collector having an aluminum layer and a negative electrode current collector having a copper layer; a positive electrode active material layer provided on the surface of the positive electrode current collector; A bipolar electrode comprising a negative electrode active material layer provided on a surface of a negative electrode current collector, wherein an oxide film containing magnesium oxide is formed on a portion of the surface of the negative electrode current collector that is bonded to the negative electrode active material layer. is provided.

上記バイポーラ電極において、前記負極集電体の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、1質量%以上であることが好ましい。 In the bipolar electrode, the content of magnesium measured by fluorescent X-ray analysis of the portion of the surface of the negative electrode current collector provided with the oxide film is preferably 1% by mass or more.

上記バイポーラ電極において、前記酸化被膜は、前記銅層の表面に設けられ、前記銅層の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、前記蛍光X線分析で測定される銅100質量部に対して1質量部以上であることが好ましい。 In the bipolar electrode, the oxide film is provided on the surface of the copper layer, and the content of magnesium measured by fluorescent X-ray analysis of the portion of the surface of the copper layer where the oxide film is provided. is preferably 1 part by mass or more with respect to 100 parts by mass of copper measured by the X-ray fluorescence analysis.

上記バイポーラ電極において、前記負極集電体は、前記銅層と、前記銅層の表面に積層されたニッケル層とを備え、前記酸化被膜は、前記ニッケル層の表面に設けられ、前記ニッケル層の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、前記蛍光X線分析で測定される銅及びニッケルの合計質量100質量部に対して1質量部以上であることが好ましい。 In the above bipolar electrode, the negative electrode current collector includes the copper layer and a nickel layer laminated on the surface of the copper layer, and the oxide film is provided on the surface of the nickel layer, The content of magnesium measured by fluorescent X-ray analysis targeting the portion of the surface where the oxide film is provided is relative to the total mass of 100 parts by mass of copper and nickel measured by the fluorescent X-ray analysis. It is preferably 1 part by mass or more.

上記バイポーラ電極において、前記銅層は、めっき層であり、前記負極活物質層は、リチウムイオンを吸蔵及び放出可能な負極活物質を含有することが好ましい。
本発明の蓄電装置は、上記バイポーラ電極を備える。
In the above bipolar electrode, it is preferable that the copper layer is a plated layer, and the negative electrode active material layer contains a negative electrode active material capable of intercalating and deintercalating lithium ions.
A power storage device of the present invention includes the bipolar electrode described above.

本発明によれば、蓄電装置の容量維持率を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the capacity|capacitance retention rate of an electrical storage apparatus can be improved.

バイポーラ電極の断面図。Sectional drawing of a bipolar electrode. 蓄電装置の断面図。Sectional drawing of an electrical storage apparatus.

以下、本発明を具体化した一実施形態を図面にしたがって説明する。
(バイポーラ電極)
本実施形態のバイポーラ電極は、蓄電装置の電極として用いられる。蓄電装置は、例えば、ニッケル水素二次電池又はリチウムイオン二次電池等の二次電池である。また、蓄電装置は、電気二重層キャパシタであってもよい。本実施形態では、リチウムイオン二次電池に用いられるバイポーラ電極について説明する。
An embodiment embodying the present invention will be described below with reference to the drawings.
(bipolar electrode)
The bipolar electrode of this embodiment is used as an electrode of a power storage device. The power storage device is, for example, a secondary battery such as a nickel-hydrogen secondary battery or a lithium-ion secondary battery. Also, the power storage device may be an electric double layer capacitor. In this embodiment, a bipolar electrode used for a lithium ion secondary battery will be described.

図1に示すように、バイポーラ電極10は、バイポーラ集電体20と、バイポーラ集電体20の第1主面20aに設けられた正極活物質層30と、バイポーラ集電体20の第2主面20bに設けられた負極活物質層40とを備えている。 As shown in FIG. 1, the bipolar electrode 10 includes a bipolar current collector 20, a positive electrode active material layer 30 provided on a first main surface 20a of the bipolar current collector 20, and a second main surface 20a of the bipolar current collector 20. and a negative electrode active material layer 40 provided on the surface 20b.

<バイポーラ集電体>
バイポーラ集電体20は、第1主面20aを形成するシート状の正極集電体21と、第2主面20bを形成するシート状の負極集電体22とが厚さ方向に一体に接合されてなる積層体である。バイポーラ集電体20は、蓄電装置の放電又は充電の間、正極活物質層30及び負極活物質層40に電流を流し続けるための化学的に不活性な電気伝導体である。
<Bipolar current collector>
In the bipolar current collector 20, a sheet-like positive electrode current collector 21 forming a first main surface 20a and a sheet-like negative electrode current collector 22 forming a second main surface 20b are joined integrally in the thickness direction. It is a laminate formed by Bipolar current collector 20 is a chemically inert electrical conductor for continuing current flow through positive electrode active material layer 30 and negative electrode active material layer 40 during discharge or charge of the power storage device.

正極集電体21は、必須構成として、アルミニウムを主成分とするアルミニウム層21aを備えている。アルミニウム層21aは、アルミニウム単体からなる層であってもよいし、アルミニウム合金からなる層であってもよい。アルミニウム合金としては、例えば、Al-Mn合金、Al-Mg合金、Al-Mg-Si合金が挙げられる。アルミニウム層21aにおけるアルミニウムの含有割合は、例えば、50質量%以上であり、好ましくは70質量%以上である。アルミニウム層21aの形態は、例えば、箔、シート、フィルムである。アルミニウム層21aの厚さは、例えば、10μm以上100μm以下である。 The positive electrode current collector 21 includes an aluminum layer 21a containing aluminum as a main component as an essential component. The aluminum layer 21a may be a layer made of aluminum alone or a layer made of an aluminum alloy. Examples of aluminum alloys include Al--Mn alloys, Al--Mg alloys and Al--Mg--Si alloys. The content of aluminum in the aluminum layer 21a is, for example, 50% by mass or more, preferably 70% by mass or more. The form of the aluminum layer 21a is, for example, foil, sheet, or film. The thickness of the aluminum layer 21a is, for example, 10 μm or more and 100 μm or less.

また、正極集電体21は、アルミニウム層21aのみにより構成される単体物であってもよいし、アルミニウム層21a以外の部分を備える複合体であってもよい。図1では、一例として、アルミニウム層21aのみにより構成される正極集電体21を図示している。 Moreover, the positive electrode current collector 21 may be a single body composed only of the aluminum layer 21a, or may be a composite body including portions other than the aluminum layer 21a. FIG. 1 shows, as an example, the positive electrode current collector 21 composed only of the aluminum layer 21a.

上記複合体としては、例えば、第1主面20aとなる表面がアルミニウム層21aである多層構造体、アルミニウム層21aに該当するアルミニウム膜によって被覆された基材が挙げられる。アルミニウム層21a以外の部分を構成する材料としては、例えば、金属材料、導電性樹脂材料、導電性無機材料が挙げられる。上記金属材料としては、例えば、チタン、ステンレス鋼(例えばJIS G 4305:2015にて規定されるSUS304、SUS316、SUS301、SUS304等)が挙げられる。上記導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。 Examples of the composite include a multilayer structure having an aluminum layer 21a on the first main surface 20a, and a substrate coated with an aluminum film corresponding to the aluminum layer 21a. Examples of materials that form portions other than the aluminum layer 21a include metal materials, conductive resin materials, and conductive inorganic materials. Examples of the metal material include titanium and stainless steel (eg, SUS304, SUS316, SUS301, SUS304, etc. defined in JIS G 4305:2015). Examples of the conductive resin material include a resin obtained by adding a conductive filler to a conductive polymer material or a non-conductive polymer material as necessary.

負極集電体22は、必須構成として、銅を主成分とする銅層22aを備えている。銅層22aは、銅単体からなる層であってもよいし、銅合金からなる層であってもよい。銅合金としては、例えば、洋白、白銅、ベリリウム銅が挙げられる。銅層22aにおける銅の含有割合は、例えば、50質量%以上であり、好ましくは70質量%以上である。銅層22aの形態は、例えば、めっき層、箔である。銅層22aの厚さは、例えば、8μm以上20μm以下である。また、めっき層である場合の銅層22aの厚さは、例えば、1μm以上10μm以下であり、好ましくは3μm以上8μm以下である。 The negative electrode current collector 22 includes, as an essential component, a copper layer 22a containing copper as a main component. The copper layer 22a may be a layer made of copper alone or a layer made of a copper alloy. Examples of copper alloys include nickel silver, cupronickel, and beryllium copper. The content of copper in the copper layer 22a is, for example, 50% by mass or more, preferably 70% by mass or more. The form of the copper layer 22a is, for example, a plated layer or foil. The thickness of the copper layer 22a is, for example, 8 μm or more and 20 μm or less. The thickness of the copper layer 22a in the case of being a plated layer is, for example, 1 μm or more and 10 μm or less, preferably 3 μm or more and 8 μm or less.

また、負極集電体22は、銅層22aのみにより構成される単体物であってもよいし、銅層22a以外のその他の層を備える多層構造体であってもよい。上記その他の層としては、例えば、ニッケルを主成分とするニッケル層が挙げられる。上記その他の層は、銅層22aよりも正極集電体21側に設けられていてもよいし、銅層22aよりも第2主面20b側に設けられていてもよい。図1では、一例として、銅層22aと、銅層22aの表面に積層されるとともに第2主面20bを形成するニッケル層22bとを備える二層構造の負極集電体22を図示している。 Further, the negative electrode current collector 22 may be a single body composed only of the copper layer 22a, or may be a multilayer structure including layers other than the copper layer 22a. Examples of the other layer include a nickel layer containing nickel as a main component. The other layers may be provided closer to the positive electrode current collector 21 than the copper layer 22a, or may be provided closer to the second main surface 20b than the copper layer 22a. FIG. 1 shows, as an example, a negative electrode current collector 22 having a two-layer structure including a copper layer 22a and a nickel layer 22b laminated on the surface of the copper layer 22a and forming the second main surface 20b. .

ニッケル層22bは、ニッケル単体からなる層であってもよいし、ニッケル合金からなる層であってもよい。ニッケル合金としては、例えば、ハステロイ、ニクロム、モネル、サンプラチナ、パーマロイが挙げられる。ニッケル層22bにおけるニッケルの含有割合は、例えば、50質量%以上であり、好ましくは70質量%以上である。ニッケル層22bの形態は、例えば、めっき層、箔である。ニッケル層22bの厚さは、例えば、8μm以上20μm以下である。また、めっき層である場合のニッケル層22bの厚さは、例えば、1μm以上10μm以下である。 The nickel layer 22b may be a layer made of nickel alone or a layer made of a nickel alloy. Nickel alloys include, for example, Hastelloy, Nichrome, Monel, Sunplatinum, and Permalloy. The content of nickel in the nickel layer 22b is, for example, 50% by mass or more, preferably 70% by mass or more. The form of the nickel layer 22b is, for example, a plated layer or foil. The thickness of the nickel layer 22b is, for example, 8 μm or more and 20 μm or less. Moreover, the thickness of the nickel layer 22b in the case of being a plated layer is, for example, 1 μm or more and 10 μm or less.

バイポーラ集電体20としては、例えば、クラッドメタル、所定のめっき処理が施されためっきアルミニウム箔を用いることができる。上記クラッドメタルとしては、例えば、アルミニウム箔と銅箔とを圧延加工してなるクラッドメタル、アルミニウム箔と銅箔とニッケル箔とを圧延加工してなるクラッドメタルが挙げられる。上記めっきアルミニウム箔としては、例えば、アルミニウム箔の片面に銅めっきを施してなる銅めっきアルミニウム箔、アルミニウム箔の片面に銅めっき及びニッケルめっきを順に施してなる銅ニッケルめっきアルミニウム箔が挙げられる。 As the bipolar current collector 20, for example, a clad metal or a plated aluminum foil subjected to a predetermined plating treatment can be used. Examples of the clad metal include clad metal obtained by rolling aluminum foil and copper foil, and clad metal obtained by rolling aluminum foil, copper foil and nickel foil. Examples of the plated aluminum foil include a copper-plated aluminum foil obtained by plating one side of an aluminum foil with copper, and a copper-nickel-plated aluminum foil obtained by sequentially plating one side of an aluminum foil with copper and nickel.

また、バイポーラ集電体20の第2主面20bである負極集電体22の表面には、酸化被膜23が設けられている。酸化被膜23の詳細については後述する。
<正極活物質層>
正極活物質層30は、バイポーラ集電体20の第1主面20aに一体に接着されている。正極活物質層30は、リチウムイオン等の電荷担体を吸蔵及び放出可能である正極活物質を含む。正極活物質としては、例えば、オリビン型リン酸鉄リチウム(LiFePO)等のポリアニオン系化合物、層状岩塩構造を有するリチウム複合金属酸化物、スピネル構造の金属酸化物が挙げられる。正極活物質は、リチウムイオン二次電池などの蓄電装置の正極活物質として使用可能なものを採用する。
An oxide film 23 is provided on the surface of the negative electrode current collector 22 that is the second main surface 20 b of the bipolar current collector 20 . Details of the oxide film 23 will be described later.
<Positive electrode active material layer>
The positive electrode active material layer 30 is integrally adhered to the first main surface 20a of the bipolar current collector 20 . The positive electrode active material layer 30 contains a positive electrode active material capable of intercalating and deintercalating charge carriers such as lithium ions. Examples of positive electrode active materials include polyanionic compounds such as olivine-type lithium iron phosphate (LiFePO 4 ), lithium composite metal oxides having a layered rock salt structure, and metal oxides having a spinel structure. A positive electrode active material that can be used as a positive electrode active material for a power storage device such as a lithium ion secondary battery is employed.

正極活物質層30は、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、液体電解質等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)等のその他成分を含有してよい。正極活物質層30に含有されるその他成分の種類、及びその配合比は、特に限定されるものではない。 The positive electrode active material layer 30 contains a conductive aid, a binder, an electrolyte (polymer matrix, ion conductive polymer, liquid electrolyte, etc.) for increasing electrical conductivity, and an electrolyte support for increasing ion conductivity, if necessary. Other components such as salts (lithium salts) may be contained. The types and compounding ratios of other components contained in the positive electrode active material layer 30 are not particularly limited.

導電助剤としては、例えば、アセチレンブラック、カーボンブラック、グラファイトが挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体が挙げられる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒又は分散媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
Conductive aids include, for example, acetylene black, carbon black, and graphite.
Examples of binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, Examples include acrylic resins such as poly(meth)acrylic acid, styrene-butadiene rubber, carboxymethylcellulose, alginates such as sodium alginate and ammonium alginate, water-soluble cellulose ester crosslinked products, and starch-acrylic acid graft polymers. These binders may be used singly or in combination. Water, N-methyl-2-pyrrolidone, and the like are used as the solvent or dispersion medium, for example.

正極活物質層30の厚さは、例えば2~150μmである。
バイポーラ集電体20の第1主面20aに正極活物質層30を形成する方法としては、例えば、ロールコート法等の公知の方法が挙げられる。
The thickness of the positive electrode active material layer 30 is, for example, 2 to 150 μm.
Examples of the method for forming the positive electrode active material layer 30 on the first main surface 20a of the bipolar current collector 20 include known methods such as roll coating.

<負極活物質層>
負極活物質層40は、バイポーラ集電体20の第2主面20bに一体に接着されている。負極活物質層40は、リチウムイオン等の電荷担体を吸蔵及び放出可能である負極活物質を含む。負極活物質は、リチウムイオン等の電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はなく使用可能である。例えば、負極活物質としてLi、又は、炭素、金属化合物、リチウムと合金化可能な元素もしくはその化合物等が挙げられる。炭素としては、例えば、天然黒鉛、人造黒鉛、ハードカーボン(難黒鉛化性炭素)、ソフトカーボン(易黒鉛化性炭素)が挙げられる。人造黒鉛としては、例えば、高配向性グラファイト、メソカーボンマイクロビーズが挙げられる。リチウムと合金化可能な元素としては、例えば、シリコン(ケイ素)及びスズが挙げられる。
<Negative electrode active material layer>
The negative electrode active material layer 40 is integrally adhered to the second main surface 20b of the bipolar current collector 20 . The negative electrode active material layer 40 contains a negative electrode active material capable of intercalating and deintercalating charge carriers such as lithium ions. The negative electrode active material is not particularly limited as long as it is a simple substance, alloy, or compound that can occlude and release charge carriers such as lithium ions. Examples of negative electrode active materials include Li, carbon, metal compounds, elements that can be alloyed with lithium, and compounds thereof. Examples of carbon include natural graphite, artificial graphite, hard carbon (non-graphitizable carbon), and soft carbon (easily graphitizable carbon). Examples of artificial graphite include highly oriented graphite and mesocarbon microbeads. Elements that can be alloyed with lithium include, for example, silicon (silicon) and tin.

負極活物質層40は、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、液体電解質等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)等のその他成分を含有してよい。正極活物質層30に含有されるその他成分の種類、及びその配合比は、特に限定されるものではない。 The negative electrode active material layer 40 contains a conductive aid, a binder, an electrolyte (polymer matrix, ion-conductive polymer, liquid electrolyte, etc.) for increasing electrical conductivity, and an electrolyte support for increasing ion conductivity, if necessary. Other components such as salts (lithium salts) may be contained. The types and compounding ratios of other components contained in the positive electrode active material layer 30 are not particularly limited.

導電助剤としては、例えば、アセチレンブラック、カーボンブラック、グラファイトが挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体が挙げられる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒又は分散媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
Conductive aids include, for example, acetylene black, carbon black, and graphite.
Examples of binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, Examples include acrylic resins such as poly(meth)acrylic acid, styrene-butadiene rubber, carboxymethylcellulose, alginates such as sodium alginate and ammonium alginate, water-soluble cellulose ester crosslinked products, and starch-acrylic acid graft polymers. These binders may be used singly or in combination. Water, N-methyl-2-pyrrolidone, and the like are used as the solvent or dispersion medium, for example.

負極活物質層40の厚さは、例えば2~150μmである。
バイポーラ集電体20の第2主面20bに負極活物質層40を形成する方法としては、例えば、ロールコート法等の公知の方法が挙げられる。
The thickness of the negative electrode active material layer 40 is, for example, 2 to 150 μm.
Examples of the method for forming the negative electrode active material layer 40 on the second main surface 20b of the bipolar current collector 20 include known methods such as roll coating.

<酸化被膜>
バイポーラ集電体20の第2主面20bである負極集電体22の表面には、酸化被膜23が設けられている。酸化被膜23は、第2主面20bにおける負極活物質層40との接着部分の少なくとも一部に設けられている。また、酸化被膜23は、第2主面20bにおける負極活物質層40との接着部分の全体に設けられていることが好ましく、第2主面20bの全体に設けられていることがより好ましい。図1では、一例として、第2主面20bの全体に酸化被膜23が設けられている場合を図示している。
<Oxide film>
An oxide film 23 is provided on the surface of the negative electrode current collector 22 , which is the second main surface 20 b of the bipolar current collector 20 . The oxide film 23 is provided on at least a part of the bonding portion with the negative electrode active material layer 40 on the second main surface 20b. Moreover, the oxide film 23 is preferably provided on the entire adhesion portion of the second main surface 20b with the negative electrode active material layer 40, and more preferably provided on the entire second main surface 20b. FIG. 1 shows, as an example, the case where the oxide film 23 is provided over the entire second main surface 20b.

酸化被膜23の厚さは、例えば、10μm以上であり、好ましくは30μm以上である。また、酸化被膜23の厚さは、例えば、500μm以下であり、好ましくは200μm以下である。 The thickness of the oxide film 23 is, for example, 10 μm or more, preferably 30 μm or more. Moreover, the thickness of the oxide film 23 is, for example, 500 μm or less, preferably 200 μm or less.

酸化被膜23は、酸化マグネシウムを含有する被膜である。酸化被膜23における酸化マグネシウムの含有割合は、第2主面20bにおける酸化被膜23が設けられている部分を対象とする蛍光X線分析で測定される各成分の検出値に基づくマグネシウムの質量割合として規定される。 The oxide film 23 is a film containing magnesium oxide. The content ratio of magnesium oxide in the oxide film 23 is the mass ratio of magnesium based on the detected value of each component measured by fluorescent X-ray analysis of the portion of the second main surface 20b where the oxide film 23 is provided. Defined.

酸化被膜23におけるマグネシウムの含有割合は、例えば、1質量%以上であり、好ましくは1.5質量%以上である。酸化被膜23におけるマグネシウムの含有割合は、例えば、30質量%以下である。 The content of magnesium in the oxide film 23 is, for example, 1% by mass or more, preferably 1.5% by mass or more. The content of magnesium in the oxide film 23 is, for example, 30% by mass or less.

バイポーラ集電体20の第2主面20bが銅層22aにより形成されているとする。この場合、酸化被膜23におけるマグネシウムの含有割合は、検出値に基づく銅の質量を100質量部とした相対値として、例えば、1質量部以上であり、好ましくは1.5質量部以上であり、より好ましくは2質量部以上である。また、この場合の酸化被膜23におけるマグネシウムの含有割合は、上記相対値として、例えば、30質量部以下である。 Assume that the second main surface 20b of the bipolar current collector 20 is formed of a copper layer 22a. In this case, the content of magnesium in the oxide film 23 is, for example, 1 part by mass or more, preferably 1.5 parts by mass or more, as a relative value with the mass of copper based on the detected value being 100 parts by mass, More preferably, it is 2 parts by mass or more. Moreover, the content ratio of magnesium in the oxide film 23 in this case is, for example, 30 parts by mass or less as the relative value.

また、図1に示すように、バイポーラ集電体20の負極集電体22が銅層22a及びニッケル層22bの二層構造であり、第2主面20bがニッケル層22bにより形成されているとする。この場合、酸化被膜23におけるマグネシウムの含有割合は、検出値に基づく銅及びニッケルの合計質量を100質量部とした相対値として、例えば、1質量部以上であり、好ましくは1.5質量部以上であり、より好ましくは2質量部以上である。また、この場合の酸化被膜23におけるマグネシウムの含有割合は、上記相対値として、例えば、30質量部以下である。 Further, as shown in FIG. 1, the negative electrode current collector 22 of the bipolar current collector 20 has a two-layer structure of a copper layer 22a and a nickel layer 22b, and the second main surface 20b is formed of the nickel layer 22b. do. In this case, the content of magnesium in the oxide film 23 is, for example, 1 part by mass or more, preferably 1.5 parts by mass or more, as a relative value with the total mass of copper and nickel based on the detected value being 100 parts by mass. and more preferably 2 parts by mass or more. Moreover, the content ratio of magnesium in the oxide film 23 in this case is, for example, 30 parts by mass or less as the relative value.

次に、バイポーラ集電体20の第2主面20bに酸化被膜23を形成する化成処理の一例について説明する。
まず、化成処理に用いる化成処理液を作製する。上記化成処理液は、マグネシウム塩及び溶媒の混合液を加熱処理した後、沈殿物をろ過することにより得られる。なお、上記混合液には、塩基性化合物及びルイス酸の一方又は両方を更に混合することが好ましい。この場合には、より効率的に酸化被膜23を形成できる。
Next, an example of chemical conversion treatment for forming the oxide film 23 on the second main surface 20b of the bipolar current collector 20 will be described.
First, a chemical conversion treatment solution to be used for chemical conversion treatment is prepared. The chemical conversion treatment liquid is obtained by subjecting a mixed liquid of a magnesium salt and a solvent to heat treatment, and then filtering the precipitate. In addition, it is preferable to further mix one or both of a basic compound and a Lewis acid into the mixed solution. In this case, oxide film 23 can be formed more efficiently.

上記マグネシウム塩としては、例えば、酢酸マグネシウム、ギ酸マグネシウム、炭酸マグネシウム、マグネシウムエトキシドが挙げられる。これらのうちの一種を単独で用いてもよいし、二種以上を併用してもよい。混合液に含有されるマグネシウム塩は、上記具体例の一種類のみであってもよいし、二種類以上を組み合わせてもよい。混合液におけるマグネシウム塩の濃度は、例えば、0.1g/ml以上5g/ml以下であり、好ましくは0.5g/ml以上3g/ml以下である。 Examples of the magnesium salt include magnesium acetate, magnesium formate, magnesium carbonate, and magnesium ethoxide. One of these may be used alone, or two or more may be used in combination. The magnesium salt contained in the mixed solution may be of one of the above specific examples, or may be a combination of two or more. The concentration of the magnesium salt in the mixed solution is, for example, 0.1 g/ml or more and 5 g/ml or less, preferably 0.5 g/ml or more and 3 g/ml or less.

上記溶媒は、混合されるマグネシウム塩を溶解できる溶媒を適宜、選択して用いる。上記溶媒としては、例えば、水、エタノール、酢酸が挙げられる。
上記塩基性化合物としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、酢酸ナトリウムが挙げられる。混合液に含有される塩基性化合物は、上記具体例の一種類のみであってもよいし、二種類以上を組み合わせてもよい。混合液における塩基性化合物の濃度は、例えば、0.01g/ml以上0.5g/ml以下であり、好ましくは0.05g/ml以上0.1g/ml以下である。
As the solvent, a solvent capable of dissolving the mixed magnesium salt is appropriately selected and used. Examples of the solvent include water, ethanol, and acetic acid.
Examples of the basic compound include sodium hydroxide, lithium hydroxide, potassium hydroxide and sodium acetate. The basic compound contained in the liquid mixture may be one of the above specific examples, or may be a combination of two or more. The concentration of the basic compound in the mixture is, for example, 0.01 g/ml or more and 0.5 g/ml or less, preferably 0.05 g/ml or more and 0.1 g/ml or less.

上記ルイス酸としては、例えば、ホウ酸、酢酸、塩化カルシウムが挙げられる。混合液に含有されるルイス酸は、上記具体例の一種類のみであってもよいし、二種類以上を組み合わせてもよい。混合液におけるルイス酸の濃度は、例えば、0.1g/ml以上5g/ml以下であり、好ましくは0.5g/ml以上3g/ml以下である。 Examples of the Lewis acid include boric acid, acetic acid, and calcium chloride. The Lewis acid contained in the mixed solution may be one of the above specific examples, or may be a combination of two or more. The concentration of the Lewis acid in the mixed solution is, for example, 0.1 g/ml or more and 5 g/ml or less, preferably 0.5 g/ml or more and 3 g/ml or less.

上記加熱処理における加熱温度は、例えば、20℃以上60℃以下であり、好ましくは30℃以上50℃以下である。上記加熱処理における加熱時間は、例えば、0.5分以上10分以下であり、好ましくは1分以上5分以下である。 The heating temperature in the heat treatment is, for example, 20° C. or higher and 60° C. or lower, preferably 30° C. or higher and 50° C. or lower. The heating time in the heat treatment is, for example, 0.5 minutes or more and 10 minutes or less, preferably 1 minute or more and 5 minutes or less.

次に、得られた上記化成処理液を用いて、バイポーラ集電体20の第2主面20bに酸化被膜23を形成する化成処理を行う。なお、化成処理に供されるバイポーラ集電体20の第2主面20bは、金属表面であってもよいし、陽極酸化被膜等の酸化被膜が形成された表面であってもよいし、アルカリ処理された表面であってもよい。 Next, a chemical conversion treatment is performed to form an oxide film 23 on the second main surface 20b of the bipolar current collector 20 using the obtained chemical conversion treatment liquid. The second main surface 20b of the bipolar current collector 20 to be subjected to chemical conversion treatment may be a metal surface, a surface on which an oxide film such as an anodized film is formed, or an alkaline It may be a treated surface.

化成処理では、まず、バイポーラ集電体20の第2主面20bに上記化成処理液を付着させた状態として第1加熱処理を行う。上記化成処理液を付着させる方法としては、例えば、スプレー処理、浸漬処理が挙げられる。第1加熱処理における加熱温度は、例えば、20℃以上60℃以下であり、好ましくは30℃以上50℃以下である。第1加熱処理における加熱時間は、例えば、0.5分以上10分以下であり、好ましくは1分以上5分以下である。 In the chemical conversion treatment, first, the second main surface 20b of the bipolar current collector 20 is subjected to the first heat treatment while the chemical conversion treatment liquid is adhered to the second main surface 20b. Examples of methods for applying the chemical conversion treatment solution include spray treatment and immersion treatment. The heating temperature in the first heat treatment is, for example, 20° C. or higher and 60° C. or lower, preferably 30° C. or higher and 50° C. or lower. The heating time in the first heat treatment is, for example, 0.5 minutes or more and 10 minutes or less, preferably 1 minute or more and 5 minutes or less.

その後、バイポーラ集電体20の第2主面20bに残る化成処理液を水洗等により除去した状態として第2加熱処理を行うことにより、酸化マグネシウムを含有する酸化被膜23が形成される。第2加熱処理における加熱温度は、例えば、20℃以上60℃以下であり、好ましくは30℃以上50℃以下である。第2加熱処理における加熱時間は、例えば、0.5分以上10分以下であり、好ましくは1分以上5分以下である。 After that, the chemical conversion treatment solution remaining on the second main surface 20b of the bipolar current collector 20 is removed by washing with water or the like, and a second heat treatment is performed to form an oxide film 23 containing magnesium oxide. The heating temperature in the second heat treatment is, for example, 20° C. or higher and 60° C. or lower, preferably 30° C. or higher and 50° C. or lower. The heating time in the second heat treatment is, for example, 0.5 minutes or more and 10 minutes or less, preferably 1 minute or more and 5 minutes or less.

<リチウムイオン二次電池>
次に、上記のバイポーラ電極10を用いたリチウムイオン二次電池の一例について説明する。
<Lithium ion secondary battery>
Next, an example of a lithium ion secondary battery using the above bipolar electrode 10 will be described.

図2に示すように、リチウムイオン二次電池50は、複数のバイポーラ電極10と、正極電極51と、負極電極52と、セパレータ53と、スペーサ54と、電解質55とを備える。 As shown in FIG. 2 , the lithium ion secondary battery 50 includes multiple bipolar electrodes 10 , positive electrodes 51 , negative electrodes 52 , separators 53 , spacers 54 and electrolyte 55 .

複数のバイポーラ電極10は、セパレータ53を間に挟んで正極活物質層30と負極活物質層40とが対向するように積層されている。
正極電極51は、集電体51aと、集電体51aの片側の表面に設けられた正極活物質層51bとを備える。正極電極51は、積層されたバイポーラ電極10における積層方向の一方側の端部に位置する負極活物質層40に対して、セパレータ53を間に挟んで正極活物質層51bが対向するように配置されている。
The plurality of bipolar electrodes 10 are stacked such that the positive electrode active material layer 30 and the negative electrode active material layer 40 face each other with the separator 53 interposed therebetween.
The positive electrode 51 includes a current collector 51a and a positive electrode active material layer 51b provided on one surface of the current collector 51a. The positive electrode 51 is arranged so that the positive electrode active material layer 51b faces the negative electrode active material layer 40 located at one end in the stacking direction of the stacked bipolar electrodes 10 with the separator 53 interposed therebetween. It is

負極電極52は、集電体52aと、集電体52aの片側の表面に設けられた負極活物質層52bとを備える。負極電極52は、積層されたバイポーラ電極10における積層方向の他方側の端部に位置する正極活物質層30に対して、セパレータ53を間に挟んで負極活物質層52bが対向するように配置されている。 The negative electrode 52 includes a current collector 52a and a negative electrode active material layer 52b provided on one surface of the current collector 52a. The negative electrode 52 is arranged so that the negative electrode active material layer 52b faces the positive electrode active material layer 30 located at the end of the stacked bipolar electrodes 10 on the other side in the stacking direction with the separator 53 interposed therebetween. It is

スペーサ54は、積層方向に隣接するバイポーラ電極10とバイポーラ電極10との間、バイポーラ電極10と正極電極51との間、及びバイポーラ電極10と負極電極52との間において、各活物質層の周囲を囲むように配置されている。また、スペーサ54は、バイポーラ電極10のバイポーラ集電体20、正極電極51の集電体51a、及び負極電極52の集電体52aに接着されている。 The spacers 54 are provided between the bipolar electrodes 10 and 10 adjacent in the stacking direction, between the bipolar electrode 10 and the positive electrode 51, and between the bipolar electrode 10 and the negative electrode 52, around each active material layer. are arranged to surround the Also, the spacer 54 is adhered to the bipolar current collector 20 of the bipolar electrode 10 , the current collector 51 a of the positive electrode 51 , and the current collector 52 a of the negative electrode 52 .

リチウムイオン二次電池50の内部には、バイポーラ集電体20、正極電極51、負極電極52、及びスペーサ54によって囲まれた密閉空間が形成されている。セパレータ53及び電解質55は、この密閉空間に収容されている。リチウムイオン二次電池50は、正極電極51の集電体51a及び負極電極52の集電体52aに接続された端子を通じて充放電が行われる。 Inside the lithium ion secondary battery 50, a closed space surrounded by the bipolar current collector 20, the positive electrode 51, the negative electrode 52, and the spacer 54 is formed. A separator 53 and an electrolyte 55 are housed in this sealed space. The lithium ion secondary battery 50 is charged and discharged through terminals connected to the current collector 51 a of the positive electrode 51 and the current collector 52 a of the negative electrode 52 .

次に、本実施形態の作用及び効果について説明する。
(1)バイポーラ電極10は、バイポーラ集電体20と、正極集電体21の表面に設けられた正極活物質層30と、負極集電体22の表面に設けられた負極活物質層40とを備える。バイポーラ集電体20は、アルミニウム層21aを有する正極集電体21及び銅層22aを有する負極集電体22を備える。負極集電体22の表面における負極活物質層40との接着部分には、酸化マグネシウムを含有する酸化被膜23が設けられている。
Next, the operation and effects of this embodiment will be described.
(1) The bipolar electrode 10 includes a bipolar current collector 20, a positive electrode active material layer 30 provided on the surface of the positive electrode current collector 21, and a negative electrode active material layer 40 provided on the surface of the negative electrode current collector 22. Prepare. The bipolar current collector 20 comprises a positive electrode current collector 21 having an aluminum layer 21a and a negative electrode current collector 22 having a copper layer 22a. An oxide film 23 containing magnesium oxide is provided on a portion of the surface of the negative electrode current collector 22 that is bonded to the negative electrode active material layer 40 .

上記構成のバイポーラ電極10は、リチウムイオン二次電池50等の蓄電装置に適用することにより、蓄電装置の容量維持率が向上する。また、充放電を繰り返し行った後におけるバイポーラ集電体20と負極活物質層40との間の剥離強度の低下が抑制される。上記の各効果は、次のようにして得られていると推測できる。 By applying the bipolar electrode 10 configured as described above to a power storage device such as the lithium ion secondary battery 50, the capacity retention rate of the power storage device is improved. Moreover, a decrease in the peel strength between the bipolar current collector 20 and the negative electrode active material layer 40 after repeated charging and discharging is suppressed. It can be inferred that each of the above effects is obtained as follows.

上記構成のバイポーラ電極10の場合、負極活物質層40は、負極集電体22の表面に設けられた酸化被膜23に接合されている。より具体的には、酸化被膜23に含まれる酸化マグネシウム由来のマグネシウムを介して結合している。このマグネシウムを介した負極活物質層40の結合状態は、銅層22aを構成する銅又はニッケル層22bを構成するニッケルに直接、負極活物質層40が結合する結合状態と比較して耐還元性が高い。これにより、リチウムイオン等の電荷担体との反応による、負極活物質層40とバイポーラ集電体20との結合の分解が抑制される。その結果、充放電を繰り返し行った後におけるバイポーラ集電体20と負極活物質層40との間の剥離強度の低下が抑制される。そして、バイポーラ集電体20と負極活物質層40との間の密着性が維持されることにより、蓄電装置の容量維持率が向上する。 In the case of the bipolar electrode 10 configured as described above, the negative electrode active material layer 40 is bonded to the oxide film 23 provided on the surface of the negative electrode current collector 22 . More specifically, they are bound via magnesium derived from magnesium oxide contained in the oxide film 23 . The bonding state of the negative electrode active material layer 40 via magnesium is more resistant to reduction than the bonding state in which the negative electrode active material layer 40 is directly bonded to copper forming the copper layer 22a or nickel forming the nickel layer 22b. is high. This suppresses decomposition of the bond between the negative electrode active material layer 40 and the bipolar current collector 20 due to reaction with charge carriers such as lithium ions. As a result, a decrease in peel strength between the bipolar current collector 20 and the negative electrode active material layer 40 after repeated charging and discharging is suppressed. By maintaining the adhesion between the bipolar current collector 20 and the negative electrode active material layer 40, the capacity retention rate of the power storage device is improved.

(2)負極集電体22の表面における酸化被膜23が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、1質量%以上である。
上記構成によれば、蓄電装置の容量維持率を向上させる効果が顕著に得られる。
(2) The content of magnesium measured by fluorescent X-ray analysis of the portion of the surface of the negative electrode current collector 22 where the oxide film 23 is provided is 1% by mass or more.
According to the above configuration, the effect of improving the capacity retention rate of the power storage device can be significantly obtained.

(3)酸化被膜23は、銅層22aの表面に設けられ、銅層22aの表面における酸化被膜23が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、蛍光X線分析で測定される銅100質量部に対して1質量部以上である。 (3) The oxide film 23 is provided on the surface of the copper layer 22a, and the content of magnesium measured by fluorescent X-ray analysis of the portion of the surface of the copper layer 22a where the oxide film 23 is provided is It is 1 part by mass or more with respect to 100 parts by mass of copper measured by fluorescent X-ray analysis.

または、負極集電体22は、銅層22aと、銅層22aの表面に積層されたニッケル層22bとを備える。酸化被膜23は、ニッケル層22bの表面に設けられている。ニッケル層22bの表面における酸化被膜23が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、蛍光X線分析で測定される銅及びニッケルの合計質量100質量部に対して1質量部以上である。上記の各構成によれば、蓄電装置の容量維持率を向上させる効果が顕著に得られる。 Alternatively, the negative electrode current collector 22 includes a copper layer 22a and a nickel layer 22b laminated on the surface of the copper layer 22a. The oxide film 23 is provided on the surface of the nickel layer 22b. The content of magnesium measured by fluorescent X-ray analysis targeting the portion of the surface of nickel layer 22b where oxide film 23 is provided is 100 parts by mass of the total mass of copper and nickel measured by fluorescent X-ray analysis. 1 part by mass or more. According to each of the above configurations, the effect of improving the capacity retention rate of the power storage device can be significantly obtained.

(4)銅層22aはめっき層である。負極活物質層40は、リチウムイオンを吸蔵及び放出可能な負極活物質を含有する。
銅層22aをめっき層とした場合、銅層22aが薄く形成されることにより、銅層22aにピンホールが形成されやすくなる。銅層22aにピンホールが存在すると、ピンホールを通過したリチウムイオンがアルミニウム層21aと反応してアルミニウム層21aが腐食する。アルミニウム層21aが腐食すると、負極活物質の反応電位まで電圧が低下しなくなることにより、負極活物質の反応電位における蓄電装置の動作が不安定になる。また、アルミニウム層21aにおける腐食部分がアルミニウム層21aの反対側の面にまで達してバイポーラ集電体20に孔が開くおそれがある。
(4) The copper layer 22a is a plated layer. The negative electrode active material layer 40 contains a negative electrode active material capable of intercalating and deintercalating lithium ions.
When the copper layer 22a is a plated layer, pinholes are easily formed in the copper layer 22a because the copper layer 22a is formed thin. If there are pinholes in the copper layer 22a, lithium ions passing through the pinholes react with the aluminum layer 21a, corroding the aluminum layer 21a. When the aluminum layer 21a corrodes, the voltage does not drop to the reaction potential of the negative electrode active material, and the operation of the power storage device becomes unstable at the reaction potential of the negative electrode active material. Moreover, there is a possibility that the corroded portion of the aluminum layer 21a may reach the opposite surface of the aluminum layer 21a and the bipolar current collector 20 may be perforated.

上記構成によれば、銅めっき等により薄く形成されている銅層22aに、ピンホールが存在していた場合に、そのピンホールの内側にも酸化被膜23が形成される。酸化被膜23に含まれる酸化マグネシウムは、腐食生成物であるリチウムアルミニウムの形成エネルギーよりも活性化エネルギーが小さく、リチウムによる還元反応に対して安定である。ピンホール内に位置する酸化被膜23がリチウム耐食性被膜として作用することにより、アルミニウム層21aの腐食が抑制される。その結果、負極活物質の反応電位における蓄電装置の動作の安定性の低下が抑制される。 According to the above configuration, if a pinhole exists in the thin copper layer 22a formed by copper plating or the like, the oxide film 23 is also formed inside the pinhole. Magnesium oxide contained in the oxide film 23 has an activation energy smaller than the formation energy of lithium aluminum, which is a corrosion product, and is stable against a reduction reaction by lithium. Corrosion of aluminum layer 21a is suppressed by oxide film 23 located in the pinhole acting as a lithium corrosion-resistant film. As a result, deterioration in stability of operation of the power storage device at the reaction potential of the negative electrode active material is suppressed.

以下に、上記実施形態をさらに具体化した実施例について説明する。
(バイポーラ集電体Aの作製)
厚さ15μmのアルミニウム箔を、70mm×70mmのアルミニウム面が露出するようにマスキングテープを用いてSUS板に張り付けることによりめっき処理用の試験片を得た。
Examples that further embody the above embodiment will be described below.
(Preparation of bipolar current collector A)
A test piece for plating treatment was obtained by attaching an aluminum foil having a thickness of 15 μm to a SUS plate using a masking tape so that an aluminum surface of 70 mm×70 mm was exposed.

試験片の露出したアルミニウム面を、奥野製薬社トップアルクリーン101の水溶液を用いて60℃で5分処理することにより脱脂を行った。脱脂後の試験片を水洗し、奥野製薬社トップアルソフト108水溶液を用いて55℃で1分処理することによりエッチングを行った。エッチング後の試験片を水洗し、奥野製薬社トップデスマットN-20を用いて室温で1分処理することで、スマットを除去した。 The exposed aluminum surface of the test piece was degreased by treating it with an aqueous solution of Top Alclean 101 from Okuno Pharmaceutical Co., Ltd. at 60° C. for 5 minutes. After degreasing, the test piece was washed with water and etched by treating it with an aqueous solution of Top Alsoft 108 manufactured by Okuno Pharmaceutical Co., Ltd. at 55° C. for 1 minute. After the etching, the test piece was washed with water and treated with Top Desmut N-20 from Okuno Pharmaceutical Co., Ltd. for 1 minute at room temperature to remove the smut.

次に、試験片を水洗し、奥野製薬社サブスターZN-291水溶液を用いて室温で1分処理することにより、表面を亜鉛置換した。置換後の試験片を水洗し、硝酸水溶液で亜鉛を一度剥離した後、サブスターZn-291水溶液を用いて室温で1分処理することにより、再度、亜鉛置換した。 Next, the test piece was washed with water and treated with an aqueous solution of Substar ZN-291 from Okuno Pharmaceutical Co., Ltd. for 1 minute at room temperature to replace the surface with zinc. The test piece after substitution was washed with water, and the zinc was stripped off once with an aqueous nitric acid solution, and then treated with an aqueous solution of Substar Zn-291 at room temperature for 1 minute to perform zinc substitution again.

硫酸銅150g/L、硫酸150g/L、塩酸80ppmになるように建浴し、添加剤として奥野製薬社トップルチナSFベースWR、トップルチナSF-B、トップルチナSFレベラーを加えて銅めっき浴を調製した。調製しためっき浴に試験片を浸漬し、陽極として含リン銅を用いて室温で電流密度2A/dm、2分間の条件で試験片の表面に銅めっきを形成した。めっき後の試験片を水洗し、奥野製薬社トップリンスを用いて防錆処理することにより、バイポーラ集電体Aを得た。 A copper plating bath was prepared by making copper sulfate 150 g/L, sulfuric acid 150 g/L, and hydrochloric acid 80 ppm, and adding Top Lucina SF Base WR, Top Lucina SF-B, and Top Lucina SF Leveler manufactured by Okuno Seiyaku Co., Ltd. as additives. A test piece was immersed in the prepared plating bath, and copper plating was formed on the surface of the test piece using phosphorous copper as an anode at room temperature at a current density of 2 A/dm 2 for 2 minutes. A bipolar current collector A was obtained by washing the plated test piece with water and applying an antirust treatment using Okuno Seiyaku Co., Ltd. Top Rinse.

(試験例1)
水9mlにマグネシウムエトキシド2g、酢酸1.05gを加えて60℃で2時間の加熱処理を行った後、沈殿物をろ過することにより化成処理液Aを得た。バイポーラ集電体Aを化成処理液Aに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Aを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例1のバイポーラ集電体を得た。
(Test example 1)
After adding 2 g of magnesium ethoxide and 1.05 g of acetic acid to 9 ml of water and performing heat treatment at 60° C. for 2 hours, a chemical conversion treatment liquid A was obtained by filtering the precipitate. A first heat treatment was performed at 60° C. for 5 minutes while the bipolar current collector A was immersed in the chemical conversion treatment solution A. After the first heat treatment, the bipolar current collector A was washed with water and subjected to a second heat treatment at 120° C. for 1 hour to obtain a bipolar current collector of Test Example 1.

(試験例2)
水8mlに酢酸マグネシウム2g、水酸化ナトリウム50mg、ホウ酸77mgを加えて60℃で2時間の加熱処理を行った後、沈殿物をろ過することにより化成処理液Bを得た。バイポーラ集電体Aを化成処理液Bに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Aを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例2のバイポーラ集電体を得た。
(Test example 2)
After adding 2 g of magnesium acetate, 50 mg of sodium hydroxide and 77 mg of boric acid to 8 ml of water and performing heat treatment at 60° C. for 2 hours, a chemical conversion treatment liquid B was obtained by filtering the precipitate. A first heat treatment was performed at 60° C. for 5 minutes while the bipolar current collector A was immersed in the chemical conversion treatment solution B. After the first heat treatment, the bipolar current collector A was washed with water and subjected to a second heat treatment at 120° C. for 1 hour to obtain a bipolar current collector of Test Example 2.

(試験例3)
水8mlに酢酸マグネシウム2g、塩化カルシウム50mgを加えて60℃で2時間の加熱処理を行った後、沈殿物をろ過することにより化成処理液Cを得た。バイポーラ集電体Aを化成処理液Cに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Aを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例3のバイポーラ集電体を得た。
(Test example 3)
After adding 2 g of magnesium acetate and 50 mg of calcium chloride to 8 ml of water and performing heat treatment at 60° C. for 2 hours, a chemical conversion treatment liquid C was obtained by filtering the precipitate. A first heat treatment was performed at 60° C. for 5 minutes while the bipolar current collector A was immersed in the chemical conversion treatment solution C. The bipolar current collector A of Test Example 3 was obtained by washing the bipolar current collector A after the first heat treatment with water and performing the second heat treatment at 120° C. for 1 hour.

(試験例4)
水8mlに酢酸マグネシウム2gを加えて60℃で2時間の加熱処理を行った後、沈殿物をろ過することにより化成処理液Dを得た。また、3質量%水酸化ナトリウム水溶液10mlに次亜リン酸ナトリウム100mgを加えることによりアルカリ処理液を得た。
(Test example 4)
After adding 2 g of magnesium acetate to 8 ml of water and performing heat treatment at 60° C. for 2 hours, a chemical conversion treatment liquid D was obtained by filtering the precipitate. Further, an alkaline treatment liquid was obtained by adding 100 mg of sodium hypophosphite to 10 ml of a 3% by mass sodium hydroxide aqueous solution.

バイポーラ集電体Aをアルカリ処理液に含浸させた状態として50℃で2分間の加熱処理を行うことによりアルカリ処理したバイポーラ集電体Aを得た。このバイポーラ集電体Aを化成処理液Dに浸漬させた状態として、60℃で2分間の加熱処理を行うことにより試験例4のバイポーラ集電体を得た。 The bipolar current collector A impregnated with the alkaline treatment liquid was heat-treated at 50° C. for 2 minutes to obtain an alkaline-treated bipolar current collector A. This bipolar current collector A was immersed in the chemical conversion treatment solution D and heat-treated at 60° C. for 2 minutes to obtain a bipolar current collector of Test Example 4.

(試験例5)
化成処理を施していないバイポーラ集電体Aを試験例5とした。
(蛍光X線分析及び抵抗の測定)
試験例1~5のバイポーラ集電体における化成処理が施された部分を対象とする蛍光X線分析を行うことにより、マグネシウム(Mg)及び銅(Cu)の各質量を測定した。そして、銅100質量部に対するマグネシウムの含有割合を算出した。また、試験例1~5のバイポーラ集電体における化成処理が施された表面の抵抗を、四端子法を用いて測定した。それらの結果を表1に示す。なお、表1の成分割合欄における「n.d.」は、未検出を示す。
(Test Example 5)
A bipolar current collector A that was not subjected to chemical conversion treatment was used as Test Example 5.
(Fluorescent X-ray analysis and measurement of resistance)
Each mass of magnesium (Mg) and copper (Cu) was measured by performing fluorescent X-ray analysis on the chemically treated portions of the bipolar current collectors of Test Examples 1 to 5. Then, the content ratio of magnesium to 100 parts by mass of copper was calculated. In addition, the resistance of the chemically treated surfaces of the bipolar current collectors of Test Examples 1 to 5 was measured using a four-probe method. Those results are shown in Table 1. In addition, "n.d." in the component ratio column of Table 1 indicates non-detection.

Figure 2022190786000002
蛍光X線分析の結果から、化成処理を行った試験例1~4には、酸化マグネシウムを含有する酸化被膜が形成されていることが確認できる。そして、化成処理液の組成を異ならせることにより、酸化被膜における酸化マグネシウムの含有割合を調整することができた。また、酸化被膜が形成されている試験例1~4の抵抗は、酸化被膜が形成されていない試験例5と同程度であった。この結果から、酸化被膜を設けることによる導電性の低下はない又は非常に小さいと考えられる。
Figure 2022190786000002
From the results of the fluorescent X-ray analysis, it can be confirmed that an oxide film containing magnesium oxide was formed in Test Examples 1 to 4 in which chemical conversion treatment was performed. By varying the composition of the chemical conversion treatment solution, the content of magnesium oxide in the oxide film could be adjusted. Moreover, the resistances of Test Examples 1 to 4 in which an oxide film was formed were comparable to Test Example 5 in which an oxide film was not formed. Based on these results, it is considered that there is no or very little decrease in electrical conductivity due to the provision of the oxide film.

(バイポーラ集電体Bの作製)
厚さ15μmのアルミニウム箔を、70mm×70mmのアルミニウム面が露出するようにマスキングテープを用いてSUS板に張り付けることによりめっき処理用の試験片を得た。
(Preparation of bipolar current collector B)
A test piece for plating treatment was obtained by attaching an aluminum foil having a thickness of 15 μm to a SUS plate using a masking tape so that an aluminum surface of 70 mm×70 mm was exposed.

試験片の露出したアルミニウム面を、奥野製薬社トップアルクリーン101の水溶液を用いて60℃で5分処理することにより脱脂を行った。脱脂後の試験片を水洗し、奥野製薬社トップアルソフト108水溶液を用いて55℃で1分処理することによりエッチングを行った。エッチング後の試験片を水洗し、奥野製薬社トップデスマットN-20を用いて室温で1分処理することで、スマットを除去した。 The exposed aluminum surface of the test piece was degreased by treating it with an aqueous solution of Top Alclean 101 from Okuno Pharmaceutical Co., Ltd. at 60° C. for 5 minutes. After degreasing, the test piece was washed with water and etched by treating it with an aqueous solution of Top Alsoft 108 manufactured by Okuno Pharmaceutical Co., Ltd. at 55° C. for 1 minute. After the etching, the test piece was washed with water and treated with Top Desmut N-20 from Okuno Pharmaceutical Co., Ltd. for 1 minute at room temperature to remove the smut.

次に、試験片を水洗し、奥野製薬社サブスターZN-291水溶液を用いて室温で1分処理することにより、表面を亜鉛置換した。置換後の試験片を水洗し、硝酸水溶液で亜鉛を一度剥離した後、サブスターZn-291水溶液を用いて室温で1分処理することにより、再度、亜鉛置換した。 Next, the test piece was washed with water and treated with an aqueous solution of Substar ZN-291 from Okuno Pharmaceutical Co., Ltd. for 1 minute at room temperature to replace the surface with zinc. The test piece after substitution was washed with water, zinc was stripped once with an aqueous nitric acid solution, and then zinc substitution was performed again by treating with an aqueous solution of Substar Zn-291 at room temperature for 1 minute.

硫酸銅150g/l、硫酸150g/l、塩酸80ppmになるように建浴し、添加剤として奥野製薬社トップルチナSFベースWR、トップルチナSF-B、トップルチナSFレベラーを加えて銅めっき浴を調製した。調製しためっき浴に試験片を浸漬し、陽極として含リン銅を用いて室温で電流密度2A/dm、5分間の条件で試験片の表面に銅めっきを形成した。めっき後の試験片を水洗し、奥野製薬社トップリンスを用いて防錆処理することによりバイポーラ集電体Bを得た。 A copper plating bath was prepared by preparing a bath containing 150 g/l of copper sulfate, 150 g/l of sulfuric acid, and 80 ppm of hydrochloric acid, and adding Top Lucina SF Base WR, Top Lucina SF-B, and Top Lucina SF Leveler manufactured by Okuno Seiyaku Co., Ltd. as additives. A test piece was immersed in the prepared plating bath, and copper plating was formed on the surface of the test piece using phosphorous copper as an anode at room temperature at a current density of 2 A/dm 2 for 5 minutes. A bipolar current collector B was obtained by washing the plated test piece with water and applying an anticorrosion treatment using Okuno Seiyaku Co., Ltd. Top Rinse.

(バイポーラ集電体Cの作製)
銅めっきを形成する工程までを、上記のバイポーラ集電体Bの作製と同様に行った後、試験片を水洗した。硫酸ニッケル250g/l、塩化ニッケル50g/l、ホウ酸50g/lになるように建浴しためっき浴に試験片を浸漬し、室温で電流密度1A/dm、2分間の条件で試験片の表面にニッケルめっきを形成した。めっき後の試験片を水洗することによりバイポーラ集電体Cを得た。
(Preparation of bipolar current collector C)
The steps up to the step of forming the copper plating were performed in the same manner as in the preparation of the bipolar current collector B described above, and then the test piece was washed with water. The test piece was immersed in a plating bath prepared to have 250 g/l nickel sulfate, 50 g/l nickel chloride, and 50 g/l boric acid, and the test piece was immersed in a current density of 1 A/dm 2 at room temperature for 2 minutes. Nickel plating was formed on the surface. A bipolar current collector C was obtained by washing the plated test piece with water.

(試験例6及び試験例7)
バイポーラ集電体Bを化成処理液Bに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Bを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例6のバイポーラ集電体を得た。化成処理を施していないバイポーラ集電体Bを試験例7とした。
(Test Example 6 and Test Example 7)
With the bipolar current collector B immersed in the chemical conversion treatment solution B, a first heat treatment was performed at 60° C. for 5 minutes. The bipolar current collector B after the first heat treatment was washed with water and subjected to a second heat treatment at 120° C. for 1 hour to obtain a bipolar current collector of Test Example 6. A bipolar current collector B that was not subjected to chemical conversion treatment was used as Test Example 7.

(試験例8及び試験例9)
バイポーラ集電体Cを化成処理液Bに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Cを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例8のバイポーラ集電体を得た。化成処理を施していないバイポーラ集電体Cを試験例9とした。
(Test Example 8 and Test Example 9)
With the bipolar current collector C immersed in the chemical conversion treatment solution B, the first heat treatment was performed at 60° C. for 5 minutes. The bipolar current collector C after the first heat treatment was washed with water and subjected to a second heat treatment at 120° C. for 1 hour to obtain a bipolar current collector of Test Example 8. A bipolar current collector C that was not subjected to chemical conversion treatment was used as Test Example 9.

(蛍光X線分析)
試験例6~9のバイポーラ集電体における化成処理が施された部分を対象とする蛍光X線分析を行うことにより、マグネシウム(Mg)、銅(Cu)、及びニッケル(Ni)の各質量を測定した。そして、銅及びニッケルの合計質量100質量部に対するマグネシウムの含有割合を算出した。それらの結果を表2に示す。
(Fluorescent X-ray analysis)
By performing fluorescent X-ray analysis on the chemically treated portions of the bipolar current collectors of Test Examples 6 to 9, each mass of magnesium (Mg), copper (Cu), and nickel (Ni) was determined. It was measured. Then, the content ratio of magnesium to 100 parts by mass of the total mass of copper and nickel was calculated. Those results are shown in Table 2.

(容量維持率及び剥離強度の測定)
黒鉛95質量部、カルボキシメチルセルロース2.5質量部、スチレン-ブタジエンゴム2.5質量部を水に混合することにより負極用スラリーを調製した。次に、試験例6~9のバイポーラ集電体から40mm×40mmの試験片を切り出した。切り出した試験片のめっきが施されている側の面の中心15mm×15mmの範囲に負極用スラリーを塗布し、乾燥させることにより、負極活物質層を形成した。負極用スラリーは、乾燥後の目付量5mg/mmがとなるように塗布した。負極活物質層を形成した試験片に対して、1.5N/mmの線圧によるプレスを行った後、120℃で6時間の加熱処理を行うことにより評価用の電極シートを得た。なお、以下では、電極シートにおける負極活物質層が設けられている側の面を負極側の面と記載する。
(Measurement of capacity retention rate and peel strength)
A negative electrode slurry was prepared by mixing 95 parts by mass of graphite, 2.5 parts by mass of carboxymethyl cellulose, and 2.5 parts by mass of styrene-butadiene rubber with water. Next, test pieces of 40 mm×40 mm were cut out from the bipolar current collectors of Test Examples 6-9. A negative electrode active material layer was formed by applying the negative electrode slurry to a center area of 15 mm×15 mm on the plated side of the cut test piece and drying it. The negative electrode slurry was applied so as to have a basis weight of 5 mg/mm 2 after drying. The test piece on which the negative electrode active material layer was formed was pressed with a linear pressure of 1.5 N/mm, and then heat-treated at 120° C. for 6 hours to obtain an electrode sheet for evaluation. In addition, below, the surface of the electrode sheet on which the negative electrode active material layer is provided is referred to as the negative electrode side surface.

電極シートの負極側の面に対して、電極シートの各辺の端から10mmを覆い、かつ各辺から5mmはみ出る四角枠状の酸変性ポリプロプレン製シートを重ねて加熱することにより熱溶着した。電極シートの正極側の面に対して、50mm×50mmに切り出したSUS箔を重ねて加熱することにより、酸変性ポリプロプレン製シートにおける電極シートの各辺から5mmはみ出ている部分をSUS箔に熱溶着した。これにより、電極シートにおけるアルミニウム面が電解液に触れないように処理された試験電極を得た。 A rectangular frame-shaped acid-modified polypropylene sheet covering 10 mm from the end of each side of the electrode sheet and protruding 5 mm from each side was superimposed on the negative electrode side surface of the electrode sheet and heat-sealed by heating. A SUS foil cut into a size of 50 mm × 50 mm was overlapped on the positive electrode side of the electrode sheet and heated, so that the portion of the acid-modified polypropylene sheet protruding 5 mm from each side of the electrode sheet was heated to the SUS foil. welded. As a result, a test electrode was obtained in which the aluminum surface of the electrode sheet was treated so as not to come into contact with the electrolytic solution.

得られた試験電極を負極電極とし、金属リチウム箔を正極電極とするハーフセルを作製した。セパレータとしては、ポリエチレン製のセパレータを用いた。電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1Mの濃度となるように溶解させた非水電解質を用いた。得られたハーフセルについて、直流電流0.2mAで負極電極における正極電極に対する電圧が0.01Vになるまで放電を行い、放電が終了してから10分後に、直流電流0.2mAで負極電極における正極電極に対する電圧が0.5Vになるまで充電を行った。上記の放電及び充電を30サイクル繰り返した。そして、初回の充電後の充電容量を100としたときの30サイクル後の充電容量の比率として容量維持率を算出した。 A half cell was fabricated using the obtained test electrode as a negative electrode and the metallic lithium foil as a positive electrode. A separator made of polyethylene was used as the separator. As the electrolyte, a non-aqueous electrolyte was used in which lithium hexafluorophosphate was dissolved to a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1:1. The resulting half-cell was discharged at a DC current of 0.2 mA until the voltage of the negative electrode with respect to the positive electrode reached 0.01 V. Ten minutes after the discharge, the positive electrode at the negative electrode was discharged at a DC current of 0.2 mA. Charging was carried out until the voltage to the electrodes reached 0.5V. The above discharge and charge were repeated for 30 cycles. Then, the capacity retention rate was calculated as the ratio of the charge capacity after 30 cycles to the charge capacity after the first charge being 100.

次に、30サイクルの放電及び充電を行った後のハーフセルから試験電極を取り出し、幅10mmの帯状に裁断して剥離して剥離試験用の測定サンプルを得た。試験サンプルの負極活物質層を両面テープで固定して、集電体部分を引き剥がす形式で90度ピール試験を実施することにより測定サンプルの剥離強度を測定した。得られた容量維持率及び剥離強度の結果を表2に示す。 Next, the test electrode was taken out from the half cell after 30 cycles of discharging and charging, cut into strips with a width of 10 mm, and peeled off to obtain measurement samples for the peel test. The peel strength of the measurement sample was measured by performing a 90-degree peel test by fixing the negative electrode active material layer of the test sample with a double-sided tape and peeling off the current collector portion. Table 2 shows the results of the obtained capacity retention rate and peel strength.

Figure 2022190786000003
蛍光X線分析の結果から、化成処理を行った試験例6及び試験例8には、酸化マグネシウムを含有する酸化被膜が形成されていること、及び化成処理を行っていない試験例7及び試験例9には、酸化被膜が形成されていないことが確認できる。そして、酸化被膜が形成されていない試験例7及び試験例9と比較して、酸化被膜が形成されている試験例6及び試験例8では、容量維持率及び剥離強度が上昇した。この結果は、酸化被膜を設けることにより、負極活物質と負極集電体との間の剥離強度が向上し、それに伴って容量維持率が向上することを示している。また、上記の結果から、銅めっきの表面に酸化被膜を形成した場合、及びニッケルめっきの表面に酸化被膜を形成した場合のいずれにおいても、容量維持率及び剥離強度を向上させる効果が得られることが分かる。
Figure 2022190786000003
From the results of the fluorescent X-ray analysis, it was found that an oxide film containing magnesium oxide was formed in Test Examples 6 and 8 in which chemical conversion treatment was performed, and Test Examples 7 and 7 in which chemical conversion treatment was not performed. 9, it can be confirmed that no oxide film is formed. Then, in Test Examples 6 and 8, in which an oxide film was formed, the capacity retention ratio and the peel strength increased as compared with Test Examples 7 and 9, in which no oxide film was formed. This result indicates that the provision of the oxide film improves the peel strength between the negative electrode active material and the negative electrode current collector, thereby improving the capacity retention rate. In addition, from the above results, it can be seen that the effect of improving the capacity retention rate and the peel strength can be obtained both when an oxide film is formed on the surface of the copper plating and when the oxide film is formed on the surface of the nickel plating. I understand.

(試験例10及び試験例11)
バイポーラ集電体Bに対して、集束イオンビーム装置を用いて、銅めっき部分における10μm角の範囲を徐々にエッチングした。下地のアルミニウム箔が観察されたところで、エッチングを停止することにより、銅めっき部分に人工的なピンホールが形成されたピンホール付きバイポーラ集電体を得た。
(Test Example 10 and Test Example 11)
Using a focused ion beam device, the bipolar current collector B was gradually etched over a 10 μm square range of the copper-plated portion. By stopping the etching when the underlying aluminum foil was observed, a bipolar current collector with pinholes in which artificial pinholes were formed in the copper-plated portion was obtained.

ピンホール付きバイポーラ集電体を化成処理液Bに浸漬させた状態として、60℃で5分間の第1加熱処理を行った。第1加熱処理後のバイポーラ集電体Bを水洗し、120℃で1時間の第2加熱処理を行うことにより試験例10のバイポーラ集電体を得た。また、化成処理を施していないピンホール付きバイポーラ集電体を試験例11とした。 A first heat treatment was performed at 60° C. for 5 minutes while the bipolar current collector with pinholes was immersed in the chemical conversion treatment solution B. The bipolar current collector B after the first heat treatment was washed with water and subjected to a second heat treatment at 120° C. for 1 hour to obtain a bipolar current collector of Test Example 10. Further, Test Example 11 was a bipolar current collector with pinholes that was not subjected to chemical conversion treatment.

(蛍光X線分析)
試験例10及び試験例11のバイポーラ集電体における化成処理が施された部分を対象とする蛍光X線分析を行うことにより、マグネシウム(Mg)及び銅(Cu)の各質量を測定した。そして、銅100質量部に対するマグネシウムの含有割合を算出した。それらの結果を表3に示す。
(Fluorescent X-ray analysis)
Each mass of magnesium (Mg) and copper (Cu) was measured by performing fluorescent X-ray analysis on the chemically treated portions of the bipolar current collectors of Test Examples 10 and 11. Then, the content ratio of magnesium to 100 parts by mass of copper was calculated. Those results are shown in Table 3.

(電気化学試験)
試験例10及び試験例11のバイポーラ集電体を直径11mmの円形に裁断してなる負極電極(評価極)と、厚さ500μmの金属リチウム箔を直径13mmの円形に裁断してなる正極電極との間にセパレータを挟装して電極体電池とした。電池ケース内に、電極体電池を収容するとともに非水電解質を注入して、電池ケースを密閉することにより、電気化学試験用のハーフセルを得た。セパレータとしては、ヘキストセラニーズ社製ガラスフィルターを用いた。非水電解質としては、エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1Mの濃度となるように溶解させた非水電解質を用いた。
(Electrochemical test)
A negative electrode (evaluation electrode) formed by cutting the bipolar current collectors of Test Examples 10 and 11 into a circle with a diameter of 11 mm, and a positive electrode formed by cutting a metal lithium foil with a thickness of 500 μm into a circle with a diameter of 13 mm. A separator was sandwiched between them to form an electrode battery. A half cell for an electrochemical test was obtained by housing the electrode body battery in a battery case, injecting a non-aqueous electrolyte, and sealing the battery case. As a separator, a glass filter manufactured by Hoechst Celanese was used. As the nonaqueous electrolyte, a nonaqueous electrolyte obtained by dissolving lithium hexafluorophosphate to a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1:1 was used.

得られた電気化学試験用のハーフセルに対して、0.1mAの電流で対極リチウム電位として0Vまで掃引した。電圧0Vに到達した後、3時間、電流量0.1mA、電圧0VでCC-CVで電流を流した。掃引時の到達電圧、電圧0Vが保持された保持時間、及び3時間後のCC-CV電圧を表3に示す。 The obtained half-cell for electrochemical test was swept to 0 V as the counter electrode lithium potential at a current of 0.1 mA. After the voltage reached 0 V, a current of 0.1 mA and a voltage of 0 V were applied by CC-CV for 3 hours. Table 3 shows the voltage reached during the sweep, the holding time during which the voltage of 0 V was held, and the CC-CV voltage after 3 hours.

Figure 2022190786000004
蛍光X線分析の結果から、試験例10については、酸化マグネシウムを含有する酸化被膜が形成されていること、及び試験例11については、酸化被膜が形成されていないことが確認できた。
Figure 2022190786000004
From the results of the fluorescent X-ray analysis, it was confirmed that an oxide film containing magnesium oxide was formed in Test Example 10, and that an oxide film was not formed in Test Example 11.

酸化被膜が形成されていない試験例11は、掃引時の到達電圧が0Vに達しているものの、90分後に電圧を0Vに保持することができなくなり、3時間後のCC-CV電圧は0.11Vであった。この結果から、試験例11の場合、0Vに到達後、しばらくの時間が経過すると、銅めっきのピンホールを通じてリチウムイオンがアルミニウム箔に達し、リチウムイオンによるアルミニウム箔の腐食が発生したと考えられる。一方、酸化被膜が形成されている試験例10は、3時間の測定時間の間、0Vの状態が保持された。この結果から、酸化マグネシウムを含有する酸化被膜を設けることにより、銅めっきのピンホールに起因するアルミニウム箔の腐食を抑制する効果が得られることが分かる。 In Test Example 11 in which no oxide film was formed, although the final voltage reached 0 V during sweeping, the voltage could not be maintained at 0 V after 90 minutes, and the CC-CV voltage after 3 hours was 0.0 V. It was 11V. From this result, in the case of Test Example 11, after reaching 0 V, lithium ions reached the aluminum foil through pinholes in the copper plating after a while, and the lithium ions corroded the aluminum foil. On the other hand, in Test Example 10 in which an oxide film was formed, the state of 0 V was maintained during the measurement time of 3 hours. From this result, it can be seen that the provision of an oxide film containing magnesium oxide has the effect of suppressing corrosion of the aluminum foil caused by pinholes in the copper plating.

10…バイポーラ電極
20…バイポーラ集電体
21…正極集電体
21a…アルミニウム層
22…負極集電体
22a…銅層
22b…ニッケル層
23…酸化被膜
30…正極活物質層
40…負極活物質層
50…蓄電装置
DESCRIPTION OF SYMBOLS 10... Bipolar electrode 20... Bipolar collector 21... Positive electrode collector 21a... Aluminum layer 22... Negative collector 22a... Copper layer 22b... Nickel layer 23... Oxide film 30... Positive electrode active material layer 40... Negative electrode active material layer 50 power storage device

Claims (6)

アルミニウム層を有する正極集電体及び銅層を有する負極集電体を備えるバイポーラ集電体と、
前記正極集電体の表面に設けられた正極活物質層と、
前記負極集電体の表面に設けられた負極活物質層とを備えるバイポーラ電極であって、
前記負極集電体の表面における前記負極活物質層との接着部分には、酸化マグネシウムを含有する酸化被膜が設けられていることを特徴とするバイポーラ電極。
a bipolar current collector comprising a positive electrode current collector having an aluminum layer and a negative electrode current collector having a copper layer;
a positive electrode active material layer provided on the surface of the positive electrode current collector;
A bipolar electrode comprising a negative electrode active material layer provided on the surface of the negative electrode current collector,
A bipolar electrode, wherein an oxide film containing magnesium oxide is provided on a portion of the surface of the negative electrode current collector that is bonded to the negative electrode active material layer.
前記負極集電体の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、1質量%以上である請求項1に記載のバイポーラ電極。 2. The bipolar electrode according to claim 1, wherein the content of magnesium measured by fluorescent X-ray analysis of the portion of the surface of the negative electrode current collector provided with the oxide film is 1% by mass or more. 前記酸化被膜は、前記銅層の表面に設けられ、
前記銅層の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、前記蛍光X線分析で測定される銅100質量部に対して1質量部以上である請求項1又は請求項2に記載のバイポーラ電極。
The oxide film is provided on the surface of the copper layer,
The content of magnesium measured by fluorescent X-ray analysis targeting the portion of the surface of the copper layer where the oxide film is provided is 1 per 100 parts by mass of copper measured by the fluorescent X-ray analysis. 3. The bipolar electrode according to claim 1 or 2, which is at least parts by mass.
前記負極集電体は、前記銅層と、前記銅層の表面に積層されたニッケル層とを備え、
前記酸化被膜は、前記ニッケル層の表面に設けられ、
前記ニッケル層の表面における前記酸化被膜が設けられている部分を対象とする蛍光X線分析で測定されるマグネシウムの含有割合は、前記蛍光X線分析で測定される銅及びニッケルの合計質量100質量部に対して1質量部以上である請求項1又は請求項2に記載のバイポーラ電極。
The negative electrode current collector includes the copper layer and a nickel layer laminated on the surface of the copper layer,
The oxide film is provided on the surface of the nickel layer,
The content of magnesium measured by fluorescent X-ray analysis targeting the portion of the surface of the nickel layer provided with the oxide film is the total mass of copper and nickel measured by the fluorescent X-ray analysis 100 mass 3. The bipolar electrode according to claim 1 or 2, wherein the content is 1 part by mass or more per 1 part.
前記銅層は、めっき層であり、
前記負極活物質層は、リチウムイオンを吸蔵及び放出可能な負極活物質を含有する請求項1~4のいずれか一項に記載のバイポーラ電極。
The copper layer is a plated layer,
The bipolar electrode according to any one of claims 1 to 4, wherein the negative electrode active material layer contains a negative electrode active material capable of intercalating and deintercalating lithium ions.
請求項1~5のいずれか一項に記載のバイポーラ電極を備える蓄電装置。 A power storage device comprising the bipolar electrode according to any one of claims 1 to 5.
JP2021099226A 2021-06-15 2021-06-15 Bipolar electrode and power storage device Pending JP2022190786A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021099226A JP2022190786A (en) 2021-06-15 2021-06-15 Bipolar electrode and power storage device
PCT/JP2022/005495 WO2022264499A1 (en) 2021-06-15 2022-02-10 Bipolar electrode and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021099226A JP2022190786A (en) 2021-06-15 2021-06-15 Bipolar electrode and power storage device

Publications (1)

Publication Number Publication Date
JP2022190786A true JP2022190786A (en) 2022-12-27

Family

ID=84526991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021099226A Pending JP2022190786A (en) 2021-06-15 2021-06-15 Bipolar electrode and power storage device

Country Status (2)

Country Link
JP (1) JP2022190786A (en)
WO (1) WO2022264499A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885227B2 (en) * 2001-11-02 2007-02-21 株式会社ジーエス・ユアサコーポレーション Non-aqueous secondary battery
US20120088129A1 (en) * 2010-04-28 2012-04-12 Mayumi Kaneda Secondary battery
US20210111429A1 (en) * 2017-03-28 2021-04-15 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
EP3759752A1 (en) * 2018-02-26 2021-01-06 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
JP7196799B2 (en) * 2019-08-21 2022-12-27 三菱マテリアル株式会社 COPPER/CERAMIC JOINT, INSULATED CIRCUIT BOARD, METHOD FOR MANUFACTURING COPPER/CERAMIC JOINT, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
CN110600739A (en) * 2019-08-22 2019-12-20 浙江工业大学 Preparation method of metal lithium negative electrode protection layer material
CN210379255U (en) * 2019-09-29 2020-04-21 苏州潜寻新能源科技有限公司 Electrode for secondary battery

Also Published As

Publication number Publication date
WO2022264499A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101326623B1 (en) Positive Current Collector Coated with Primer and Magnesium Secondary Battery Comprising the Same
KR101918008B1 (en) Copper-clad steel foil, anode collector, method for producing same, and battery
US8383271B2 (en) Electrode and method for manufacturing the same
JP4037452B2 (en) Electrolyte cell and electrolysis method
JP3428448B2 (en) Electrode structure and battery using the same
US8685564B2 (en) Active material for rechargeable battery
CN103187576A (en) Current collector, electrochemical battery electrode and electrochemical battery
JP2003510768A (en) Lithium secondary battery having individual cells connected to each other, and a clock, a computer, and a communication device equipped with such a battery
CN103534861B (en) Active material for rechargeable battery
CN103125035B (en) For secondary cell electrode terminal and comprise the secondary cell of this electrode terminal
JP6085752B2 (en) Electric double layer capacitor charging method
US11545722B2 (en) Separators for electrochemical cells and methods of making the same
CN106469803A (en) Electrode terminal, electrochemical appliance and the electrochemical appliance module containing electrochemical appliance
JP2022030965A (en) Power storage device
KR20120006730A (en) Process for preparing lithium polymer secondary batteries employing gel polymerelectrolyte
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
WO2022264499A1 (en) Bipolar electrode and power storage device
JP3565272B2 (en) Negative electrode material for Li secondary battery, negative electrode using the same
JP2006278143A (en) Battery with spiral electrode
JP2010003614A (en) Manufacturing method of current collector for electrode
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
KR101916145B1 (en) Secondary battery and manufacturing method thereof
JP2022190788A (en) Manufacturing method for bipolar current collector
JP2021077476A (en) Lithium ion battery
JP2004146222A (en) Non-aqueous secondary battery