JP2022150873A - Surface-modified inorganic oxide powder and production method therefor - Google Patents

Surface-modified inorganic oxide powder and production method therefor Download PDF

Info

Publication number
JP2022150873A
JP2022150873A JP2021053664A JP2021053664A JP2022150873A JP 2022150873 A JP2022150873 A JP 2022150873A JP 2021053664 A JP2021053664 A JP 2021053664A JP 2021053664 A JP2021053664 A JP 2021053664A JP 2022150873 A JP2022150873 A JP 2022150873A
Authority
JP
Japan
Prior art keywords
inorganic oxide
powder
oxide powder
modified
modified inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021053664A
Other languages
Japanese (ja)
Inventor
雄介 戸崎
Yusuke Tozaki
行也 山下
Yukiya Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2021053664A priority Critical patent/JP2022150873A/en
Publication of JP2022150873A publication Critical patent/JP2022150873A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fine particle having both favorable spacer effect and moderate electrification characteristic while maintaining excellent characteristics of inorganic oxide powders by a fumed method.SOLUTION: Disclosed is a fine particle of surface-modified inorganic oxide indicating positive electrification property. The particle includes an inorganic oxide particle, an organic silicon compound covering the surface of the above oxide particle and a positive electrification property-imparting agent. The fine particle is characterized in that (1) the average particle size is in a range of 0.1 to 1 μm; (2) the bulk density is in the range of 20 to 100 g/L; (3) the hydrophobic ratio is 60% or more; (4) a moisture adsorption amount in steam relative pressure of 0.8 to 0.95 is in the range of 2 to 5%; (5) BET specific surface area is in the range of 25 to 150 m2/g; (6) a carbon content is in the range of 0.5-8 wt.%; (7) a nitrogen content is in the range of 0.1-0.75 wt.%; and (8) a frictional electrification amount is in the range of 20 to 300 μC/g.SELECTED DRAWING: None

Description

本発明は、新規な表面改質無機酸化物粉末及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a novel surface-modified inorganic oxide powder and a method for producing the same.

微細なシリカ、チタニア、アルミナ等の無機酸化物粉末の表面を有機物によって処理することにより、当該粉末表面の帯電性、疎水性等を改質することができる。このようにして得られた表面改質無機酸化物粉末は、例えば複写機、レーザープリンタ、普通紙ファクシミリ等を含む電子写真に用いられるトナーの流動性改善剤、帯電性調整剤等として広く用いられている。このようなトナー用途に用いられる表面改質無機酸化物粉末はいわゆる外添剤として知られている。 By treating the surface of fine inorganic oxide powder such as silica, titania, and alumina with an organic substance, the chargeability, hydrophobicity, etc. of the powder surface can be modified. The surface-modified inorganic oxide powder obtained in this manner is widely used as a fluidity improving agent, charge control agent, etc. for toners used in electrophotography, including copiers, laser printers, plain paper facsimiles, and the like. ing. Surface-modified inorganic oxide powders used for such toner applications are known as so-called external additives.

外添剤は、トナーの帯電性に応じて正帯電性又は負帯電性に区別される。トナーが正帯電性であれば正帯電性の外添剤が使用され、トナーが負帯電性であれば負帯電性の外添剤が使用される。デジタル方式のカラープリンタ、カラーコピーマシン等のドラムでは、主にOPC(有機感光体)ドラムが使用されているところ、これは負帯電性のトナーが多く使用され、それに伴って外添剤も負帯電性のものが使用されている。ところが、OPCドラムは、耐久性、環境性等に問題があり、その改善目的でアモルファスシリコン感光ドラムも用いられる。このドラムを有するシステムにおいては、正帯電性のトナーが用いられ、それに伴って外添剤としても正帯電性のものが使用される。 External additives are classified into positive chargeability and negative chargeability according to the chargeability of the toner. If the toner is positively charged, a positively charged external additive is used, and if the toner is negatively charged, a negatively charged external additive is used. OPC (organic photoreceptor) drums are mainly used for drums of digital color printers, color copy machines, etc., and negatively charged toner is often used for these drums. Electrostatic ones are used. However, OPC drums have problems in terms of durability and environmental friendliness, and amorphous silicon photosensitive drums are also used for the purpose of improving these problems. In a system having this drum, a positively charged toner is used, and accordingly, a positively charged external additive is also used.

このような用途に用いられる無機酸化物粉末の表面処理剤としては、ジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル等の有機ケイ素化合物が主に用いられており、これに加えて正帯電付与剤としてアミノシラン、アミン等を併用することによって、無機酸化物粉末の粒子表面のシラノール基を有機基で置換して疎水化処理及び正帯電化処理がなされている。 Organic silicon compounds such as dimethyldichlorosilane, hexamethyldisilazane, and silicone oil are mainly used as surface treatment agents for inorganic oxide powders used for such applications. By using aminosilane, amine, etc. in combination as an inorganic oxide powder, silanol groups on the particle surfaces of the inorganic oxide powder are substituted with organic groups for hydrophobic treatment and positive charging treatment.

トナーは、複写機等の装置内において攪拌され、キャリア等との摩擦によって電荷を帯びる(すなわち、帯電する。)。そして、その高度に制御された帯電性によって現像機能を発現することができる。ところが、トナーが装置内で長時間攪拌され続けると、その強い摩擦力がストレスになり、トナーの劣化が進行する。例えば、外添剤がトナー表面に埋没してしまうと、トナー表面と外部環境との接点としての機能を失う。しかも、トナーへの機械的負担は近年増大し、かつ、トナーを構成する結着性樹脂(トナー母体樹脂)の軟質化設計により、トナー母体の硬度が低くなっている結果、外添剤がより埋没しやすくなる。このため、上記のような外添剤の埋没への対策の重要性は益々高まっている。 Toner is agitated in an apparatus such as a copier and is charged (that is, electrified) by friction with a carrier or the like. Further, the developing function can be expressed by the highly controlled chargeability. However, if the toner continues to be stirred in the apparatus for a long time, the strong frictional force becomes stress, and the deterioration of the toner progresses. For example, if the external additive is buried in the toner surface, it loses its function as a contact point between the toner surface and the external environment. In addition, the mechanical burden on the toner has increased in recent years, and the hardness of the toner base has been lowered due to the softening design of the binder resin (toner base resin) that constitutes the toner. easier to bury. Therefore, the importance of countermeasures against the burial of external additives as described above is increasing.

特に、近年では、電子写真の高画質化によりトナー粒子の小粒子径化が進み、それに加えて高速化・カラー化により、トナーへの機械的負荷はより大きくなっている。そのため、トナー性能の経時耐久性(劣化挙動の制御)が重要度を増しているが、その一方で印刷待機時間の短縮、省エネルギー化等を目的として、トナーに使用される結着性樹脂には低温定着性が求められている。このような事情から、トナー母体樹脂として軟質化・低融点化された成分を採用することが主流となりつつある。 In particular, in recent years, due to the improvement in image quality of electrophotography, the particle size of toner particles has been reduced, and in addition, the mechanical load on the toner has been increased due to the increase in speed and colorization. Therefore, the durability of toner performance over time (control of deterioration behavior) is becoming more and more important. Low-temperature fixability is required. Under these circumstances, it is becoming mainstream to use a softened/low-melting component as the toner base resin.

このようなトナー樹脂の低融点化等に伴い、表面処理されたフュームド酸化物が長期運転中にトナー樹脂中に埋め込まれ、その流動性が低下するという現象が発生しているため、トナーの耐久性を高める目的としてサブミクロンサイズのシリカ粉末がフュームド酸化物とともにトナー表面に添加され、そのサブミクロンサイズのシリカ粉末がスペーサー効果を発現することによりフュームド酸化物のトナー内部への埋め込みを防ぐという対策がとられている。そして、このサブミクロンサイズのシリカとして、主にゾルゲル法で製造されたシリカ粉末が用いられている(特許文献1など参照)。 As the melting point of the toner resin becomes lower, the surface-treated fumed oxide becomes embedded in the toner resin during long-term operation, resulting in a decrease in the fluidity of the toner resin. Submicron-sized silica powder is added to the surface of the toner together with the fumed oxide for the purpose of improving the properties of the toner. is taken. Silica powder produced by a sol-gel method is mainly used as the submicron-sized silica (see Patent Document 1, etc.).

しかし、ゾルゲル法で製造されたシリカ粉末は、その帯電特性が弱いという問題がある。これは、ゾルゲル法で製造されたシリカ粉末を構成する粒子の吸着水分量が高いことが一つの原因として考えられている。 However, the silica powder produced by the sol-gel method has a problem of weak charging properties. One of the reasons for this is considered to be the high amount of adsorbed moisture of the particles that constitute the silica powder produced by the sol-gel method.

しかも、ゾルゲル法で製造されたシリカ粉末は、その粒子形状が球形に近いため、長期使用によりトナー表面から遊離しやすいという問題もある。 Moreover, since the silica powder produced by the sol-gel method has a nearly spherical particle shape, there is also the problem that the silica powder tends to separate from the toner surface after long-term use.

さらに、ゾルゲル法で製造されたシリカ粉末は、それ自体が多くの水分を保有又は吸着しやすいため、強い摩擦帯電特性を得ることができない。このため、トナーのように電荷を調整する材料には、その低い帯電性を改善しなければならない。 Furthermore, the silica powder produced by the sol-gel method itself tends to retain or adsorb a large amount of water, so that strong triboelectrification properties cannot be obtained. Therefore, charge regulating materials such as toners must improve their low charging properties.

これに対し、乾式法又は気相法(以下、両者をまとめて「フュームド法」)ともいう。)で製造されたシリカ粉末は、ゾルゲル法で製造されたシリカよりも球形から外れた粒子形状であるため、上記ゾルゲルシリカの問題点であるトナー表面からの遊離の抑制効果が期待できる。ところが、一般的には、フュームド法によるシリカ粉末等は、一次粒子径が小さく、トナー表面上ではサブミクロンサイズ以下の粒子として分散してしまうため、スペーサー効果を十分に発揮できないうえ、一般に帯電特性が高すぎて適度な範囲でトナーの帯電性を制御するには精密にその添加量と分散性を制御しなければいけない。 On the other hand, the dry method or the vapor phase method (both are collectively referred to as the “fumed method” hereinafter). ) has a particle shape that is more non-spherical than the silica produced by the sol-gel method, so it can be expected to have the effect of suppressing the separation from the toner surface, which is the problem of the sol-gel silica. However, in general, the silica powder produced by the fumed method has a small primary particle size and disperses on the toner surface as particles of submicron size or less. is too high, and in order to control the chargeability of the toner within an appropriate range, its addition amount and dispersibility must be precisely controlled.

特開2013-249215号公報JP 2013-249215 A

上記のような理由により、スペーサー効果を十分に得られるサブミクロンサイズでありながら、適切な帯電特性を有するトナー用外添剤(粒子)の開発が切望されているが、そのような材料は未だ開発されるに至っていない。 For the above reasons, there is a strong demand for the development of external additives (particles) for toner that are submicron-sized enough to obtain a sufficient spacer effect and have appropriate charging characteristics. not yet developed.

従って、本発明の主な目的は、フュームド法による無機酸化物粉末の優れた特性を活かしつつ、良好なスペーサー効果と適度な帯電特性とを併せ有する粉体を提供することにある。 SUMMARY OF THE INVENTION Accordingly, the main object of the present invention is to provide a powder having both a good spacer effect and a suitable charging property while taking advantage of the excellent properties of the inorganic oxide powder produced by the fumed method.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の構造及び特性を有する粒子を外添剤として採用することにより上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research in view of the problems of the prior art, the inventors of the present invention have found that the above objects can be achieved by employing particles having specific structures and characteristics as an external additive, and have completed the present invention. reached.

すなわち、本発明は、下記の表面改質無機酸化物粉末及びその製造方法に係る。
1. 無機酸化物粒子と、その粒子表面を被覆する有機ケイ素化合物及び正帯電性付与剤とを含む粒子からなる粉末であって、下記の物性:
(1)平均粒径:0.1~1μm、
(2)嵩密度:20~100g/L、
(3)疎水率:60%以上、
(4)水蒸気相対圧0.8~0.95における水分吸着量:2~5%、
(5)BET比表面積:25~150m/g、
(6)炭素含有量:0.5~8重量%、
(7)窒素含有量:0.1~0.75重量%及び
(8)摩擦帯電量:20~300μC/g
であることを特徴とする、正帯電性を示す表面改質無機酸化物粉末。
2. 有機ケイ素化合物が、ヘキサメチルジシラザン、ポリジメチルシロキサン、アルキルシランの少なくとも1種である、前記項1に記載の表面改質無機酸化物粉末。
3. 正帯電性付与剤が、アミノシラン及びアミノ基変性シリコーンオイルの少なくとも1種である、前記項1に記載の表面改質無機酸化物粉末。
4. 無機酸化物粒子が、BET比表面積が100~250m/gのフュームドシリカ粒子である、前記項1に記載の表面改質無機酸化物粉末。
5. 前記項1~4のいずれかに記載の表面改質無機酸化物粉末を含むトナー用又は粉体塗料用の外添剤。
6. 前記項5に記載の外添剤と結着性樹脂粒子とを含む電子写真用トナー組成物又は粉体塗料組成物。
7. 表面改質無機酸化物粉末を製造する方法であって、
(a)無機酸化物粉末、有機ケイ素化合物及び正帯電性付与剤を含む混合物を調製する工程、
(b)前記混合物を100~270℃の温度で熱処理する工程
を含むことを特徴とする、表面改質無機酸化物粉末の製造方法。
8. 上記(a)及び(b)の工程を攪拌下にて実施する、前記項7に記載の製造方法。
That is, the present invention relates to the following surface-modified inorganic oxide powder and method for producing the same.
1. A powder comprising particles containing inorganic oxide particles, an organosilicon compound coating the particle surfaces, and a positive charge-imparting agent, and having the following physical properties:
(1) average particle size: 0.1 to 1 μm,
(2) bulk density: 20 to 100 g/L,
(3) Hydrophobicity: 60% or more,
(4) Water adsorption amount at water vapor relative pressure of 0.8 to 0.95: 2 to 5%,
(5) BET specific surface area: 25 to 150 m 2 /g,
(6) carbon content: 0.5 to 8% by weight;
(7) Nitrogen content: 0.1 to 0.75% by weight and (8) Amount of triboelectric charge: 20 to 300 μC/g
A positively charged surface-modified inorganic oxide powder characterized by:
2. 2. The surface-modified inorganic oxide powder according to item 1, wherein the organosilicon compound is at least one of hexamethyldisilazane, polydimethylsiloxane, and alkylsilane.
3. 2. The surface-modified inorganic oxide powder according to item 1, wherein the positive charge imparting agent is at least one of aminosilane and amino group-modified silicone oil.
4. 2. The surface-modified inorganic oxide powder according to item 1, wherein the inorganic oxide particles are fumed silica particles having a BET specific surface area of 100 to 250 m 2 /g.
5. 5. An external additive for toner or powder coating containing the surface-modified inorganic oxide powder according to any one of 1 to 4 above.
6. 6. An electrophotographic toner composition or powder coating composition comprising the external additive according to item 5 and binder resin particles.
7. A method for producing a surface-modified inorganic oxide powder, comprising:
(a) preparing a mixture containing an inorganic oxide powder, an organosilicon compound and a positive charging agent;
(b) A method for producing a surface-modified inorganic oxide powder, comprising the step of heat-treating the mixture at a temperature of 100-270°C.
8. 8. The production method according to Item 7, wherein the steps (a) and (b) are carried out under stirring.

本発明によれば、フュームド法による無機酸化物粉末の優れた特性を活かしつつ、良好なスペーサー効果と適度な帯電特性とを併せ有する粉体を提供することができる。特に、乾式法(フュームド法又は気相法)で製造された無機酸化物粒子は特有の内部空孔を有しているところ、そのような粒子の表面に本発明所定の表面改質が施されることで、嵩密度、水分吸着量等が特異的な性質となる結果、低嵩密度でありながら適度な帯電特性(正帯電性)を有するサブミクロンサイズの粉末を提供することができる。 According to the present invention, it is possible to provide a powder having both a good spacer effect and a suitable charging property while taking advantage of the excellent properties of the inorganic oxide powder produced by the fumed method. In particular, inorganic oxide particles produced by a dry method (fumed method or gas phase method) have unique internal pores, and the surface of such particles is subjected to the predetermined surface modification of the present invention. As a result, it is possible to provide a submicron-sized powder having a moderate charging property (positive charging property) while having a low bulk density.

より具体的には、本発明の表面改質無機酸化物粉末は、内部空孔をもつ無機酸化物粉末を所定の有機ケイ素化合物で表面改質することにより、嵩密度、疎水率、水分吸着量、表面積、炭素含有量等の各特性を一定の範囲内に制御される結果、ゾルゲル法による粒子に比して高い帯電特性を示し、かつ、従来のフュームド法で製造された酸化ケイ素粉末では得られないスペーサー効果を発現するのに十分な凝集性を得ることが可能となる。 More specifically, the surface-modified inorganic oxide powder of the present invention is obtained by modifying the surface of the inorganic oxide powder having internal pores with a predetermined organosilicon compound to improve the bulk density, hydrophobicity, and water adsorption amount. , surface area, and carbon content are controlled within a certain range. It becomes possible to obtain cohesiveness sufficient to develop a spacer effect that cannot be obtained.

以上のように、本発明は、湿式法による表面処理ゾルゲルシリカ等の問題点を解決すべく、乾式法により製造された内部空孔を有する無機酸化物粉末を表面処理することにより、環境負荷低減化するトナーに伴い、トナー流動性の低下等の問題を改善し、特にゾルゲルシリカでは困難とされていた高い帯電特性と低い嵩密度を兼ね備えた表面改質無機酸化物粉末を提供することに成功したものである。 As described above, in order to solve the problems of the surface-treated sol-gel silica by the wet method, the present invention reduces the environmental load by surface-treating the inorganic oxide powder having internal pores produced by the dry method. We have succeeded in providing a surface-modified inorganic oxide powder that solves problems such as a decrease in toner fluidity due to the increasing number of toners, and that has both high charging characteristics and low bulk density, which were considered difficult especially with sol-gel silica. It is what I did.

このような特徴をもつ本発明粉末は、特にトナー用又は粉体塗料用の外添剤として好適に用いることができる。従って、本発明の表面改質無機酸化物粉末を含む電子写真用トナー組成物又は粉体塗料組成物は、このような高固定率、高疎水性等を備えた表面改質無機酸化物粉末を含むがゆえに、流動性、帯電防止性等にも優れ、かぶり又はクリーニング不良が抑制され、さらには感光体へのトナー等の付着が発生しにくく、画像欠陥を生じにくいという効果を得ることもできる。また、本発明組成物によれば、長期保存安定性、現像剤劣化挙動の制御等の効果も得ることができる。 The powder of the present invention having such characteristics can be suitably used as an external additive for toners or powder coatings. Therefore, an electrophotographic toner composition or a powder coating composition containing the surface-modified inorganic oxide powder of the present invention is obtained by using the surface-modified inorganic oxide powder having such a high fixation rate, high hydrophobicity, etc. Since it contains the toner, it is excellent in fluidity, antistatic property, etc., suppresses fogging and cleaning failure, and furthermore, it is possible to obtain the effects that the adhesion of toner etc. to the photoreceptor is less likely to occur, and image defects are less likely to occur. . Further, according to the composition of the present invention, effects such as long-term storage stability and control of developer deterioration behavior can be obtained.

実施例で得られた粉末の粒度分布図である。1 is a particle size distribution diagram of powder obtained in an example. FIG. 比較例で得られた粉末の粒度分布図である。FIG. 4 is a particle size distribution diagram of powder obtained in a comparative example. 試験例2において、SEMにてトナー粒子を観察する方法の概略図である。6 is a schematic diagram of a method for observing toner particles with an SEM in Test Example 2. FIG.

1.表面改質無機酸化物粉末
本発明の正帯電性を示す表面改質無機酸化物粉末(本発明粉末)は、無機酸化物粒子と、その粒子表面を被覆する有機ケイ素化合物及び正帯電性付与剤とを含む粒子からなる粉末であって、下記の物性:
(1)平均粒径:0.1~1μm、
(2)嵩密度:20~100g/L、
(3)疎水率:60%以上、
(4)水蒸気相対圧0.8~0.95における水分吸着量:2~5%、
(5)BET比表面積:25~150m/g、
(6)炭素含有量:0.5~8重量%、
(7)窒素含有量:0.1~0.75重量%及び
(8)摩擦帯電量:20~300μC/g
を有することを特徴とする。
1. Surface-Modified Inorganic Oxide Powder The surface-modified inorganic oxide powder exhibiting positive charging property of the present invention (powder of the present invention) comprises inorganic oxide particles, an organic silicon compound coating the particle surfaces, and a positive charge imparting agent. A powder consisting of particles containing and having the following physical properties:
(1) average particle size: 0.1 to 1 μm,
(2) bulk density: 20 to 100 g/L,
(3) Hydrophobicity: 60% or more,
(4) Water adsorption amount at water vapor relative pressure of 0.8 to 0.95: 2 to 5%,
(5) BET specific surface area: 25 to 150 m 2 /g,
(6) carbon content: 0.5 to 8% by weight;
(7) Nitrogen content: 0.1 to 0.75% by weight and (8) Amount of triboelectric charge: 20 to 300 μC/g
characterized by having

<本発明粉末の構成(組成)>
本発明粉末を構成する粒子は、無機酸化物粒子と、その粒子表面を被覆する有機ケイ素化合物とを含む。すなわち、無機酸化物粒子をコア粒子(原体)とし、その表面の一部又は全部が有機ケイ素化合物でコートされた構造を基本構成とするものである。
<Configuration (composition) of the powder of the present invention>
The particles constituting the powder of the present invention contain inorganic oxide particles and an organic silicon compound coating the particle surfaces. That is, the basic structure is a structure in which an inorganic oxide particle is used as a core particle (original material), and a part or all of the surface is coated with an organic silicon compound.

コア粒子となる無機酸化物粒子は、その種類は限定されず、例えば酸化ケイ素、酸化チタニウム、酸化アルミニウム等が挙げられるが、これに限定されない。これらの中でも、本発明では、酸化ケイ素(シリカ)を好適に用いることができる。これら粒子自体は、公知又は市販のものを用いることができる。 The inorganic oxide particles to be the core particles are not limited in kind, and examples thereof include silicon oxide, titanium oxide, and aluminum oxide, but are not limited thereto. Among these, silicon oxide (silica) can be preferably used in the present invention. Known or commercially available particles can be used for these particles themselves.

無機酸化物粒子の粒径は、限定的ではないが、通常は一次粒子径が5~150nm程度のものであれば良い。また、無機酸化物のBET比表面積は、通常30~400m/g程度とすれば良いが、これに限定されない。 The particle size of the inorganic oxide particles is not limited, but usually the primary particle size should be about 5 to 150 nm. In addition, the BET specific surface area of the inorganic oxide is usually about 30 to 400 m 2 /g, but is not limited to this.

また、無機酸化物粒子の製造方法は、フュームド法による粉末を用いることが好ましい。フュームド法は、公知の製法であり、例えばケイ素化合物(四塩化ケイ素等)又は金属ケイ素を酸素-水素火炎中に導入して加水分解反応させる工程を含む方法によりフュームドシリカを合成することができる。このような粉末は、前記のとおり、ゾルゲル法で製造されたシリカよりも球形から外れた粒子形状であるため、トナー表面からの遊離を効果的に抑制できる等のメリットが得られる。また、溶媒を使用しないため、乾燥時に凝集粒子を生成しないという利点も得られる。 Moreover, it is preferable to use the powder by the fumed method for the manufacturing method of inorganic oxide particles. The fumed method is a known manufacturing method, and for example, fumed silica can be synthesized by a method including a step of introducing a silicon compound (silicon tetrachloride, etc.) or metallic silicon into an oxygen-hydrogen flame to cause a hydrolysis reaction. . As described above, such a powder has a particle shape that is more non-spherical than silica produced by the sol-gel method, and thus has the advantage of being able to effectively suppress release from the toner surface. In addition, since no solvent is used, there is the advantage that no agglomerated particles are produced during drying.

このようなフュームド法による無機酸化物粒子自体は、公知又は市販のものを用いることができる。例えば、後記の実施例で示す市販品も好適に用いることができる。 Known or commercially available inorganic oxide particles per se obtained by such a fumed method can be used. For example, commercially available products shown in Examples below can also be suitably used.

無機酸化物粒子の表面をコートする有機ケイ素化合物としては、例えば疎水化処理剤として知られている公知又は市販のものも用いることができる。 As the organosilicon compound for coating the surface of the inorganic oxide particles, for example, known or commercially available agents known as hydrophobizing agents can be used.

より具体的には、ヘキサメチルジシラザン(HMDS)等のアルキルシラザン系化合物、ジメチルジメトキシシラン、ジエチルジエトキシシラン、トリメチルメトキシシラン、メチルトリメトキシシラン、ブチルトリメトキシシラン等のアルキルアルコキシシラン系化合物、ジメチルジクロロシラン、トリメチルクロロシラン等のクロロシラン系化合物のほか、ポリジメチルシロキサン(PDMS)等のシリコーンオイル、シリコーンワニス等を用いることができる。これらは、1種を単独で用いても良く、2種以上を混合して用いても良い。 More specifically, alkylsilazane compounds such as hexamethyldisilazane (HMDS), alkylalkoxysilane compounds such as dimethyldimethoxysilane, diethyldiethoxysilane, trimethylmethoxysilane, methyltrimethoxysilane and butyltrimethoxysilane, In addition to chlorosilane compounds such as dimethyldichlorosilane and trimethylchlorosilane, silicone oils such as polydimethylsiloxane (PDMS), silicone varnish, and the like can be used. These may be used individually by 1 type, and may be used in mixture of 2 or more types.

これらの中でも、本発明の効果をより確実に得られるという点で、アルキルシラザン系化合物、アルキルアルコキシシラン系化合物及びシリコーンオイルの少なくとも1種を用いることが好ましい。特に、ヘキサメチルジシラザン、ポリジメチルシロキサン及びアルキルアルコキシシランの少なくとも1種がより好ましい。 Among these, it is preferable to use at least one of alkylsilazane-based compounds, alkylalkoxysilane-based compounds, and silicone oil in order to more reliably obtain the effects of the present invention. In particular, at least one of hexamethyldisilazane, polydimethylsiloxane and alkylalkoxysilane is more preferred.

特に、アルキルアルコキシシラン系化合物は、アルキル基を有するアルコキシシランであれば、特に限定されず、例えばトリメトキシアルコキシシラン、トリエトキシアルコキシシラン等が挙げられる。アルキル基の炭素数(C)は、特に限定されないが、特にC2~C16であることが好ましい。C2未満では、表面処理中にアルコキシシランの揮発が発生するおそれがある。また、C16を超える場合は、その高い粘度の影響により強い凝集が発生し、得られた粉末の分散性が損なわれるおそれがある。 In particular, the alkylalkoxysilane-based compound is not particularly limited as long as it is an alkoxysilane having an alkyl group, and examples thereof include trimethoxyalkoxysilane and triethoxyalkoxysilane. Although the number of carbon atoms (C) in the alkyl group is not particularly limited, it is preferably C2 to C16. If it is less than C2, volatilization of alkoxysilane may occur during surface treatment. On the other hand, if it exceeds C16, strong aggregation may occur due to the influence of the high viscosity, and the dispersibility of the obtained powder may be impaired.

また特に、シリコーンオイルとしては、ポリジメチルシロキサンのほか、例えばアルキル基、-OH基等を導入した変性シリコーンオイルを用いることもできる。 In particular, as the silicone oil, in addition to polydimethylsiloxane, modified silicone oil into which an alkyl group, --OH group, or the like is introduced can also be used.

また、有機ケイ素化合物の粘度範囲(測定温度25℃)は、特に限定されないが、通常は10~300csであることが好ましい。粘度が10cs未満の場合は、表面処理時に低分子量ポリシロキサン等の揮発が発生し、エネルギー効率及び環境面等の観点から好ましくない。一方、粘度が300csを超える場合、より高い凝集が発生し、得られた粉末の分散性が損なわれるおそれがある。 Also, the viscosity range of the organosilicon compound (measurement temperature 25° C.) is not particularly limited, but it is usually preferably 10 to 300 cs. If the viscosity is less than 10 cs, volatilization of low-molecular-weight polysiloxane occurs during surface treatment, which is undesirable from the viewpoint of energy efficiency, environment, and the like. On the other hand, if the viscosity exceeds 300 cs, higher aggregation may occur and the dispersibility of the resulting powder may be impaired.

本発明粉末における有機ケイ素化合物の含有量は、特に上記炭素含有量の範囲内となる限りは特に限定されないが、一般的には無機酸化物粉末100重量部に対して5~20重量部程度とし、特に10~15重量部とすることが望ましい。 The content of the organosilicon compound in the powder of the present invention is not particularly limited as long as it falls within the range of the carbon content described above. , especially 10 to 15 parts by weight.

なお、有機ケイ素化合物の含有量は、有機ケイ素化合物としてアミノ基を有する有機ケイ素化合物を含む場合、当該アミノ基を有する有機ケイ素化合物の含有量は含めないものとする。 When the organosilicon compound contains an amino group-containing organosilicon compound, the content of the organosilicon compound does not include the content of the amino group-containing organosilicon compound.

正帯電付与剤は、無機酸化物粒子を正帯電性に改質できるものであれば特に限定されないが、本発明ではアミノシラン及びアミノ基変性シリコーンオイルの少なくとも1種を好適に用いることができる。これらの化合物におけるアミノ基は、1級~3級のいずれであっても良い。 The positive charge imparting agent is not particularly limited as long as it can modify the inorganic oxide particles to be positively chargeable, but in the present invention, at least one of aminosilane and amino group-modified silicone oil can be preferably used. The amino group in these compounds may be any of primary to tertiary.

アミノシランとしては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシランを好適に用いることができる。これらは、公知又は市販のものを用いることもできる。 Examples of aminosilanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-amino Amino group-containing alkoxysilanes such as propylmethyldimethoxysilane and N-phenyl-3-aminopropyltrimethoxysilane can be preferably used. Known or commercially available products can also be used for these.

アミノ基変性シリコーンオイルとしては、例えばシリコーン鎖の側鎖及び/又は末端にアミノ基又はそれを含む有機基(例えばアミノアルキル基)が導入されたシリコーンオイルを好適に用いることができる。これらは、公知又は市販のものを用いることもできる。 As the amino group-modified silicone oil, for example, a silicone oil in which an amino group or an organic group containing the amino group (for example, an aminoalkyl group) is introduced to the side chain and/or end of a silicone chain can be preferably used. Known or commercially available products can also be used for these.

本発明粉末における正帯電付与剤の含有量は、上記窒素含有量の範囲内となる限りは特に限定されないが、通常は無機酸化物粉末100重量部に対して0.5~30重量部程度とし、特に1~20重量部とすることが望ましい。 The content of the positive charge-imparting agent in the powder of the present invention is not particularly limited as long as the nitrogen content is within the above range. , especially 1 to 20 parts by weight.

<本発明粉末の特性>
本発明粉末は、下記の物性:
(1)平均粒径:0.1~1μm、
(2)嵩密度:20~100g/L、
(3)疎水率:60%以上、
(4)水蒸気相対圧0.8~0.95における水分吸着量:2~5%、
(5)BET比表面積:25~150m/g、
(6)炭素含有量:0.5~8重量%、
(7)窒素含有量:0.1~0.75重量%及び
(8)摩擦帯電量:20~300μC/g
をすべて満たす。
<Characteristics of the powder of the present invention>
The powder of the present invention has the following physical properties:
(1) average particle size: 0.1 to 1 μm,
(2) bulk density: 20 to 100 g/L,
(3) Hydrophobicity: 60% or more,
(4) Water adsorption amount at water vapor relative pressure of 0.8 to 0.95: 2 to 5%,
(5) BET specific surface area: 25 to 150 m 2 /g,
(6) carbon content: 0.5 to 8% by weight;
(7) Nitrogen content: 0.1 to 0.75% by weight and (8) Amount of triboelectric charge: 20 to 300 μC/g
meet all

平均粒径
平均粒径は、通常は0.1~1μm程度であり、好ましくは0.2~0.8μmである。上記範囲内の粒径を有することによって、スペーサーとしての機能を効果的に果たすことができる。なお、本発明における平均粒径は、粒度分布測定装置(レーザー回折散乱式粒度分布測定装置(株式会社堀場製作所製))において算出された値(算術平均径(体積標準))をいう。
Average Particle Size The average particle size is usually about 0.1 to 1 μm, preferably 0.2 to 0.8 μm. By having a particle size within the above range, the function as a spacer can be effectively achieved. The average particle diameter in the present invention refers to a value (arithmetic mean diameter (volume standard)) calculated with a particle size distribution analyzer (laser diffraction scattering particle size distribution analyzer (manufactured by HORIBA, Ltd.)).

嵩密度
嵩密度は、通常20~100g/L程度であり、特に50~100g/Lであることが好ましく、さらに30~80g/Lであることがより好ましい。嵩密度が20g/L未満の場合は、その粉末をトナー表面に分散した時、適正な凝集粒子径で分散することができず、十分なスペーサー効果を発現することができない。また、嵩密度が100g/Lを超えると、トナーとの混合の際に大量の装置体積を必要とし、工業的利用に問題がある。
Bulk Density The bulk density is usually about 20 to 100 g/L, preferably 50 to 100 g/L, and more preferably 30 to 80 g/L. If the bulk density is less than 20 g/L, when the powder is dispersed on the surface of the toner, it cannot be dispersed with an appropriate aggregated particle size, and a sufficient spacer effect cannot be exhibited. On the other hand, if the bulk density exceeds 100 g/L, a large volume of apparatus is required for mixing with toner, which poses a problem for industrial use.

疎水率
疎水率は、通常は60%程度以上であり、特に80%以上が好ましく。さらには97%以上であることがより好ましく、その中でも99%以上であることが最も好ましい。本発明における疎水率は、表面改質無機酸化物粉末の疎水性の程度を示す指標である。疎水率が60%未満の場合には、シリカ粉末に存在するアミノ基による強い正帯電性を発現できなくなり、帯電性に優れたサブミクロンサイズの粉末が得られなくなることがある。なお、疎水率の上限は、特に制限されないが、通常は100%である。
Hydrophobicity Hydrophobicity is usually about 60% or more, preferably 80% or more. It is more preferably 97% or more, and most preferably 99% or more. The hydrophobicity in the present invention is an index showing the degree of hydrophobicity of the surface-modified inorganic oxide powder. If the hydrophobicity is less than 60%, the amino groups present in the silica powder cannot exhibit strong positive chargeability, and it may not be possible to obtain a submicron-sized powder with excellent chargeability. Although the upper limit of the hydrophobicity is not particularly limited, it is usually 100%.

水分吸着量
水蒸気相対圧0.8~0.95における水分吸着量は、通常は2~5重量%程度であり、特に2.5~4.0重量%であることが好ましい。従って、例えば3~5重量%に設定することもできる。水分吸着量は、帯電特性に大きく影響するところ、上記範囲内に設定することにより適度な帯電性を付与することができる。水分吸着量が2重量%未満では、例えばシリカ粉末はフュームドシリカ特有の帯電特性を示し、強正帯電になりすぎてしまう。また、水分吸着量が5重量%を超えると、ゾルゲル法によるシリカに近い保有・吸着水分量となるため、十分な正帯電性を発現することができなくなる。
Moisture adsorption amount The moisture adsorption amount at a water vapor relative pressure of 0.8 to 0.95 is usually about 2 to 5% by weight, preferably 2.5 to 4.0% by weight. Therefore, it can be set to 3 to 5% by weight, for example. Since the amount of water adsorption has a great influence on charging characteristics, setting the amount within the above range can impart appropriate charging characteristics. If the water adsorption amount is less than 2% by weight, silica powder, for example, exhibits charging characteristics peculiar to fumed silica, and becomes too strongly positively charged. On the other hand, if the moisture adsorption amount exceeds 5% by weight, the amount of retained/adsorbed moisture becomes close to that of silica obtained by the sol-gel method, and sufficient positive chargeability cannot be obtained.

BET比表面積
BET比表面積は、通常25~150m/g程度であり、特に50~150m/g程度とすることが好ましく、さらに30~130m/gとすることがより好ましい。BET比表面積が25m/g未満の場合は、凝集粒子径が大きすぎるためにトナーに分散した時の分散性が不十分となる。BET比表面積が150m/gを上回る場合は、トナーに分散した時に、適正な凝集径が維持されず、十分なスペーサー効果が発現できない。
BET Specific Surface Area The BET specific surface area is usually about 25 to 150 m 2 /g, preferably about 50 to 150 m 2 /g, more preferably about 30 to 130 m 2 /g. When the BET specific surface area is less than 25 m 2 /g, the aggregated particle size is too large, resulting in insufficient dispersibility when dispersed in a toner. When the BET specific surface area exceeds 150 m 2 /g, when dispersed in the toner, an appropriate aggregate size cannot be maintained, and a sufficient spacer effect cannot be exhibited.

炭素含有量
炭素含有量は、通常0.5~8重量%程度であり、好ましくは0.8~6.0重量%である。特に、表面処理剤(疎水化処理剤)がHMDSの場合は0.5~5.0重量%程度、PDMSの場合は0.5~8.0重量%程度、アルキルアルコキシシランの場合は0.5~8.0重量%程度であることが好ましい。炭素含有量は、表面処理剤である有機系ケイ素化合物で無機酸化物粉末への固定化の度合い(固定量)を示す指標となるものである。炭素含有量が低すぎると、十分な表面改質が行われず、十分な疎水率を与えることができず、帯電特性、分散性等が不十分となる。一方、炭素含有量が多すぎると、有機物の含有量が多すぎて粒子の凝集が生じ、十分な流動性、分散性が得られず、この粉末をトナーに応用しても十分なスペーサー効果を発現することができない。
Carbon content The carbon content is usually about 0.5 to 8% by weight, preferably 0.8 to 6.0% by weight. In particular, when the surface treatment agent (hydrophobic treatment agent) is HMDS, it is about 0.5 to 5.0% by weight, when it is PDMS, it is about 0.5 to 8.0% by weight, and when it is alkylalkoxysilane, it is 0.5% by weight. It is preferably about 5 to 8.0% by weight. The carbon content is an index indicating the degree of fixation (fixed amount) to the inorganic oxide powder of the organic silicon compound, which is the surface treatment agent. If the carbon content is too low, sufficient surface modification cannot be achieved and sufficient hydrophobicity cannot be imparted, resulting in insufficient charging characteristics, dispersibility, and the like. On the other hand, if the carbon content is too high, the organic matter content is too high, causing particle agglomeration and sufficient fluidity and dispersibility. cannot be expressed.

窒素含有量
窒素含有量は、通常0.1~0.75重量%であり、特に0.20~0.70重量%であることが好ましい。窒素含有量が0.1重量%未満の場合は、無機酸化物粒子表面にアミノ基による修飾が十分に行われず、十分な正帯電性を与えることができなくなる。一方、窒素含有量が0.75重量%を超える場合は、粒子どうしの凝集が生じ、十分な流動性、分散性が得られず、この粉末をトナーに適用しても、十分なスペーサー効果を発現することができなくなる。
Nitrogen Content The nitrogen content is usually 0.1 to 0.75% by weight, preferably 0.20 to 0.70% by weight. If the nitrogen content is less than 0.1% by weight, the surface of the inorganic oxide particles is not sufficiently modified with amino groups, and sufficient positive chargeability cannot be imparted. On the other hand, when the nitrogen content exceeds 0.75% by weight, the particles are agglomerated and sufficient fluidity and dispersibility cannot be obtained. unable to manifest.

摩擦帯電量
摩擦帯電量は、通常20~300μC/g程度であり、特に35~285μC/gであることが好ましい。摩擦帯電量が20μC/gよりゼロ側に近づくと、その粉末をトナーに添加した際、トナーに強い正帯電特性を付与することが困難となり、トナーを所定の帯電量範囲に制御することが困難となる。一方、摩擦帯電量が300μC/gを超える場合、その強い摩擦帯電量により、トナーの帯電特性を制御することが困難となる。
Amount of Triboelectric Charge The amount of triboelectric charge is usually about 20 to 300 μC/g, preferably 35 to 285 μC/g. When the triboelectric charge amount approaches zero side from 20 μC/g, when the powder is added to the toner, it becomes difficult to impart strong positive charge characteristics to the toner, making it difficult to control the toner charge amount within a predetermined range. becomes. On the other hand, when the triboelectric charge amount exceeds 300 μC/g, it becomes difficult to control the charging characteristics of the toner due to the strong triboelectric charge amount.

2.本発明粉末の製造方法
本発明粉末の製造方法は、上記のような構成・特性を有する粉末が得られる限り、特に制約されないが、例えば(a)無機酸化物粉末、有機ケイ素化合物及び正帯電性付与剤を含む混合物を調製する工程(混合物調製工程)、(b)前記混合物を120~360℃の温度で熱処理する工程(熱処理工程)を含む方法によって好適に製造することができる。
2. Method for producing the powder of the present invention The method for producing the powder of the present invention is not particularly limited as long as the powder having the above constitution and properties can be obtained. It can be suitably produced by a method comprising a step of preparing a mixture containing a imparting agent (mixture preparation step), and (b) a step of heat-treating the mixture at a temperature of 120 to 360° C. (heat treatment step).

混合物調製工程
混合物調製工程では、無機酸化物粉末を構成する各粒子の表面を有機ケイ素化合物で被覆できる方法であれば限定されず、例えば攪拌下で無機酸化物粉末と気化した有機ケイ素化合物及び/又は正帯電性付与剤とを混合する方法、攪拌下で無機酸化物粉末に有機ケイ素化合物及び/又は正帯電性付与剤を噴霧する方法等を好適に採用することができる。このように、これらの各成分の混合は、攪拌しながら実施することが好ましい。
Mixture preparation step The mixture preparation step is not limited as long as the surface of each particle constituting the inorganic oxide powder can be coated with the organic silicon compound. For example, the inorganic oxide powder and the vaporized organic silicon compound and / Alternatively, a method of mixing with a positive charging property-imparting agent, a method of spraying an organic silicon compound and/or a positive charging property-imparting agent onto an inorganic oxide powder under stirring, or the like can be suitably employed. Thus, it is preferable to mix these components while stirring.

この場合、有機ケイ素化合物及び/又は正帯電性付与剤は、必要に応じて溶媒(例えばヘキサン、トルエン等の有機溶剤)に溶解又は分散させた状態で用いることもできる。その場合の各成分の濃度は、用いる有機ケイ素化合物又は正帯電性付与剤の種類等に応じて適宜設定することができる。 In this case, the organosilicon compound and/or the positive charge-imparting agent may be dissolved or dispersed in a solvent (for example, an organic solvent such as hexane, toluene, etc.) as necessary. In that case, the concentration of each component can be appropriately set according to the type of the organosilicon compound or the positive charging agent to be used.

また、本発明では、必要に応じて、混合物中に水、触媒(アミン等)を適宜配合することもできる。 In addition, in the present invention, water and a catalyst (amine, etc.) can be appropriately added to the mixture, if necessary.

混合物調製工程における温度条件は、特に限定されず、例えば10~40℃の範囲内であれば良いが、これに限定されない。また、雰囲気は、通常は不活性ガス雰囲気で実施することが好ましい。例えば、窒素ガス、ヘリウムガス、アルゴンガス等を好適に用いることができる。 The temperature conditions in the mixture preparation step are not particularly limited, and may be, for example, within the range of 10 to 40° C., but are not limited thereto. Moreover, the atmosphere is preferably an inert gas atmosphere. For example, nitrogen gas, helium gas, argon gas, etc. can be preferably used.

有機ケイ素化合物及び正帯電性付与剤の種類、使用量等については、前記「1.表面改質無機酸化物粉末」で説明したものと同様のものを採用することができる。 The types and amounts of the organosilicon compound and the positive charge-imparting agent may be the same as those described in the above "1. Surface-modified inorganic oxide powder".

熱処理工程
熱処理工程における熱処理温度は、限定的ではないが、通常は100~270℃(特に120~250℃)とすることが好ましい。熱処理温度が270℃を超える場合は、正帯電性付与剤の一部分解が生じる場合がある。また、100℃未満の場合は、有機ケイ素化合物の十分な表面改質が行われず、所望の疎水性が得られなくなるおそれがある。
Heat Treatment Process The heat treatment temperature in the heat treatment process is not limited, but it is usually preferably 100 to 270° C. (especially 120 to 250° C.). If the heat treatment temperature exceeds 270° C., the positive charge imparting agent may be partially decomposed. On the other hand, if the temperature is less than 100° C., the surface of the organosilicon compound may not be sufficiently modified, and the desired hydrophobicity may not be obtained.

熱処理雰囲気は、前記工程と同様、通常は不活性ガス雰囲気で実施することが好ましい。例えば、窒素ガス、ヘリウムガス、アルゴンガス等を好適に用いることができる。特に、密閉された反応器中で前記工程を実施し、そのまま継続として当該雰囲気を維持した状態で熱処理工程を好適に実施することができる。 As for the heat treatment atmosphere, it is usually preferable to carry out the heat treatment in an inert gas atmosphere, as in the above process. For example, nitrogen gas, helium gas, argon gas, etc. can be preferably used. In particular, it is possible to carry out the above process in a closed reactor, and continue the heat treatment process while maintaining the atmosphere.

熱処理時間は、有機シラン化合物及び正帯電性付与剤が無機酸化物粉末を構成する各粒子の表面に固定化(固着)するのに十分な時間とすれば良く、例えば10~200分程度とすることができるが、これに限定されない。 The heat treatment time may be a time sufficient for the organic silane compound and the positive charge imparting agent to be fixed (fixed) to the surface of each particle constituting the inorganic oxide powder, for example, about 10 to 200 minutes. can be, but is not limited to.

3.本発明粉末の使用
本発明粉末は、前記「1.表面改質無機酸化物粉末」で示した特性(1)~(8)を全て備えているので、フュームド法による無機酸化物粉末の優れた特性に加え、良好なスペーサー効果と適度な帯電特性とをともに発揮することができる。それゆえに、本発明粉末は、例えばトナー、粉末塗料等の添加剤(特にトナー用外添剤)として好適に用いることができる。従って、本発明は、本発明粉末と結着性樹脂粒子とを含む電子写真用トナー組成物又は粉体塗料組成物(以下、両者をまとめて「本発明組成物」ともいう。)も包含する。
3. Use of the powder of the present invention Since the powder of the present invention has all of the properties (1) to (8) shown in "1. Surface-modified inorganic oxide powder", it is an excellent inorganic oxide powder produced by the fumed method. In addition to the properties, both a good spacer effect and appropriate charging properties can be exhibited. Therefore, the powder of the present invention can be suitably used as an additive (especially an external additive for toner) for toners, powder coatings, and the like. Therefore, the present invention also includes an electrophotographic toner composition or a powder coating composition containing the powder of the present invention and the binder resin particles (hereinafter both are collectively referred to as the "composition of the present invention"). .

本発明組成物は、上述の本発明の表面改質無機酸化物粉末を含むものであり、その組成、その製造方法等には特に制限はなく、公知の組成及び方法を採用することもできる。 The composition of the present invention contains the surface-modified inorganic oxide powder of the present invention described above, and its composition, its production method, etc. are not particularly limited, and known compositions and methods can be employed.

本発明組成物中における本発明粉末の含有量は、所望の特性向上効果が得られる限り、特に制限されないが、通常は0.1~5.0重量%程度含有されていることが好ましい。本発明組成物中の本発明粉末の含有量が0.1重量%未満では、本発明粉末を添加したことによる流動性の改善効果あるいは帯電性の安定効果が十分に得られないことがある。また、本発明粉末の含有量が5.0重量%を超えると、本発明粉末単独で行動するものが増え、例えば画像、クリーニング性等に問題が生じるおそれがある。 The content of the powder of the present invention in the composition of the present invention is not particularly limited as long as the desired effect of improving properties can be obtained, but it is usually preferably contained in an amount of about 0.1 to 5.0% by weight. If the content of the powder of the present invention in the composition of the present invention is less than 0.1% by weight, the addition of the powder of the present invention may fail to sufficiently improve fluidity or stabilize chargeability. On the other hand, if the content of the powder of the present invention exceeds 5.0% by weight, many of the powders of the present invention act alone, and there is a possibility that problems may occur, for example, in image quality and cleanability.

本発明組成物では、結着性樹脂粒子のほか、必要に応じて、例えば顔料、電荷制御剤(帯電制御剤)、ワックス等が含まれていても良い。これらの成分は、公知又は市販のトナー組成物と同様とすることもできる。また、トナーのタイプは、正帯電性のトナーが好ましいが、それ以外の点については特に限定されない。従って、例えば、磁性又は非磁性の1成分系トナー又は2成分系トナーのいずれでも良い。さらには、モノクロ又はカラーのどちらでも良い。 The composition of the present invention may contain pigments, charge control agents (charge control agents), waxes, etc., if necessary, in addition to the binding resin particles. These ingredients can also be similar to known or commercially available toner compositions. Further, the type of toner is preferably a positively charged toner, but is not particularly limited in other respects. Therefore, for example, either magnetic or non-magnetic one-component toner or two-component toner may be used. Furthermore, either monochrome or color may be used.

本発明粉末は、特に、スペーサー効果に優れているので、軟化しやすい樹脂成分(例えばスチレン-アクリル共重合体樹脂、ポリエステル樹脂、エポキシ樹脂等の少なくとも1種)を含む結着性樹脂粒子の外添剤としてより好適に用いることができる。 Since the powder of the present invention is particularly excellent in the spacer effect, the binder resin particles containing easily softening resin components (for example, at least one of styrene-acrylic copolymer resin, polyester resin, epoxy resin, etc.) It can be used more preferably as an additive.

なお、本発明の電子写真用トナー組成物では、外添剤としての本発明粉末は、単独で使用される場合に限られず、目的に応じて他の金属酸化物微粉末と併用しても良い。例えば、本発明の表面改質無機酸化物粉末と、他の表面改質された乾式シリカ微粉末、表面改質された乾式酸化チタン微粉末、表面改質された湿式酸化チタン微粉末等を必要に応じて併用することができる。 In the electrophotographic toner composition of the present invention, the powder of the present invention as an external additive is not limited to being used alone, and may be used in combination with other metal oxide fine powder depending on the purpose. . For example, the surface-modified inorganic oxide powder of the present invention, other surface-modified dry-type silica fine powder, surface-modified dry-type titanium oxide fine powder, surface-modified wet-type titanium oxide fine powder, etc. are required. can be used in combination depending on the

以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 EXAMPLES Examples and comparative examples are shown below to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.

なお、各実施例及び比較例で用いた成分は、次のとおりである。 The components used in each example and comparative example are as follows.

(A)シリカ粉末について
(A1)ゾルゲルシリカ
公知のゾルゲル法で製造された試料(BET比表面積30m/g)
(A2)試料A
公知のフュームド法によって製造された内部空孔を有する試料(BET比表面積110m/g)
(A3)試料B
公知のフュームド法によって製造された内部空孔を有する試料(BET比表面積120m/g)
(A4)市販品a
製品名「AEROSIL TT600」(登録商標)日本アエロジル株式会社製(フュームドシリカ、BET比表面積135m/g)
(A5)試料C
公知のフュームド法によって製造された内部空孔を有する試料(BET比表面積165m/g)
(A6)試料D
公知のフュームド法によって製造された内部空孔を有する試料(BET比表面積210m/g)
(A7)市販品b
製品名「AEROSIL 50」(登録商標)日本アエロジル株式会社製)(フュームドシリカ、BET比表面積50m/g)
(A8)市販品c
製品名「AEROSIL 200」(登録商標)日本アエロジル株式会社製)(フュームドシリカ、BET比表面積200m/g)
(A) About silica powder (A1) Sol-gel silica Sample manufactured by a known sol-gel method (BET specific surface area 30 m 2 /g)
(A2) Sample A
A sample with internal pores produced by a known fumed method (BET specific surface area 110 m 2 /g)
(A3) Sample B
A sample with internal pores produced by a known fumed method (BET specific surface area 120 m 2 /g)
(A4) Commercial product a
Product name “AEROSIL TT600” (registered trademark) manufactured by Nippon Aerosil Co., Ltd. (fumed silica, BET specific surface area 135 m 2 /g)
(A5) Sample C
A sample with internal pores produced by a known fumed method (BET specific surface area 165 m 2 /g)
(A6) Sample D
A sample with internal pores produced by a known fumed method (BET specific surface area 210 m 2 /g)
(A7) Commercial product b
Product name “AEROSIL 50” (registered trademark) manufactured by Nippon Aerosil Co., Ltd.) (fumed silica, BET specific surface area 50 m 2 /g)
(A8) Commercial product c
Product name “AEROSIL 200” (registered trademark) manufactured by Nippon Aerosil Co., Ltd. (fumed silica, BET specific surface area 200 m 2 /g)

(B)表面処理剤について
(B1)HMDS
ヘキサメチルジシラザン(製品名「Dynasilan HMDS」(登録商標)Evonik社製)
(B2)PDMS
・20cs: ポリジメチルシロキサン(製品名「KF96-20cs」信越化学工業社製)
・30cs: ポリジメチルシロキサン(製品名「KF96-30cs」信越化学工業社製)
・50cs: ポリジメチルシロキサン(製品名「KF96-50cs」信越化学工業社製)
・100cs: ポリジメチルシロキサン(製品名「KF96-100cs」信越化学工業社製)
・300cs: ポリジメチルシロキサン(製品名「KF96-300cs」信越化学工業社製)
・500cs: ポリジメチルシロキサン(製品名「KF96-500cs」信越化学工業社製)
・アミノ変性: アミノ変性ポリジメチルシロキサン(製品名「KF96-859」信越化学工業社製)
(B) Surface treatment agent (B1) HMDS
Hexamethyldisilazane (product name “Dynasilan HMDS” (registered trademark) manufactured by Evonik)
(B2) PDMS
・ 20cs: Polydimethylsiloxane (product name “KF96-20cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 30cs: Polydimethylsiloxane (product name “KF96-30cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 50cs: Polydimethylsiloxane (product name “KF96-50cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 100cs: Polydimethylsiloxane (product name “KF96-100cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 300cs: Polydimethylsiloxane (product name “KF96-300cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ 500cs: Polydimethylsiloxane (product name “KF96-500cs” manufactured by Shin-Etsu Chemical Co., Ltd.)
・ Amino-modified: Amino-modified polydimethylsiloxane (product name “KF96-859” manufactured by Shin-Etsu Chemical Co., Ltd.)

(B2)アルキルシラン
・C1: モノメチルトリメトキシシラン(信越化学工業社製)
・C2: ジメチルジメトキシシラン(製品名「DOWSIL Z-6329」(登録商標)Dow and TOYAY社製)
・C4: イソブチルトリメトキシシラン(製品名「Dynasilan IBTMO」Evonik社製)
・C8a: オクチルトリメトキシシラン(製品名「Dynasilan OCTMO」Evonik社製)
・C8b: オクチルトリエトキシシラン(製品名「Dynasilan OCTEO」Evonik社製)
・C16: ヘキサデシルトリメトキシシラン(製品名「Dynasilan 9116」Evonik社製)
・C18: オクタデシルトリメトキシシラン(富士フイルム和光純薬社製)
(B2) Alkylsilane C1: monomethyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
・C2: dimethyldimethoxysilane (product name “DOWSIL Z-6329” (registered trademark) manufactured by Dow and Toyay)
・C4: isobutyltrimethoxysilane (product name “Dynasilan IBTMO” manufactured by Evonik)
・C8a: Octyltrimethoxysilane (product name “Dynasilan OCTMO” manufactured by Evonik)
・C8b: octyltriethoxysilane (product name “Dynasilan OCTEO” manufactured by Evonik)
・C16: Hexadecyltrimethoxysilane (product name “Dynasilan 9116” manufactured by Evonik)
・C18: Octadecyltrimethoxysilane (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)

(B3)アミノシラン(正帯電付与剤)
・アミノシランA: 3-アミノプロピルトリエトキシシラン
・アミノシランB: N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
(B3) aminosilane (positive charging agent)
・Aminosilane A: 3-aminopropyltriethoxysilane ・Aminosilane B: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane

[実施例1]
表1に示すように、内部空孔を有した乾式法で製法された試料Aを反応器に入れ、窒素雰囲気下の攪拌下において、アルキルシラン及びアミノシランBを所定の添加量となるように導入し、攪拌を継続した状態で120℃で120分間熱処理することによって、内部空孔を有する表面改質シリカ粉末を得た。
[Example 1]
As shown in Table 1, a sample A having internal pores produced by a dry method was placed in a reactor, and while stirring under a nitrogen atmosphere, alkylsilane and aminosilane B were introduced in predetermined amounts. Then, the mixture was heat-treated at 120° C. for 120 minutes while stirring to obtain a surface-modified silica powder having internal pores.

[実施例2]
表1に示すように、内部空孔を有した乾式法で製法された試料Aを試料Bに変更し、表面処理剤をPDMS及びアミノシランAに変更し、さらに表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 2]
As shown in Table 1, Sample A produced by a dry method having internal pores was changed to Sample B, the surface treatment agent was changed to PDMS and Aminosilane A, and the treatment temperature and time described in Table 1 were used. A surface-modified silica powder having internal pores was obtained in the same manner as in Example 1, except that it was changed to .

[実施例3]
表1に示すように、試料Aを市販品aに変更し、表面処理剤をHMDS、アミノシランA及びアミノシランBに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 3]
As shown in Table 1, Example 1 except that Sample A was changed to commercial product a, surface treatment agents were changed to HMDS, aminosilane A and aminosilane B, and the treatment temperature and time were changed to those shown in Table 1. A surface-modified silica powder having internal pores was obtained in the same manner as described above.

[実施例4]
表1に示すように、試料Aを市販品aに変更し、表面処理剤をアルキルシランとアミノシランAに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 4]
As shown in Table 1, the same procedure as in Example 1 was performed except that Sample A was changed to commercial product a, surface treatment agents were changed to alkylsilane and aminosilane A, and the treatment temperature and time were changed to those shown in Table 1. to obtain a surface-modified silica powder having internal pores.

[実施例5]
表1に示すように、試料Aを市販品aに変更し、表面処理剤をHMDS、PMDS及びアミノシランAに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 5]
As shown in Table 1, Sample A was changed to commercial product a, the surface treatment agent was changed to HMDS, PMDS and Aminosilane A, and the treatment temperature and time were changed to those shown in Table 1, except that Example 1 was used. A surface-modified silica powder having internal pores was similarly obtained.

[実施例6]
表1に示すように、試料Aを試料Cに変更し、表面処理剤をPDMS、アミノシランA及びアミノシランBに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 6]
As shown in Table 1, sample A was changed to sample C, the surface treatment agent was changed to PDMS, aminosilane A and aminosilane B, and the treatment temperature and time described in Table 1 were changed, except that the treatment temperature and time were changed. A surface-modified silica powder having internal pores was similarly obtained.

[実施例7]
表1に示すように、試料Aを試料Cに変更し、表面処理剤をPDMS及びアミノシランBに変更し、表に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 7]
As shown in Table 1, sample A was changed to sample C, the surface treatment agent was changed to PDMS and aminosilane B, and the treatment temperature and time were changed to those shown in the table. A surface-modified silica powder with pores was obtained.

[実施例8]
表1に示すように、試料Aを試料Dに変更し、表面処理剤をアルキルシラン及びアミノシランAに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 8]
As shown in Table 1, the procedure was the same as in Example 1, except that Sample A was changed to Sample D, the surface treatment agent was changed to alkylsilane and aminosilane A, and the treatment temperature and time were changed to those shown in Table 1. A surface-modified silica powder with internal pores was obtained.

[実施例9]
表1に示すように、試料Aを試料Dに変更し、表面処理剤をPDMS及びアミノシランBに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 9]
As shown in Table 1, the procedure of Example 1 was repeated except that Sample A was changed to Sample D, the surface treatment agent was changed to PDMS and aminosilane B, and the treatment temperature and time were changed to those shown in Table 1. A surface-modified silica powder with internal pores was obtained.

[実施例10]
表1に示すように、表面処理剤をアルキルシラン、アミノシランA及びアミノシランBに変更し、表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 10]
As shown in Table 1, the surface treatment agent was changed to alkylsilane, aminosilane A and aminosilane B, and the treatment temperature and time were changed to those described in Table 1. A surface-modified silica powder was obtained.

[実施例11]
表1に示すように、表面処理剤をHMDS及びアミノシランAに変更し、さらに表1に記載した処理温度と時間に変更した以外は、実施例1と同様にして内部空孔を有する表面改質シリカ粉末を得た。
[Example 11]
As shown in Table 1, surface modification having internal pores was performed in the same manner as in Example 1, except that the surface treatment agent was changed to HMDS and aminosilane A, and the treatment temperature and time were changed to those shown in Table 1. A silica powder was obtained.

[比較例1~3]
表2に示すように、ゾルゲルシリカを実施例1と同様に反応器に入れ、窒素雰囲気下の攪拌下に、表2に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理ゾルゲルシリカを得た。
[Comparative Examples 1 to 3]
As shown in Table 2, sol-gel silica was placed in the reactor in the same manner as in Example 1, and the surface treatment agent shown in Table 2 was introduced under stirring in a nitrogen atmosphere. A surface-treated sol-gel silica was obtained by heat-treating at the specified treatment temperature and time.

[比較例4~6]
表2に示すように、無機酸化物粉末として市販品bを実施例1と同様に反応器に入れ、窒素雰囲気下の攪拌下に、表2に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Examples 4 to 6]
As shown in Table 2, commercially available product b was put into the reactor in the same manner as in Example 1 as the inorganic oxide powder, and the surface treatment agent shown in Table 2 was introduced under stirring in a nitrogen atmosphere, and stirring was continued. In this state, the surface-treated fumed silica was obtained by heat-treating at the treatment temperature and time shown in Table 2.

[比較例7~9]
表2に示すように、無機酸化物粉末として市販品cを実施例1と同様に反応器に入れ、窒素雰囲気下の攪拌下に、表2に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Examples 7 to 9]
As shown in Table 2, commercially available product c was put into the reactor in the same manner as in Example 1 as the inorganic oxide powder, and the surface treatment agent shown in Table 2 was introduced under stirring in a nitrogen atmosphere, and stirring was continued. In this state, the surface-treated fumed silica was obtained by heat-treating at the treatment temperature and time shown in Table 2.

[比較例10]
表2に示すように、無機酸化物粉末として市販品aを実施例1と同様に反応器に入れ、窒素雰囲気下の攪拌下に、表2に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Example 10]
As shown in Table 2, commercially available product a was put into the reactor in the same manner as in Example 1 as the inorganic oxide powder, and the surface treatment agent shown in Table 2 was introduced under stirring in a nitrogen atmosphere, and stirring was continued. In this state, the surface-treated fumed silica was obtained by heat-treating at the treatment temperature and time shown in Table 2.

[比較例11]
表2に示すように、試料Bを同様に反応器に入れ、窒素雰囲気下の攪拌下に、表1に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Example 11]
As shown in Table 2, sample B was similarly placed in the reactor, and the surface treatment agent shown in Table 1 was introduced under stirring in a nitrogen atmosphere. The surface-treated fumed silica was obtained by heat-treating for 1 hour.

[比較例12]
表2に示すように、市販品aを同様に反応器に入れ、窒素雰囲気下の攪拌下に、表1に示す表面処理剤を導入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Example 12]
As shown in Table 2, the commercially available product a was similarly placed in the reactor, the surface treatment agent shown in Table 1 was introduced under stirring in a nitrogen atmosphere, and the treatment temperature shown in Table 2 was maintained while stirring was continued. and hours to obtain the surface-treated fumed silica.

[比較例13]
表2に示すように、試料Cを反応器に入れ、窒素雰囲気下の攪拌下に、表2に示す表面処理剤を入し、攪拌を継続した状態で表2に記載した処理温度と時間で熱処理して表面処理フュームドシリカを得た。
[Comparative Example 13]
As shown in Table 2, the sample C was placed in a reactor, the surface treatment agent shown in Table 2 was added under stirring in a nitrogen atmosphere, and the treatment temperature and time shown in Table 2 were applied while stirring was continued. A surface-treated fumed silica was obtained by heat treatment.

[比較例14]
表2に示すように、試料、処理温度、時間等を変更した場合は、十分な表面処理が行われず、乾燥した粉体を得ることができなかった。
[Comparative Example 14]
As shown in Table 2, when the sample, treatment temperature, time, etc. were changed, sufficient surface treatment was not performed, and dry powder could not be obtained.

[試験例1]
各実施例及び比較例で得られた表面改質シリカ粉末について、下記の各物性について測定した。その結果を表1~表2に併せて示す。
[Test Example 1]
The following physical properties of the surface-modified silica powders obtained in Examples and Comparative Examples were measured. The results are also shown in Tables 1 and 2.

(1)嵩密度
メスシリンダーを上皿天秤に載せ、風袋を消去し、メスシリンダーに試料を入れて質量を量り(質量A)、2分間静置後の容積(容積B)を読み取る。次式を用いて嵩密度を計算する。
嵩密度(g/L)=(質量A/容積B)×1000
(1) Bulk Density A graduated cylinder is placed on a precision balance, the tare is removed, a sample is placed in the graduated cylinder, the mass is weighed (mass A), and the volume (volume B) after standing for 2 minutes is read. Calculate the bulk density using the following formula:
Bulk density (g/L) = (mass A/volume B) x 1000

(2)疎水率
表面改質シリカ粉末1gを200mLの分液ロートに計り採り、これに純水100mLを加えて栓をし、ターブラーミキサーで90rpmの回転数で10分間振盪した。振盪後、さらに10分間静置した後、下層の20~30mLをロートから抜き取った後に、下層の混合液を10mm石英セルに分取し、純水をブランクとして、比色計にかけ、波長500nmでの光透過率(%)を疎水率とした。光透過率が高いほど疎水性が高いことを示す。これは、疎水性の高い表面改質無機酸化物粉末は、水中に分散することなく水面に浮く傾向にあるので、それだけ水が濁りにくくなって光透過率が高くなるためである。
(2) Hydrophobicity 1 g of the surface-modified silica powder was weighed into a 200 mL separating funnel, 100 mL of pure water was added thereto, the funnel was plugged, and the funnel was shaken at 90 rpm for 10 minutes with a Turbula mixer. After shaking, leave to stand for an additional 10 minutes, remove 20 to 30 mL of the lower layer from the funnel, dispense the mixed liquid of the lower layer into a 10 mm quartz cell, use pure water as a blank, apply it to a colorimeter, and measure at a wavelength of 500 nm. The light transmittance (%) of was used as the hydrophobicity. Higher light transmittance indicates higher hydrophobicity. This is because the highly hydrophobic surface-modified inorganic oxide powder tends to float on the water surface without dispersing in water, which makes the water less turbid and increases the light transmittance.

(3)水分吸着量測定
表面改質シリカ粉末を真空下150℃で2時間以上加熱し、十分に乾燥した後、高精度ガス吸着量測定装置(製品名「BELSORP-max」マイクロトラック・ベル株式会社製)にて排気時間15分、圧力上昇許容量5.000E-1 Pa/分の条件にて測定する。吸着等温線を解析し、水蒸気相対圧が0.8~0.95の範囲内での値を水分吸着量とした。
(3) Water adsorption measurement After heating the surface-modified silica powder at 150 ° C. under vacuum for 2 hours or more and drying it sufficiently, use a high-precision gas adsorption measurement device (product name “BELSORP-max” Microtrack Bell Co., Ltd.) (manufactured by the company) under the conditions of an exhaust time of 15 minutes and an allowable pressure rise of 5.000E-1 Pa/min. The adsorption isotherm was analyzed, and the value within the range of the water vapor relative pressure of 0.8 to 0.95 was taken as the water adsorption amount.

(4)BET比表面積
BET{表面積(m/g)}は、全自動比表面積測定装置(製品名「Macsorb」マウンテック製)を用い、試料を100℃で10分間の前処理をした後、BET1点法により吸脱着した窒素量から試料の表面積を求め、その重量で除して比表面積を求めた。
(4) BET specific surface area BET {surface area (m 2 /g)} is measured using a fully automatic specific surface area measuring device (product name “Macsorb” manufactured by Mountec), and after pretreating the sample at 100 ° C. for 10 minutes, The surface area of the sample was obtained from the amount of adsorbed and desorbed nitrogen by the BET single-point method, and the specific surface area was obtained by dividing the surface area by the weight.

(5)炭素含有量
炭素含有量は、炭素分析装置(製品名「SUMIGRAPH NC-22」住化分析センター製)を用いて測定した。
(5) Carbon content The carbon content was measured using a carbon analyzer (product name “SUMIGRAPH NC-22” manufactured by Sumika Chemical Analysis Service).

(6)摩擦帯電量
表面改質シリカ粉末2gと鉄粉キャリア48gとをガラス容器(容量75mL)に入れ、ターブラーミキサーで10分間振とうした後、その混合物0.05gを採取し、吸引ブローオフ型Q/Mメーター(製品名「MODEL 230TO」トレックジャパン株式会社)にて摩擦帯電量を測定した。
(6) Amount of triboelectric charge 2 g of surface-modified silica powder and 48 g of iron powder carrier were placed in a glass container (capacity: 75 mL) and shaken for 10 minutes with a Turbula mixer. The amount of triboelectric charge was measured with a type Q/M meter (product name "MODEL 230TO" by Trek Japan Co., Ltd.).

(7)粒度分布測定
レーザー回折法粒度分布測定装置(製品名「LA-920」株式会社堀場製作所製)を用いて測定を行った。分散媒としてエタノールを用い、試料を添加した後、循環強度:10、超音波強度:7、超音波照射時間:3分の分散条件で測定し、算術平均径に粒子径分布の範囲を凝集粒子径とした。
(7) Particle size distribution measurement Measurement was performed using a laser diffraction particle size distribution analyzer (product name “LA-920” manufactured by HORIBA, Ltd.). Using ethanol as a dispersion medium, after adding the sample, measurement was performed under the dispersion conditions of circulation intensity: 10, ultrasonic intensity: 7, ultrasonic irradiation time: 3 minutes, and the arithmetic mean diameter diameter.

[試験例2]
各実施例及び比較例で得られた表面改質シリカ粉末と、重合法により製造された市販の正帯電ポリエステルトナー母体(結着性樹脂)粉末とを重量比99:1で混合し、ヘンシェル型ミキサーで600rpm×1分間予備混合を行った後、3000rpm×30分間混合させることによって、分散性評価用のトナーサンプルを調製した。
次いで、得られたトナーサンプルを走査型電子顕微鏡(SEM)にて観察を行い、トナーサンプル粒子表面1μm当たりに付着している粒径0.1μm以上の表面改質シリカ粒子の数を計測した。その結果も表1に示す。測定は、SEMの視野内で任意に1つのトナー母体(トナー粒子)を選定し、図3のように、視野S内がトナー粒子10表面で満たされるように、かつ、なるべく多くの表面改質シリカ粒子11が含まれるように設定した後、その視野S内にある表面改質シリカ粒子11の全て個数を計測した後、その個数を前記視野面積で割ることにより単位面積当たり(1μm当たり)の表面改質シリカ粒子の個数を算出した。この場合、少しでも視野Sからはみ出ている表面改質シリカ粒子はカウントしないものとする。
[Test Example 2]
The surface-modified silica powder obtained in each example and comparative example was mixed with a commercially available positively charged polyester toner base (binding resin) powder produced by a polymerization method at a weight ratio of 99:1. A toner sample for evaluation of dispersibility was prepared by pre-mixing with a mixer at 600 rpm for 1 minute and then mixing at 3000 rpm for 30 minutes.
Next, the obtained toner sample was observed with a scanning electron microscope (SEM), and the number of surface-modified silica particles having a particle size of 0.1 μm or more attached per 1 μm 2 of the toner sample particle surface was counted. . The results are also shown in Table 1. In the measurement, one toner base (toner particle) is arbitrarily selected within the field of view of the SEM, and as shown in FIG. After setting so that the silica particles 11 are included, after counting all the number of surface-modified silica particles 11 in the field of view S, the number is divided by the field of view area per unit area (per 1 μm 2 ) The number of surface-modified silica particles was calculated. In this case, the surface-modified silica particles protruding from the field of view S are not counted.

[試験例3]
実施例3,6及び9、比較例1,5及び8で得られた各粉末について、その粒度分布を調べた。粒度分布は、上記「(7)粒度分布測定」で示した方法と同様にした。その結果を図1~図2に示す。
[Test Example 3]
The particle size distribution of each powder obtained in Examples 3, 6 and 9 and Comparative Examples 1, 5 and 8 was examined. The particle size distribution was determined in the same manner as described in "(7) Measurement of particle size distribution" above. The results are shown in FIGS. 1 and 2. FIG.

Figure 2022150873000001
Figure 2022150873000001

Figure 2022150873000002
Figure 2022150873000002

表1~表2、図1~図2の結果からも明らかなように、実施例の粉末は、本発明で規定する特性を全て満たしていることがわかる。特に、22~95g/Lという低嵩密度でありながらも適度な帯電特性(正帯電性35~285μC/g)を備えたサブミクロンサイズの粉末であることがわかる。 As is clear from the results in Tables 1 and 2 and FIGS. 1 and 2, the powders of Examples satisfy all of the properties defined in the present invention. In particular, it is found to be a submicron-sized powder having a moderate charging property (positive charging property of 35 to 285 μC/g) while having a low bulk density of 22 to 95 g/L.

Claims (8)

無機酸化物粒子と、その粒子表面を被覆する有機ケイ素化合物及び正帯電性付与剤とを含む粒子からなる粉末であって、下記の物性:
(1)平均粒径:0.1~1μm、
(2)嵩密度:20~100g/L、
(3)疎水率:60%以上、
(4)水蒸気相対圧0.8~0.95における水分吸着量:2~5%、
(5)BET比表面積:25~150m/g、
(6)炭素含有量:0.5~8重量%、
(7)窒素含有量:0.1~0.75重量%及び
(8)摩擦帯電量:20~300μC/g
であることを特徴とする、正帯電性を示す表面改質無機酸化物粉末。
A powder comprising particles containing inorganic oxide particles, an organosilicon compound coating the particle surfaces, and a positive charge-imparting agent, and having the following physical properties:
(1) average particle size: 0.1 to 1 μm,
(2) bulk density: 20 to 100 g/L,
(3) Hydrophobicity: 60% or more,
(4) Water adsorption amount at water vapor relative pressure of 0.8 to 0.95: 2 to 5%,
(5) BET specific surface area: 25 to 150 m 2 /g,
(6) carbon content: 0.5 to 8% by weight;
(7) Nitrogen content: 0.1 to 0.75% by weight and (8) Amount of triboelectric charge: 20 to 300 μC/g
A positively charged surface-modified inorganic oxide powder characterized by:
有機ケイ素化合物が、ヘキサメチルジシラザン、ポリジメチルシロキサン、アルキルシランの少なくとも1種である、請求項1に記載の表面改質無機酸化物粉末。 2. The surface-modified inorganic oxide powder according to claim 1, wherein the organosilicon compound is at least one of hexamethyldisilazane, polydimethylsiloxane, and alkylsilane. 正帯電性付与剤が、アミノシラン及びアミノ基変性シリコーンオイルの少なくとも1種である、請求項1に記載の表面改質無機酸化物粉末。 2. The surface-modified inorganic oxide powder according to claim 1, wherein the positive charge imparting agent is at least one of aminosilane and amino group-modified silicone oil. 無機酸化物粒子が、BET比表面積が100~250m/gのフュームドシリカ粒子である、請求項1に記載の表面改質無機酸化物粉末。 The surface-modified inorganic oxide powder according to claim 1, wherein the inorganic oxide particles are fumed silica particles with a BET specific surface area of 100-250 m 2 /g. 請求項1~4のいずれかに記載の表面改質無機酸化物粉末を含むトナー用又は粉体塗料用の外添剤。 An external additive for toners or powder coatings containing the surface-modified inorganic oxide powder according to any one of claims 1 to 4. 請求項5に記載の外添剤と結着性樹脂粒子とを含む電子写真用トナー組成物又は粉体塗料組成物。 An electrophotographic toner composition or powder coating composition comprising the external additive according to claim 5 and binder resin particles. 表面改質無機酸化物粉末を製造する方法であって、
(a)無機酸化物粉末、有機ケイ素化合物及び正帯電性付与剤を含む混合物を調製する工程、
(b)前記混合物を100~270℃の温度で熱処理する工程
を含むことを特徴とする、表面改質無機酸化物粉末の製造方法。
A method for producing a surface-modified inorganic oxide powder, comprising:
(a) preparing a mixture containing an inorganic oxide powder, an organosilicon compound and a positive charging agent;
(b) A method for producing a surface-modified inorganic oxide powder, comprising the step of heat-treating the mixture at a temperature of 100-270°C.
上記(a)及び(b)の工程を攪拌下にて実施する、請求項7に記載の製造方法。 8. The production method according to claim 7, wherein the steps (a) and (b) are carried out under stirring.
JP2021053664A 2021-03-26 2021-03-26 Surface-modified inorganic oxide powder and production method therefor Pending JP2022150873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021053664A JP2022150873A (en) 2021-03-26 2021-03-26 Surface-modified inorganic oxide powder and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021053664A JP2022150873A (en) 2021-03-26 2021-03-26 Surface-modified inorganic oxide powder and production method therefor

Publications (1)

Publication Number Publication Date
JP2022150873A true JP2022150873A (en) 2022-10-07

Family

ID=83465178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021053664A Pending JP2022150873A (en) 2021-03-26 2021-03-26 Surface-modified inorganic oxide powder and production method therefor

Country Status (1)

Country Link
JP (1) JP2022150873A (en)

Similar Documents

Publication Publication Date Title
JPH0131442B2 (en)
JP5230067B2 (en) Surface-coated silica and method for producing the same
JP4743845B2 (en) Hydrophobic positively charged silica fine powder, method for producing the same, and toner for developing electrostatic latent image to which it is added as an external additive
JP2004338969A (en) Spherical silica-titania-based fine particle subjected to silane surface treatment, its manufacturing method, and external toner additive for electrostatic charge image development
JP2011185998A (en) Electrostatic image-developing toner and electric charge-controlling particle for external addition
JP2016006547A (en) Toner composition and method of preparing the same
JPH11278845A (en) Hydrophobic titanium oxide fine powder and its production
JP7443048B2 (en) toner
JP5871718B2 (en) Surface treatment method for hydrophilic sol-gel silica particles and method for producing hydrophobic sol-gel silica powder
JP3319114B2 (en) Hydrophobic silica powder, its production method and electrophotographic developer containing it
JP7026436B2 (en) Hydrophobic silica for electrophotographic toner composition
JP2014162681A (en) Surface-treated silica powder and method for manufacturing the same
JP2022150873A (en) Surface-modified inorganic oxide powder and production method therefor
JP4347201B2 (en) Toner external additive and toner for developing electrostatic image
JP2022136773A (en) Surface modified inorganic oxide powder and method for producing the same
JPH0132161B2 (en)
US7083888B2 (en) External additive for electrostatically charged image developing toner
JP2023019768A (en) Surface-modified silica powder using precipitated silicic acid, and production method of the same
WO2022181018A1 (en) Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development
JP2023019806A (en) Surface-modified silica powder using precipitated silicic acid, and production method of the same
JP3856744B2 (en) Toner external additive for electrostatic image development
JP3930236B2 (en) Toner external additive for electrostatic image development
JP2022185978A (en) Surface-modified inorganic oxide powder and method for producing the same
JP4611006B2 (en) Spherical silica fine particles, toner external additive for developing electrostatic image and toner
JP2022185980A (en) Surface-modified inorganic oxide powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240307