JP6505151B2 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JP6505151B2
JP6505151B2 JP2017057231A JP2017057231A JP6505151B2 JP 6505151 B2 JP6505151 B2 JP 6505151B2 JP 2017057231 A JP2017057231 A JP 2017057231A JP 2017057231 A JP2017057231 A JP 2017057231A JP 6505151 B2 JP6505151 B2 JP 6505151B2
Authority
JP
Japan
Prior art keywords
valve body
valve
flow rate
passage
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017057231A
Other languages
Japanese (ja)
Other versions
JP2018159433A (en
Inventor
柳澤 秀
秀 柳澤
原田 貴雄
貴雄 原田
共存 大内
共存 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2017057231A priority Critical patent/JP6505151B2/en
Priority to KR1020170158320A priority patent/KR20180108401A/en
Priority to CN201711421084.6A priority patent/CN108626463B/en
Publication of JP2018159433A publication Critical patent/JP2018159433A/en
Application granted granted Critical
Publication of JP6505151B2 publication Critical patent/JP6505151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/047Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)

Description

本発明は、例えばヒートポンプ式冷暖房システム等において冷媒流量を調整するのに好適な流量調整弁に関する。   The present invention relates to a flow control valve suitable for adjusting the flow rate of refrigerant, for example, in a heat pump type cooling and heating system.

この種の流量調整弁の一例として、弁室及び弁座付き弁口(オリフィス)が設けられた弁本体と、弁座からのリフト量に応じて弁口を流れる流体の流量を変化させる弁体とを備え、弁体が、例えば特許文献1〜3等に所載の如くの、雄ねじが設けられた弁軸、雌ねじが設けられた軸受部材、及びステッピングモータ等で構成されるねじ送り式昇降駆動機構により、弁座に接離又は近接離間するように昇降せしめられる電動弁が知られている。   As an example of this kind of flow rate adjustment valve, a valve body provided with a valve chamber and a valve seat (orifice) and a valve body for changing the flow rate of fluid flowing through the valve mouth according to the lift amount from the valve seat A screw feed type elevation drive including a valve shaft provided with an external thread, a bearing member provided with an internal thread, and a stepping motor as described in, for example, Patent Documents 1 to 3 and the like. There is known a motor-operated valve that can be raised and lowered to move in or out of the valve seat by means of a mechanism.

ところで、上記した如くの構成の流量調整弁を、例えばヒートポンプ式冷暖房システムに組み込んだ場合、前記弁口が所定開度まで開かれ、弁室に流れ込んだ冷媒が、弁室から弁体と弁口との間に形成される隙間を介して流出する際、連続的な騒音(流体通過音)が発生しやすいという問題があった。   By the way, when the flow control valve having the above-mentioned configuration is incorporated into, for example, a heat pump type air conditioning system, the valve port is opened to a predetermined opening degree, and the refrigerant flowing into the valve chamber flows from the valve chamber to the valve body and the valve opening. When it flows out through the crevice formed between these, there existed a problem that continuous noise (fluid passage sound) was easy to generate.

より詳しくは、弁口に流れ込む流体(冷媒)が気体と液体の混合状態(気液二相流)、つまり、弁室を介して弁口に向かう流体中に気泡が混じっていると、その気泡が弁口を通過する際、その流入側と流出側に急激な圧力変動を発生させ、その圧力変動によって大きな騒音が発生する。特に、小開度領域(弁開度(弁体のリフト量)が小さい領域)においては、一般に、前記弁口における流体の流路(弁体と弁口との間の隙間)が非常に狭いので、流体中の気泡の影響が大きくなり、前述の大きな騒音(流体通過音)が更に発生しやすくなる。   More specifically, the fluid (refrigerant) flowing into the valve port is in a mixed state of gas and liquid (gas-liquid two-phase flow), that is, when bubbles are mixed in the fluid toward the valve port through the valve chamber, the bubbles When the valve passes through the valve port, rapid pressure fluctuation is generated on the inflow side and the outflow side, and the pressure fluctuation generates a large noise. In particular, in a small opening area (an area where the valve opening degree (lift amount of valve body) is small), generally, the flow path of the fluid at the valve port (gap between the valve body and the valve port) is very narrow. Therefore, the influence of air bubbles in the fluid is increased, and the above-mentioned loud noise (fluid passing noise) is more likely to be generated.

このような問題に対し、特許文献4に所載の従来技術では、弁室内に、流体中の気泡を細分化する部材(消音部材)を介装することが提案されている。   In order to solve such a problem, in the prior art described in Patent Document 4, it is proposed to interpose a member (muffler member) for dividing air bubbles in the fluid into the valve chamber.

特開2012−172839号公報JP, 2012-172839, A 特開2008−101765号公報JP, 2008-101765, A 特開2004−289901号公報Unexamined-Japanese-Patent No. 2004-289901 特開2001−289538号公報JP 2001-289538 A

ところで、大開度領域(弁開度が大きい領域)においては、前記弁口における流体の流路(弁体と弁口との間の隙間)が広くなるので、前述のような大きな騒音(流体通過音)は発生しにくくなる一方、弁口を通過する流量を十分に確保する必要性が高くなる。   By the way, in the large opening area (area where the valve opening degree is large), the flow path of the fluid in the valve port (the gap between the valve body and the valve port) becomes wide, so the above-mentioned large noise (fluid passage) Sound is less likely to be generated, but it becomes more necessary to secure a sufficient flow rate through the valve port.

特許文献4に所載の従来技術においては、流体中の気泡が、前記消音部材に設けられた貫通孔ないし網状部を通過する際に分解されて細分化され、その細分化された状態で、弁体と弁口との間の隙間に流入するので、弁口を通過する際、その流入側と流出側に急激な圧力変動は発生せず、前述の騒音を低減できる。しかし、前記消音部材は、弁室における流入口側と流出口側を常時仕切るように弁本体に固定されているので、弁口を通過する流量を確保する必要がある大開度領域において、弁口へ向かう流体の流れを阻害し、圧力損失(圧損)が大きくなり、適正な冷媒流量が得られ難いという問題があった。   In the prior art described in Patent Document 4, the air bubbles in the fluid are broken down and subdivided when passing through the through holes or the reticulated portion provided in the sound deadening member, and in the state of being subdivided, Since it flows into the gap between the valve body and the valve port, when passing through the valve port, rapid pressure fluctuation is not generated on the inflow side and the outflow side, and the above-mentioned noise can be reduced. However, since the muffling member is fixed to the valve main body so as to always divide the inlet side and the outlet side in the valve chamber, the valve opening in the large opening area where it is necessary to secure the flow rate passing through the valve opening There is a problem that the flow of the fluid toward the end is impeded, the pressure loss (pressure loss) becomes large, and it is difficult to obtain an appropriate refrigerant flow rate.

また、この種の流量調整弁では、近年、小開度領域(低流量域)での制御性の向上が求められているが、上記の問題を解消しつつ小開度領域での制御性を確保しようとすると、体格の大型化、構成の複雑化、高コスト化等を招くおそれがあった。   In addition, in this type of flow control valve, although the improvement of controllability in the small opening area (low flow area) is required in recent years, the controllability in the small opening area is solved while solving the above problems. If it is going to ensure, there existed a possibility that the enlargement of a physique, complication of a structure, cost increase, etc. might be caused.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、流体(冷媒)通過時における騒音を効果的に低減できるとともに、簡単な構成で大開度領域における圧力損失の低減と小開度領域における制御性の向上も図ることのできる流量調整弁を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to reduce noise during passage of fluid (refrigerant) effectively and to reduce pressure loss in a large opening area with a simple configuration. An object of the present invention is to provide a flow control valve capable of improving controllability in a small opening region.

前記目的を達成すべく、本発明に係る流量調整弁は、基本的には、弁室及び大流量用弁口が設けられた弁本体と、前記弁室内に昇降自在に配在された第1弁体と、該第1弁体を昇降させるための昇降駆動部と、リフト量に応じて前記大流量用弁口を流れる流体の流量を変化させるべく、前記第1弁体の下端部外周を包囲するように該第1弁体に摺動自在に外挿され、該第1弁体の昇降動作に連動して駆動される第2弁体と、を備え、前記第1弁体に設けられた上側連通路と、前記第2弁体により前記第1弁体の下端部周りに画成された連通空間と、前記第2弁体に設けられた下側連通路とを介して前記弁室と前記大流量用弁口とを連通する小流量通路が形成され、前記第1弁体は、リフト量に応じて前記小流量通路における前記上側連通路と前記連通空間との間に設けられた小流量用弁口を流れる流体の流量を変化させるようになっており、前記昇降駆動部による前記第1弁体のリフト量が所定量以下のときは、前記第2弁体により前記大流量用弁口が閉じられ、前記第1弁体の前記小流量用弁口に対するリフト量に応じて流量が制御される小流量制御状態をとり、前記昇降駆動部による前記第1弁体のリフト量が前記所定量を超えると、前記第1弁体の上昇に伴って前記第2弁体が上昇せしめられて前記第2弁体が前記大流量用弁口を開く大流量制御状態をとるように構成され、前記小流量制御状態において前記第2弁体に作用する閉弁方向の力が開弁方向の力以上になるように、前記大流量用弁口の開口面積と前記第2弁体の昇降方向における受圧面積とが設定されていることを特徴としている。   In order to achieve the above object, the flow control valve according to the present invention basically comprises: a valve main body provided with a valve chamber and a large flow rate valve port; The outer periphery of the lower end portion of the first valve body is changed to change the flow rate of the fluid flowing through the large flow rate valve port according to the valve body, the elevating drive unit for moving the first valve body up and down, and the lift amount. A second valve body slidably inserted onto the first valve body so as to surround the second valve body and driven in conjunction with the elevating operation of the first valve body; The valve chamber via an upper communication passage, a communication space defined around the lower end of the first valve body by the second valve body, and a lower communication passage provided in the second valve body And a small flow passage communicating the high flow rate valve port with the upper communication passage in the small flow passage according to the lift amount. The flow rate of the fluid flowing through the small flow rate valve port provided between the communication space and the communication space is changed, and when the lift amount of the first valve body by the elevation drive unit is equal to or less than a predetermined amount, The small flow control state in which the large flow rate valve port is closed by the second valve body and the flow rate is controlled in accordance with the lift amount of the first valve body with respect to the small flow rate valve port; When the lift amount of the first valve body due to the first valve body exceeds the predetermined amount, the second valve body is raised with the rise of the first valve body, and the second valve body receives the large flow rate valve port. The large flow rate control valve is configured to be in the large flow rate control state to be opened, and the force in the valve closing direction acting on the second valve body in the small flow rate control state is greater than the force in the valve opening direction. The opening area and the pressure receiving area in the vertical direction of the second valve body are set. It is characterized.

好ましい態様では、前記大流量用弁口の開口面積と前記第2弁体の昇降方向における受圧面積とが同一に設定される。   In a preferred aspect, the opening area of the large flow rate valve port and the pressure receiving area in the vertical direction of the second valve body are set to be the same.

更に好ましい態様では、前記大流量用弁口の開口面積、前記第1弁体の背面側に画成された背圧室の昇降方向における受圧面積、及び前記第2弁体の昇降方向における受圧面積が同一に設定されるとともに、前記大流量用弁口と前記背圧室とを連通する均圧通路が設けられる。   In a further preferred aspect, the opening area of the large flow rate valve port, the pressure receiving area in the vertical direction of the back pressure chamber defined on the back side of the first valve body, and the pressure receiving area in the vertical direction of the second valve body Are set identically, and a pressure equalizing passage connecting the large flow rate valve port and the back pressure chamber is provided.

更に好ましい態様では、前記均圧通路は、前記弁本体における前記弁室の外側の一部もしくは全周を含んで構成される。   In a further preferred aspect, the pressure equalizing passage is configured to include a part or the entire circumference of the valve chamber on the valve body.

更に好ましい態様では、前記均圧通路は、前記弁室を画成する基体部材と、該基体部材の外側に配在された外筒との間に形成される隙間を含んで構成される。   In a further preferred aspect, the pressure equalizing passage includes a gap formed between a base member defining the valve chamber and an outer cylinder disposed outside the base member.

別の好ましい態様では、前記小流量通路における前記小流量用弁口より前記弁室側及び前記大流量用弁口側の少なくとも一方に、前記小流量通路を流れる流体中の気泡を細分化する消音部材が配在される。   In another preferable aspect, the muffling in which air bubbles in the fluid flowing through the small flow passage are subdivided in at least one of the small flow passage from the small flow valve opening in the small flow passage and the large flow valve opening side The members are distributed.

前記消音部材は、好ましくは、前記小流量通路における前記上側連通路及び前記下側連通路に配在される。   The muffling member is preferably disposed in the upper communication passage and the lower communication passage in the small flow passage.

他の好ましい態様では、前記第2弁体は、該第2弁体と前記第1弁体との間に介装された付勢部材によって前記大流量用弁口の閉弁方向に付勢されるとともに、前記第1弁体のリフト量が前記所定量を超えると、前記第1弁体に設けられた鍔状係止部によりき上げられるようにされる。 In another preferred aspect, the second valve body is biased in the valve closing direction of the large flow rate valve port by a biasing member interposed between the second valve body and the first valve body. Rutotomoni, the lift amount of the first valve body is more than the predetermined amount, is adapted to be raised pull the flanged engaging part provided in the first valve body.

別の好ましい態様では、前記第2弁体は、前記第1弁体の下端部に摺動自在に外挿された筒状の連動部材と、該連動部材の下端開口に連結され、前記大流量用弁口を開閉する弁体部材とで構成される。   In another preferable aspect, the second valve body is connected to a cylindrical interlocking member slidably inserted at the lower end portion of the first valve body, and the lower end opening of the interlocking member, and the large flow rate It is comprised by the valve body member which opens and closes a valve port.

更に好ましい態様では、前記第1弁体の下端部と前記連動部材との間に、前記連通空間と前記弁室との間を封止するシール部材が介装される。   In a further preferred aspect, a seal member for sealing between the communication space and the valve chamber is interposed between the lower end portion of the first valve body and the interlocking member.

更に好ましい態様では、前記第1弁体の前記上側連通路における縦穴、及び/又は、前記第2弁体の前記弁体部材に設けられた前記下側連通路における縦穴に前記小流量通路を流れる流体中の気泡を細分化する消音部材が内装される。   In a further preferred aspect, the small flow rate passage flows in the vertical hole in the upper communication passage of the first valve body and / or the vertical hole in the lower communication passage provided in the valve body member of the second valve body. A muffling member is installed to fragment air bubbles in the fluid.

更に好ましい態様では、前記第1弁体の前記上側連通路における縦穴に前記小流量用弁口が設けられる。   In a further preferred aspect, the small flow rate valve port is provided in a vertical hole in the upper communication passage of the first valve body.

本発明に係る流量調整弁では、第1弁体に設けられた上側連通路と、第2弁体により第1弁体の下端部周りに画成された連通空間と、第2弁体に設けられた下側連通路とを介して弁室と大流量用弁口とを連通する小流量通路が形成され、流体中の気泡が、当該小流量通路を通過する際に細分化されるので、流体(冷媒)通過時、特に、小開度(小流量制御)領域での流体(冷媒)通過時における騒音を効果的に低減できるとともに、大開度(大流量制御)領域における圧力損失が抑えられ、適正な冷媒流量を得ることができる。   In the flow rate adjustment valve according to the present invention, the flow path is provided in the upper communication passage provided in the first valve body, the communication space defined around the lower end of the first valve body by the second valve body, and the second valve body A small flow passage communicating the valve chamber with the large flow rate valve port is formed via the lower communication passage, and air bubbles in the fluid are subdivided when passing through the small flow passage, Noise can be effectively reduced when fluid (refrigerant) passes, particularly when fluid (refrigerant) passes in the small opening (small flow control) region, and pressure loss in the large opening (large flow control) region is suppressed. And an appropriate refrigerant flow rate can be obtained.

また、例えば大流量用弁口の開口面積と第2弁体の昇降方向における受圧面積とが同一に設定され、閉弁状態ないし小流量制御状態において第2弁体の移動方向(昇降方向)に作用する力がバランス(差圧がキャンセル)されるので、流量制御時、特に、大流量用弁口から弁室に向かう方向に流体が流れるときの流量制御時の小開度領域(低流量域)における制御性を向上させることができる。   Also, for example, the opening area of the large flow rate valve port and the pressure receiving area in the elevating direction of the second valve body are set to be the same, and in the valve closing state or the small flow rate control state Since the acting force is balanced (differential pressure is canceled), the small opening area (low flow area) at the time of flow control, particularly when the fluid flows in the direction from the large flow rate valve port to the valve chamber Can be improved.

また、大流量用弁口の開口面積、第1弁体の背圧室の昇降方向における受圧面積、及び第2弁体の昇降方向における受圧面積が同一に設定されるとともに、大流量用弁口と背圧室とを連通する均圧通路が設けられ、閉弁状態ないし小流量制御状態において第2弁体の移動方向(昇降方向)に作用する力がバランス(差圧がキャンセル)されることに加えて、小流量制御状態において第1弁体の移動方向に作用する力や大流量制御状態において第1弁体及び第2弁体の移動方向に作用する力をバランス(差圧をキャンセル)させられるので、前記の如くに小開度領域(低流量域)における制御性を向上できることに加えて、流量制御時に弁体(小流量制御状態における第1弁体、大流量制御状態における第1弁体及び第2弁体)に作用する荷重を可及的に小さくして、弁体の駆動トルクを低減でき、もって、更なる小型化、省電力化等を図ることができる。   Further, the opening area of the large flow rate valve port, the pressure receiving area in the vertical direction of the back pressure chamber of the first valve body, and the pressure receiving area in the vertical direction of the second valve body are set to be the same. Pressure equalizing passage that communicates with the back pressure chamber, and the force acting in the moving direction (raising and lowering direction) of the second valve body in the closed state or small flow rate control state is balanced (cancel the differential pressure) In addition to the above, the force acting in the moving direction of the first valve body in the small flow rate control state and the force acting in the moving direction of the first valve body and the second valve body in the large flow rate control state are balanced (cancel the differential pressure) Therefore, in addition to the controllability in the small opening area (low flow area) being improved as described above, the valve body (the first valve body in the small flow control state, the first in the large flow control state) Load acting on the valve body and the second valve body And as small as possible, it is possible to reduce the driving torque of the valve body, has been, further size reduction can reduce power consumption and the like.

また、前記小流量通路における上側連通路と連通空間との間に設けられた小流量用弁口より弁室側及び大流量用弁口側に、当該小流量通路を流れる流体中の気泡を細分化する消音部材が配在されているので、流体(冷媒)通過時における騒音を確実に低減することができる。   Further, the bubbles in the fluid flowing through the small flow passage are subdivided from the small flow valve port provided between the upper communication passage and the communication space in the small flow passage toward the valve chamber side and the large flow valve opening side. Since the muffling members are disposed, noise at the time of fluid (refrigerant) passage can be reliably reduced.

本発明に係る流量調整弁の一実施形態を示す全体断面図。BRIEF DESCRIPTION OF THE DRAWINGS The whole sectional view showing one embodiment of the flow control valve concerning the present invention. 図1のU−U矢視断面図。UU arrow sectional drawing of FIG. 図1に示される流量調整弁における主要部の全閉状態を示す要部断面図。The principal part sectional view showing the full closing state of the principal part in the flow control valve shown by FIG. 図1に示される流量調整弁における主要部のリフト量が小さい状態(小流量制御状態)を示す要部断面図。The principal part sectional view showing the state (small flow control state) where the lift amount of the principal part in the flow control valve shown in Drawing 1 is small. 図1に示される流量調整弁における主要部の全開状態(大流量制御状態)を示す要部断面図。The principal part sectional view showing the full open state (large flow control state) of the principal part in the flow control valve shown by FIG. 図1に示される流量調整弁の変形形態(その1)を示す全体断面図。The whole sectional view showing the modification (the 1) of the flow control valve shown by FIG. 図4のV−V矢視断面図。V-V arrow sectional drawing of FIG. 図1に示される流量調整弁の変形形態(その2)を示す全体断面図。The whole sectional view showing the modification (the 2) of the flow control valve shown by FIG. 図1に示される流量調整弁の変形形態(その3)を示す全体断面図。The whole sectional view showing the modification (the 3) of the flow control valve shown by FIG.

以下、本発明の実施形態を図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流量調整弁の一実施形態を示す全体断面図、図2は、図1のU−U矢視断面図である。   FIG. 1 is an overall cross-sectional view showing an embodiment of a flow rate adjustment valve according to the present invention, and FIG. 2 is a cross-sectional view taken along the line U-U in FIG.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際の使用状態での位置、方向を指すとは限らない。   In the present specification, descriptions representing positions, directions such as top, bottom, left, right, front, back, etc. are provided for convenience according to the drawings in order to avoid complicated explanation, and the positions, directions in the actual use state Does not necessarily mean

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   Further, in each drawing, the gap formed between the members, the separation distance between the members, and the like are large in comparison with the dimensions of the respective constituent members in order to facilitate understanding of the invention and for convenience in drawing. Or it may be drawn small.

<流量調整弁1の構成>
図示実施形態の流量調整弁1は、例えばヒートポンプ式冷暖房システム等において冷媒流量を調整するために使用される電動弁であり、前述した従来の流量調整弁と同様に、流体(冷媒)が導入導出される弁室14及び該弁室14に開口する弁座15付きの弁口(大流量用弁口)16を有する弁本体10と、段付きの筒状基台13を介して弁本体10に固着された有底円筒状のキャン30と、キャン30に外嵌されるステータ40及びキャン30の内周に回転自在に配在されるロータ50からなるステッピングモータ(昇降駆動部)63と、ロータ50の回転数を減速する不思議遊星歯車減速機構60と、前記弁座15に接離して流体の通過量を制御する(言い換えれば、弁座15からのリフト量に応じて弁口16を流れる流体の流量を変化させる)副弁体(第2弁体)31が設けられた二段弁体32と、不思議遊星歯車減速機構60の出力ギヤ57の回転運動を直線運動に変換して前記二段弁体32を駆動する(昇降させる)ねじ送り機構27と、から構成される。
<Configuration of Flow Adjustment Valve 1>
The flow control valve 1 of the illustrated embodiment is, for example, a motor-operated valve used to adjust the flow rate of the refrigerant in a heat pump type cooling and heating system etc., and the fluid (refrigerant) is introduced and derived similarly to the conventional flow control valve described above. Valve body 10 having a valve chamber 14 and a valve port (a large flow rate valve port) 16 with a valve seat 15 opened to the valve chamber 14, and a valve base 10 via a stepped cylindrical base 13 A stepping motor (lifting / driving unit) 63 including a bottomed cylindrical can 30 fixed, a stator 40 externally fitted to the can 30, and a rotor 50 rotatably disposed on the inner periphery of the can 30, and a rotor Wonder planetary gear reduction mechanism 60 for reducing the number of rotations of 50 and the passing amount of fluid by controlling the valve seat 15 by contacting and separating (in other words, the fluid flowing through the valve port 16 according to the lift amount from the valve seat 15 Change the flow rate of Rotary motion of the two-stage valve body 32 provided with the sub-valve body (second valve body) 31 and the output gear 57 of the planetary gear reduction mechanism 60 into linear motion to convert the two-stage valve body 32 And a screw feed mechanism 27 for driving (raising and lowering).

弁本体10は、有底円筒状の基体部材9と、基体部材9の外側に配在された、例えば板金製の外筒8とを有し、基体部材9の内部に円筒状空所からなる弁室14が画成されている。基体部材9における弁室14の一側部には、管継手11aが(ろう付け等により)接続されるとともに、弁室14に開口する入出口17を持つ横向きの側部開口11が設けられ、その底部に、管継手12aが(ろう付け等により)接続されるとともに、弁室14に開口する円筒面からなる弁口(オリフィス)16を持つ縦向きの部開口12が設けられている。また、弁室14の上部(言い換えれば、基体部材9の円筒部9aの上部開口)には、後述する支持部材19の筒状保持部材19aの下部が嵌挿され、かしめにより弁本体10(の筒状基台13)に固定されている(かしめ部13a)。 The valve body 10 has a bottomed cylindrical base member 9 and an outer cylinder 8 made of, for example, a sheet metal, disposed outside the base member 9, and is formed of a cylindrical cavity inside the base member 9. A valve chamber 14 is defined. At one side of the valve chamber 14 in the base member 9, a lateral side opening 11 is provided, to which the pipe fitting 11a is connected (by brazing or the like) and having an inlet / outlet 17 opening to the valve chamber 14 At the bottom thereof, there is provided a vertically oriented bottom opening 12 having a valve port (orifice) 16 having a cylindrical surface which is connected (by brazing or the like) and opened to the valve chamber 14. Further, the lower portion of a cylindrical holding member 19a of a support member 19 described later is inserted into the upper portion of the valve chamber 14 (in other words, the upper opening of the cylindrical portion 9a of the base member 9), and caulking It is being fixed to the cylindrical base 13) (crimping part 13a).

外筒8は、基体部材9の円筒部9aより若干大径に形成されている。前記基体部材9の底部9bの下半部は若干大径とされており、その大径部分の外周に設けられた鍔状部9cに、外筒8の下端部が突き合わせ溶接等により接合されることで、当該外筒8は、基体部材9の外周に若干の隙間をあけて固定配置されている。   The outer cylinder 8 is formed slightly larger in diameter than the cylindrical portion 9 a of the base member 9. The lower half of the bottom 9b of the base member 9 has a slightly larger diameter, and the lower end of the outer cylinder 8 is joined by butt welding or the like to a flange 9c provided on the outer periphery of the larger diameter Thus, the outer cylinder 8 is fixedly disposed on the outer periphery of the base member 9 with a slight gap.

また、本例では、基体部材9の側部(図示例では、側部開口11とは反対側の側部であって、円筒部9a及び底部9bの上半部に相当する部分)にDカット面9dが形成されるとともに、その底部9bの上半部に、Dカット面9dと弁口16とを繋ぐ横孔からなる下通路7bが形成されている。   Further, in this example, D-cut is made on the side of the base member 9 (in the illustrated example, the side opposite to the side opening 11, which corresponds to the upper half of the cylindrical portion 9a and the bottom 9b). A surface 9 d is formed, and a lower passage 7 b formed of a horizontal hole connecting the D-cut surface 9 d and the valve port 16 is formed in the upper half of the bottom 9 b.

外筒8の上端部(上方開口部)には、段付きの筒状基台13(の外周段差部)が溶接等により接合され、その筒状基台13の上端部に、有蓋円筒状のキャン30の下端部が突き合わせ溶接等により密封接合されている。   A stepped cylindrical base 13 (the outer peripheral step portion thereof) is joined to the upper end (upper opening) of the outer cylinder 8 by welding or the like, and the upper end of the cylindrical base 13 has a cylindrical shape with a lid. The lower end portion of the can 30 is hermetically joined by butt welding or the like.

弁本体10及びキャン30によって画成された内部空間には、当該内部空間に昇降可能に配置された二段弁体32(の主弁体(第1弁体)29)等を支持する支持部材19が、弁本体10に固定されて配置されている。この支持部材19は、隔壁19c付き筒状保持部材19a及び雌ねじ部19i付き軸受部材19hを有し、筒状基台13の内側に、前記筒状保持部材19a(の中央部)が圧入・かしめ等により固定され、基体部材9(の円筒部9a)の上部開口に、前記筒状保持部材19aの下部(より詳しくは、外径が若干小さくされた下端縮径部)が(間にシール部材としてのOリング19bを介装した状態で)嵌挿されている。筒状保持部材19aの上部には、内周面下方に雌ねじ部19iが螺設された段付き筒状の軸受部材19hがかしめ等により固定されている。筒状保持部材19aの隔壁19cと軸受部材19hとの間にばね室19dが画成され、該ばね室19dに二段弁体32(の主弁体29)を常時開弁方向(上方向)に付勢する圧縮コイルばねからなる開弁ばね26が収納(縮装)されている。   A support member for supporting a two-stage valve body 32 (a main valve body (first valve body) 29) and the like disposed in the internal space so as to be able to move up and down in the internal space defined by the valve body 10 and the can 30 19 are arranged fixed to the valve body 10. The support member 19 has a cylindrical holding member 19a with a partition 19c and a bearing member 19h with an internal thread 19i, and (the central portion of the cylindrical holding member 19a is press-fit and caulked inside the cylindrical base 13) The lower part of the cylindrical holding member 19a (more specifically, the lower end reduced diameter part whose outer diameter is slightly reduced) is fixed to the upper opening of the base member 9 (the cylindrical part 9a of the base member 9). With the O ring 19b inserted). A stepped cylindrical bearing member 19 h having a female screw 19 i screwed downward to the inner peripheral surface is fixed to the upper portion of the cylindrical holding member 19 a by caulking or the like. A spring chamber 19d is defined between the partition wall 19c of the cylindrical holding member 19a and the bearing member 19h, and (the main valve body 29 of) the two-stage valve body 32 is always opened in the spring chamber 19d (upward direction). The valve-opening spring 26 which consists of a compression coiled spring urging | biasing it is accommodated (contraction installation).

キャン30の外周に装着されたステータ40は、ヨーク41、ボビン42、コイル43、樹脂モールドカバー44等からなり、キャン30の内部に(上下動せずに)回転自在に支持されるロータ50は、磁性材料で作製された円筒状のロータ部材51と樹脂材料で作製された太陽ギヤ部材52とが一体に連結されて構成されている。太陽ギヤ部材52の中心部にはシャフト62が挿入され、そのシャフト62の上部は、キャン30の頂部内側に配置された支持部材61により支持されている。   The stator 40 mounted on the outer periphery of the can 30 comprises a yoke 41, a bobbin 42, a coil 43, a resin mold cover 44 and the like, and the rotor 50 rotatably supported within the can 30 (without moving up and down) is A cylindrical rotor member 51 made of a magnetic material and a sun gear member 52 made of a resin material are integrally connected. A shaft 62 is inserted into the central portion of the sun gear member 52, and the upper portion of the shaft 62 is supported by a support member 61 disposed inside the top of the can 30.

太陽ギヤ部材52の太陽ギヤ53は、出力ギヤ57の底面上に載置されたキャリア54に設けられたシャフト56に回転自在に支持される複数の遊星ギヤ55に噛み合う。遊星ギヤ55の上半分は、前記筒状保持部材19aの上部に固定された円筒部材18の上端にかしめにより取り付けられた環状のリングギヤ(内歯固定ギヤ)58に噛み合い、遊星ギヤ55の下半分は、環状の出力ギヤ57の内歯ギヤ57aに噛み合っている。リングギヤ58の歯数と出力ギヤ57の内歯ギヤ57aの歯数とはわずかに異なる歯数とされ、これにより、太陽ギヤ53の回転数が大きな減速比で減速されて出力ギヤ57に伝達される(このような歯車構成を、いわゆる不思議遊星歯車減速機構60という)。   The sun gear 53 of the sun gear member 52 meshes with a plurality of planet gears 55 rotatably supported by a shaft 56 provided on a carrier 54 mounted on the bottom surface of the output gear 57. The upper half of the planetary gear 55 meshes with an annular ring gear (internal gear fixed gear) 58 attached by caulking to the upper end of the cylindrical member 18 fixed to the upper portion of the cylindrical holding member 19a. Is meshed with the internal gear 57 a of the annular output gear 57. The number of teeth of the ring gear 58 and the number of teeth of the internal gear 57a of the output gear 57 are slightly different, whereby the rotational speed of the sun gear 53 is reduced at a large reduction ratio and transmitted to the output gear 57. (A gear arrangement such as this is called a so-called strange planetary gear reduction mechanism 60).

出力ギヤ57は、前記筒状の軸受部材19hの上面に摺動接触しており、その出力ギヤ57の底部中央には段付き円筒状の出力軸59の上部が圧入され、出力軸59の下部が軸受部材19hの中心部上半部に形成された嵌挿穴19gに回転自在に挿入されている。また、出力軸59の上部には、シャフト62の下部が嵌め込まれている。   The output gear 57 is in sliding contact with the upper surface of the cylindrical bearing member 19 h, and the upper portion of the stepped cylindrical output shaft 59 is press-fitted at the center of the bottom of the output gear 57. Is rotatably inserted into a fitting insertion hole 19g formed in the upper half of the central portion of the bearing member 19h. The lower portion of the shaft 62 is fitted to the upper portion of the output shaft 59.

前記軸受部材19h(の内周)に設けられた雌ねじ部19iには、ねじ駆動部材(ドライバともいう)22(の外周)に設けられた雄ねじ部22iが螺合されており、そのねじ駆動部材22は、出力ギヤ57(すなわち、ロータ50)の回転運動を雄ねじ部22iと雌ねじ部19iとからなるねじ送り機構27により軸線O方向(昇降方向)の直線運動に変換する。ここで、出力ギヤ57は軸線O方向の一定位置で上下動せずに回転運動しており、出力ギヤ57に連結された出力軸59の下部に設けたスリット状の嵌合溝59aにねじ駆動部材22の上端部に設けた平ドライバ形状の板状部22aを挿入して出力ギヤ57の回転運動をねじ駆動部材22側に伝達する。ねじ駆動部材22に設けた板状部22aが出力軸59の嵌合溝59a内で軸線O方向に摺動することにより、出力ギヤ57(ロータ50)が回転すれば該出力ギヤ57はその回転軸方向に移動しないにも関わらず、ねじ駆動部材22は前記ねじ送り機構27で軸線O方向に直線運動する。ねじ駆動部材22の直線運動は、ボール23と推力伝達軸28の上部中央に設けられた段付き嵌合穴に嵌め込まれたボール受座24とからなるボール状継手25を介して段付き軸状の推力伝達軸28に伝達される。   An external thread 22i provided on a screw driving member (also referred to as a driver) 22 (an outer periphery of the bearing 22) is screwed with the internal thread 19i provided on (the inner circumference of) the bearing 19h. 22 converts the rotational movement of the output gear 57 (i.e., the rotor 50) into linear movement in the direction of the axis O (raising and lowering direction) by means of a screw feed mechanism 27 comprising an external thread 22i and an internal thread 19i. Here, the output gear 57 is rotationally moved at a fixed position in the direction of the axis O without moving up and down, and is screw-driven in a slit-like fitting groove 59a provided in the lower portion of the output shaft 59 connected to the output gear 57. A flat driver-shaped plate-like portion 22a provided at the upper end of the member 22 is inserted to transmit the rotational movement of the output gear 57 to the screw drive member 22 side. When the output gear 57 (rotor 50) rotates by the plate-like portion 22a provided on the screw drive member 22 sliding in the direction of the axis O within the fitting groove 59a of the output shaft 59, the output gear 57 rotates The screw drive member 22 linearly moves in the direction of the axis O by the screw feed mechanism 27 despite the fact that it does not move in the axial direction. The linear motion of the screw drive member 22 is stepped shaft-like through a ball joint 25 comprising a ball 23 and a ball seat 24 fitted in a stepped fitting hole provided in the upper center of the thrust transmission shaft 28. Is transmitted to the thrust transmission shaft 28 of FIG.

推力伝達軸28は、上方から、中央に前記段付き嵌合穴が形成された大径上部28a、前記筒状保持部材19aの隔壁19cに形成された挿通孔に摺動自在に内挿される中間胴部28b、該中間胴部28bより小径の小径下部28cから構成され、小径下部28cに、筒状体からなる主弁体29の上部(の中心穴29vからなる嵌合穴29d)が圧入等により外嵌固定されており、主弁体29と推力伝達軸28は一体となって昇降される。推力伝達軸28(の小径下部28c)に連結された主弁体29は、弁本体10の内部に固定された筒状保持部材19aの下部に摺動自在に内挿されており、当該筒状保持部材19aにより案内されて軸線O方向に移動する。すなわち、筒状保持部材19aの下部内周(隔壁19cより下側の内周部分)は、主弁体29を軸線O方向(昇降方向)にガイドする弁体ガイド穴19fとされている。   The thrust transmission shaft 28 is slidably inserted from the top into the insertion hole formed in the large diameter upper portion 28a in which the stepped fitting hole is formed in the center and the partition wall 19c of the cylindrical holding member 19a. The upper portion (fitting hole 29d consisting of a central hole 29v) of the main valve body 29 consisting of a cylindrical body is formed into the small diameter lower portion 28c which is composed of a body portion 28b and the intermediate body portion 28b. The main valve body 29 and the thrust transmission shaft 28 are integrally raised and lowered. The main valve body 29 connected to (the small diameter lower portion 28c of) the thrust transmission shaft 28 is slidably inserted in the lower portion of the cylindrical holding member 19a fixed inside the valve body 10, and the cylindrical shape It is guided by the holding member 19a and moved in the direction of the axis O. That is, the lower inner periphery (inner peripheral portion below the partition wall 19c) of the cylindrical holding member 19a is a valve guide hole 19f for guiding the main valve 29 in the direction of the axis O (raising and lowering direction).

なお、主弁体29の上端面と推力伝達軸28の中間胴部28bの下端段差部との間には、小径下部28cの圧入時において押さえ部材29fが挟み込まれて固定され、この押さえ部材29fと主弁体29の上端部に形成された環状溝と弁体ガイド穴19fとの間に、シール部材としてのOリング29hが装着されるとともに、該Oリング29hの外側に、弁体ガイド穴19fに対する主弁体29の摺動抵抗を低減すべく、テフロン(登録商標)等からなるリング状のパッキン(キャップシールともいう)29iが装着されている。   A pressing member 29f is sandwiched and fixed between the upper end surface of the main valve body 29 and the lower end step portion of the intermediate body portion 28b of the thrust transmission shaft 28 at the time of press fitting of the small diameter lower portion 28c. An O-ring 29h as a sealing member is mounted between the annular groove formed in the upper end portion of the main valve body 29 and the valve body guide hole 19f, and the valve body guide hole outside the O ring 29h. In order to reduce the sliding resistance of the main valve body 29 with respect to 19f, a ring-shaped packing (also referred to as a cap seal) 29i made of Teflon (registered trademark) or the like is attached.

また、筒状保持部材19aの隔壁19cよりも上側のばね室19dに配在された開弁ばね26は、その下端を隔壁19cに当接させた状態で配置されるとともに、この開弁ばね26の付勢力(引き上げ力)を推力伝達軸28を介して主弁体29に伝達すべく、上下に鍔状の引っ掛け部20a、20bを有する引き上げばね受け体20が配在されている。引き上げばね受け体20の上側の引っ掛け部20aは開弁ばね26の上部に載置され、下側の引っ掛け部20bは推力伝達軸28の大径上部28aの下端段差部に掛止される。   Further, the valve opening spring 26 disposed in the spring chamber 19 d above the partition wall 19 c of the cylindrical holding member 19 a is disposed in a state where its lower end is in contact with the partition wall 19 c. In order to transmit the biasing force (pulling-up force) to the main valve body 29 via the thrust transmission shaft 28, a pulling-up spring receiving body 20 having hook-like hooking portions 20a and 20b vertically is disposed. The upper hooking portion 20 a of the pull-up spring receiver 20 is placed on the upper portion of the valve opening spring 26, and the lower hooking portion 20 b is hooked on the lower end step portion of the large diameter upper portion 28 a of the thrust transmission shaft 28.

また、筒状保持部材19aには、前記ばね室19dとキャン30の内部を連通する連通穴19eが形成されるとともに、筒状保持部材19aにおける基体部材9(の上端部)の上側かつかしめ部13aの下側の部分に、前記弁体ガイド穴19f(詳細には、弁体ガイド穴19fにおける主弁体29より上側の空間である背圧室21、言い換えれば、主弁体29と筒状保持部材19aの隔壁19cとの間に画成される空間)と筒状保持部材19aの外側を連通する横孔からなる上通路7aが形成されている。   Further, the cylindrical holding member 19a is formed with a communication hole 19e for communicating the spring chamber 19d with the inside of the can 30, and the caulking portion on the upper side of (the upper end portion of) the base member 9 in the cylindrical holding member 19a. In the lower part of 13a, the back pressure chamber 21 which is the space above the main valve body 29 in the valve body guide hole 19f (more specifically, the valve body guide hole 19f, in other words, the main valve body 29 and the cylindrical An upper passage 7a is formed which is a horizontal hole connecting the space defined between the holding member 19a with the partition 19c and the outside of the cylindrical holding member 19a.

前述の弁本体10の基体部材9の底部9bに設けられた下通路7bと、基体部材9(のDカット面9d)及び筒状保持部材19a(の外周面)と外筒8(の内壁面)の間に形成される隙間からなる縦通路6と、筒状保持部材19aに設けられた上通路7aとによって、弁口16と主弁体29の上側(弁室14に対して背面側)に画成される背圧室21とを常時連通する均圧通路5が構成されることになる(後で詳述)。   The lower passage 7b provided in the bottom 9b of the base member 9 of the valve main body 10 described above, the D-cut surface 9d of the base member 9 and the outer peripheral surface of the cylindrical holding member 19a and the inner wall surface of the outer cylinder 8 Above the valve port 16 and the main valve body 29 (the back side with respect to the valve chamber 14) by the vertical passage 6 consisting of a gap formed between them and the upper passage 7a provided in the cylindrical holding member 19a. The pressure equalizing passage 5 is in constant communication with the back pressure chamber 21 defined therein (described in detail later).

前述のように、基体部材9(の円筒部9a)の上部開口に筒状保持部材19aの下部(下端縮径部)が内嵌され、その筒状保持部材19aの下部開口(弁体ガイド穴19f)に主弁体29が内挿されることで、基体部材9の内部における筒状保持部材19aの下方に前記弁室14が画成される。推力伝達軸28に連結された主弁体29の下部は、前記筒状保持部材19aの弁体ガイド穴19fから前記弁室14に向けて突出して当該弁室14内に昇降自在に配在されるとともに、主弁体29の下端部外周を包囲するように該主弁体29に概略凹状の副弁体(第2弁体)31が摺動自在に外挿されている。   As described above, the lower portion (lower end reduced diameter portion) of the cylindrical holding member 19a is internally fitted in the upper opening of the base member 9 (the cylindrical portion 9a thereof), and the lower opening of the cylindrical holding member 19a (valve guide hole By inserting the main valve body 29 into 19f), the valve chamber 14 is defined below the cylindrical holding member 19a in the inside of the base member 9. The lower portion of the main valve body 29 connected to the thrust transmission shaft 28 protrudes from the valve body guide hole 19f of the cylindrical holding member 19a toward the valve chamber 14 and is disposed in the valve chamber 14 so as to be movable up and down. In addition, a substantially concave auxiliary valve body (second valve body) 31 is slidably inserted on the main valve body 29 so as to surround the outer periphery of the lower end portion of the main valve body 29.

詳しくは、図1とともに図3A〜3Cを参照すればよく分かるように、前記した筒状体からなる主弁体29の中心穴(縦穴)29vの上半部は、前記推力伝達軸28の小径下部28cが嵌合固定される嵌合穴29dとされるとともに、その中心穴29vの中腹部(言い換えれば、嵌合穴29dの直下)から横向きに複数個の比較的小径の横穴29uが形成されている。また、中心穴29vの下端部内周は若干縮径されており、その下端縮径部29aの内周面(円筒面)は、後述する副弁体31(の上端部に形成される上部弁体部37f)が接離して開閉される弁座29b付きの弁口(小流量用弁口)29cとされている。前述のように、主弁体29の中心穴29vの上半部(上部開口)は、推力伝達軸28の小径下部28cによって閉塞されており、前記中心穴29vの下半部(推力伝達軸28の小径下部28cが嵌合固定された嵌合穴29dより下側の部分)と前記横穴29uとで、主弁体29と副弁体31との間に画成された空間(言い換えれば、副弁体31によって主弁体29の下端部周りに画成された空間)からなる連通空間34と弁室14とに連通する連通路(上側連通路)33aが形成される。   In detail, as can be understood well with reference to FIGS. 3A to 3C together with FIG. 1, the upper half of the central hole (longitudinal hole) 29v of the main valve body 29 consisting of the above-mentioned cylindrical body has a small diameter of the thrust transmission shaft 28. The lower portion 28c is a fitting hole 29d to be fitted and fixed, and a plurality of relatively small diameter lateral holes 29u are formed laterally from the middle part of the central hole 29v (in other words, immediately below the fitting hole 29d) ing. The inner periphery of the lower end portion of the central hole 29v is slightly reduced in diameter, and the inner peripheral surface (cylindrical surface) of the lower end reduced diameter portion 29a is an upper valve body formed at the upper end portion of the sub valve body 31 described later. The portion 37f) is a valve port (small flow rate valve port) 29c with a valve seat 29b which is opened and closed by contacting and separating. As described above, the upper half (upper opening) of the central hole 29v of the main valve body 29 is closed by the small diameter lower portion 28c of the thrust transmission shaft 28, and the lower half of the central hole 29v (thrust transmission shaft 28 The space defined between the main valve body 29 and the sub valve body 31 (in other words, the sub valve body 31) by the lateral hole 29 u) and the lateral hole 29 u below the fitting hole 29 d in which the small diameter lower portion 28 c is fitted and fixed A communication passage (upper communication passage) 33a communicating with the communication space 34 consisting of the space defined by the valve body 31 and the space defined around the lower end of the main valve body 29 and the valve chamber 14 is formed.

また、主弁体29の下端外周は、下側に向けて若干延設されるとともに、その主弁体29の下端外周(の延設部)には、後述する副弁体31の連動部材36(の内周に形成された内鍔状係止部36g)に係合する鍔状係止部29gが(外側に向けて)突設されている。   Further, the lower end outer periphery of the main valve body 29 is slightly extended toward the lower side, and the lower end outer periphery (an extending portion) of the main valve body 29 is an interlocking member 36 of the sub valve body 31 described later. A hook-shaped locking portion 29g engaged with (an inner hook-shaped locking portion 36g formed on the inner periphery thereof) is provided so as to protrude (toward the outside).

一方、主弁体29の下端部外周に配在される副弁体31は、主弁体29の下端部に摺動自在に外挿された円筒状の連動部材36と、連動部材36の下端開口に連結された段付きの弁体部材37とで構成され、副弁体31(の連動部材36と弁体部材37)によって主弁体29の下端部周りに画成された空間が、連通空間34とされている。   On the other hand, the auxiliary valve body 31 disposed on the outer periphery of the lower end portion of the main valve body 29 has a cylindrical interlocking member 36 slidably extrapolated to the lower end portion of the main valve body 29 and the lower end of the interlocking member 36 A space constituted by the stepped valve body member 37 connected to the opening and defined by the sub valve body 31 (the interlocking member 36 and the valve body member 37) around the lower end portion of the main valve body 29 is communicated It is a space 34.

連動部材36の内周には段差が形成されており、その内周段差部(の下向きの面)が、主弁体29の下端部に設けられた鍔状係止部29gと係合する内鍔状係止部36gとされている。主弁体29の下端部と副弁体31の連動部材36(の内鍔状係止部36gより上側部分)との間(具体的には、その連動部材36の内周に形成された環状溝)には、連通空間34と弁室14との間(主弁体29と副弁体31の連動部材36との摺動面隙間)を気密的に封止するシール部材としてのOリング38が装着されている。連動部材36の下端部は、弁体部材37(の下部大径部37a)の外周部に設けられた鍔状部37cに溶接、圧入、かしめ等により固着されている。   A step is formed on the inner periphery of the interlocking member 36, and (the downward surface of) the inner periphery stepped portion engages with the hook-shaped locking portion 29 g provided on the lower end portion of the main valve body 29. The hook-shaped locking portion 36g is used. Between the lower end portion of the main valve body 29 and the interlocking member 36 of the sub-valve body 31 (upper portion than the inner hook-shaped locking portion 36g) (specifically, an annular formed on the inner periphery of the interlocking member 36) An O-ring 38 as a sealing member for airtightly sealing between the communication space 34 and the valve chamber 14 (sliding surface gap between the main valve body 29 and the interlocking member 36 of the sub valve body 31). Is attached. The lower end portion of the interlocking member 36 is fixed by welding, press fitting, caulking, or the like to a brim portion 37 c provided on the outer peripheral portion of (the lower large diameter portion 37 a of) the valve body member 37.

連動部材36に連結された弁体部材37は、基本的に、弁口(大流量用弁口)16より大径の下部大径部37aと、前記主弁体29の下端外周の延設部より若干小径かつ中心穴29vより若干大径の上部小径部37bとで構成されている。   The valve body member 37 connected to the interlocking member 36 basically has a lower large diameter portion 37a having a diameter larger than that of the valve port (large flow rate valve port) 16, and an extension portion of the lower end outer periphery of the main valve body 29. The upper small diameter portion 37b is slightly smaller in diameter and slightly larger in diameter than the central hole 29v.

弁体部材37(の下部大径部37a)の下端面は、弁本体10の弁座15に(上側から)接離して弁口16を開閉する逆円錐台面からなる下部弁体部(大流量用弁体部)37dとされている。また、当該弁体部材37には、下部大径部37aの下端面中央から上部小径部37bの上端面付近まで縦向き(軸線O方向)に比較的大径の段付きの中心穴(縦穴)37vが形成されるとともに、その中心穴37vの上部(上部小径部37bの中腹部)から横向きに複数個の比較的小径の横穴37uが形成されている。前記中心穴37vと前記横穴37uとで、弁口16と連通空間34を常時連通する連通路(下側連通路)33bが形成される。   The lower end face of (the lower large diameter portion 37a of) the valve body member 37 is a lower valve body portion (a large flow rate formed by an inverted frusto-conical surface that opens and closes the valve port 16 by coming into contact with and separating from the valve seat 15 of the valve main body 10 Valve body portion 37d. Further, in the valve member 37, a stepped central hole (longitudinal hole) having a relatively large diameter in the vertical direction (axis O direction) from the center of the lower end surface of the lower large diameter portion 37a to the upper end surface near the upper small diameter portion 37b. A 37v is formed, and a plurality of relatively small diameter side holes 37u are formed laterally from the upper portion of the center hole 37v (the middle part of the upper small diameter portion 37b). The central hole 37v and the lateral hole 37u form a communication passage (lower communication passage) 33b for always communicating the valve port 16 with the communication space 34.

また、弁体部材37(の上部小径部37b)の上端面には、略円錐台状の突面が形成されており、その突面(特に、その突面の側面部分)が、主弁体29の下端部(下端縮径部29a)に形成された弁座29bに(下側から)接離して弁口(小流量用弁口)29cを開閉する上部弁体部(小流量用弁体部)37fとされている。   Further, a substantially truncated cone-shaped projecting surface is formed on the upper end surface of (the upper small diameter portion 37b of) the valve body member 37, and the projecting surface (in particular, the side portion of the projecting surface) is the main valve body Upper valve body (small flow rate valve) that opens and closes the valve port (small flow rate valve port) 29c by coming into contact with and separating from the valve seat 29b formed in the lower end portion (lower end reduced diameter portion 29a) of 29 (from the lower side) Department) 37f.

すなわち、本例では、前述の副弁体31(の弁部材37)に設けられた連通路(下側連通路)33bと、主弁体29と副弁体31との間に形成された連通空間34と、主弁体29に設けられた連通路(上側連通路)33aとによって、弁口16と弁室14とを連通する小流量通路35が形成されるとともに、連通空間34と連通路(上側連通路)33aとの間に、弁本体10の弁口(大流量用弁口)16より小径の円筒面からなり、副弁体31(の弁体部材37の上部小径部37b)の上端面に形成された上部弁体部37fによって開閉される弁座29付きの弁口(小流量用弁口)29cが形成される。そして、弁座29からの副弁体31の上部弁体部37fのリフト量(つまり、上下方向の離隔量)に応じて小流量通路35における弁口29cを流れる流体の流量(通過量)が変化されるようになっている(後で詳述)。 That is, in this example, is formed between the communication path (the lower communication passage) 33b provided in the sub-valve body 31 described above (the valve member 37), and the main valve body 29 and the sub-valve body 31 The communication space 34 and the communication passage (upper communication passage) 33 a provided in the main valve body 29 form a small flow passage 35 communicating the valve port 16 with the valve chamber 14, and communicates with the communication space 34. A cylindrical surface having a diameter smaller than that of the valve port (large flow rate valve port) 16 of the valve main body 10 between the passage (upper communication path) 33a and the sub valve body 31 (upper small diameter portion 37b of the valve body member 37) upper end face formed on an upper valve body the valve port of the valve seat 29 with b being opened and closed by 37f of (small flow rate valve port) 29c is formed. Then, lift the upper valve body portion 37f of the auxiliary valve body 31 from the valve seat 29 b (i.e., the vertical direction of the separation quantity) flow rate of the fluid flowing through the valve port 29c in the small flow passage 35 in accordance with the (throughput) Will be changed (more on this later).

ここで、主弁体29に設けられた鍔状係止部29gと副弁体31(の連動部材36)に設けられた内鍔状係止部36gとは、副弁体31の上部弁体部37fによって弁口29cが閉じられたとき(言い換えれば、弁体31の上部弁体部37fが弁座29bに着座したとき)に、軸線O方向(上下方向)で所定寸法の隙間Laを持つように設定されている(後で詳述)。 Here, the hook-shaped locking portion 29g provided on the main valve body 29 and the inner hook-shaped locking portion 36g provided on (the interlocking member 36 of) the sub valve body 31 are the upper valve body of the sub valve body 31. when the part 37f is valve port 29c is closed (in other words, when the upper valve body portion 37f of the auxiliary valve element 31 is seated on the valve seat 29 b), the predetermined dimension in the axial O direction (vertical direction) of the gap La It is set to have (detailed later).

また、二段弁体32を構成する主弁体29と副弁体31との間、より具体的には、主弁体29の底面における中心穴29v周り(言い換えれば、下端縮径部29a周り)に形成された円環状凹面からなる上側ばね受け29eと弁体部材37の下部大径部37aの上面における上部小径部37b周りに形成された円環状窪み面からなる下側ばね受け37eとの間には、副弁体31を常時閉弁方向(下方)に付勢する圧縮コイルばねからなる閉弁ばね(付勢部材)39が縮装されている。   Further, between the main valve body 29 and the sub valve body 31 constituting the two-stage valve body 32, more specifically, around the central hole 29v in the bottom surface of the main valve body 29 (in other words, around the lower end diameter reducing portion 29a And the lower spring receiver 37e formed of an annular recessed surface formed around the upper small diameter portion 37b on the upper surface of the lower large diameter portion 37a of the valve member 37. In the meantime, a valve closing spring (biasing member) 39, which is a compression coil spring that normally biases the sub valve body 31 in the valve closing direction (downward), is contracted.

上記構成に加えて、本実施形態では、流体中(小流量通路を流れる流体中)の気泡を確実に細分化すべく、前記主弁体29の連通路(上側連通路)33aに、略円柱状の金属メッシュ等からなる消音部材(弁室14側消音部材)71が設けられるとともに、前記副弁体31の弁体部材37の連通路(下側連通路)33bにも、略円柱状の金属メッシュ等からなる消音部材(弁口16側消音部材)72が設けられている。   In addition to the above configuration, in the present embodiment, in order to reliably fragment air bubbles in the fluid (in the fluid flowing through the small flow rate passage), the communication passage (upper communication passage) 33a of the main valve body 29 has a substantially cylindrical shape. And the communication passage (lower communication passage) 33b of the valve member 37 of the sub valve body 31 is a substantially cylindrical metal. A muffling member (valve port 16 side muffling member) 72 made of mesh or the like is provided.

詳しくは、消音部材71は、前記連通路33aにおける中心穴(縦穴)29v、より詳しくは、嵌合穴29dに嵌合された推力伝達軸28の小径下部28cの下端部と下端縮径部29aとの間に内装されて支持固定されている。また、消音部材72は、前記連通路33bにおける中心穴(縦穴)37vに内装されるとともに、その中心穴37vの下端の段差部に複数個(例えば4個)の通し穴73aを持つ押さえ板(支持部材)73がかしめ等により固定されることによって、当該中心穴37v内に支持固定されている。   More specifically, the noise reduction member 71 is a central hole (vertical hole) 29v in the communication passage 33a, and more specifically, a lower end portion and a lower end reduced diameter portion 29a of the small diameter lower portion 28c of the thrust transmission shaft 28 fitted in the fitting hole 29d. It is internally fixed and supported. Further, the muffling member 72 is internally installed in the central hole (vertical hole) 37v in the communication path 33b, and a pressing plate (for example, four) having through holes 73a at the lower end of the central hole 37v. The support member 73 is supported and fixed in the central hole 37v by being fixed by caulking or the like.

なお、ここでは、消音部材71、72として、複数の小孔を有する金属メッシュ(網状部材)を円柱状に成形したもの、板状の金属メッシュを積層して円柱状としたもの、あるいは、板状の金属メッシュを巻回して円柱状としたものを採用しているが、流体中の気泡を細分化できれば、例えば、当該消音部材71、72を樹脂製としても良いし、当該消音部材71、72自体を円柱状の多孔体で形成しても良い。また、各消音部材71、72の固定方法等についても、図示例に限定されないことは勿論である。   Here, as the sound deadening members 71 and 72, a metal mesh (mesh member) having a plurality of small holes is formed into a cylindrical shape, a plate-like metal mesh is laminated to form a cylindrical shape, or a plate A cylindrical metal mesh is used to form a cylindrical shape, but if the air bubbles in the fluid can be subdivided, for example, the muffling members 71 and 72 may be made of resin, or the muffling member 71, 72 itself may be formed of a cylindrical porous body. Moreover, it is needless to say that the fixing method and the like of the sound deadening members 71 and 72 are not limited to the illustrated example.

また、本実施形態では、閉弁状態において二段弁体32の副弁体31等に作用する押し下げ力(閉弁方向に働く力)と押し上げ力(開弁方向に働く力)とをバランス(差圧をキャンセル)させるべく、前述の弁本体10(の弁室14の外側)に設けられた均圧通路5(下通路7b、縦通路6、上通路7a)を介して弁口16と主弁体29の上側の背圧室21とが常時連通せしめられるとともに、弁口16の口径φD2と、主弁体29に外装された副弁体31の受圧径(弁室14内の流体から圧力を受ける径)φD1と、主弁体29の上側の背圧室21の室径(すなわち、弁体ガイド穴19fの内径)φD3とが略同一に設定されている(後で詳述)。   Moreover, in the present embodiment, in the valve closed state, the balance between the push-down force (force acting in the valve-closing direction) and the push-up force (force acting in the valve-opening direction) In order to cancel the differential pressure, the valve port 16 and the main through the pressure equalizing passage 5 (the lower passage 7b, the vertical passage 6, and the upper passage 7a) provided in (the outside of the valve chamber 14 of) the aforementioned valve body 10 The back pressure chamber 21 on the upper side of the valve body 29 is in constant communication, the bore diameter D2 of the valve port 16 and the pressure receiving diameter of the sub valve body 31 mounted on the main valve body 29 (from the fluid in the valve chamber 14 The diameter of the back pressure chamber 21 on the upper side of the main valve body 29 (that is, the inside diameter of the valve body guide hole 19f) φD3 is set to be substantially the same (described later in detail).

かかる構成の流量調整弁1では、流体(冷媒)は、双方向(側部開口11から底部開口12に向かう方向(横→下)と、底部開口12から側部開口11に向かう方向(下→横)との双方向)に流されるようになっており、前記弁本体10の上方に取り付けられたステッピングモータ63のロータ50の回転量を制御して二段弁体32(の主弁体29)のリフト量Lを変化させることにより、流体(冷媒)の通過流量を調整するようになっている。 In the flow rate adjusting valve 1 having such a configuration, the fluid (refrigerant) is bidirectional (in the direction from the side opening 11 toward the bottom opening 12 (horizontal → down) and in the direction from the bottom opening 12 toward the side opening 11 (down → And the amount of rotation of the rotor 50 of the stepping motor 63 mounted above the valve body 10 is controlled to make the two-stage valve body 32 (the main valve body 29 The passing flow rate of the fluid (refrigerant) is adjusted by changing the lift amount L of.

<流量調整弁1の動作>
上記構成とされた流量調整弁1の動作を図3A〜3C等を参照しながら説明する。
<Operation of Flow Adjustment Valve 1>
The operation of the flow rate adjusting valve 1 configured as described above will be described with reference to FIGS. 3A to 3C and the like.

なお、流量調整弁1の動作自体は流体(冷媒)の流れ方向で基本的に同じであるので、以下では、小開度領域(低流量域)での制御性に対して差圧の影響が大きくなる下→横流れの場合を代表して説明する。   In addition, since the operation itself of the flow control valve 1 is basically the same in the flow direction of the fluid (refrigerant), the influence of the differential pressure on the controllability in the small opening region (low flow region) will be described below. A description will be given representatively of the case of increasing the size of the lower → lateral flow.

図3Aに示される如くの全閉状態(二段弁体32のリフト量Lが0の状態)において、副弁体31(の弁体部材37)の上部弁体部37fが主弁体29の弁座29bに圧接(着座)されて弁口29cが閉じられるとともに、副弁体31(の弁体部材37)の下部弁体部37dが弁本体10の弁座15に圧接(着座)されて弁口16が閉じられている。このとき、主弁体29の鍔状係止部29g(の上面)と副弁体31(の連動部材36)の内鍔状係止部36g(の下面)とは、軸線O方向(上下方向)で所定寸法の隙間Laだけ離れて位置せしめられている。   In the fully closed state (the lift amount L of the second stage valve body 32 is 0) as shown in FIG. 3A, the upper valve body portion 37f of (the valve body member 37 of) the sub valve body 31 is the main valve body 29. The valve seat 29b is press-contacted (seated) to close the valve port 29c, and the lower valve body portion 37d of (the valve member 37 of the sub valve body 31) is press-contacted (seated) to the valve seat 15 of the valve main body 10 The valve port 16 is closed. At this time, (the upper surface of) the hook-shaped locking portion 29g of the main valve body 29 and (the lower surface of) the inner hook-shaped locking portion 36g of (the interlocking member 36 of the sub valve body 31) And the gap La of a predetermined size.

ここで、側部口11側の流体(冷媒)の圧力をP1、底部開口12側の流体(冷媒)の圧力をP2、閉弁ばね39のばね力(付勢力)をFとし、副弁体31の受圧径φD1に対応する(昇降方向における)受圧面積をA1、弁口16の口径φD2に対応する開口面積をA2、背圧室21の室径φD3に対応する(昇降方向における)受圧面積をA3、弁口29cの口径φDsに対応する開口面積をAsとすると、この全閉状態で副弁体31に作用する開弁方向及び閉弁方向の力はそれぞれ、以下となる。
[数1]
開弁方向の力 = P2×A2
閉弁方向の力 = F+P1×As+P1×(A2−A1)+P2×(A1−As)
Here, the pressure of the side apertures 11 side of the fluid (refrigerant) P1, the pressure of the bottom opening 12 side of the fluid (refrigerant) P2, the spring force of the valve closing spring 39 (biasing force) and F, the sub-valve The pressure receiving area corresponding to the pressure receiving diameter φD1 of the body 31 is A1 (in the raising and lowering direction), the opening area corresponding to the diameter φ2 of the valve port 16 is A2, and the receiving pressure corresponding to the chamber diameter φD3 of the back pressure chamber 21 (in the raising and lowering direction) Assuming that the area is A3 and the opening area corresponding to the bore diameter Ds of the valve port 29c is As, the forces in the valve opening direction and the valve closing direction acting on the sub valve body 31 in this fully closed state are as follows.
[Equation 1]
Force in the valve opening direction = P2 × A2
Force in the valve closing direction = F + P1 x As + P1 x (A2-A1) + P2 x (A1-As)

副弁体31により弁口29cが閉じられるためには、副弁体31に作用する閉弁方向の力が開弁方向の力以上であればよいが、本実施形態では、前述のように、弁口16の口径φD2と副弁体31の受圧径φD1とが略等しくされ、弁口16の開口面積A2と副弁体31の(昇降方向における)受圧面積A1とが略同一に設定されているので、この閉弁状態において、副弁体31に作用する押し上げ力(開弁方向の力)と押し下げ力(閉弁方向の力)とがバランス(差圧がキャンセル)されている。ここで、P2がP1よりも大きいときは、開口面積Asの面積に応じて開弁方向の力が大きくなると考えられるが、このような開口面積Asの影響によるアンバランスは閉弁ばね39のばね力Fの値を調整してバランスさせることができる。そのため、以下の小流量制御状態において主弁体29を上昇させたときにも、副弁体31は流体圧(弁口16から弁室14に向かう方向に流れる流体の圧力)によって押し上げられることはない。   In order to close the valve port 29c by the sub valve body 31, it is sufficient if the force in the valve closing direction acting on the sub valve body 31 is greater than the force in the valve opening direction, but in the present embodiment, as described above The diameter φD2 of the valve port 16 and the pressure receiving diameter φD1 of the sub valve body 31 are substantially equal, and the opening area A2 of the valve port 16 and the pressure receiving area A1 (in the elevation direction) of the sub valve body 31 are substantially the same. Therefore, in this closed state, the push-up force (force in the valve opening direction) acting on the sub valve body 31 and the push-down force (force in the valve close direction) are balanced (cancel the differential pressure). Here, when P2 is larger than P1, the force in the valve opening direction is considered to increase in accordance with the area of the opening area As, but the unbalance due to the influence of the opening area As is a spring of the valve closing spring 39. The value of force F can be adjusted to balance. Therefore, even when the main valve body 29 is raised in the following small flow control state, the sub valve body 31 can be pushed up by the fluid pressure (the pressure of the fluid flowing from the valve port 16 toward the valve chamber 14) Absent.

なお、後述するが、受圧面積A1及び開口面積A2は略同一としない設定であっても、副弁体31に作用する閉弁方向の力がその開弁方向の力と同等以上であれば、副弁体31が流体圧によって押し上げられることを防止できる。   Although described later, even if the pressure receiving area A1 and the opening area A2 are set not to be substantially the same, if the force in the valve closing direction acting on the sub valve body 31 is equal to or more than the force in the valve opening direction, The secondary valve body 31 can be prevented from being pushed up by fluid pressure.

前記全閉状態において、二段弁体32の主弁体29を上昇させると、図3Bに示される如くに、前記所定寸法の隙間(リフト量)Laまでは(小流量制御状態)、副弁体31(の弁体部材37)の下部弁体部37bが閉弁ばね39(の付勢力)により弁本体10の弁座15に圧接(着座)されたままで、主弁体29の下端部が副弁体31の連動部材36内を摺動するようにして主弁体29が移動(上昇)せしめられ、副弁体31(の弁体部材37)の上部弁体部37fが主弁体29の弁座29bから離れて弁口29cが開口せしめられる。底部開口12(の弁口16)から流れ込んだ流体は、副弁体31の弁体部材37の連通路(下側連通路)33(中心穴37v、横穴37u)(特に、その連通路33の中心穴37vに固定された押さえ板73の通し穴73a)→連通空間34→副弁体31の上部弁体部37fと主弁体29の弁座29bとの間の隙間→主弁体29の連通路(上側連通路)33a(中心穴29v、横穴29u)を介して、弁室14に流れ込む。当該弁室14に流れ込む流体(つまり、側部開口11へ流れ出る流体)の流量は、主弁体29の上昇に伴って次第に大きくなる。このとき、底部開口12から流れ込んだ流体は、(副弁体31の弁体部材37の連通路33bの中心穴37vを通る際に)消音部材72を通過するとともに、(主弁体29の連通路33aの中心穴29vを通る際に)消音部材71を通過し、弁口29cより上流側(弁口16側)及び下流側(弁室14側)に配置された2つの消音部材72、71によって流体中の気泡が分解されて細分化された状態で、弁室14(側部開口11)を通過することになる。そのため、小流量制御領域(騒音が発生しやすい領域)において、流体(冷媒)通過時の騒音が確実に低減される。 When the main valve body 29 of the two-stage valve body 32 is raised in the fully closed state, as shown in FIG. 3B, up to the gap (lift amount) La of the predetermined dimension (small flow rate control state) The lower end portion of the main valve body 29 is in a state where the lower valve body portion 37b of the body 31 (the valve body member 37) is in pressure contact (seated) with the valve seat 15 of the valve body 10 by (the biasing force) The main valve body 29 is moved (raised) so as to slide in the interlocking member 36 of the sub valve body 31, and the upper valve body portion 37 f of (the valve body member 37 of) the sub valve body 31 is the main valve body 29. The valve port 29c is opened apart from the valve seat 29b. Fluid flowing from the bottom opening 12 (the valve port 16), the communication passage (lower communication passage) of the valve body member 37 of the sub-valve body 31 33 b (center hole 37v, lateral hole 37u) (in particular, the communication passage 33 gap → the main valve element between the valve seat 29b of the upper valve body portion 37f and the main valve body 29 of the through hole 73a) → the communication space 34 → the sub-valve element 31 of the pressing plate 73 which is fixed to b of the central hole 37v It flows into the valve chamber 14 via the 29 communication passages (upper communication passages) 33a (central hole 29v, lateral hole 29u). The flow rate of the fluid flowing into the valve chamber 14 (that is, the fluid flowing out to the side opening 11) gradually increases as the main valve body 29 rises. At this time, the fluid which has flowed in from the bottom opening 12 passes through the muffling member 72 (when passing through the central hole 37v of the communication passage 33b of the valve member 37 of the sub valve member 31). When passing through the center hole 29v of the passage 33a), the two muffling members 72 and 71 which pass through the muffling member 71 and are disposed on the upstream side (valve port 16 side) and the downstream side (valve chamber 14 side) from the valve port 29c. Thus, the air bubbles in the fluid are broken down and divided, and the air passes through the valve chamber 14 (side opening 11). Therefore, in the small flow rate control area (area where noise is likely to occur), the noise when passing the fluid (refrigerant) is reliably reduced.

また、本実施形態では、前述のように、背圧室21の室径φD3と副弁体31の受圧径φD1とが略等しくされ、主弁体29の背圧室21の(昇降方向における)受圧面積A3と副弁体31の(昇降方向における)受圧面積A1とが略同一に設定されるとともに、均圧通路5(下通路7b、縦通路6、上通路7a)によって弁口16側(より詳細には、弁口16と連通する連通空間34側)と背圧室21側とが常時連通せしめられて均圧されているので、この小流量制御状態において、主弁体29に作用する押し下げ力(閉弁方向に働く力)と押し上げ力(開弁方向に働く力)とがバランス(差圧がキャンセル)されることになる。   Further, in the present embodiment, as described above, the chamber diameter φD3 of the back pressure chamber 21 and the pressure receiving diameter φD1 of the sub valve body 31 are substantially equal, and the back pressure chamber 21 of the main valve body 29 (in the elevating direction) The pressure receiving area A3 and the pressure receiving area A1 (in the raising and lowering direction) of the sub valve body 31 are set to be substantially the same, and the pressure opening passage 5 (lower passage 7b, vertical passage 6, upper passage 7a) More specifically, since the communication space 34 side communicating with the valve port 16 and the back pressure chamber 21 side are constantly communicated and pressure-equalized, they act on the main valve body 29 in this small flow control state. The depressing force (force acting in the valve closing direction) and the lifting force (force acting in the valve opening direction) are balanced (cancel the differential pressure).

なお、前記リフト量Laは、流体(冷媒)通過時における騒音(流体通過音)が発生しやすい流量に対応する主弁体29のリフト量Lであり、実験等に基づき予め決めることができる。   The lift amount La is a lift amount L of the main valve body 29 corresponding to a flow rate at which noise (fluid passing noise) tends to occur when fluid (refrigerant) passes, and can be determined in advance based on experiments and the like.

主弁体29を前記リフト量Laまで上昇させた後、さらに上昇させる(つまり、リフト量Lが前記リフト量Laを超える)と、図3Cに示される如くに、主弁体29の鍔状係止部29gが副弁体31(の連動部材36)の内鍔状係止部36gと係合し、副弁体31は、弁体29とともに(一体に)移動(上昇)せしめられ、副弁体31(の弁体部材37)の下部弁体部37bが弁本体10の弁座15から離れ、副弁体31(の弁体部材37)の下部弁体部37bと弁本体10の弁座15との間に(軸線O方向の)幅Lb(=L−La)の隙間(円環状の流路)が形成される(大流量制御状態)。底部開口12(の弁口16)に流れ込んだ流体は、副弁体31(の弁体部材37)の下部弁体部37bと弁本体10の弁座15との隙間を介して、弁室14に流れ込み、主弁体29(及び副弁体31)の上昇に伴って、当該弁室14に流れ込む流体の流量が次第に大きくなる。このとき、底部開口12(の弁口16)から流れ込んだ流体(の大部分)は、副弁体31(の弁体部材37)の下部弁体部37bと弁本体10の弁座15との間に形成された隙間(流路)を通過して、弁室14(側部開口11)に直接流れ込むことになる。そのため、主弁体29のリフト量Lが比較的大きい大流量制御領域(騒音が発生しにくい領域であって、流量を確保したい領域)において、圧力損失(圧損)が小さくなる。 After raising the main valve body 29 to the lift amount La, when the main valve body 29 is further raised (in other words, the lift amount L exceeds the lift amount La), as shown in FIG. stopper portion 29g is engaged with the inner collar-like locking portion 36g of the sub-valve body 31 (interlocking member 36), sub-valve body 31 is primarily with the valve body 29 (integrally) move (rise) is brought, sub The lower valve body portion 37b of (the valve body member 37 of) the valve body 31 is separated from the valve seat 15 of the valve main body 10, and the lower valve body portion 37b of the (valve body member 37 of the sub valve body 31) A gap (annular flow passage) of a width Lb (= L-La) (in the direction of the axis O) is formed between the seat 15 (large flow control state). The fluid that has flowed into (the valve port 16 of) the bottom opening 12 passes through the gap between the lower valve body 37 b of the sub valve body 31 (the valve body member 37) and the valve seat 15 of the valve body 10. The flow rate of the fluid flowing into the valve chamber 14 gradually increases with the rising of the main valve body 29 (and the sub valve body 31). At this time, (most part of) the fluid flowing in from (the valve port 16 of) the bottom opening 12 is the lower valve body portion 37 b of (the valve body member 37 of) the sub valve body 31 and the valve seat 15 of the valve main body 10 It will flow directly into the valve chamber 14 (side opening 11) through the gap (flow passage) formed between the two. Therefore, the pressure loss (pressure loss) is reduced in a large flow control region where the lift amount L of the main valve body 29 is relatively large (a region where noise is less likely to occur and it is desired to secure the flow rate).

また、本実施形態では、前述のように、弁口16の口径φD2と背圧室21の室径φD3とが略等しくされ、弁口16の開口面積A2と主弁体29の背圧室21の(昇降方向における)受圧面積A3とが略同一に設定されるとともに、均圧通路5(下通路7b、縦通路6、上通路7a)によって弁口16側と背圧室21側とが常時連通せしめられて均圧されているので、この大流量制御状態において、二段弁体32(一体となって移動する主弁体29及び副弁体31)に作用する押し下げ力(閉弁方向の力)と押し上げ力(開弁方向の力)とがバランス(差圧がキャンセル)されることになる。   Further, in the present embodiment, as described above, the bore diameter φD2 of the valve port 16 and the chamber diameter φD3 of the back pressure chamber 21 are substantially equal, and the opening area A2 of the valve port 16 and the back pressure chamber 21 of the main valve body 29. The pressure receiving area A3 (in the elevating direction) is set to be substantially the same, and the valve port 16 side and the back pressure chamber 21 side are always maintained by the pressure equalizing passage 5 (the lower passage 7b, the vertical passage 6, and the upper passage 7a). Since communication and pressure equalization are performed, in this large flow rate control state, the pressing force (valve closing direction) acting on the two-stage valve body 32 (the main valve body 29 and the sub valve body 31 moving integrally) is Force) and push-up force (force in the valve opening direction) are balanced (differential pressure is canceled).

なお、図3Cに示される如くの全開状態から二段弁体32(の主弁体29)を下降させ、弁室14に流れ込む流体の流量が次第に減少する場合にも、上記と同様の作用効果が得られることは言うまでも無い。   In the case where the two-stage valve body 32 (the main valve body 29 thereof) is lowered from the fully open state as shown in FIG. 3C and the flow rate of the fluid flowing into the valve chamber 14 gradually decreases, It goes without saying that you can get

<流量調整弁1の効果>
このように、本実施形態の流量調整弁1では、主弁体29に設けられた連通路(上側連通路)33aと、副弁体31により主弁体29の下端部周りに画成された連通空間34と、副弁体31に設けられた連通路(下側連通路)33bとを介して弁室14と弁口16とを連通する小流量通路35が形成され、流体中の気泡が、当該小流量通路35を通過する際に細分化されるので、流体(冷媒)通過時、特に、小開度(小流量制御)領域での流体(冷媒)通過時における騒音を効果的に低減できるとともに、大開度(大流量制御)領域における圧力損失が抑えられ、適正な冷媒流量を得ることができる。
<Effect of flow rate adjustment valve 1>
Thus, in the flow control valve 1 of the present embodiment, the lower end portion of the main valve body 29 is defined by the communication passage (upper communication passage) 33 a provided in the main valve body 29 and the sub valve body 31. A small flow passage 35 communicating the valve chamber 14 with the valve port 16 is formed through the communication space 34 and the communication passage (lower communication passage) 33b provided in the sub valve body 31, and air bubbles in the fluid are formed. Since noise is divided when passing through the low flow rate passage 35, noise is effectively reduced when passing through the fluid (refrigerant), particularly when passing through the fluid (refrigerant) in the small opening (small flow rate control) region. While being able to be performed, the pressure loss in the large opening (large flow control) region is suppressed, and an appropriate refrigerant flow rate can be obtained.

また、前記小流量通路35における連通路(上側連通路)33aと連通空間34との間に設けられた弁口29cより弁室14側及び弁口16側に、当該小流量通路35を流れる流体中の気泡を細分化する消音部材71、72が配在されているので、流体(冷媒)通過時における騒音を確実に低減することができる。   Further, the fluid flowing in the small flow passage 35 from the valve port 29 c provided between the communication passage (upper communication passage) 33 a in the small flow passage 35 and the communication space 34 to the valve chamber 14 side and the valve opening 16 side. Since the muffling members 71 and 72 for dividing the air bubbles inside are disposed, noise at the time of fluid (refrigerant) passage can be reliably reduced.

また、弁口16の口径φD2と副弁体31の受圧径φD1とが等しくされ、弁口16の開口面積A2と副弁体31の昇降方向における(つまり、昇降方向(軸線O方向)で視たときの)受圧面積A1とが同一に設定され、閉弁状態ないし小流量制御状態において副弁体31の移動方向(昇降方向)に作用する力がバランス(差圧がキャンセル)されるので、流量制御時、特に、弁口16から弁室14に向かう方向に流体が流れるときの流量制御時の小開度領域(低流量域)における制御性を向上させることができる。   Further, the bore diameter φD2 of the valve port 16 and the pressure receiving diameter φD1 of the sub valve body 31 are equalized, and the opening area A2 of the valve port 16 and the lifting and lowering direction of the sub valve body 31 (that is, The pressure receiving area A1 is set to be the same, and the force acting in the moving direction (raising and lowering direction) of the sub valve body 31 in the closed state or small flow rate control state is balanced (cancels the differential pressure). At the time of flow control, in particular, controllability in a small opening region (low flow region) at the time of flow control when fluid flows from the valve port 16 toward the valve chamber 14 can be improved.

さらに、弁口16の口径φD2、背圧室21の室径φD3、及び副弁体31の受圧径φD1が等しくされ、弁口16の開口面積A2、主弁体29の背圧室21の昇降方向における受圧面積A3、及び副弁体31の昇降方向における受圧面積A1が同一に設定されるとともに、弁口16と背圧室21とを連通する均圧通路5が設けられ、閉弁状態ないし小流量制御状態において副弁体31の移動方向(昇降方向)に作用する力がバランス(差圧がキャンセル)されることに加えて、小流量制御状態において主弁体29の移動方向に作用する力や大流量制御状態において二段弁体32(一体となって移動する主弁体29及び副弁体31)の移動方向に作用する力をバランス(差圧をキャンセル)させられるので、前記の如くに小開度領域(低流量域)における制御性を向上できることに加えて、流量制御時に弁体(小流量制御状態における主弁体29、大流量制御状態における二段弁体32)に作用する荷重を可及的に小さくして、弁体の駆動トルクを低減でき、もって、更なる小型化、省電力化等を図ることができる。   Further, the bore diameter D2 of the valve port 16, the chamber diameter φD3 of the back pressure chamber 21, and the pressure receiving diameter φD1 of the sub valve body 31 are equalized, and the opening area A2 of the valve port 16 and the back pressure chamber 21 of the main valve body 29 are raised and lowered. The pressure receiving area A3 in the direction and the pressure receiving area A1 in the vertical direction of the sub valve body 31 are set equal, and a pressure equalizing passage 5 communicating the valve port 16 with the back pressure chamber 21 is provided. The force acting in the moving direction (up and down direction) of the sub valve body 31 in the small flow rate control state acts in the moving direction of the main valve body 29 in the small flow rate control state in addition to the balance The force acting in the moving direction of the two-stage valve body 32 (the main valve body 29 and the sub valve body 31 moving integrally as one unit) in the force or large flow control state can be balanced (cancel the differential pressure). Small opening area (low flow area In addition to the ability to improve controllability in the valve, the load acting on the valve body (the main valve body 29 in the small flow control state, the two-stage valve body 32 in the large flow control state) at the time of flow control is reduced as much as possible. The drive torque of the valve body can be reduced, whereby further downsizing, power saving, and the like can be achieved.

<流量調整弁1の変形形態(その1)>
なお、上記実施形態では、弁本体10を構成する基体部材9の外周(の一部)にDカット面9dを形成して、基体部材9と外筒8との間に均圧通路5(の縦通路6)を形成したが、例えば図4及び図5に示される流量調整弁1Aの如くに、基体部材9の外周全体を薄肉化して、基体部材9の外周(の全部)と外筒8との間に比較的大きな隙間(円筒状の隙間)からなる均圧通路5(の縦通路6)を形成しても良い。
<Modified Embodiment of Flow Adjustment Valve 1 (Part 1)>
In the above embodiment, the D cut surface 9d is formed on (a part of) the outer periphery of the base member 9 constituting the valve main body 10, and the pressure equalizing passage 5 (of the base member 9 and the outer cylinder 8) is formed. Although the vertical passage 6) is formed, the entire outer periphery of the base member 9 is thinned as in the flow rate adjusting valve 1A shown in FIGS. 4 and 5, for example. The pressure equalizing passage 5 may be formed with a relatively large gap (cylindrical gap).

<流量調整弁1の変形形態(その2)>
また、上記実施形態(流量調整弁1、1A)では、弁本体10における弁室14の外側に、弁口16と主弁体29の上側の背圧室21とを常時連通する均圧通路5(下通路7b、縦通路6、上通路7a)を形成したが、例えば、図6に示される流量調整弁1Bの如くに、均圧通路を省略しても良い。なお、図6において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている(詳細構造については、上記特許文献2も併せて参照)。
<Modified Embodiment of Flow Adjustment Valve 1 (Part 2)>
Further, in the above embodiment (flow control valves 1 and 1A), the pressure equalizing passage 5 always connects the valve port 16 and the back pressure chamber 21 on the upper side of the main valve body 29 outside the valve chamber 14 in the valve main body 10. Although the lower passage 7b, the vertical passage 6, and the upper passage 7a are formed, the pressure equalizing passage may be omitted as in the flow rate adjusting valve 1B shown in FIG. 6, for example. In addition, in FIG. 6, the same code | symbol is attached | subjected to the structure which has the function and effect similar to the said embodiment (for the detailed structure, also refer the said patent document 2 collectively).

かかる構成の流量調整弁1Bでは、上記実施形態の流量調整弁1と比べて、流量制御時に弁体(小流量制御状態における主弁体29、大流量制御状態における二段弁体32)に作用する荷重は大きくなる可能性があるものの、閉弁状態ないし小流量制御状態において副弁体31の移動方向(昇降方向)に作用する力はバランス(差圧がキャンセル)されるので、低コストで、小開度領域(低流量域)における制御性を確保することができる。   In the flow rate adjusting valve 1B having such a configuration, the valve body (the main valve body 29 in the small flow rate control state, the two-stage valve body 32 in the large flow rate control state) acts at the time of flow rate control. Load may increase, but the force acting in the moving direction (raising and lowering direction) of the sub valve body 31 in the closed state or small flow rate control state is balanced (differential pressure is canceled), so low cost The controllability in the small opening region (low flow region) can be secured.

<流量調整弁1の変形形態(その3)>
また、上記実施形態(流量調整弁1、1A、1B)では、ロータ50の回転数を減速する不思議遊星歯車減速機構60を利用しているが、例えば、図7に示される流量調整弁1Cの如くに、不思議遊星歯車減速機構を省略し、推力伝達軸28の外周にベローズ28Cを取り付け、推力伝達軸28の下部に連結された主弁体29の外周(弁室14を画成する弁本体10の内壁面との摺動面)に、弁室14と前記ベローズ28Cが配置されたベローズ室21Cとを連通する連通路(図7に示す例では、上下方向(軸線O方向)に延びる縦溝からなる連通路)29Cを形成しても良い。なお、図7において、上記実施形態と同様の機能及び作用を有する構成には、同様の符号が付されている(詳細構造については、上記特許文献3も併せて参照)。かかる構成の流量調整弁1Cでも、前述の図6に示される実施形態の流量調整弁1Bと略同様の作用効果が得られることは詳述するまでも無い。
<Modified Embodiment of Flow Adjustment Valve 1 (Part 3)>
Further, in the above embodiment (flow control valves 1, 1A, 1B), although the wonder planetary gear reduction mechanism 60 for reducing the rotational speed of the rotor 50 is used, for example, the flow control valve 1C shown in FIG. As described above, the wonder planet gear reduction mechanism is omitted, the bellows 28C is attached to the outer periphery of the thrust transmission shaft 28, and the outer periphery of the main valve body 29 connected to the lower portion of the thrust transmission shaft 28 (valve body defining the valve chamber 14 A communication passage (in the example shown in FIG. 7, a vertical direction extending in the direction of the axis O in the example shown in FIG. 7) which communicates the valve chamber 14 and the bellows chamber 21C in which the bellows 28C is disposed on the sliding surface with the inner wall surface of 10). A communication passage 29C formed of a groove may be formed. In addition, in FIG. 7, the same code | symbol is attached | subjected to the structure which has the function and effect similar to the said embodiment (for the detailed structure, also refer the said patent document 3 collectively). It is needless to say that the flow control valve 1C having such a configuration can obtain substantially the same function and effect as the flow control valve 1B of the embodiment shown in FIG. 6 described above.

上述の各実施形態では、弁口16の開口面積A2と副弁体31の(昇降方向における)受圧面積A1とが略同一に設定されることで、副弁体31に作用する押し上げ力(開弁方向の力)と押し下げ力(閉弁方向の力)とをバランス(差圧をキャンセル)させているが、副弁体31に作用する閉弁方向の力がその開弁方向の力と同等以上になるように、前述のA1、A2、As、Fの各値を設定すれば、少なくとも、小流量制御状態において主弁体29を上昇させたときに副弁体31が流体圧(弁口16から弁室14に向かう方向に流れる流体の圧力)によって押し上げられないようにできる。これにより、小開度領域(低流量域)における制御性を確保できるとともに、流体(冷媒)通過時における騒音を低減できる。   In each of the above-described embodiments, the opening area A2 of the valve port 16 and the pressure receiving area A1 (in the raising and lowering direction) of the sub valve body 31 are set to be substantially the same. The force in the valve direction) and the depression force (force in the valve closing direction) are balanced (cancel the differential pressure), but the force in the valve closing direction acting on the sub valve body 31 is equal to the force in the valve opening direction If each value of the above-mentioned A1, A2, As, and F is set so that it may become above, when the main valve body 29 is raised at least in the small flow control state, the sub valve body 31 will be fluid pressure (valve opening The pressure of the fluid flowing in the direction from the point 16 toward the valve chamber 14 can prevent the pressure from being pushed up. Thus, controllability in the small opening region (low flow region) can be secured, and noise at the time of fluid (refrigerant) passage can be reduced.

なお、副弁体31に作用する閉弁方向の力がその開弁方向の力と同等以上になるようにするには、まず、必要流量を確保するためにA2及びAsを設定し、さらに副弁体31に作用する閉弁方向の力が開弁方向の力以上になるように、A1及びFの値を設定すればよい。   In order to ensure that the force in the valve closing direction acting on the sub valve body 31 is equal to or greater than the force in the valve opening direction, first, A2 and As are set to ensure the necessary flow rate, and The values of A1 and F may be set so that the force in the valve closing direction acting on the valve body 31 is equal to or greater than the force in the valve opening direction.

また、本発明は、上述の実施形態で説明したような、ステータとロータとを有するステッピングモータ等を用いて弁軸を昇降(移動)させてリフト量(弁開度)を任意に細かく調整する電動式の流量調整弁の他、例えばソレノイド等を用いた電磁式の流量調整(切換)弁にも採用し得ることは勿論である。   Further, according to the present invention, the valve shaft is vertically moved (moved) using a stepping motor or the like having a stator and a rotor as described in the above embodiment, and the lift amount (valve opening degree) is arbitrarily finely adjusted. It goes without saying that the present invention can also be applied to an electromagnetic flow control (switching) valve using, for example, a solenoid or the like other than the electric flow control valve.

1 流量調整弁
5 均圧通路
6 縦通路
7a 上通路
7b 下通路
8 外筒
9 基体部材
9a 円筒部
9b 底部
9d Dカット面
10 弁本体
14 弁室
15 弁座
16 弁口(大流量用弁口)
17 入出口
21 背圧室
29 主弁体(第1弁体)
29b 弁座
29c 弁口(小流量用弁口)
29d 嵌合穴
29g 鍔状係止部
29u 横穴
29v 中心穴(縦穴)
30 キャン
31 副弁体(第2弁体)
32 二段弁体
33a 連通路(上側連通路)
33b 連通路(下側連通路)
34 連通空間
35 小流量通路
36 連動部材
36g 内鍔状係止部
37 弁体部材
37a 下部大径部
37b 上部小径部
37d 下部弁体部
37f 上部弁体部
37u 横穴
37v 中心穴(縦穴)
38 Oリング(シール部材)
39 閉弁ばね(付勢部材)
40 ステータ
50 ロータ
60 不思議遊星歯車減速機構
63 ステッピングモータ(昇降駆動部)
71 消音部材(弁室側消音部材)
72 消音部材(弁口側消音部材)
A1 副弁体の昇降方向における受圧面積
A2 大流量用弁口の開口面積
A3 背圧室の昇降方向における受圧面積
As 小流量用弁口の開口面積
φD1 副弁体の受圧径
φD2 大流量用弁口の口径
φD3 背圧室の室径
φDs 小流量用弁口の口径
Reference Signs List 1 flow control valve 5 pressure equalizing passage 6 vertical passage 7a upper passage 7b lower passage 8 outer cylinder 9 base member 9a cylindrical portion 9b bottom 9d D cut surface 10 valve main body 14 valve chamber 15 valve seat 16 valve port (large flow valve opening )
17 inlet / outlet 21 back pressure chamber 29 main valve body (first valve body)
29b Valve seat 29c Valve port (for small flow rate)
29d fitting hole 29g hook shaped locking part 29u horizontal hole 29v central hole (vertical hole)
30 can 31 sub valve body (second valve body)
32 two-step valve body 33a communication passage (upper communication passage)
33b Communication passage (lower communication passage)
34 communicating space 35 small flow rate passage 36 interlocking member 36g inner hook shaped locking portion 37 valve body member 37a lower large diameter portion 37b upper small diameter portion 37d lower valve body portion 37f upper valve body portion 37u lateral hole 37v central hole (vertical hole)
38 O-ring (seal member)
39 Valve closing spring (biasing member)
40 Stator 50 Rotor 60 Wonder planetary gear reduction mechanism 63 Stepping motor (lifting and lowering drive)
71 Muffler (valve chamber muffler)
72 Muffler (Valve on the valve side)
A1 Pressure receiving area A2 in the vertical direction of sub valve body Opening area A2 of the large flow valve port Pressure area As in the vertical direction of the back pressure chamber As small opening area of the small flow port φD1 Pressure receiving diameter of the sub valve body D2 large flow valve Port diameter φD3 Back pressure chamber diameter φDs Small flow port diameter

Claims (12)

弁室及び大流量用弁口が設けられた弁本体と、前記弁室内に昇降自在に配在された第1弁体と、該第1弁体を昇降させるための昇降駆動部と、リフト量に応じて前記大流量用弁口を流れる流体の流量を変化させるべく、前記第1弁体の下端部外周を包囲するように該第1弁体に摺動自在に外挿され、該第1弁体の昇降動作に連動して駆動される第2弁体と、を備え、
前記第1弁体に設けられた上側連通路と、前記第2弁体により前記第1弁体の下端部周りに画成された連通空間と、前記第2弁体に設けられた下側連通路とを介して前記弁室と前記大流量用弁口とを連通する小流量通路が形成され、前記第1弁体は、リフト量に応じて前記小流量通路における前記上側連通路と前記連通空間との間に設けられた小流量用弁口を流れる流体の流量を変化させるようになっており、
前記昇降駆動部による前記第1弁体のリフト量が所定量以下のときは、前記第2弁体により前記大流量用弁口が閉じられ、前記第1弁体の前記小流量用弁口に対するリフト量に応じて流量が制御される小流量制御状態をとり、前記昇降駆動部による前記第1弁体のリフト量が前記所定量を超えると、前記第1弁体の上昇に伴って前記第2弁体が上昇せしめられて前記第2弁体が前記大流量用弁口を開く大流量制御状態をとるように構成され、
前記小流量制御状態において前記第2弁体に作用する閉弁方向の力が開弁方向の力以上になるように、前記大流量用弁口の開口面積と前記第2弁体の昇降方向における受圧面積とが設定されていることを特徴とする流量調整弁。
A valve body provided with a valve chamber and a large flow rate valve port, a first valve body disposed so as to be movable up and down in the valve chamber, a lift drive unit for moving the first valve body up and down, and a lift amount And the second valve body is slidably inserted over the first valve body so as to surround the outer periphery of the lower end portion of the first valve body in order to change the flow rate of the fluid flowing through the large flow rate valve port according to the And a second valve body driven in conjunction with the lifting and lowering operation of the valve body,
An upper communication passage provided in the first valve body, a communication space defined around the lower end of the first valve body by the second valve body, and a lower link provided in the second valve body A small flow passage communicating the valve chamber with the large flow valve port through the passage is formed, and the first valve body communicates with the upper communication passage in the small flow passage according to the lift amount. It is designed to change the flow rate of fluid flowing through the small flow rate valve port provided between the space and
When the lift amount of the first valve body by the elevation drive unit is equal to or less than a predetermined amount, the large flow rate valve port is closed by the second valve body, and the small flow rate valve port of the first valve body is closed. The small flow rate control state in which the flow rate is controlled according to the lift amount is taken, and when the lift amount of the first valve body by the elevation drive exceeds the predetermined amount, the first valve body is lifted. The second valve body is configured to be in a large flow control state in which the second valve body is opened to open the large flow rate valve port.
The opening area of the large flow rate valve port and the elevation direction of the second valve body so that the force in the valve closing direction acting on the second valve body in the small flow rate control state is greater than the force in the valve opening direction. A flow control valve characterized in that a pressure receiving area is set.
前記大流量用弁口の開口面積と前記第2弁体の昇降方向における受圧面積とが同一に設定されていることを特徴とする請求項1に記載の流量調整弁。   The flow control valve according to claim 1, wherein the opening area of the large flow rate valve port and the pressure receiving area in the vertical direction of the second valve body are set identical. 前記大流量用弁口の開口面積、前記第1弁体の背面側に画成された背圧室の昇降方向における受圧面積、及び前記第2弁体の昇降方向における受圧面積が同一に設定されるとともに、前記大流量用弁口と前記背圧室とを連通する均圧通路が設けられていることを特徴とする請求項2に記載の流量調整弁。   The opening area of the large flow rate valve port, the pressure receiving area in the vertical direction of the back pressure chamber defined on the back side of the first valve body, and the pressure receiving area in the vertical direction of the second valve body are set identical. 3. The flow control valve according to claim 2, further comprising a pressure equalizing passage communicating the high flow rate valve port with the back pressure chamber. 前記均圧通路は、前記弁本体における前記弁室の外側の一部もしくは全周を含んで構成されていることを特徴とする請求項3に記載の流量調整弁。   The flow control valve according to claim 3, wherein the pressure equalizing passage is configured to include a part or a whole of the outer side of the valve chamber in the valve body. 前記均圧通路は、前記弁室を画成する基体部材と、該基体部材の外側に配在された外筒との間に形成される隙間を含んで構成されていることを特徴とする請求項4に記載の流量調整弁。   The pressure equalizing passage is configured to include a gap formed between a base member defining the valve chamber and an outer cylinder disposed outside the base member. The flow control valve according to Item 4. 前記小流量通路における前記小流量用弁口より前記弁室側及び前記大流量用弁口側の少なくとも一方に、前記小流量通路を流れる流体中の気泡を細分化する消音部材が配在されていることを特徴とする請求項1から5のいずれか一項に記載の流量調整弁。   A silencing member for dividing air bubbles in the fluid flowing through the small flow passage is disposed in at least one of the small flow passage from the small flow passage in the small flow passage and the valve chamber side and the large flow valve side. The flow control valve according to any one of claims 1 to 5, characterized in that: 前記消音部材は、前記小流量通路における前記上側連通路及び前記下側連通路に配在されていることを特徴とする請求項6に記載の流量調整弁。   The flow control valve according to claim 6, wherein the muffling member is disposed in the upper communication passage and the lower communication passage in the small flow passage. 前記第2弁体は、該第2弁体と前記第1弁体との間に介装された付勢部材によって前記大流量用弁口の閉弁方向に付勢されるとともに、前記第1弁体のリフト量が前記所定量を超えると、前記第1弁体に設けられた鍔状係止部によりき上げられるようにされていることを特徴とする請求項1から7のいずれか一項に記載の流量調整弁。 The second valve body is biased in the valve closing direction of the large flow rate valve port by a biasing member interposed between the second valve body and the first valve body, and the first valve body When the lift amount of the valve element exceeds a predetermined amount, any one of claims 1 to 7, characterized in that it is adapted to be raised pull the flanged engaging part provided in the first valve body The flow control valve according to one item. 前記第2弁体は、前記第1弁体の下端部に摺動自在に外挿された筒状の連動部材と、該連動部材の下端開口に連結され、前記大流量用弁口を開閉する弁体部材とで構成されていることを特徴とする請求項1から8のいずれか一項に記載の流量調整弁。   The second valve body is connected to a cylindrical interlocking member slidably inserted at the lower end portion of the first valve body and the lower end opening of the interlocking member, and opens and closes the large flow rate valve port The flow control valve according to any one of claims 1 to 8, characterized by comprising a valve body member. 前記第1弁体の下端部と前記連動部材との間に、前記連通空間と前記弁室との間を封止するシール部材が介装されていることを特徴とする請求項9に記載の流量調整弁。   The sealing member which seals between the said communication space and the said valve chamber is interposed between the lower end part of the said 1st valve body, and the said interlocking member, It is characterized by the above-mentioned. Flow control valve. 前記第1弁体の前記上側連通路における縦穴、及び/又は、前記第2弁体の前記弁体部材に設けられた前記下側連通路における縦穴に前記小流量通路を流れる流体中の気泡を細分化する消音部材が内装されていることを特徴とする請求項9に記載の流量調整弁。   Air bubbles in the fluid flowing through the small flow rate passage are formed in the vertical hole in the upper communication passage of the first valve body and / or the vertical hole in the lower communication passage provided in the valve body member of the second valve body 10. The flow control valve according to claim 9, further comprising a noise reduction member to be subdivided. 前記第1弁体の前記上側連通路における縦穴に前記小流量用弁口が設けられていることを特徴とする請求項11に記載の流量調整弁。   The flow control valve according to claim 11, wherein the small flow rate valve port is provided in a vertical hole in the upper communication passage of the first valve body.
JP2017057231A 2017-03-23 2017-03-23 Flow control valve Active JP6505151B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017057231A JP6505151B2 (en) 2017-03-23 2017-03-23 Flow control valve
KR1020170158320A KR20180108401A (en) 2017-03-23 2017-11-24 Flow control valve
CN201711421084.6A CN108626463B (en) 2017-03-23 2017-12-25 Flow regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057231A JP6505151B2 (en) 2017-03-23 2017-03-23 Flow control valve

Publications (2)

Publication Number Publication Date
JP2018159433A JP2018159433A (en) 2018-10-11
JP6505151B2 true JP6505151B2 (en) 2019-04-24

Family

ID=63705951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057231A Active JP6505151B2 (en) 2017-03-23 2017-03-23 Flow control valve

Country Status (3)

Country Link
JP (1) JP6505151B2 (en)
KR (1) KR20180108401A (en)
CN (1) CN108626463B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220186845A1 (en) * 2019-01-31 2022-06-16 Fujikin Incorporated Flow path assembly, valve device, fluid control device, semiconductor manufacturing apparatus and semiconductor manufacturing method using said flow path assembly
JP7333045B2 (en) * 2019-02-20 2023-08-24 株式会社不二工機 flow control valve
CN113677919B (en) * 2019-02-21 2023-09-05 株式会社不二工机 Flow control valve and method of assembling the same
WO2020170721A1 (en) * 2019-02-21 2020-08-27 株式会社不二工機 Flow rate control valve
WO2020181922A1 (en) * 2019-03-13 2020-09-17 浙江盾安人工环境股份有限公司 Electronic expansion valve and refrigeration system
JP7055768B2 (en) * 2019-04-12 2022-04-18 株式会社鷺宮製作所 Solenoid valve and refrigeration cycle system
JP7179708B2 (en) * 2019-04-23 2022-11-29 株式会社鷺宮製作所 Valve gear and refrigeration cycle system
CN113785148B (en) * 2019-05-15 2023-10-13 株式会社不二工机 flow control valve
WO2021025023A1 (en) * 2019-08-08 2021-02-11 イーグル工業株式会社 Expansion valve
JP7176752B2 (en) * 2019-10-29 2022-11-22 株式会社不二工機 electric valve
JP7150345B2 (en) * 2020-01-10 2022-10-11 株式会社不二工機 electric valve
JP7503819B2 (en) 2020-03-23 2024-06-21 株式会社不二工機 Motor-operated valve
JP7491734B2 (en) * 2020-05-15 2024-05-28 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP7349963B2 (en) * 2020-07-01 2023-09-25 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP7449844B2 (en) * 2020-11-27 2024-03-14 株式会社鷺宮製作所 electric valve
JP7404304B2 (en) 2021-04-14 2023-12-25 株式会社鷺宮製作所 valve device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2716328A1 (en) * 1976-04-15 1977-11-03 Yarway Corp Two stage valve unit for boiler feed water control - has operating sequence opening first and second valves and feed water pressure control
JPS60114380U (en) * 1984-01-11 1985-08-02 三菱重工業株式会社 valve
JPH0648067B2 (en) * 1985-09-30 1994-06-22 岡野バルブ製造株式会社 solenoid valve
JPH0665915B2 (en) * 1987-03-27 1994-08-24 株式会社鷺宮製作所 Reversible electric expansion valve
JP2516626B2 (en) * 1987-05-08 1996-07-24 株式会社 鷺宮製作所 Two-stage pressure reducing valve
CN101520107B (en) * 2008-02-27 2012-04-11 浙江三花股份有限公司 Electromagnetic valve
JP2012117584A (en) * 2010-11-30 2012-06-21 Saginomiya Seisakusho Inc Electric flow control valve
JP5842185B2 (en) * 2011-05-10 2016-01-13 株式会社テージーケー Control valve
PL218378B1 (en) * 2011-07-15 2014-11-28 Gen Electric Valve assembly
CN102943910A (en) * 2012-12-03 2013-02-27 卓旦春 Static balance valve

Also Published As

Publication number Publication date
JP2018159433A (en) 2018-10-11
KR20180108401A (en) 2018-10-04
CN108626463B (en) 2021-09-28
CN108626463A (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6505151B2 (en) Flow control valve
JP5901960B2 (en) Motorized valve
JP6692215B2 (en) Flow control valve
EP2924373B1 (en) Electrically operated valve
KR102408886B1 (en) Valve Core Assembly
CN106168304B (en) Electric valve
JP6745141B2 (en) Flow control valve
CN114483980A (en) Electric valve and refrigeration cycle system
CN107631033B (en) Electric valve
WO2019146345A1 (en) Flow regulating valve
WO2005103523A1 (en) Hydraulic shock absorber
CN101688625A (en) Solenoid valve
JP6516960B2 (en) Motorized valve
CN109869494B (en) Electronic expansion valve and refrigeration system with same
CN110500424B (en) Three-way switching valve
CN115013539A (en) Full-circulation electronic expansion valve
JP6585380B2 (en) Motorized valve
JP5911706B2 (en) Motorized valve
WO2020170721A1 (en) Flow rate control valve
JP7333045B2 (en) flow control valve
JP2019019983A (en) Electrical drive valve
JP4426953B2 (en) Hydraulic shock absorber
JP2018087642A (en) Motor-operated valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6505151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250