JP2022022689A - Flow control valve and refrigeration cycle system - Google Patents

Flow control valve and refrigeration cycle system Download PDF

Info

Publication number
JP2022022689A
JP2022022689A JP2020114274A JP2020114274A JP2022022689A JP 2022022689 A JP2022022689 A JP 2022022689A JP 2020114274 A JP2020114274 A JP 2020114274A JP 2020114274 A JP2020114274 A JP 2020114274A JP 2022022689 A JP2022022689 A JP 2022022689A
Authority
JP
Japan
Prior art keywords
valve
control valve
port
resistance portion
rectifying member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020114274A
Other languages
Japanese (ja)
Other versions
JP7349963B2 (en
Inventor
亮司 小池
Ryoji Koike
英樹 南澤
Hideki Minamizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020114274A priority Critical patent/JP7349963B2/en
Priority to CN202110632600.XA priority patent/CN113883325A/en
Publication of JP2022022689A publication Critical patent/JP2022022689A/en
Application granted granted Critical
Publication of JP7349963B2 publication Critical patent/JP7349963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Abstract

To provide a flow control valve that can sufficiently suppress fluid passage noise.SOLUTION: A flow control valve 10A includes: a main valve body 2 (valve body) including a communication hole 25 (inflow port) and an outflow part 211 (outflow port); and an auxiliary valve port (valve port) 24 installed inside the main valve body 2 to throttle a flow passage for a fluid. A straightening member 6 for straightening a flow of the fluid by causing the fluid to pass therethrough is provided between the auxiliary valve port 24 and the outflow part 211. The straightening member 6 includes: a high-resistance part 61 exerting high resistance on the center side thereof; and a low-resistance part 62 exerting low resistance on the outer side thereof as compared to the high-resistance part 61.SELECTED DRAWING: Figure 2

Description

本発明は、流量制御弁及び冷凍サイクルシステムに関する。 The present invention relates to a flow control valve and a refrigeration cycle system.

従来、空気調和機等の冷凍サイクルシステムに設けられる流量制御弁として、例えば、特許文献1には、流入口及び流出口を有した弁本体と、弁本体の内部に設けられて流体の流路を絞る弁口(弁座)と、を備え、弁口と流出口との間に設けられた消音部材(網目構造の部材又は発泡材料からなる部材)に流体(冷媒)を通過させることで、流体通過音(冷媒通過音)の抑制を意図した膨張弁が開示されている。 Conventionally, as a flow rate control valve provided in a refrigeration cycle system such as an air conditioner, for example, Patent Document 1 describes a valve body having an inlet and an outlet, and a fluid flow path provided inside the valve body. By passing a fluid (refrigerant) through a sound deadening member (a member having a mesh structure or a member made of a foam material) provided between the valve port and the outlet, which is provided with a valve port (valve seat) for squeezing. An expansion valve intended to suppress a fluid passing sound (refrigerant passing sound) is disclosed.

国際公開第2015/063854号公報International Publication No. 2015/063854

しかしながら、特許文献1に開示されたような従来の流量制御弁では、弁口を通過して流速が高まった流体が消音部材の中央付近に集中し、流速が低下しないままに消音部材を通過するため、流体通過音を必ずしも十分に抑制することができない虞がある。 However, in the conventional flow rate control valve as disclosed in Patent Document 1, the fluid having increased the flow velocity through the valve opening is concentrated near the center of the muffling member and passes through the muffling member without decreasing the flow velocity. Therefore, there is a possibility that the fluid passing sound cannot always be sufficiently suppressed.

本発明の目的は、流体通過音の十分な抑制を図ることができる流量制御弁及び冷凍サイクルシステムを提供することである。 An object of the present invention is to provide a flow control valve and a refrigeration cycle system capable of sufficiently suppressing fluid passing noise.

本発明の流量制御弁は、流入口及び流出口を有した弁本体と、前記弁本体の内部に設けられて流体の流路を絞る弁口と、を備えた流量制御弁であって、前記弁口と前記流出口との間には、流体を通過させることで整流する整流部材が設けられ、前記整流部材は、その中心側に流路抵抗の高い高抵抗部と、前記高抵抗部よりも外側に流路抵抗の低い低抵抗部と、を備えることを特徴とする。なお、本発明では、前記高抵抗部は、範囲を狭くした場合等にも、前記整流部材の中心を跨ぐ範囲に設定することが好ましい。 The flow rate control valve of the present invention is a flow rate control valve including a valve body having an inlet and an outlet, and a valve port provided inside the valve body to narrow the flow path of the fluid. A rectifying member that rectifies by passing a fluid is provided between the valve port and the outlet, and the rectifying member has a high resistance portion having a high flow path resistance and a high resistance portion on the center side thereof. It is also characterized by having a low resistance portion having a low flow path resistance on the outside. In the present invention, it is preferable to set the high resistance portion in a range straddling the center of the rectifying member even when the range is narrowed.

このような本発明によれば、弁口を通過した流体は、先ず整流部材の中心近傍に向かうものの、流路抵抗の高い高抵抗部は通過しにくいことから、外側の低抵抗部に向かっても流れることになり、流体の流れを中央付近から外側にも分散させてから、整流部材の略全体を流体が通過し、整流部材の略全体によって流体内の気泡を細分化させることで、消音効果を得ることができ、流体通過音の十分な抑制を図ることができる。 According to the present invention as described above, the fluid that has passed through the valve opening first heads toward the center of the rectifying member, but it is difficult for the high resistance part having high flow path resistance to pass through, so that the fluid passes toward the low resistance part on the outside. After the flow of the fluid is dispersed from the vicinity of the center to the outside, the fluid passes through almost the entire rectifying member, and the bubbles in the fluid are subdivided by the substantially entire rectifying member to mute the sound. The effect can be obtained, and the fluid passing sound can be sufficiently suppressed.

この際、前記整流部材の前記高抵抗部は、前記弁口の内径よりも大きい範囲に設けられていることが好ましい。 At this time, it is preferable that the high resistance portion of the rectifying member is provided in a range larger than the inner diameter of the valve port.

また、前記整流部材は、前記高抵抗部の方が前記低抵抗部よりも高い濾過密度を有していることが好ましい。 Further, it is preferable that the high resistance portion of the rectifying member has a higher filtration density than the low resistance portion.

また、前記整流部材は、前記高抵抗部の方が前記低抵抗部よりも大きな厚みに形成されていることが好ましい。 Further, it is preferable that the high resistance portion of the rectifying member is formed to have a larger thickness than the low resistance portion.

また、前記整流部材の前記高抵抗部は、前記弁口に対向する面が中心側から外側に向かって厚みが小さくなる傾斜面を有して形成されていることが好ましい。 Further, it is preferable that the high resistance portion of the rectifying member is formed so that the surface facing the valve port has an inclined surface whose thickness decreases from the center side to the outside.

また、前記整流部材の前記弁口に対向する側には、前記高抵抗部に位置する小孔と前記低抵抗部に位置する大孔とを有した板材が設けられていることが好ましい。 Further, it is preferable that a plate material having a small hole located in the high resistance portion and a large hole located in the low resistance portion is provided on the side of the rectifying member facing the valve port.

また、前記弁口を構成する弁座部には、前記弁口から前記流出口に向かって内径が大きくなる第2弁口と、前記第2弁口から前記流出口に向かってさらに内径が大きくなる第3弁口と、が設けられ、前記第3弁口に前記整流部材が設けられていることが好ましい。 Further, the valve seat portion constituting the valve port has a second valve port whose inner diameter increases from the valve port toward the outlet, and a valve seat portion having a larger inner diameter from the second valve port toward the outlet. It is preferable that the third valve port is provided and the rectifying member is provided at the third valve port.

また、軸線方向に進退移動することで前記弁口の開口面積を調整する弁体と、前記弁体を進退駆動する駆動部と、をさらに備えることが好ましい。 Further, it is preferable to further include a valve body that adjusts the opening area of the valve opening by moving forward and backward in the axial direction, and a drive unit that drives the valve body forward and backward.

本発明の冷凍サイクルシステムは、前記流量制御弁を備えることを特徴とする。 The refrigeration cycle system of the present invention is characterized by including the flow rate control valve.

このような本発明によれば、上記した流量制御弁のように、流体通過音の十分な抑制を図ることができるので、静音化された冷凍サイクルシステムとすることができる。 According to the present invention as described above, it is possible to sufficiently suppress the fluid passing noise as in the flow control valve described above, so that a noise-reduced refrigeration cycle system can be obtained.

本発明の流量制御弁及び冷凍サイクルシステムによれば、流体通過音の十分な抑制を図ることができる。 According to the flow rate control valve and the refrigeration cycle system of the present invention, it is possible to sufficiently suppress the fluid passing noise.

本発明の第1実施形態に係る流量制御弁を示す縦断面図である。It is a vertical sectional view which shows the flow rate control valve which concerns on 1st Embodiment of this invention. 前記流量制御弁の要部を拡大して示す縦断面図である。It is a vertical sectional view which shows the main part of the flow rate control valve in an enlarged manner. 本発明の第2実施形態に係る流量制御弁の要部を拡大して示す縦断面図である。It is a vertical sectional view which shows the main part of the flow rate control valve which concerns on 2nd Embodiment of this invention in an enlarged manner. 本発明の第3実施形態に係る流量制御弁の要部を拡大して示す縦断面図である。It is a vertical sectional view which shows the main part of the flow rate control valve which concerns on 3rd Embodiment of this invention in an enlarged manner. 本発明の第4実施形態に係る流量制御弁の要部を拡大して示す縦断面図である。It is a vertical sectional view which shows the main part of the flow rate control valve which concerns on 4th Embodiment of this invention in an enlarged manner. 本発明の冷凍サイクルシステムの一例を示す図である。It is a figure which shows an example of the refrigeration cycle system of this invention. 本発明の他の実施形態に係る流量制御弁を示す縦断面図である。It is a vertical sectional view which shows the flow rate control valve which concerns on other embodiment of this invention. 前記流量制御弁の要部を拡大して示す縦断面図である。It is a vertical sectional view which shows the main part of the flow rate control valve in an enlarged manner.

本発明の第1実施形態に係る流量制御弁を図1及び図2に基づいて説明する。本実施形態の流量制御弁10Aは、弁ハウジング1と、弁ハウジング1内に形成された主弁ポート14と、主弁ポート14を開閉可能な主弁体2(弁本体)と、主弁体2内の副弁ポート24(弁口)と、副弁ポート24を開閉可能な副弁体3(弁体)と、ステッピングモータ4(駆動部)と、を備えた二段式電動弁である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 The flow rate control valve according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. The flow control valve 10A of the present embodiment includes a valve housing 1, a main valve port 14 formed in the valve housing 1, a main valve body 2 (valve body) capable of opening and closing the main valve port 14, and a main valve body. It is a two-stage electric valve including a sub-valve port 24 (valve port) in 2, a sub-valve body 3 (valve body) capable of opening and closing the sub-valve port 24, and a stepping motor 4 (drive unit). .. The concept of "upper and lower" in the following description corresponds to the upper and lower parts in the drawing of FIG.

弁ハウジング1は、筒状の弁ハウジング部材1Aと、弁ハウジング部材1Aの上端開口部に固定される支持部材1Bと、を有している。弁ハウジング部材1Aは、その内部に円筒状の主弁室1Cが形成され、弁ハウジング部材1Aには、側面側から主弁室1Cに連通して冷媒等の流体が流入される一次継手管11が取り付けられ、底面側から主弁室1Cに連通して流体が流出される二次継手管12が取り付けられている。支持部材1Bは、樹脂成形品であって、金属製の固定部15によって弁ハウジング部材1Aに溶接固定されている。 The valve housing 1 has a cylindrical valve housing member 1A and a support member 1B fixed to the upper end opening of the valve housing member 1A. A cylindrical main valve chamber 1C is formed inside the valve housing member 1A, and a primary joint pipe 11 in which a fluid such as a refrigerant flows into the valve housing member 1A from the side surface side to the main valve chamber 1C. Is attached, and a secondary joint pipe 12 is attached, which communicates with the main valve chamber 1C from the bottom surface side and allows fluid to flow out. The support member 1B is a resin molded product, and is welded and fixed to the valve housing member 1A by a metal fixing portion 15.

主弁ポート14は、弁ハウジング部材1Aにおいて、主弁室1Cと二次継手管12とが連通する位置に設けられた主弁座13から二次継手管12側に断面円形状に形成されている。 The main valve port 14 is formed in the valve housing member 1A from the main valve seat 13 provided at a position where the main valve chamber 1C and the secondary joint pipe 12 communicate with each other in a circular cross section on the secondary joint pipe 12 side. There is.

主弁体2は、主弁ポート14を開閉する部位であって、主弁座13に対して着座または離座する主弁部21(弁座部)を有する弁体主部2Aと、ストッパ部2Bと、副弁座2Cと、を有している。弁体主部2Aは、軸線L方向を軸方向とする円筒部22と、この円筒部22の内部に形成されて流体が流通する副弁室23と、軸線L方向に沿って副弁座2Cを貫通する副弁ポート24と、を有している。円筒部22は、その周面部に複数の連通孔25(流入口)が形成され、その内周面には、軸線L方向に沿った挿通孔26が形成されている。副弁室23は、連通孔25により主弁室1Cに連通されている。ストッパ部2Bは、円環状に形成されて弁体主部2Aの上端部に固定され、その内部にロータ軸46が挿通されており、このロータ軸46の下端に設けられた副弁体3の上昇位置を規制する。副弁座2Cは、副弁室23の二次継手管12側に設けられている。なお、ストッパ部2Bは、その上端部から下方側にかけて段差形状が形成されており、この段差形状と支持部材1Bの天井面との間には、主弁ばね27が配設されている。この主弁ばね27により主弁体2は主弁座13方向(閉方向)に付勢されている。 The main valve body 2 is a portion that opens and closes the main valve port 14, and has a valve body main portion 2A having a main valve portion 21 (valve seat portion) that sits on or leaves the main valve seat 13, and a stopper portion. It has 2B and an auxiliary valve seat 2C. The valve body main portion 2A has a cylindrical portion 22 whose axial direction is the axis L direction, a sub valve chamber 23 formed inside the cylindrical portion 22 through which a fluid flows, and a sub valve seat 2C along the axis L direction. It has an auxiliary valve port 24 and a penetrating the auxiliary valve port 24. A plurality of communication holes 25 (inflow ports) are formed in the peripheral surface of the cylindrical portion 22, and an insertion hole 26 along the axis L direction is formed in the inner peripheral surface thereof. The auxiliary valve chamber 23 is communicated with the main valve chamber 1C by a communication hole 25. The stopper portion 2B is formed in an annular shape and is fixed to the upper end portion of the valve body main portion 2A, and the rotor shaft 46 is inserted therein, and the auxiliary valve body 3 provided at the lower end of the rotor shaft 46 is inserted. Regulate the ascending position. The auxiliary valve seat 2C is provided on the secondary joint pipe 12 side of the auxiliary valve chamber 23. The stopper portion 2B has a stepped shape formed from the upper end portion to the lower side thereof, and a main valve spring 27 is arranged between the stepped shape and the ceiling surface of the support member 1B. The main valve body 2 is urged in the main valve seat 13 direction (closed direction) by the main valve spring 27.

副弁ポート24は、主弁体2内において、副弁座2Cから二次継手管12側に断面円形状に形成されている。そして、円筒部22の内側において、副弁ポート24の下流側には、この副弁ポート24よりも径方向に拡径された円筒状の拡径部5(第2弁口)と、拡径部5の下流側には、この拡径部5よりも径方向に拡径された円筒状の第1段差部21a(第3弁口)と、この第1段差部21aよりも径方向に拡径された円筒状の第2段差部21bと、が設けられている。そして、第1段差部21a内に、多孔質材や金属メッシュ等で形成された流体を通過させる円柱状の整流部材6が嵌め込まれ、更に環状の保持部21cが第2段差部21b内に嵌め込まれ、整流部材6の下端部外周が保持され、保持部21cの内周面に、流体の流出部211(流出口)が形成されている。 The sub-valve port 24 is formed in the main valve body 2 in a circular cross section from the sub-valve seat 2C to the secondary joint pipe 12 side. Inside the cylindrical portion 22, on the downstream side of the sub-valve port 24, a cylindrical diameter-expanded portion 5 (second valve port) whose diameter is expanded in the radial direction from the sub-valve port 24 is expanded. On the downstream side of the portion 5, a cylindrical first step portion 21a (third valve port) whose diameter is expanded in the radial direction from the enlarged diameter portion 5 and a radial first step portion 21a are expanded in the radial direction from the first step portion 21a. A cylindrical second step portion 21b having a diameter is provided. Then, a columnar rectifying member 6 for passing a fluid formed of a porous material, a metal mesh, or the like is fitted into the first step portion 21a, and an annular holding portion 21c is further fitted into the second step portion 21b. The outer periphery of the lower end portion of the rectifying member 6 is held, and the fluid outflow portion 211 (outlet) is formed on the inner peripheral surface of the holding portion 21c.

副弁体3は、主弁体2に形成された副弁ポート24の開度を変更する部位である。この副弁体3は、円筒状の副弁基部3Aと、副弁基部3Aから下方に突出する副弁部3Bと、副弁基部3Aの上側に設けられたスラストワッシャ3Cと、副弁基部3Aの内部に設けられた副弁ばね(不図示)と、で構成されている。副弁基部3Aは、主弁体2の挿通孔26に挿通され、軸線L方向に沿った上下方向に進退自在かつ軸線L回りに回転自在に支持されている。副弁部3Bは、ロッド部31と、ロッド部31下端部のニードル部32と、を有している。ニードル部32は、副弁ポート24との隙間によって流体を通過させる絞り部33を構成している。さらに、ニードル部32は、図2に示すように、副弁ポート24に挿入されるとともに、副弁ポート24の出口側に向かって徐々に径が小さくなる流量制御部32aを有する。スラストワッシャ3Cは、副弁基部3Aの上面及びストッパ部2Bの下面に当接可能になっており、その当接面同士の摩擦力が極めて小さくなるようになっている。また、副弁基部3Aの上部には挿通孔が設けられてロータ軸46が挿通され、ロータ軸46の下端部に形成されたフランジ部(不図示)と副弁基部3Aの底部に接合された副弁部3Bの上端部との間に副弁ばねが配設されている。この副弁ばねにより副弁体3はロータ軸46(マグネットロータ44)に対して副弁座2C方向(閉方向)に付勢されている。なお、副弁基部3Aは、ロータ軸46および副弁部3Bと一体に形成されてもよく、その場合には、副弁基部3Aが中実状に形成され、副弁ばねが省略されてもよい。 The sub-valve body 3 is a portion for changing the opening degree of the sub-valve port 24 formed in the main valve body 2. The sub-valve body 3 includes a cylindrical sub-valve base 3A, a sub-valve portion 3B protruding downward from the sub-valve base 3A, a thrust washer 3C provided on the upper side of the sub-valve base 3A, and a sub-valve base 3A. It is composed of an auxiliary valve spring (not shown) provided inside the. The sub-valve base 3A is inserted into the insertion hole 26 of the main valve body 2 and is supported so as to be vertically reciprocating along the axis L direction and rotatably around the axis L. The auxiliary valve portion 3B has a rod portion 31 and a needle portion 32 at the lower end of the rod portion 31. The needle portion 32 constitutes a throttle portion 33 through which a fluid passes through a gap with the auxiliary valve port 24. Further, as shown in FIG. 2, the needle unit 32 has a flow rate control unit 32a that is inserted into the sub-valve port 24 and whose diameter gradually decreases toward the outlet side of the sub-valve port 24. The thrust washer 3C can come into contact with the upper surface of the auxiliary valve base portion 3A and the lower surface of the stopper portion 2B, and the frictional force between the contact surfaces is extremely small. Further, an insertion hole was provided in the upper portion of the sub-valve base portion 3A, and the rotor shaft 46 was inserted into the rotor shaft 46, and the flange portion (not shown) formed at the lower end portion of the rotor shaft 46 was joined to the bottom portion of the sub-valve base portion 3A. A sub-valve spring is arranged between the sub-valve portion 3B and the upper end portion. The auxiliary valve body 3 is urged by the auxiliary valve spring in the auxiliary valve seat 2C direction (closed direction) with respect to the rotor shaft 46 (magnet rotor 44). The sub-valve base 3A may be integrally formed with the rotor shaft 46 and the sub-valve 3B. In that case, the sub-valve base 3A may be formed in a solid state and the sub-valve spring may be omitted. ..

ステッピングモータ4は、副弁体3の軸線L方向に進退させるとともに、この副弁体3を介して主弁体2も軸線L方向に進退させる部位である。このステッピングモータ4は、マグネットロータ44の回転により副弁体3を進退させるねじ送り機構42と、マグネットロータ44の回転を規制するストッパ機構43と、を備える。ステッピングモータ4は、外周部が多極に着磁されたマグネットロータ44と、キャン18の外周に配設されたステータコイル45と、マグネットロータ44に固定されたロータ軸46と、を備えている。ロータ軸46は、固定部材46aを介してマグネットロータ44に固定されるとともに、軸線L方向に沿って延び、その上端部はストッパ機構43のガイド47に挿入されている。ロータ軸46の中間部には雄ねじ部46bが一体に形成され、この雄ねじ部46bが支持部材1Bの雌ねじ部17に螺合し、これによってねじ送り機構42が構成されている。マグネットロータ44が回転すると、ロータ軸46の雄ねじ部46bが雌ねじ部17に案内されることで、マグネットロータ44およびロータ軸46が軸線L方向に進退移動し、これに伴って副弁体3も軸線Lに沿って上昇または下降する。 The stepping motor 4 is a portion that advances and retreats in the axis L direction of the sub-valve body 3 and also advances and retreats the main valve body 2 in the axis L direction via the sub-valve body 3. The stepping motor 4 includes a screw feed mechanism 42 that advances and retreats the auxiliary valve body 3 by the rotation of the magnet rotor 44, and a stopper mechanism 43 that regulates the rotation of the magnet rotor 44. The stepping motor 4 includes a magnet rotor 44 whose outer peripheral portion is magnetized to multiple poles, a stator coil 45 arranged on the outer peripheral portion of the can 18, and a rotor shaft 46 fixed to the magnet rotor 44. .. The rotor shaft 46 is fixed to the magnet rotor 44 via the fixing member 46a and extends along the axis L direction, and the upper end thereof is inserted into the guide 47 of the stopper mechanism 43. A male screw portion 46b is integrally formed in the middle portion of the rotor shaft 46, and the male screw portion 46b is screwed into the female screw portion 17 of the support member 1B, whereby the screw feed mechanism 42 is configured. When the magnet rotor 44 rotates, the male threaded portion 46b of the rotor shaft 46 is guided to the female threaded portion 17, so that the magnet rotor 44 and the rotor shaft 46 move forward and backward in the axis L direction, and the auxiliary valve body 3 also moves accordingly. Ascends or descends along the axis L.

ストッパ機構43は、キャン18内の天井部から垂下された円筒状のガイド47と、ガイド47の外周に固定された螺旋状のガイド線体48と、ガイド線体48にガイドされて回転かつ上下動可能な可動スライダ49と、を備えている。可動スライダ49には、径方向外側に突出した爪部49aが設けられ、マグネットロータ44には、上方に延びて爪部49aと当接する延長部44aが設けられている。マグネットロータ44が回転すると、延長部44aが爪部49aを押すことで、可動スライダ49がガイド線体48に倣って回転かつ上下する。ガイド線体48には、マグネットロータ44の最上端位置を規定する上端ストッパ48aと、マグネットロータ44の最下端位置を規定する下端ストッパ48bと、が形成されている。これらの上端ストッパ48aおよび下端ストッパ48bに可動スライダ49が当接することで、可動スライダ49の回転が停止され、これによりマグネットロータ44の回転が規制され、副弁体3の上昇または下降も停止される。 The stopper mechanism 43 is guided by a cylindrical guide 47 hanging from the ceiling in the can 18, a spiral guide wire 48 fixed to the outer periphery of the guide 47, and a guide wire 48 to rotate and move up and down. It is equipped with a movable slider 49 that can be moved. The movable slider 49 is provided with a claw portion 49a protruding outward in the radial direction, and the magnet rotor 44 is provided with an extension portion 44a extending upward and in contact with the claw portion 49a. When the magnet rotor 44 rotates, the extension portion 44a pushes the claw portion 49a, so that the movable slider 49 rotates and moves up and down according to the guide wire body 48. The guide wire body 48 is formed with an upper end stopper 48a that defines the uppermost end position of the magnet rotor 44 and a lower end stopper 48b that defines the lowermost end position of the magnet rotor 44. When the movable slider 49 comes into contact with the upper end stopper 48a and the lower end stopper 48b, the rotation of the movable slider 49 is stopped, thereby restricting the rotation of the magnet rotor 44 and stopping the ascent or descent of the auxiliary valve body 3. To.

本実施形態では、図2に示すように、整流部材6は、その中心側に流路抵抗の高い高抵抗部61と、高抵抗部61よりも外側に流路抵抗の低い低抵抗部62と、を備えている。そして、整流部材6の高抵抗部61は、整流部材6の中心を跨ぐ範囲に設けられている。また、高抵抗部61は、副弁ポート24の内径よりも大きい範囲に設けられ、更に、整流部材6は、高抵抗部61の方が低抵抗部62よりも高い濾過密度を有している。具体的には、高抵抗部61の濾過密度は、低抵抗部62の濾過密度よりも1.2倍以上高く設定されている。 In the present embodiment, as shown in FIG. 2, the rectifying member 6 has a high resistance portion 61 having a high flow path resistance on the center side thereof and a low resistance portion 62 having a low flow path resistance outside the high resistance portion 61. , Is equipped. The high resistance portion 61 of the rectifying member 6 is provided in a range straddling the center of the rectifying member 6. Further, the high resistance portion 61 is provided in a range larger than the inner diameter of the auxiliary valve port 24, and the rectifying member 6 has a higher filtration density in the high resistance portion 61 than in the low resistance portion 62. .. Specifically, the filtration density of the high resistance portion 61 is set to be 1.2 times or more higher than the filtration density of the low resistance portion 62.

以上のように構成された流量制御弁10Aは、次のように動作する。まず、流量制御弁10Aが、主弁体2の主弁部21が主弁座13に着座し、主弁ポート14が閉じられた弁閉状態にあるとする。さらに、流量制御弁10Aが、副弁体3が副弁ポート24に最も近づいた位置にあるとき、副弁体3は、副弁座2Cに着座せず、副弁体3のニードル部32の外周面と副弁ポート24の内周面との間隙によって流路が形成されている。従って、一次継手管11から主弁室1Cに流入した流体は、弁体主部2Aの連通孔25を通過し、副弁室23に流入する。副弁室23に流入した流体は、副弁体3のニードル部32の外周面と副弁ポート24との間隙を通って主弁部21の下方に流れ、主弁ポート14から二次継手管12に向かって流出する。すなわち、弁開度がゼロ(副弁部3Bが最下端の位置)であっても微少な流量が生じることとなる。 The flow rate control valve 10A configured as described above operates as follows. First, it is assumed that the flow control valve 10A is in a valve closed state in which the main valve portion 21 of the main valve body 2 is seated on the main valve seat 13 and the main valve port 14 is closed. Further, when the flow control valve 10A is in the position where the sub-valve body 3 is closest to the sub-valve port 24, the sub-valve body 3 does not sit on the sub-valve seat 2C, and the needle portion 32 of the sub-valve body 3 does not sit. A flow path is formed by a gap between the outer peripheral surface and the inner peripheral surface of the auxiliary valve port 24. Therefore, the fluid flowing from the primary joint pipe 11 into the main valve chamber 1C passes through the communication hole 25 of the valve body main portion 2A and flows into the sub-valve chamber 23. The fluid flowing into the sub-valve chamber 23 flows below the main valve portion 21 through the gap between the outer peripheral surface of the needle portion 32 of the sub-valve body 3 and the sub-valve port 24, and flows from the main valve port 14 to the secondary joint pipe. It flows out toward 12. That is, even if the valve opening degree is zero (the position where the auxiliary valve portion 3B is at the lowermost end), a minute flow rate is generated.

次に、ステッピングモータ4を駆動してマグネットロータ44を回転させて副弁体3を上昇させることで、副弁体3の副弁部3Bのニードル部32が副弁ポート24の内部を上昇し、副弁部3Bのニードル部32と副弁ポート24との間隙による流路が拡大され、流量が徐々に増加する。この際、主弁体2の主弁部21は主弁座13に着座したままであるため、流量の増加は微少である。このように主弁体2を閉じたまま副弁体3の開度を変更する制御域が小流量制御域である。次に、副弁体3をさらに上昇させると、スラストワッシャ3Cがストッパ部2Bに当接し、副弁体3によって主弁体2が引き上げられ、主弁部21が主弁座13から離座する。このように主弁体2を離座させて主弁ポート14の開度を変更する制御域が大流量制御域であって、この大流量制御域における流量の変化は大きなものとなり、主弁体2が主弁ポート14から最も離れた全開状態において、流量は最大となる。 Next, by driving the stepping motor 4 to rotate the magnet rotor 44 to raise the sub-valve body 3, the needle portion 32 of the sub-valve portion 3B of the sub-valve body 3 rises inside the sub-valve port 24. The flow path due to the gap between the needle portion 32 of the sub-valve portion 3B and the sub-valve port 24 is expanded, and the flow rate is gradually increased. At this time, since the main valve portion 21 of the main valve body 2 remains seated on the main valve seat 13, the increase in the flow rate is slight. The control range for changing the opening degree of the sub-valve body 3 while the main valve body 2 is closed in this way is the small flow rate control range. Next, when the sub-valve body 3 is further raised, the thrust washer 3C abuts on the stopper portion 2B, the main valve body 2 is pulled up by the sub-valve body 3, and the main valve portion 21 is separated from the main valve seat 13. .. In this way, the control range in which the main valve body 2 is separated and the opening degree of the main valve port 14 is changed is the large flow rate control range, and the change in the flow rate in this large flow rate control range becomes large, and the main valve body In the fully open state where 2 is the furthest from the main valve port 14, the flow rate is maximum.

以上の本実施形態によれば、図2に示すように、副弁ポート24を通過した流体は、先ず整流部材6の中心近傍に向かうものの、流路抵抗の高い高抵抗部61は通過しにくいことから、外側の低抵抗部62に向かっても流れることになり、流体の流れを中央付近から外側にも分散させてから、整流部材6の略全体を流体が通過し、整流部材6の略全体によって流体内の気泡を細分化させることで、特に小流量制御域における消音効果を得ることができ、流体通過音の十分な抑制を図ることができる。 According to the above embodiment, as shown in FIG. 2, the fluid that has passed through the auxiliary valve port 24 first heads toward the vicinity of the center of the rectifying member 6, but it is difficult for the high resistance portion 61 having high flow path resistance to pass through. Therefore, the fluid also flows toward the low resistance portion 62 on the outside, and after the flow of the fluid is dispersed from the vicinity of the center to the outside, the fluid passes through substantially the entire rectifying member 6 and is abbreviated as the rectifying member 6. By subdividing the bubbles in the fluid as a whole, it is possible to obtain a muffling effect especially in the small flow rate control range, and it is possible to sufficiently suppress the sound passing through the fluid.

本実施形態では、整流部材6の高抵抗部61は、副弁ポート24の内径よりも大きい範囲に設けられている。このような構成であるため、流速の速い流体が、より多く高抵抗部61に向かうので、より多くの流体が外側の低抵抗部62に向かっても流れることになり、整流部材6による消音効果をより得ることができ、流体通過音のより十分な抑制を図ることができる。 In the present embodiment, the high resistance portion 61 of the rectifying member 6 is provided in a range larger than the inner diameter of the auxiliary valve port 24. Since this configuration allows more fluid with a high flow velocity to flow toward the high resistance portion 61, more fluid also flows toward the outer low resistance portion 62, and the sound deadening effect of the rectifying member 6 Can be obtained more, and the fluid passing sound can be more sufficiently suppressed.

本実施形態では、整流部材6は、高抵抗部61の方が低抵抗部62よりも高い濾過密度を有している。このような構成であるため、異なる濾過密度の部材を繋ぎ合わせるなどして整流部材6を簡易に構成することができる。 In the present embodiment, the rectifying member 6 has a higher filtration density in the high resistance portion 61 than in the low resistance portion 62. With such a configuration, the rectifying member 6 can be easily configured by connecting members having different filtration densities.

次に、図3に基づき、本発明の第2実施形態に係る流量制御弁について説明する。本実施形態の流量制御弁10Bは、第1実施形態の流量制御弁10Aと同様に、弁ハウジング1と、弁ハウジング1内に形成された主弁ポート14と、主弁ポート14を開閉可能な主弁体2(弁本体)と、主弁体2内の副弁ポート24(弁口)と、副弁ポート24を開閉可能な副弁体3(弁体)と、ステッピングモータ4(駆動部)と、を備えた二段式電動弁である。本実施形態の流量制御弁10Bでは、主弁体2の一部構成が第1実施形態の流量制御弁10Aと相違している。以下、相違点について詳しく説明する。 Next, the flow rate control valve according to the second embodiment of the present invention will be described with reference to FIG. The flow rate control valve 10B of the present embodiment can open and close the valve housing 1, the main valve port 14 formed in the valve housing 1, and the main valve port 14 in the same manner as the flow rate control valve 10A of the first embodiment. The main valve body 2 (valve body), the sub-valve port 24 (valve port) in the main valve body 2, the sub-valve body 3 (valve body) that can open and close the sub-valve port 24, and the stepping motor 4 (drive unit). ), And a two-stage electric valve. In the flow rate control valve 10B of the present embodiment, a partial configuration of the main valve body 2 is different from the flow rate control valve 10A of the first embodiment. The differences will be described in detail below.

本実施形態の流量制御弁10Bでは、主弁体2に設けられた整流部材6は、高抵抗部61と低抵抗部62の濾過密度は同じで、高抵抗部61の方が低抵抗部62よりも大きな厚みに形成されていることが、第1実施形態の流量制御弁10Aと相違している。なお、具体的には、本実施形態の流量制御弁10Bでは、整流部材6において、高抵抗部61の厚みは、低抵抗部62の厚みの1.2倍以上に設定されている。 In the flow control valve 10B of the present embodiment, in the rectifying member 6 provided on the main valve body 2, the filtration densities of the high resistance portion 61 and the low resistance portion 62 are the same, and the high resistance portion 61 has the lower resistance portion 62. It is different from the flow control valve 10A of the first embodiment in that it is formed to have a larger thickness. Specifically, in the flow control valve 10B of the present embodiment, the thickness of the high resistance portion 61 is set to 1.2 times or more the thickness of the low resistance portion 62 in the rectifying member 6.

以上の本実施形態の流量制御弁10Bでは、整流部材6における高抵抗部61と低抵抗部62との厚みの違いで流路抵抗の違いを出している。従って、本実施形態の流量制御弁10Bによれば、第1実施形態の流量制御弁10Aと略同様の作用効果を奏することができる。 In the flow rate control valve 10B of the present embodiment described above, the difference in flow path resistance is caused by the difference in thickness between the high resistance portion 61 and the low resistance portion 62 in the rectifying member 6. Therefore, according to the flow rate control valve 10B of the present embodiment, it is possible to obtain substantially the same operation and effect as the flow rate control valve 10A of the first embodiment.

次に、図4に基づき、本発明の第3実施形態に係る流量制御弁について説明する。本実施形態の流量制御弁10Cは、第1実施形態の流量制御弁10Aと同様に、弁ハウジング1と、弁ハウジング1内に形成された主弁ポート14と、主弁ポート14を開閉可能な主弁体2(弁本体)と、主弁体2内の副弁ポート24(弁口)と、副弁ポート24を開閉可能な副弁体3(弁体)と、ステッピングモータ4(駆動部)と、を備えた二段式電動弁である。本実施形態の流量制御弁10Cでは、主弁体2の一部構成が第1実施形態の流量制御弁10Aと相違している。以下、相違点について詳しく説明する。 Next, the flow rate control valve according to the third embodiment of the present invention will be described with reference to FIG. The flow rate control valve 10C of the present embodiment can open and close the valve housing 1, the main valve port 14 formed in the valve housing 1, and the main valve port 14 in the same manner as the flow rate control valve 10A of the first embodiment. The main valve body 2 (valve body), the sub-valve port 24 (valve port) in the main valve body 2, the sub-valve body 3 (valve body) that can open and close the sub-valve port 24, and the stepping motor 4 (drive unit). ), And a two-stage electric valve. In the flow rate control valve 10C of the present embodiment, a partial configuration of the main valve body 2 is different from the flow rate control valve 10A of the first embodiment. The differences will be described in detail below.

本実施形態の流量制御弁10Cでは、主弁体2に設けられた整流部材6は、高抵抗部61と低抵抗部62の濾過密度は同じで、高抵抗部61は、副弁ポート24に対向する面が中心側から外側に向かって厚みが小さくなる傾斜面を有する円錐部61aが形成されていることが、第1実施形態の流量制御弁10Aと相違している。なお、具体的には、本実施形態の流量制御弁10Cでは、整流部材6において、円錐部61aを含めた高抵抗部61の平均厚みは、低抵抗部62の厚みの1.2倍以上に設定されている。 In the flow control valve 10C of the present embodiment, the rectifying member 6 provided in the main valve body 2 has the same filtration density of the high resistance portion 61 and the low resistance portion 62, and the high resistance portion 61 is connected to the sub valve port 24. The flow control valve 10A of the first embodiment is different from the flow control valve 10A of the first embodiment in that a conical portion 61a having an inclined surface whose facing surfaces decrease in thickness from the center side to the outside is formed. Specifically, in the flow control valve 10C of the present embodiment, in the rectifying member 6, the average thickness of the high resistance portion 61 including the conical portion 61a is 1.2 times or more the thickness of the low resistance portion 62. It is set.

以上の本実施形態の流量制御弁10Cでは、整流部材6における高抵抗部61と低抵抗部62との形状の違いで流路抵抗の違いを出している。従って、本実施形態の流量制御弁10Cによれば、第1実施形態の流量制御弁10Aと略同様の作用効果を奏することができる。 In the flow rate control valve 10C of the present embodiment described above, the difference in flow path resistance is caused by the difference in shape between the high resistance portion 61 and the low resistance portion 62 in the rectifying member 6. Therefore, according to the flow rate control valve 10C of the present embodiment, it is possible to obtain substantially the same operation and effect as the flow rate control valve 10A of the first embodiment.

次に、図5に基づき、本発明の第4実施形態に係る流量制御弁について説明する。本実施形態の流量制御弁10Dは、第1実施形態の流量制御弁10Aと同様に、弁ハウジング1と、弁ハウジング1内に形成された主弁ポート14と、主弁ポート14を開閉可能な主弁体2(弁本体)と、主弁体2内の副弁ポート24(弁口)と、副弁ポート24を開閉可能な副弁体3(弁体)と、ステッピングモータ4(駆動部)と、を備えた二段式電動弁である。本実施形態の流量制御弁10Dでは、主弁体2の一部構成が第1実施形態の流量制御弁10Aと相違している。以下、相違点について詳しく説明する。 Next, the flow rate control valve according to the fourth embodiment of the present invention will be described with reference to FIG. The flow rate control valve 10D of the present embodiment can open and close the valve housing 1, the main valve port 14 formed in the valve housing 1, and the main valve port 14 in the same manner as the flow rate control valve 10A of the first embodiment. The main valve body 2 (valve body), the sub-valve port 24 (valve port) in the main valve body 2, the sub-valve body 3 (valve body) that can open and close the sub-valve port 24, and the stepping motor 4 (drive unit). ), And a two-stage electric valve. In the flow rate control valve 10D of the present embodiment, a partial configuration of the main valve body 2 is different from the flow rate control valve 10A of the first embodiment. The differences will be described in detail below.

本実施形態の流量制御弁10Dでは、主弁体2に設けられた整流部材6は、高抵抗部61と低抵抗部62の濾過密度は同じで、整流部材6の副弁ポート24に対向する側に、高抵抗部61に位置する小孔7a,・・・と低抵抗部62に位置する大孔7b,・・・とを有した板材7が設けられていることが、第1実施形態の流量制御弁10Aと相違している。なお、具体的には、本実施形態の流量制御弁10Dの板材7における小孔7a,・・・と、大孔7b,・・・とは、平面視で、軸線Lを中心とした円周上に等間隔でそれぞれ設けられている。そして、本実施形態の流量制御弁10Dでは、整流部材6において、板材7の小孔7a,・・・の総開口面積に対して大孔7b,・・・の総開口面積が1.2倍以上に設定されている。また、本実施形態における高抵抗部61の範囲(半径)は、軸芯Lと大孔7bの内径の軸芯L側とを結ぶ範囲である。また、小孔7a,・・・と、大孔7b,・・・とは、これらの個数、大きさ、形状、及び配置等を本発明の性能を発揮する範囲においては、その他様々にしてもよい。すなわち、例えば、小孔7aは、整流部材6の中心に1個だけ設けられていてもよいし、大孔7bは、小孔7aを囲むように環状に連続した形状で1個又は複数個が設けられていてもよい。 In the flow control valve 10D of the present embodiment, the rectifying member 6 provided in the main valve body 2 has the same filtration density of the high resistance portion 61 and the low resistance portion 62, and faces the sub-valve port 24 of the rectifying member 6. The first embodiment is provided with a plate material 7 having a small hole 7a, ... Located in the high resistance portion 61 and a large hole 7b, ... Located in the low resistance portion 62, on the side. It is different from the flow rate control valve 10A of. Specifically, the small holes 7a, ... And the large holes 7b, ... In the plate material 7 of the flow control valve 10D of the present embodiment are the circumferences about the axis L in a plan view. They are provided on the top at equal intervals. In the flow control valve 10D of the present embodiment, in the rectifying member 6, the total opening area of the large holes 7b, ... Is 1.2 times the total opening area of the small holes 7a, ... Of the plate material 7. It is set as above. Further, the range (radius) of the high resistance portion 61 in the present embodiment is a range connecting the shaft core L and the shaft core L side of the inner diameter of the large hole 7b. Further, the small holes 7a, ... And the large holes 7b, ... Are various in number, size, shape, arrangement, etc., as long as the performance of the present invention is exhibited. good. That is, for example, only one small hole 7a may be provided in the center of the rectifying member 6, and one or a plurality of large holes 7b may be formed in an annular continuous shape so as to surround the small hole 7a. It may be provided.

以上の本実施形態の流量制御弁10Dでは、整流部材6に小孔7a,・・・と、大孔7b,・・・とを有する板材7を付加部材として設けることで流路抵抗の違いを出している。従って、本実施形態の流量制御弁10Dによれば、第1実施形態の流量制御弁10Aと略同様の作用効果を奏することができる。 In the flow control valve 10D of the present embodiment described above, the difference in flow path resistance is made by providing the rectifying member 6 with a plate material 7 having small holes 7a, ... And large holes 7b, ... As an additional member. It is out. Therefore, according to the flow rate control valve 10D of the present embodiment, it is possible to obtain substantially the same operation and effect as the flow rate control valve 10A of the first embodiment.

次に、本発明の冷凍サイクルシステムを図6に基づいて説明する。図6は、本発明の冷凍サイクルシステムの一例を示す図である。 Next, the refrigeration cycle system of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing an example of the refrigeration cycle system of the present invention.

この図6に示されている冷凍サイクルシステム90は、例えば、家庭用エアコン等の空気調和機に用いられる。上述の実施形態の流量制御弁10(10A,10B,10C,10D)は、空気調和機の第1室内側熱交換器91(除湿時冷却器として作動)と第2室内側熱交換器92(除湿時加熱器として作動)との間に設けられている。流量制御弁10は、圧縮機95、四方弁96、室外側熱交換器94および電子膨張弁93とともに、ヒ-トポンプ式冷凍サイクルを構成している。第1室内側熱交換器91と第2室内側熱交換器92及び二段式電動弁10は室内に設置され、圧縮機95、四方弁96、室外側熱交換器94および電子膨張弁93は室外に設置されていて冷暖房装置を構成している。 The refrigeration cycle system 90 shown in FIG. 6 is used, for example, in an air conditioner such as a home air conditioner. The flow control valves 10 (10A, 10B, 10C, 10D) of the above-described embodiment are the first indoor side heat exchanger 91 (acting as a dehumidifying cooler) and the second indoor side heat exchanger 92 (acting as a dehumidifying cooler) of the air conditioner. It is installed between (acting as a heater during dehumidification). The flow rate control valve 10 constitutes a heat pump type refrigeration cycle together with the compressor 95, the four-way valve 96, the outdoor heat exchanger 94, and the electronic expansion valve 93. The first indoor side heat exchanger 91, the second indoor side heat exchanger 92, and the two-stage electric valve 10 are installed indoors, and the compressor 95, the four-way valve 96, the outdoor heat exchanger 94, and the electronic expansion valve 93 are installed. It is installed outdoors and constitutes an air conditioner.

除湿弁としての流量制御弁10は、除湿時以外の冷房時または暖房時には主弁体2によって主弁ポート14が全開状態とされて、第1室内側熱交換器91と第2室内側熱交換器92は一つの室内側熱交換器とされる。そして、この一体の室内側熱交換器と室外側熱交換器94は、「蒸発器」及び「凝縮器」として択一的に機能する。すなわち、電子膨張弁93は、蒸発器と凝縮器の間に設けられている。 In the flow control valve 10 as a dehumidifying valve, the main valve port 14 is fully opened by the main valve body 2 during cooling or heating other than during dehumidification, and the heat exchanger 91 on the first chamber side and the heat exchange on the second chamber side are exchanged. The vessel 92 is one indoor heat exchanger. The integrated indoor heat exchanger and outdoor heat exchanger 94 alternately function as an "evaporator" and a "condenser". That is, the electronic expansion valve 93 is provided between the evaporator and the condenser.

この冷凍サイクルシステム90によれば、流体の経路上に上述した実施形態の流量制御弁10が設けられているため、特に小流量制御域における流体通過音の抑制を図ることができるので、静音化された冷凍サイクルシステムとすることができる。 According to this refrigeration cycle system 90, since the flow rate control valve 10 of the above-described embodiment is provided on the fluid path, it is possible to suppress the fluid passing noise especially in the small flow rate control range, so that the noise is reduced. Can be a refrigeration cycle system.

次に、本発明の他の実施形態に係る流量制御弁を図7及び図8に基づいて説明する。本実施形態の流量制御弁10Eは、弁ハウジング111と、弁ハウジング111内に形成された弁ポート140と、弁ポート140を開閉可能な電磁弁用弁体20(弁本体)と、電磁ソレノイド装置40(駆動部)と、を備えた電磁弁である。なお、図7及び図8は、いずれも電磁弁用弁体20を全閉状態としたときの図である。 Next, the flow rate control valve according to another embodiment of the present invention will be described with reference to FIGS. 7 and 8. The flow control valve 10E of the present embodiment includes a valve housing 111, a valve port 140 formed in the valve housing 111, a solenoid valve valve body 20 (valve body) capable of opening and closing the valve port 140, and an electromagnetic solenoid device. It is a solenoid valve provided with 40 (driving unit). 7 and 8 are views when the solenoid valve valve body 20 is fully closed.

本実施形態の流量制御弁10Eは、電磁弁用弁体20の下端部に形成された円筒状の凹部内に、円板状の多孔体のフィルタ要素25を嵌め込み、その下流に中心に絞り孔26(弁口)を有する円柱状のオリフィス部材27を嵌め込み、更にその下流に第1実施形態の流量制御弁10Aで用いた整流部材6を嵌め込んだ構成である。 In the flow control valve 10E of the present embodiment, a disc-shaped porous filter element 25 is fitted in a cylindrical recess formed at the lower end of the solenoid valve valve body 20, and a narrowing hole is centered downstream thereof. A cylindrical orifice member 27 having a 26 (valve port) is fitted, and a rectifying member 6 used in the flow rate control valve 10A of the first embodiment is fitted further downstream thereof.

本実施形態の流量制御弁10Eは、電磁弁用弁体20を、電磁ソレノイド装置40により軸線L方向に上下動させ、弁ハウジング111内に形成された弁ポート140との開度を全開状態と全閉状態(絞り状態)とに制御可能な構成である。流量制御弁10Eは、電磁弁用弁体20を全開状態とすると、大流量制御域の弁となり、一次継手管11から流入してきた流体が弁室11C及び弁ポート140を介して、二次継手管12に流入するようになっている。一方、図8に示すように、電磁弁用弁体20を全閉状態とすると、一次継手管11から流入してきた流体が、円筒フィルタ要素32を介して流入孔33(流入口)からフィルタ要素25を通って絞り孔26に流入し、整流部材6を通過してから、凹部の下端部20a(流出口)から二次継手管12に流入するようになっている。なお、整流部材6には、第2実施形態乃至第4実施形態の流量制御弁10B~10Dで用いたいずれの整流部材6を用いてもよい。 In the flow control valve 10E of the present embodiment, the solenoid valve body 20 is moved up and down in the axis L direction by the solenoid valve body 40, and the opening degree with the valve port 140 formed in the valve housing 111 is fully opened. It is a configuration that can be controlled to the fully closed state (aperture state). When the solenoid valve body 20 is fully opened, the flow rate control valve 10E becomes a valve in the large flow rate control range, and the fluid flowing in from the primary joint pipe 11 passes through the valve chamber 11C and the valve port 140 to the secondary joint. It is designed to flow into the pipe 12. On the other hand, as shown in FIG. 8, when the solenoid valve valve body 20 is fully closed, the fluid flowing in from the primary joint pipe 11 passes through the cylindrical filter element 32 from the inflow hole 33 (inflow port) to the filter element. It flows into the throttle hole 26 through 25, passes through the rectifying member 6, and then flows into the secondary joint pipe 12 from the lower end portion 20a (outlet) of the recess. As the rectifying member 6, any rectifying member 6 used in the flow control valves 10B to 10D of the second to fourth embodiments may be used.

本実施形態の流量制御弁10Eでは、例えば、整流部材6の代わりに濾過密度が均一なフィルタ要素を設けた場合に比して、整流部材6の略全体を流体が通過し、整流部材6の略全体によって流体内の気泡を細分化させることで、特に小流量制御域における消音効果を得ることができ、流体通過音の十分な抑制を図ることができる。 In the flow control valve 10E of the present embodiment, for example, as compared with the case where a filter element having a uniform filtration density is provided instead of the rectifying member 6, the fluid passes through substantially the entire rectifying member 6 and the rectifying member 6 By subdividing the bubbles in the fluid by substantially the whole, it is possible to obtain a muffling effect especially in the small flow rate control range, and it is possible to sufficiently suppress the sound passing through the fluid.

以上、図面を参照して、本発明を実施するための形態を第1実施形態乃至第4実施形態、及び他の実施形態に基づいて詳述してきたが、具体的な構成は、これらの実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 As described above, the embodiments for carrying out the present invention have been described in detail based on the first to fourth embodiments and other embodiments with reference to the drawings. Not limited to the form, design changes to the extent that the gist of the present invention is not deviated are included in the present invention.

例えば、上記第1実施形態乃至第4実施形態では、高抵抗部61の範囲を、副弁ポート24の内径よりも大きくしたが、これに限定されず、副弁ポート24の内径よりも小さくしてもよい。また、上記第2実施形態及び第3実施形態の整流部材6の高抵抗部61を、上記第1実施形態のように、高抵抗部61の方が低抵抗部62よりも高い濾過密度を有しているようにしてもよい。また、上記第1実施形態乃至第4実施形態では、主弁部21の下端部内に整流部材6を設けたが、これに限定されず、例えば、整流部材6を、弁ハウジング1の主弁ポート14内や二次継手管12内等に設けてもよい。この場合、大流量制御域における消音効果を得ることもできる。 For example, in the first to fourth embodiments, the range of the high resistance portion 61 is made larger than the inner diameter of the auxiliary valve port 24, but is not limited to this, and is made smaller than the inner diameter of the auxiliary valve port 24. You may. Further, the high resistance portion 61 of the rectifying member 6 of the second embodiment and the third embodiment has a higher filtration density in the high resistance portion 61 than in the low resistance portion 62 as in the first embodiment. You may do so. Further, in the first to fourth embodiments, the rectifying member 6 is provided in the lower end portion of the main valve portion 21, but the present invention is not limited to this, and for example, the rectifying member 6 can be used as the main valve port of the valve housing 1. It may be provided in 14 or in the secondary joint pipe 12. In this case, it is possible to obtain a muffling effect in the large flow rate control range.

さらに、上記本発明の一例では、流量制御弁10を通常のエアコンに使用したが、これに限定されず、ビル用のマルチエアコンや冷凍機などに使用してもよい。 Further, in the above example of the present invention, the flow rate control valve 10 is used for a normal air conditioner, but the present invention is not limited to this, and the flow control valve 10 may be used for a multi air conditioner for a building, a refrigerator, or the like.

10,10A~10E 流量制御弁
25 連通孔(流入口)
33 流入孔(流入口)
211 流出部(流出口)
2 主弁体(弁本体)
20 電磁弁用弁体(弁本体)
24 副弁ポート(弁口)
26 絞り孔(弁口)
6 整流部材
61 高抵抗部
61a 円錐部
62 低抵抗部
7 板材
7a 小孔
7b 大孔
21 主弁部(弁座部)
5 拡径部(第2弁口)
21a 第1段差部(第3弁口)
L 軸線
3 副弁体(弁体)
90 冷凍サイクルシステム
10,10A-10E Flow control valve 25 Communication hole (inlet)
33 Inflow hole (inflow port)
211 Outflow part (outlet)
2 Main valve body (valve body)
20 Solenoid valve valve body (valve body)
24 Secondary valve port (valve port)
26 Aperture hole (valve port)
6 Rectifying member 61 High resistance part 61a Conical part 62 Low resistance part 7 Plate material 7a Small hole 7b Large hole 21 Main valve part (valve seat part)
5 Enlarged diameter part (second valve port)
21a 1st step (3rd valve port)
L-axis line 3 Sub-valve body (valve body)
90 Refrigeration cycle system

Claims (9)

流入口及び流出口を有した弁本体と、前記弁本体の内部に設けられて流体の流路を絞る弁口と、を備えた流量制御弁であって、
前記弁口と前記流出口との間には、流体を通過させることで整流する整流部材が設けられ、
前記整流部材は、その中心側に流路抵抗の高い高抵抗部と、前記高抵抗部よりも外側に流路抵抗の低い低抵抗部と、を備えることを特徴とする流量制御弁。
A flow control valve including a valve body having an inflow port and an outflow port, and a valve port provided inside the valve body for narrowing a fluid flow path.
A rectifying member that rectifies by passing a fluid is provided between the valve port and the outlet.
The flow control valve is characterized in that the rectifying member includes a high resistance portion having a high flow path resistance on the center side thereof and a low resistance portion having a low flow path resistance outside the high resistance portion.
前記整流部材の前記高抵抗部は、前記弁口の内径よりも大きい範囲に設けられていることを特徴とする請求項1に記載の流量制御弁。 The flow rate control valve according to claim 1, wherein the high resistance portion of the rectifying member is provided in a range larger than the inner diameter of the valve opening. 前記整流部材は、前記高抵抗部の方が前記低抵抗部よりも高い濾過密度を有していることを特徴とする請求項1又は2に記載の流量制御弁。 The flow rate control valve according to claim 1 or 2, wherein the rectifying member has a higher filtration density in the high resistance portion than in the low resistance portion. 前記整流部材は、前記高抵抗部の方が前記低抵抗部よりも大きな厚みに形成されていることを特徴とする請求項1又は2に記載の流量制御弁。 The flow rate control valve according to claim 1 or 2, wherein the rectifying member is formed with a thickness of the high resistance portion larger than that of the low resistance portion. 前記整流部材の前記高抵抗部は、前記弁口に対向する面が中心側から外側に向かって厚みが小さくなる傾斜面を有して形成されていることを特徴とする請求項1又は2に記載の流量制御弁。 According to claim 1 or 2, the high resistance portion of the rectifying member is formed so that the surface facing the valve port has an inclined surface whose thickness decreases from the center side to the outside. The flow control valve described. 前記整流部材の前記弁口に対向する側には、前記高抵抗部に位置する小孔と前記低抵抗部に位置する大孔とを有した板材が設けられていることを特徴とする請求項1又は2に記載の流量制御弁。 The claim is characterized in that a plate material having a small hole located in the high resistance portion and a large hole located in the low resistance portion is provided on the side of the rectifying member facing the valve port. The flow rate control valve according to 1 or 2. 前記弁口を構成する弁座部には、前記弁口から前記流出口に向かって内径が大きくなる第2弁口と、前記第2弁口から前記流出口に向かってさらに内径が大きくなる第3弁口と、が設けられ、前記第3弁口に前記整流部材が設けられていることを特徴とする請求項1乃至6のいずれか1項に記載の流量制御弁。 The valve seat portion constituting the valve port has a second valve port whose inner diameter increases from the valve port toward the outlet, and a second valve port whose inner diameter further increases from the second valve port toward the outlet. The flow control valve according to any one of claims 1 to 6, wherein a three-valve port is provided, and the rectifying member is provided at the third valve port. 軸線方向に進退移動することで前記弁口の開口面積を調整する弁体と、前記弁体を進退駆動する駆動部と、をさらに備えることを特徴とする請求項1乃至7のいずれか1項に記載の流量制御弁。 One of claims 1 to 7, further comprising a valve body that adjusts the opening area of the valve opening by moving forward and backward in the axial direction, and a drive unit that drives the valve body forward and backward. Flow control valve according to. 請求項1乃至8のいずれか1項に記載の流量制御弁を備えることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system comprising the flow rate control valve according to any one of claims 1 to 8.
JP2020114274A 2020-07-01 2020-07-01 Flow control valve and refrigeration cycle system Active JP7349963B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020114274A JP7349963B2 (en) 2020-07-01 2020-07-01 Flow control valve and refrigeration cycle system
CN202110632600.XA CN113883325A (en) 2020-07-01 2021-06-07 Flow control valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020114274A JP7349963B2 (en) 2020-07-01 2020-07-01 Flow control valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2022022689A true JP2022022689A (en) 2022-02-07
JP7349963B2 JP7349963B2 (en) 2023-09-25

Family

ID=79010194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020114274A Active JP7349963B2 (en) 2020-07-01 2020-07-01 Flow control valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7349963B2 (en)
CN (1) CN113883325A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136581A (en) * 1984-07-30 1986-02-21 Yamatake Honeywell Co Ltd Low-noise valve
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
CN101644355A (en) * 2009-09-04 2010-02-10 四川华林自控科技有限公司 Damping structure of adjusting valve
JP2019143727A (en) * 2018-02-21 2019-08-29 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP2020143767A (en) * 2019-03-08 2020-09-10 株式会社不二工機 Flow rate regulating valve and method for assembling the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674862B2 (en) * 1989-12-22 1994-09-21 キミツ機工株式会社 valve
JP2006097901A (en) * 2001-10-29 2006-04-13 Mitsubishi Electric Corp Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve
JP6692213B2 (en) * 2016-05-23 2020-05-13 株式会社不二工機 Flow control valve
JP6692215B2 (en) * 2016-05-26 2020-05-13 株式会社不二工機 Flow control valve
JP6505151B2 (en) * 2017-03-23 2019-04-24 株式会社不二工機 Flow control valve
JP6740179B2 (en) * 2017-06-23 2020-08-12 株式会社鷺宮製作所 Motorized valve and refrigeration cycle system
JP6857624B2 (en) * 2018-02-01 2021-04-14 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP6938401B2 (en) * 2018-02-21 2021-09-22 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP6968768B2 (en) * 2018-08-31 2021-11-17 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136581A (en) * 1984-07-30 1986-02-21 Yamatake Honeywell Co Ltd Low-noise valve
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
CN101644355A (en) * 2009-09-04 2010-02-10 四川华林自控科技有限公司 Damping structure of adjusting valve
JP2019143727A (en) * 2018-02-21 2019-08-29 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP2020143767A (en) * 2019-03-08 2020-09-10 株式会社不二工機 Flow rate regulating valve and method for assembling the same

Also Published As

Publication number Publication date
CN113883325A (en) 2022-01-04
JP7349963B2 (en) 2023-09-25

Similar Documents

Publication Publication Date Title
JP4570473B2 (en) Valve device and refrigeration cycle device
JP6968768B2 (en) Electric valve and refrigeration cycle system
JP6857624B2 (en) Electric valve and refrigeration cycle system
JP6959900B2 (en) Valve gear, motorized valves and refrigeration cycle system
JP2009052742A (en) Needle valve and refrigerating cycle device having the needle valve
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP7179708B2 (en) Valve gear and refrigeration cycle system
JP5627612B2 (en) Expansion valve
JP3413399B2 (en) Electric flow control valve
JP4570484B2 (en) Composite valve, heat pump type air conditioner and control method thereof
CN111828659B (en) Valve device and refrigeration cycle system
CN111379892B (en) Valve device and refrigeration cycle system
JP2022095807A (en) Motor-operated valve and refrigerating cycle system
CN113883284B (en) Electric valve and refrigeration cycle system
JP2024010029A (en) Motor-operated valve and refrigeration cycle system
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP2022022689A (en) Flow control valve and refrigeration cycle system
JP2023068024A (en) Motor-operated valve and refrigeration cycle system
JP7208127B2 (en) Electric valve and refrigeration cycle system
JP2022015461A (en) Two-stage motor-operated valve and refrigeration cycle system
JP4043076B2 (en) Flow control valve
JP2005331153A (en) Throttle valve device and air conditioner
JP2021165574A (en) Two-stage type motor-operated valve and refrigeration cycle system
JP2020169661A (en) Electric valve and refrigeration cycle system
JP7509962B2 (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7349963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150