JP2022018937A - Hat-shaped steel sheet pile manufacturing method and manufacturing equipment - Google Patents

Hat-shaped steel sheet pile manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP2022018937A
JP2022018937A JP2020122394A JP2020122394A JP2022018937A JP 2022018937 A JP2022018937 A JP 2022018937A JP 2020122394 A JP2020122394 A JP 2020122394A JP 2020122394 A JP2020122394 A JP 2020122394A JP 2022018937 A JP2022018937 A JP 2022018937A
Authority
JP
Japan
Prior art keywords
flange
rolling
rolled
steel sheet
shaped steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020122394A
Other languages
Japanese (ja)
Other versions
JP7235014B2 (en
Inventor
寛人 後藤
Hiroto Goto
由紀雄 高嶋
Yukio Takashima
倫也 駒城
Michiya Komaki
悦男 東
Etsuo Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020122394A priority Critical patent/JP7235014B2/en
Publication of JP2022018937A publication Critical patent/JP2022018937A/en
Application granted granted Critical
Publication of JP7235014B2 publication Critical patent/JP7235014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

To provide a hat-shaped steel sheet pile manufacturing method and manufacturing equipment which can suppress retraction deformation of an arm equivalent part and suppress flange wave generation when elongating a flange equivalent part in a rolled material by groove rolling.SOLUTION: When a rolling reduction of an arm equivalent part 54 is represented by ra, a rolling reduction of a web equivalent part 52 is represented by rw, a rolling reduction of a flange equivalent part 53 is represented by rf, a length of the flange equivalent part 53 on a rolling inlet side is represented by Lf0, and an extension amount of the flange equivalent part 53 is represented by ΔLf when elongating a length of the flange equivalent part 53, rolling is performed so as to satisfy the following formulae (A) to (D) : (A) (1-ff)×ΔLf/Lf0<rf-rw, (B) rf-rw<0.2, (C) (1-ff)×ΔLf/Lf0<rf-ra, and (D) rf-ra<0.2.SELECTED DRAWING: Figure 4

Description

本発明は、ハット形鋼矢板の製造方法及び製造設備に関する。 The present invention relates to a method for manufacturing a hat-shaped steel sheet pile and a manufacturing facility.

一般に、鋼矢板は、加熱炉において所定の温度に加熱したスラブ等の素材を、1又は複数の孔型を備えた粗圧延機、中間圧延機及び仕上圧延機によって順に圧延し、ホットソーにより所望の長さに切断することにより製造される。
鋼矢板は、河川の護岸などに打ち込まれ、土留めとして使用される。鋼矢板には、断面の形状がU字形のU形鋼矢板、断面の形状が直線形の直線形鋼矢板、断面の形状がハット形のハット形鋼矢板などがある。
In general, a steel sheet pile is obtained by rolling a material such as a slab heated to a predetermined temperature in a heating furnace in order by a rough rolling mill, an intermediate rolling mill and a finishing rolling mill having one or more hole molds, and a desired one by a hot saw. Manufactured by cutting to length.
Steel sheet piles are driven into river revetments and used as earth retaining plates. Examples of the steel sheet pile include a U-shaped steel sheet pile having a U-shaped cross section, a linear steel sheet pile having a linear cross-sectional shape, and a hat-shaped steel sheet pile having a hat-shaped cross section.

ハット形鋼矢板の断面の一例が図5に示されている。ハット形鋼矢板101は、幅方向(図5における左右方向)に延びるウェブ部102と、ウェブ部102の両端から斜め下方かつ幅方向外側に向けて延びる一対のフランジ部103と、各フランジ部103の先端から幅方向外側に延びる一対の腕部104と、各腕部104の先端に設けられた一対の継手部105とを備えている。
このハット形鋼矢板101を圧延する形鋼圧延ラインでは、上流側から下流側に向けて順に、加熱炉、粗圧延機、中間圧延機、仕上圧延機、及びホットソーが設置されている。
An example of the cross section of the hat-shaped steel sheet pile is shown in FIG. The hat-shaped steel sheet pile 101 has a web portion 102 extending in the width direction (left-right direction in FIG. 5), a pair of flange portions 103 extending diagonally downward from both ends of the web portion 102 and outward in the width direction, and each flange portion 103. A pair of arm portions 104 extending outward in the width direction from the tip of each arm portion 104 and a pair of joint portions 105 provided at the tip of each arm portion 104 are provided.
In the shaped steel rolling line for rolling the hat-shaped steel sheet pile 101, a heating furnace, a rough rolling mill, an intermediate rolling mill, a finishing rolling mill, and a hot saw are installed in order from the upstream side to the downstream side.

粗圧延機は、例えば1台設置され、加熱炉で加熱されたスラブ等の被圧延材を、目標とする製品断面形状に近づけるよう孔型圧延によって造形する。中間圧延機は、例えば2台設置され、粗圧延機によって造形された被圧延材の全体の厚みを薄くするとともにさらに製品断面形状に近づけるように孔型圧延によって造形する。更に、仕上圧延機は、例えば1台設置され、中間圧延機によって造形された被圧延材を孔型圧延によって目標断面形状に造形する。
孔型圧延は、上孔型ロール及び下孔型ロールに刻設された1又は複数の孔型で被圧延材を圧延するものであり、上孔型ロールと下孔型ロールで圧延することで被圧延材の全長を目標の断面形状に造形する。
One rough rolling mill is installed, for example, and a material to be rolled such as a slab heated in a heating furnace is formed by hole rolling so as to approach the target cross-sectional shape of the product. Two intermediate rolling mills are installed, for example, and the thickness of the material to be rolled formed by the rough rolling mill is reduced and the intermediate rolling mill is formed by hole rolling so as to be closer to the cross-sectional shape of the product. Further, for example, one finishing rolling mill is installed, and the material to be rolled formed by the intermediate rolling mill is formed into a target cross-sectional shape by hole rolling.
In the hole-type rolling, the material to be rolled is rolled with one or more hole-types engraved on the upper-hole type roll and the prepared-hole type roll, and by rolling with the upper-hole type roll and the prepared-hole type roll. The total length of the material to be rolled is shaped into the target cross-sectional shape.

孔型圧延においては、入側と出側とで被圧延材の断面形状が大きく異なると、孔型に材料がうまく噛み込まない場合や孔型への負荷が過大になる場合がある。そのため、複数の孔型で複数回に分けて圧延を実施することで、素材形状から目標断面形状へ徐々に造形する。孔型への材料の噛み込みや孔型への負荷を鑑みると、粗圧延機の孔型圧延だけでは被圧延材におけるフランジ相当部の長さ(フランジ相当部のフランジ幅方向の大きさ)を目標の寸法にすることは難しく、形鋼圧延ラインでハット形鋼矢板を圧延する場合には、粗圧延機のみならず中間圧延機以降で被圧延材のフランジ相当部を長くする孔型圧延を実施する必要がある。 In the hole-shaped rolling, if the cross-sectional shape of the material to be rolled is significantly different between the entry side and the exit side, the material may not be properly engaged in the hole type or the load on the hole type may be excessive. Therefore, by rolling in a plurality of hole molds in a plurality of times, the material shape is gradually formed into the target cross-sectional shape. Considering the biting of the material into the hole mold and the load on the hole mold, the length of the flange equivalent portion (the size of the flange equivalent portion in the flange width direction) of the material to be rolled can be determined only by the hole roll rolling of the rough rolling mill. It is difficult to achieve the target dimensions, and when rolling hat-shaped steel sheet piles on a shaped steel rolling line, hole-shaped rolling is performed not only on the rough rolling mill but also on the intermediate rolling mill and later to lengthen the flange equivalent part of the material to be rolled. Need to be implemented.

また、粗圧延機のみで目標とするフランジ相当部の寸法を造形しようとすると、孔型が深くなり、上孔型ロール及び下孔型ロールのロール径が極端に小さくなる。孔型は摩耗により形状が変化するために、ロール表面を研磨して所望の孔型形状を保つように管理している。ロール径が小さくなると、研磨できる回数が少なくなるため、ロールの寿命が短くなる。また、粗圧延機は、リバース圧延(往復圧延)を実施する回数が形鋼圧延ラインの圧延機の中で最も多いため、ロールが中間圧延機及び仕上圧延機と比較して早く摩耗する。ロールの寿命のことを考えると、粗圧延機でのフランジ相当部の伸長はできるだけ小さくし、中間圧延機でフランジ相当部を長くすることが好ましい。 Further, when trying to form the target dimension of the flange corresponding portion only by the rough rolling mill, the hole type becomes deep and the roll diameters of the upper hole type roll and the prepared hole type roll become extremely small. Since the shape of the hole shape changes due to wear, the surface of the roll is polished to maintain the desired hole shape. As the roll diameter becomes smaller, the number of times that polishing can be performed decreases, so that the life of the roll becomes shorter. Further, in the rough rolling mill, the number of times of reverse rolling (reciprocating rolling) is the largest among the rolling mills in the shaped steel rolling line, so that the roll wears faster than the intermediate rolling mill and the finish rolling mill. Considering the life of the roll, it is preferable to make the elongation of the flange corresponding portion in the rough rolling mill as small as possible and to lengthen the flange corresponding portion in the intermediate rolling mill.

ここで、ハット形鋼矢板の孔型圧延は、材料が3次元的に変形する複雑な塑性加工であり、様々な問題を抱えている。
例えば、ハット形鋼矢板の孔型圧延において、被圧延材におけるウェブ相当部とフランジ相当部と腕相当部の圧下バランスが不適切であった場合には、フランジ相当部のみが圧延方向に伸長し、フランジ相当部が波打つフランジ波と呼ばれる不良が発生する。また、継手相当部がうまく孔型に噛み込まずに継手部が造形できない場合や、フランジ相当部に腕相当部が引き込まれて継手部が適切に形成されない場合もある。
Here, the hole-shaped rolling of the hat-shaped steel sheet pile is a complicated plastic working in which the material is three-dimensionally deformed, and has various problems.
For example, in the hole-shaped rolling of a hat-shaped steel sheet pile, if the rolling balance of the web-corresponding part, the flange-corresponding part, and the arm-corresponding part of the material to be rolled is improper, only the flange-corresponding part extends in the rolling direction. , A defect called a flange wave occurs in which the flange corresponding part undulates. In addition, there are cases where the joint portion cannot be formed without the joint corresponding portion properly engaging into the hole shape, or the arm corresponding portion is pulled into the flange equivalent portion and the joint portion is not properly formed.

特に、ハット形鋼矢板において被圧延材におけるフランジ相当部の長さを長くする(フランジ幅方向におけるフランジ幅を大きくし、板厚を薄くする)場合には、フランジ相当部がフランジ幅方向に変形する必要がある。しかし、ウェブ相当部、フランジ相当部、及び腕相当部の圧下バランスによっては、フランジ相当部がフランジ幅方向に変形できずに圧下が不足し、フランジ相当部の圧下が不足した分だけ腕相当部がフランジ相当部に引き込まれる現象が発生することがある。腕相当部がフランジ相当部に引き込まれると、継手部が完全になくなるため、製品とすることができなくなる。 In particular, in a hat-shaped steel sheet pile, when the length of the flange corresponding portion of the material to be rolled is lengthened (the flange width in the flange width direction is increased and the plate thickness is reduced), the flange corresponding portion is deformed in the flange width direction. There is a need to. However, depending on the reduction balance of the web equivalent part, the flange equivalent part, and the arm equivalent part, the flange equivalent part cannot be deformed in the flange width direction and the reduction is insufficient, and the arm equivalent part is insufficient due to the insufficient reduction of the flange equivalent part. May occur in the area corresponding to the flange. When the arm corresponding part is pulled into the flange corresponding part, the joint part is completely eliminated and the product cannot be manufactured.

このような課題に対して従来から種々の技術開発が行われてきた。
例えば、特許文献1には、ロール周方向溝の互いに向かい合う一方の傾斜壁の所定ロール半径位置に段差が形成された上下ロールにより構成される段差付きボックス孔型と、同じ上下ロールに、幅圧下後スラブを厚み圧下する突条形成溝が形成された延伸用孔型とを有する粗圧延ロール、およびそれを用いた継手部に突条を有する鋼矢板の粗圧延方法が開示されている。
特許文献1に示す粗圧延ロールおよび粗圧延方法によれば、扁平な断面のスラブを用い、効率的に継手部に突条を有する鋼矢板製品の突条を成形することができる。
Various technological developments have been conventionally carried out to deal with such problems.
For example, Patent Document 1 describes a box hole type with a step formed by upper and lower rolls in which a step is formed at a predetermined roll radius position of one of the inclined walls facing each other in the circumferential groove of the roll, and the same upper and lower rolls with width rolling. A rough rolling roll having a hole type for stretching in which a ridge forming groove for reducing the thickness of the rear slab is formed, and a method for rough rolling a steel sheet pile having ridges in a joint portion using the same are disclosed.
According to the rough rolling roll and the rough rolling method shown in Patent Document 1, it is possible to efficiently form a ridge of a steel sheet pile product having a ridge at a joint portion by using a slab having a flat cross section.

また、特許文献2には、粗圧延工程及び中間圧延工程における被圧延材の圧延は、連続する複数の孔型における複数パス圧延によって行われ、複数の孔型での圧延において、連続する2つの孔型では、後段の孔型におけるフランジ圧下率に比べて、圧延中立線近傍でのフランジ圧下率が小さくなるような所定の条件にてフランジ対応部位のロール隙を構成し、圧延を行う鋼矢板の製造方法が開示されている。
特許文献2に示す鋼矢板の製造方法によれば、従来に比べてフランジ幅(フランジ部の長さ)が大きくフランジ厚の薄い鋼矢板を製造する場合に、製造過程の圧延においてフランジ波等の形状不良が発生するのを抑制することができる。
Further, in Patent Document 2, the rolling of the material to be rolled in the rough rolling step and the intermediate rolling step is performed by multi-pass rolling in a plurality of continuous hole molds, and in rolling in a plurality of hole molds, two continuous rolls are performed. In the hole type, a steel sheet pile for rolling is formed by forming a roll gap in the flange corresponding portion under predetermined conditions such that the flange reduction rate in the vicinity of the rolling neutral line is smaller than the flange reduction rate in the hole type in the subsequent stage. The manufacturing method of is disclosed.
According to the method for manufacturing a steel sheet pile shown in Patent Document 2, when a steel sheet pile having a larger flange width (length of a flange portion) and a thinner flange thickness than before is manufactured, flange waves and the like occur in rolling during the manufacturing process. It is possible to suppress the occurrence of shape defects.

特開2005-144497号公報Japanese Unexamined Patent Publication No. 2005-144497 特開2019-38014号公報Japanese Unexamined Patent Publication No. 2019-38014

しかしながら、特許文献1に示す粗圧延ロールおよび粗圧延方法、及び特許文献2に示す鋼矢板の製造方法にあっては、次の課題があった。
即ち、特許文献1に示す粗圧延ロールおよび粗圧延方法では、フランジ相当部の長さ(フランジ幅方向の大きさ)を長くする場合には、継手相当部の突条が延伸用孔型の突条形成溝に噛み込んだとしても、フランジ相当部の圧下が不足したりすると腕相当部がフランジ相当部に引き込まれる場合がある。
また、特許文献2に示す鋼矢板の製造方法では、フランジ相当部の長さを長くする場合にフランジ波の発生を抑制することができるが、腕相当部がフランジ相当部に引き込まれる不良を解消する方法については開示されていない。
However, the rough rolling roll and the rough rolling method shown in Patent Document 1 and the method for manufacturing a steel sheet pile shown in Patent Document 2 have the following problems.
That is, in the rough rolling roll and the rough rolling method shown in Patent Document 1, when the length of the flange corresponding portion (the size in the flange width direction) is lengthened, the ridge of the joint corresponding portion is a protrusion of a hole type for drawing. Even if it bites into the strip forming groove, the arm corresponding part may be pulled into the flange corresponding part if the rolling down of the flange corresponding part is insufficient.
Further, in the method for manufacturing a steel sheet pile shown in Patent Document 2, the generation of flange waves can be suppressed when the length of the flange equivalent portion is lengthened, but the defect that the arm equivalent portion is drawn into the flange equivalent portion is eliminated. The method of doing so is not disclosed.

従って、本発明はこれら課題を解決するためになされたものであり、その目的は、孔型圧延によって被圧延材におけるフランジ相当部を長くする場合に腕相当部のフランジ相当部への引き込み変形を抑制するとともにフランジ波の発生を抑制することができるハット形鋼矢板の製造方法及び製造設備を提供することにある。 Therefore, the present invention has been made to solve these problems, and an object thereof is to pull in and deform the arm corresponding portion to the flange corresponding portion when the flange corresponding portion of the material to be rolled is lengthened by hole-shaped rolling. It is an object of the present invention to provide a method and equipment for manufacturing a hat-shaped steel sheet pile that can suppress and suppress the generation of flange waves.

上記目的を達成するために、本発明の一態様に係るハット形鋼矢板の製造方法は、ウェブ部、該ウェブ部の両端に設けられた一対のフランジ部、該一対のフランジ部の各々の先端に設けられた一対の腕部、該一対の腕部の各々の先端に設けられた2つの継手部を有するハット形鋼矢板を、粗圧延機、中間圧延機、及び仕上圧延機の各々における1又は複数の孔型での複数回の圧延によって製造するハット形鋼矢板の製造方法であって、複数回の圧延により被圧延材における圧延入側のフランジ相当部の長さより圧延出側のフランジ相当部の長さを長くする際に、被圧延材における腕相当部の圧下率をra、被圧延材におけるウェブ相当部の圧下率をrw、被圧延材におけるフランジ相当部の圧下率をrf、圧延入側のフランジ相当部の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、次の(A)~(D)式を満たすように圧延することを要旨とする。
(1-ff)×ΔLf/Lf0<rf-rw ・・・(A)
rf-rw<0.2 ・・・(B)
(1-ff)×ΔLf/Lf0<rf-ra ・・・(C)
rf-ra<0.2 ・・・(D)
In order to achieve the above object, the method for manufacturing a hat-shaped steel sheet pile according to one aspect of the present invention includes a web portion, a pair of flange portions provided at both ends of the web portion, and tips of each of the pair of flange portions. 1 Or, it is a method of manufacturing a hat-shaped steel sheet pile manufactured by rolling multiple times with multiple hole molds, and by rolling multiple times, it corresponds to the flange on the rolling out side from the length of the flange corresponding part on the rolling in side of the material to be rolled. When increasing the length of the portion, the rolling ratio of the arm equivalent portion of the material to be rolled is ra, the reduction ratio of the web equivalent portion of the material to be rolled is rf, the reduction ratio of the flange corresponding portion of the material to be rolled is rf, and rolling. The gist is that when the length of the flange-corresponding portion on the entry side is Lf0 and the stretching amount of the flange-corresponding portion is ΔLf, rolling is performed so as to satisfy the following formulas (A) to (D).
(1-ff) × ΔLf / Lf0 <rf-rw ・ ・ ・ (A)
rf-rw <0.2 ... (B)
(1-ff) × ΔLf / Lf0 <rf-ra ・ ・ ・ (C)
rf-ra <0.2 ... (D)

また、本発明の別の態様に係るハット形鋼矢板の製造設備は、ウェブ部、該ウェブ部の両端に設けられた一対のフランジ部、該一対のフランジ部の各々の先端に設けられた一対の腕部、該一対の腕部の各々の先端に設けられた2つの継手部を有するハット形鋼矢板を製造するハット形鋼矢板の製造設備であって、粗圧延機、中間圧延機、及び仕上圧延機を備え、被圧延材における腕相当部の圧下率をra、被圧延材におけるウェブ相当部の圧下率をrw、被圧延材におけるフランジ相当部の圧下率をrf、圧延入側のフランジ相当部の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、粗圧延機、中間圧延機、及び仕上圧延機の少なくとも1つの圧延機は、次の(A)~(D)式を満たすように複数回圧延する1又は複数の孔型を有することを要旨とする。
(1-ff)×ΔLf/Lf0<rf-rw ・・・(A)
rf-rw<0.2 ・・・(B)
(1-ff)×ΔLf/Lf0<rf-ra ・・・(C)
rf-ra<0.2 ・・・(D)
Further, the equipment for manufacturing a hat-shaped steel sheet pile according to another aspect of the present invention includes a web portion, a pair of flange portions provided at both ends of the web portion, and a pair provided at the tips of each of the pair of flange portions. A machine for manufacturing a hat-shaped steel sheet pile having two joints provided at the tips of the arm portion and each of the pair of arm portions, and is a rough rolling mill, an intermediate rolling mill, and an intermediate rolling mill. Equipped with a finish rolling mill, the rolling reduction of the arm equivalent part of the material to be rolled is ra, the reduction ratio of the web equivalent part of the material to be rolled is rf, the reduction ratio of the flange equivalent part of the material to be rolled is rf, and the flange on the rolling entry side. When the length of the corresponding portion is Lf0 and the stretching amount of the flange corresponding portion is ΔLf, at least one rolling mill of the rough rolling mill, the intermediate rolling mill, and the finishing rolling mill has the following (A) to (D). The gist is to have one or more hole molds that are rolled multiple times to satisfy the formula.
(1-ff) × ΔLf / Lf0 <rf-rw ・ ・ ・ (A)
rf-rw <0.2 ... (B)
(1-ff) × ΔLf / Lf0 <rf-ra ・ ・ ・ (C)
rf-ra <0.2 ... (D)

本発明に係るハット形鋼矢板の製造方法及び製造設備によれば、孔型圧延によって被圧延材におけるフランジ相当部を長くする場合に腕相当部のフランジ相当部への引き込み変形を抑制するとともにフランジ波の発生を抑制することができるハット形鋼矢板の製造方法をすることができる。 According to the method and equipment for manufacturing a hat-shaped steel sheet pile according to the present invention, when the flange corresponding portion of the material to be rolled is lengthened by hole rolling, the arm corresponding portion is suppressed from being pulled into the flange corresponding portion and the flange is formed. A method for manufacturing a hat-shaped steel sheet pile that can suppress the generation of waves can be used.

本発明の一実施形態に係るハット形鋼矢板の製造方法が適用される形鋼圧延ラインの概略構成図である。It is a schematic block diagram of the shaped steel rolling line to which the manufacturing method of the hat shaped steel sheet pile which concerns on one Embodiment of this invention is applied. 図1に示す形鋼圧延ラインにおける中間圧延機に備えられる孔型を刻設した上圧延ロール及び下圧延ロールの一例を示す図である。It is a figure which shows an example of the upper rolling roll and the lower rolling roll which engraved the hole type provided in the intermediate rolling mill in the shaped steel rolling line shown in FIG. 1. 中間圧延機の1又は複数の孔型での複数回の圧延をする前(入側)の被圧延材の断面積と当該複数回の圧延をした後(出側)の被圧延材の断面積とを比較して示すもので、(A)は複数回の圧延をする前(入側)の被圧延材の断面積を説明するための断面図、(B)は当該複数回の圧延をした後(出側)の被圧延材の断面積を説明するための断面図である。Cross-sectional area of the material to be rolled before (inside) rolling multiple times in one or more hole molds of the intermediate rolling mill and cross-sectional area of the material to be rolled after the multiple rolling (outside) (A) is a cross-sectional view for explaining the cross-sectional area of the material to be rolled (on the entry side) before being rolled a plurality of times, and (B) is a cross-sectional view for explaining the cross-sectional area of the material to be rolled. It is sectional drawing for demonstrating the cross-sectional area of the material to be rolled of the rear (outside). 中間圧延機の1又は複数の孔型での複数回の圧延をする前(入側)の被圧延材の断面形状と、当該複数回の圧延をした後(出側)の被圧延材の断面形状とを比較して示すもので、(A)は複数回の圧延をする前(入側)の被圧延材の断面形状を示す断面図、(B)は当該複数回の圧延をした後(出側)の被圧延材の断面形状を示す断面図である。The cross-sectional shape of the material to be rolled before (inside) rolling multiple times in one or more hole molds of the intermediate rolling mill, and the cross section of the material to be rolled after the multiple rolling (outside). It is shown in comparison with the shape, (A) is a cross-sectional view showing the cross-sectional shape of the material to be rolled before (entry side) rolling a plurality of times, and (B) is after the multiple rolling times (B). It is sectional drawing which shows the cross-sectional shape of the material to be rolled (outside). ハット形鋼矢板の一例の断面図である。It is sectional drawing of an example of a hat-shaped steel sheet pile.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments. The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

図1には、本発明の一実施形態に係るハット形鋼矢板の製造方法が適用される形鋼圧延ラインの概略構成が示されている。
図1に示す形鋼圧延ライン1は、本発明の一実施形態に係る製造設備であり、ハット形鋼矢板101(図5参照)を製造する。形鋼圧延ライン1は、搬送テーブル2の上流側から下流側に向けて順に、加熱炉3、粗圧延機4、中間圧延機5、仕上圧延機6、及び複数台のホットソー7を備えている。
FIG. 1 shows a schematic configuration of a shaped steel rolling line to which the method for manufacturing a hat-shaped steel sheet pile according to an embodiment of the present invention is applied.
The shaped steel rolling line 1 shown in FIG. 1 is a manufacturing facility according to an embodiment of the present invention, and manufactures a hat-shaped steel sheet pile 101 (see FIG. 5). The shaped steel rolling line 1 includes a heating furnace 3, a rough rolling mill 4, an intermediate rolling mill 5, a finishing rolling mill 6, and a plurality of hot saws 7 in this order from the upstream side to the downstream side of the transport table 2. ..

粗圧延機4は、例えば1台設置され、加熱炉3で加熱されたスラブ等の被圧延材を、目標とする断面形状に近づけるように孔型圧延によって造形する。ここで、粗圧延機4には、図示しない1又は複数の孔型を刻設した上圧延ロール及び下圧延ロールが配設されており、被圧延材を当該孔型で複数回圧延する。
ここで、被圧延材は、ハット形鋼矢板101を製造する場合に圧延される鋼材を意味し、形鋼圧延ライン1によって製造される製品のハット形鋼矢板101のウェブ部102に相当するウェブ相当部と、フランジ部103に相当するフランジ相当部と、腕部104に相当する腕相当部と、継手部に相当する継手相当部とを備えている。
One rough rolling mill 4 is installed, for example, and a material to be rolled such as a slab heated in a heating furnace 3 is formed by hole rolling so as to approach a target cross-sectional shape. Here, the rough rolling mill 4 is provided with an upper rolling roll and a lower rolling roll in which one or a plurality of hole molds (not shown) are engraved, and the material to be rolled is rolled a plurality of times with the pore molds.
Here, the material to be rolled means a steel material to be rolled when the hat-shaped steel sheet pile 101 is manufactured, and the web corresponding to the web portion 102 of the hat-shaped steel sheet pile 101 of the product manufactured by the shaped steel rolling line 1. It includes a corresponding portion, a flange corresponding portion corresponding to the flange portion 103, an arm corresponding portion corresponding to the arm portion 104, and a joint corresponding portion corresponding to the joint portion.

図3(A)、図4(A)には、中間圧延機5で圧延する前(粗圧延後)の被圧延材51が示され、図3(B)、図4(B)には、中間圧延機5で圧延した後(中間圧延後)の被圧延材51が示されている。被圧延材51は、製品のハット形鋼矢板101のウェブ部102に相当するウェブ相当部52と、フランジ部103に相当するフランジ相当部53と、腕部104に相当する腕相当部54と、継手部105に相当する継手相当部55とを備えている。 3 (A) and 4 (A) show the material to be rolled 51 before rolling (after rough rolling) by the intermediate rolling mill 5, and FIGS. 3 (B) and 4 (B) show the material to be rolled. The material 51 to be rolled after being rolled by the intermediate rolling mill 5 (after intermediate rolling) is shown. The material 51 to be rolled includes a web corresponding portion 52 corresponding to the web portion 102 of the hat-shaped steel sheet pile 101 of the product, a flange corresponding portion 53 corresponding to the flange portion 103, and an arm corresponding portion 54 corresponding to the arm portion 104. It is provided with a joint corresponding portion 55 corresponding to the joint portion 105.

また、中間圧延機5は、例えば2台設置され、粗圧延機4によって造形された被圧延材51(図3(A)、図4(A)における被圧延材51)の全体の厚みを薄くするとともにさらに製品断面形状に近づけた被圧延材51(図3(B)、図4(B)における被圧延材51)とするように孔型圧延によって造形する。ここで中間圧延機5には、図2に示すように、1又は複数の孔型10を刻設した上圧延ロール11及び下圧延ロール12が配設されており、被圧延材51を当該孔型10で複数回圧延する。 Further, for example, two intermediate rolling mills 5 are installed to reduce the overall thickness of the material to be rolled 51 (material to be rolled 51 in FIGS. 3A and 4A) formed by the rough rolling mill 4. At the same time, the material to be rolled 51 (the material to be rolled 51 in FIGS. 3B and 4B) that is closer to the cross-sectional shape of the product is formed by hole rolling. Here, as shown in FIG. 2, the intermediate rolling mill 5 is provided with an upper rolling roll 11 and a lower rolling roll 12 in which one or a plurality of hole molds 10 are engraved, and the rolled material 51 is formed into the holes. Roll multiple times with the mold 10.

更に、仕上圧延機6は、例えば1台設置され、中間圧延機5によって造形された被圧延材を孔型圧延によって目標断面形状に造形する。
ここで、仕上圧延機6には、図示しない1又は複数の孔型を刻設した上圧延ロール及び下圧延ロールが配設されており、被圧延材51を当該孔型で複数回圧延する。
そして、ホットソー7では、仕上圧延機6で仕上圧延された被圧延材を所定の長さに切断し、これにより、ハット形鋼矢板101が製造される。
ここで、形鋼圧延ライン1におけるハット形鋼矢板101の孔型圧延では、被圧延材におけるウェブ相当部、フランジ相当部、腕部相当部の圧下のバランスが圧延後の断面形状に影響を与える。
Further, one finishing rolling mill 6 is installed, for example, and the material to be rolled formed by the intermediate rolling mill 5 is formed into a target cross-sectional shape by hole rolling.
Here, the finish rolling mill 6 is provided with an upper rolling roll and a lower rolling roll in which one or a plurality of hole molds (not shown) are engraved, and the material 51 to be rolled is rolled a plurality of times with the pore molds.
Then, in the hot saw 7, the material to be rolled, which has been finished and rolled by the finish rolling mill 6, is cut to a predetermined length, whereby the hat-shaped steel sheet pile 101 is manufactured.
Here, in the hole-shaped rolling of the hat-shaped steel sheet pile 101 in the shaped steel rolling line 1, the rolling balance of the web-corresponding portion, the flange-corresponding portion, and the arm-corresponding portion of the material to be rolled affects the cross-sectional shape after rolling. ..

特に、被圧延材におけるフランジ相当部の長さ(図4(A)には中間圧延機5での複数回圧延前のフランジ相当部53の長さLf0が示され、図4(B)には中間圧延機5での複数回圧延後のフランジ相当部53の長さLf1が示されている)を長くする場合には、フランジ相当部がフランジ幅方向(フランジ相当部が伸びる方向)に変形する必要がある。しかし、ウェブ相当部、フランジ相当部、及び腕相当部の圧下バランスによっては、フランジ相当部がフランジ幅方向に変形できずに圧下が不足し、フランジ相当部の圧下が不足した分だけ腕相当部及び継手相当部がフランジ相当部に引き込まれる現象が発生することがある。腕相当部及び継手相当部がフランジ相当部に引き込まれると、継手部が完全になくなるため、製品とすることができなくなる。 In particular, the length of the flange corresponding portion in the material to be rolled (FIG. 4 (A) shows the length Lf0 of the flange corresponding portion 53 before being rolled multiple times by the intermediate rolling mill 5, and FIG. 4 (B) shows the length Lf0. When the length Lf1 of the flange equivalent portion 53 after multiple rolling in the intermediate rolling mill 5 is lengthened), the flange equivalent portion is deformed in the flange width direction (the direction in which the flange equivalent portion extends). There is a need. However, depending on the reduction balance of the web equivalent part, the flange equivalent part, and the arm equivalent part, the flange equivalent part cannot be deformed in the flange width direction and the reduction is insufficient, and the arm equivalent part is insufficient due to the insufficient reduction of the flange equivalent part. In addition, the phenomenon that the joint corresponding part is pulled into the flange corresponding part may occur. When the arm corresponding part and the joint corresponding part are pulled into the flange corresponding part, the joint part completely disappears, and the product cannot be manufactured.

フランジ相当部を長くする場合においてフランジ相当部の圧下不足を解消し、フランジ相当部への腕相当部の引き込みを防止するためには、フランジ相当部の減面率を、ウェブ相当部の減面率及び腕相当部の減面率よりも大きくすればよい。
このため、本実施形態にあっては、中間圧延機5における1又は複数の孔型10で複数回の圧延により被圧延材51における入側のフランジ相当部53の長さより出側のフランジ相当部53の長さを長くする際に、フランジ相当部53の減面率を、ウェブ相当部52の減面率及び腕相当部54の減面率よりも大きくしている。
In order to eliminate the insufficient reduction of the flange equivalent part when lengthening the flange equivalent part and prevent the arm equivalent part from being pulled into the flange equivalent part, the reduction rate of the flange equivalent part is set to the reduction rate of the web equivalent part. It may be larger than the rate and the reduction rate of the arm corresponding part.
Therefore, in the present embodiment, the flange corresponding portion on the exit side from the length of the flange corresponding portion 53 on the entry side in the material 51 to be rolled is rolled by one or a plurality of hole molds 10 in the intermediate rolling mill 5 a plurality of times. When the length of 53 is increased, the reduction rate of the flange corresponding portion 53 is made larger than the reduction rate of the web corresponding portion 52 and the reduction rate of the arm corresponding portion 54.

ここで、図3(A)には、中間圧延機5の1又は複数の孔型10での複数回の圧延をする前(入側)の被圧延材51の断面積を説明するための断面図、図3(B)には、当該複数回の圧延をした後(出側)の被圧延材51の断面積を説明するための断面図が示されている。
圧延入側でのフランジ相当部53の断面積をAf0、圧延出側でのフランジ相当部53の断面積をAf1とすると、フランジ相当部53の減面率ηfは、次の(1)式のように表せる。
ηf=(Af0-Af1)/Af0 ・・・(1)
Here, FIG. 3A is a cross section for explaining the cross-sectional area of the material to be rolled 51 before (inside) rolling a plurality of times in one or a plurality of hole molds 10 of the intermediate rolling mill 5. FIG. 3B shows a cross-sectional view for explaining the cross-sectional area of the material to be rolled 51 after being rolled a plurality of times (outside).
Assuming that the cross-sectional area of the flange equivalent portion 53 on the rolling in side is Af0 and the cross-sectional area of the flange equivalent portion 53 on the rolling out side is Af1, the surface reduction rate ηf of the flange equivalent portion 53 is the following equation (1). Can be expressed as.
ηf = (Af0-Af1) / Af0 ... (1)

また、圧延入側でのウェブ相当部52の断面積をAw0、圧延出側でのウェブ相当部52の断面積をAw1とすると、ウェブ相当部52の減面率ηwは、次の(2)式のように表せる。
ηw=(Aw0-Aw1)/Aw0 ・・・(2)
更に、圧延入側での腕相当部54の断面積をAa0、圧延出側での腕相当部54の断面積をAa1とすると、腕相当部54の減面率ηaは、次の(3)式のように表せる。
ηa=(Aa0-Aa1)/Aa0 ・・・(3)
Further, assuming that the cross-sectional area of the web corresponding portion 52 on the rolling in side is Aw0 and the cross-sectional area of the web corresponding portion 52 on the rolling out side is Aw1, the surface reduction rate ηw of the web corresponding portion 52 is as follows (2). It can be expressed as an expression.
ηw = (Aw0-Aw1) / Aw0 ... (2)
Further, assuming that the cross-sectional area of the arm corresponding portion 54 on the rolling in side is Aa0 and the cross-sectional area of the arm corresponding portion 54 on the rolling out side is Aa1, the surface reduction rate ηa of the arm corresponding portion 54 is as follows (3). It can be expressed as an expression.
ηa = (Aa0-Aa1) / Aa0 ... (3)

腕相当部54の引き込み変形を防止するためには、前述したように、フランジ相当部53の減面率ηfを、ウェブ相当部52の減面率ηw及び腕相当部54の減面率ηaよりも大きくすればよい。
つまり、以下の(4)式及び(5)式が成立すればよい。
ηf-ηw>0 ・・・(4)
ηf-ηa>0 ・・・(5)
In order to prevent the arm equivalent portion 54 from being pulled in and deformed, as described above, the surface reduction rate ηf of the flange equivalent portion 53 is set from the surface reduction rate ηw of the web equivalent portion 52 and the surface reduction rate ηa of the arm equivalent portion 54. Should also be increased.
That is, it is sufficient that the following equations (4) and (5) are satisfied.
ηf-ηw> 0 ・ ・ ・ (4)
ηf-ηa> 0 ... (5)

次に、フランジ相当部53の減面率ηfをフランジ相当部53の圧下率rfで表す。
図4(A)には、中間圧延機5の1又は複数の孔型10での複数回の圧延をする前(入側)の被圧延材の断面形状を説明するための断面図、図4(B)には、当該複数回の圧延をした後(出側)の被圧延材の断面形状を説明するための断面図が示されている。
圧延入側のフランジ相当部53の厚みを図4(A)に示すようにtf0、圧延出側のフランジ相当部53の厚みを図4(B)に示すようにff1とすると、フランジ相当部53の圧下率rfは、次の(6)式のように表せる。
rf=(tf0-tf1)/tf0 ・・・(6)
Next, the surface reduction rate ηf of the flange corresponding portion 53 is represented by the reduction rate rf of the flange corresponding portion 53.
FIG. 4A is a cross-sectional view for explaining the cross-sectional shape of the material to be rolled before (inside) rolling a plurality of times in one or a plurality of hole molds 10 of the intermediate rolling mill 5. FIG. In (B), a cross-sectional view for explaining the cross-sectional shape of the material to be rolled (on the exit side) after being rolled a plurality of times is shown.
Assuming that the thickness of the flange corresponding portion 53 on the rolling in side is tf0 as shown in FIG. 4 (A) and the thickness of the flange corresponding portion 53 on the rolling out side is ff1 as shown in FIG. 4 (B), the flange corresponding portion 53 The rolling reduction ratio rf can be expressed by the following equation (6).
rf = (tf0-tf1) / tf0 ... (6)

圧延入側のフランジ相当部53の長さを図4(A)に示すようにLf0、圧延出側のフランジ相当部53の長さを図4(B)に示すようにLf1とすると、フランジ相当部53の減面率ηfは、次の(7)のように表せる。
ηf=(Lf0×tf0-Lf1×tf1)/(Lf0×tf0) ・・・(7)
この(7)式で表されるフランジ相当部53の減面率ηfと(6)式で表されるフランジ相当部53の圧下率rfとから、フランジ相当部の延伸量をΔLf(=Lf1-Lf0)を用いて、ηfをrfを使用して表すと、次の(8)式のようになる。
ηf=rf-ΔLf/Lf0×(1-rf) ・・・(8)
Assuming that the length of the flange corresponding portion 53 on the rolling in side is Lf0 as shown in FIG. 4 (A) and the length of the flange corresponding portion 53 on the rolling out side is Lf1 as shown in FIG. 4 (B), it corresponds to a flange. The reduction rate ηf of the part 53 can be expressed as the following (7).
ηf = (Lf0 × tf0-Lf1 × tf1) / (Lf0 × tf0) ... (7)
From the reduction rate ηf of the flange equivalent portion 53 represented by the equation (7) and the reduction rate rf of the flange equivalent portion 53 represented by the equation (6), the stretching amount of the flange equivalent portion is ΔLf (= Lf1-). When ηf is expressed using rf using Lf0), it becomes the following equation (8).
ηf = rf-ΔLf / Lf0 × (1-rf) ・ ・ ・ (8)

次に、ウェブ相当部52の減面率ηwをウェブ相当部52の圧下率rwで表す。
圧延入側のウェブ相当部52の厚みを図4(A)に示すようにtw0、圧延出側のウェブ相当部52の厚みを図4(B)に示すようにtw1とすると、ウェブ相当部52の圧下率rwは、次のように表せる。
rw=(tw0-tw1)/tw0 ・・・(9)
圧延入側のウェブ相当部52の長さを図4(A)に示すようにLw0、圧延出側のウェブ相当部52の長さを図4(B)に示すようにLw1とすると、ウェブ相当部52の減面率ηwは、次の(10)式のように表せる。
ηw=(Lw0×tw0-Lw1×tw1)/(Lw0×tw0) ・・・(10)
Next, the reduction rate ηw of the web corresponding portion 52 is represented by the reduction rate rw of the web corresponding portion 52.
Assuming that the thickness of the web corresponding portion 52 on the rolling in side is tw0 as shown in FIG. 4 (A) and the thickness of the web corresponding portion 52 on the rolling out side is tw1 as shown in FIG. 4 (B), the web corresponding portion 52 The rolling reduction rate rw can be expressed as follows.
rw = (tw0-tw1) / tw0 ... (9)
When the length of the web corresponding portion 52 on the rolling in side is Lw0 as shown in FIG. 4 (A) and the length of the web corresponding portion 52 on the rolling out side is Lw1 as shown in FIG. 4 (B), it corresponds to the web. The rolling reduction rate ηw of the portion 52 can be expressed by the following equation (10).
ηw = (Lw0 × tw0-Lw1 × tw1) / (Lw0 × tw0) ・ ・ ・ (10)

ここで、ウェブ相当部52の長さ変化は、フランジ相当部53の長さ変化に対して小さいので、Lw0=Lw1と仮定でき、ηwをrwで表すと、次の(11)式のようになる。
ηw=rw ・・・(11)
また、腕相当部54の減面率ηaを腕相当部54の圧下率raで表す。
圧延入側の腕相当部54の厚みを図4(A)に示すようにta0、圧延出側の腕相当部54の厚みを図4(B)に示すようにta1とすると、腕相当部54の圧下率raは、次の(12)式のように表せる。
ra=(ta0-ta1)/ta0 ・・・(12)
Here, since the length change of the web corresponding portion 52 is smaller than the length change of the flange corresponding portion 53, it can be assumed that Lw0 = Lw1, and ηw is expressed by rw as shown in the following equation (11). Become.
ηw = rw ・ ・ ・ (11)
Further, the reduction rate ηa of the arm corresponding portion 54 is represented by the reduction rate ra of the arm corresponding portion 54.
Assuming that the thickness of the arm corresponding portion 54 on the rolling entry side is ta0 as shown in FIG. 4 (A) and the thickness of the arm corresponding portion 54 on the rolling out side is ta1 as shown in FIG. 4 (B), the arm corresponding portion 54 The rolling reduction rate ra can be expressed by the following equation (12).
ra = (ta0-ta1) / ta0 ... (12)

圧延入側の腕相当部54の長さを図4(A)に示すようにLa0、圧延出側の腕相当部54の長さを図4(B)に示すようにLa1とすると、腕相当部54の減面率ηaは、次の(13)式のように表せる。
ηw=(La0×ta0-La1×ta1)/(La0×ta0) ・・・(13)
ここで、腕相当部54の長さ変化は、フランジ相当部53の長さ変化に対して小さいので、La0=La1と仮定でき、ηaをraで表すと、次の(14)式ようになる。
ηa=ra ・・・(14)
そして、(4)式、(8)式及び(11)式から、次の(A)式が算出される。
(1-rf)×ΔLf/Lf0<rf-rw ・・・(A)
また、(5)式、(8)式及び(14)式から、次の(C)式が算出される。
(1-rf)×ΔLf/Lf0<rf-ra ・・・(C)
Assuming that the length of the arm corresponding portion 54 on the rolling entry side is La0 as shown in FIG. 4 (A) and the length of the arm corresponding portion 54 on the rolling out side is La1 as shown in FIG. 4 (B), it corresponds to the arm. The rolling reduction rate ηa of the portion 54 can be expressed by the following equation (13).
ηw = (La0 × ta0-La1 × ta1) / (La0 × ta0) ・ ・ ・ (13)
Here, since the change in the length of the arm corresponding portion 54 is smaller than the change in the length of the flange corresponding portion 53, it can be assumed that La0 = La1, and ηa is expressed by ra as the following equation (14). ..
ηa = ra ・ ・ ・ (14)
Then, the following equation (A) is calculated from the equations (4), (8) and (11).
(1-rf) × ΔLf / Lf0 <rf-rw ・ ・ ・ (A)
Further, the following equation (C) is calculated from the equations (5), (8) and (14).
(1-rf) × ΔLf / Lf0 <rf-ra ・ ・ ・ (C)

従って、本実施形態に係るハット形鋼矢板の製造方法にあっては、中間圧延機5における1又は複数の孔型10で複数回の圧延により被圧延材51における圧延入側のフランジ相当部53の長さより圧延出側のフランジ相当部53の長さを長くする。この際に、被圧延材51における腕相当部54の圧下率をra、被圧延材51におけるウェブ相当部52の圧下率をrw、被圧延材51におけるフランジ相当部53の圧下率をrf、圧延入側のフランジ相当部53の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、前述の(A)式及び(C)式を満足するように圧延する。 Therefore, in the method for manufacturing a hat-shaped steel sheet pile according to the present embodiment, the flange corresponding portion 53 on the rolling-in side of the material to be rolled 51 is rolled by rolling a plurality of times with one or a plurality of hole molds 10 in the intermediate rolling mill 5. The length of the flange corresponding portion 53 on the rolling out side is made longer than the length of. At this time, the rolling ratio of the arm corresponding portion 54 in the material 51 to be rolled is ra, the reduction ratio of the web corresponding portion 52 in the material 51 to be rolled is rf, the reduction ratio of the flange corresponding portion 53 in the material 51 to be rolled is rf, and rolling. When the length of the flange corresponding portion 53 on the entry side is Lf0 and the stretching amount of the flange corresponding portion is ΔLf, rolling is performed so as to satisfy the above-mentioned equations (A) and (C).

また、本実施形態に係るハット形鋼矢板の製造設備(形鋼圧延ライン1)にあっては、中間圧延機5における1又は複数の孔型10では、被圧延材51における腕相当部54の圧下率をra、被圧延材51におけるウェブ相当部52の圧下率をrw、被圧延材51におけるフランジ相当部53の圧下率をrf、圧延入側のフランジ相当部53の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、前述の(A)式及び(C)式を満足するように複数回圧延する。
これにより、フランジ相当部53を長くする場合において、フランジ相当部53の減面率ηfを、ウェブ相当部52の減面率ηw及び腕相当部54の減面率ηaよりも大きくし、フランジ相当部53の圧下不足を解消し、フランジ相当部53への腕相当部54の引き込みを抑制することができる。
Further, in the hat-shaped steel sheet pile manufacturing equipment (shaped steel rolling line 1) according to the present embodiment, in one or a plurality of hole molds 10 in the intermediate rolling mill 5, the arm corresponding portion 54 in the rolled material 51 The rolling ratio is ra, the rolling ratio of the web equivalent portion 52 in the material 51 to be rolled is rw, the rolling ratio of the flange corresponding portion 53 in the material 51 to be rolled is rf, the length of the flange corresponding portion 53 on the rolling entry side is Lf0, and the flange. When the stretching amount of the corresponding portion is ΔLf, rolling is performed a plurality of times so as to satisfy the above-mentioned formulas (A) and (C).
As a result, when the flange equivalent portion 53 is lengthened, the surface reduction rate ηf of the flange equivalent portion 53 is made larger than the surface reduction rate ηw of the web equivalent portion 52 and the surface reduction rate ηa of the arm equivalent portion 54, which is equivalent to the flange. It is possible to eliminate the insufficient reduction of the portion 53 and suppress the pulling of the arm corresponding portion 54 into the flange corresponding portion 53.

なお、腕相当部54のこの引き込み変形は、フランジ相当部53とウェブ相当部52とのなす角及びフランジ相当部53と腕相当部54とのなす角の影響を受けることが実操業から分かっており、フランジ相当部53とウェブ相当部52とのなす角、フランジ相当部53と腕相当部54とのなす角が大きいほど引き込み変形を起こしやすい。特に、当該角が50度以上のときには、腕相当部54の引き込み変形を起こしやすく、フランジ相当部53をウェブ相当部52及び腕相当部54よりも大きく圧下する必要がある。 It has been found from actual operation that this retracting deformation of the arm equivalent portion 54 is affected by the angle formed by the flange equivalent portion 53 and the web equivalent portion 52 and the angle formed by the flange equivalent portion 53 and the arm equivalent portion 54. The larger the angle between the flange-corresponding portion 53 and the web-corresponding portion 52 and the angle between the flange-corresponding portion 53 and the arm-corresponding portion 54, the more easily pull-in deformation occurs. In particular, when the angle is 50 degrees or more, the arm corresponding portion 54 is likely to be retracted and deformed, and the flange corresponding portion 53 needs to be pressed more than the web corresponding portion 52 and the arm corresponding portion 54.

また、フランジ相当部53を長くする場合において、フランジ相当部53への腕相当部54の引き込みを防止できたとしても、フランジ相当部53の減面率ηfが、ウェブ相当部52の減面率ηw及び腕相当部54の減面率ηaに対して大きすぎる場合には、フランジ相当部53のみが圧延方向に伸長し、フランジ相当部53が波打つフランジ波と呼ばれる不良が発生する。 Further, when the flange equivalent portion 53 is lengthened, even if the arm corresponding portion 54 can be prevented from being pulled into the flange equivalent portion 53, the surface reduction rate ηf of the flange equivalent portion 53 is the surface reduction rate of the web equivalent portion 52. If the surface reduction rate ηa of the ηw and the arm corresponding portion 54 is too large, only the flange corresponding portion 53 extends in the rolling direction, and a defect called a flange wave in which the flange corresponding portion 53 undulates occurs.

このため、本実施形態に係るハット形鋼矢板の製造方法にあっては、中間圧延機5における1又は複数の孔型10で複数回の圧延によりフランジ相当部53の長さを長くする際に、前述の(A)式及び(C)式に加えて、フランジ波の発生限界となるフランジ相当部53の圧下率rfとウェブ相当部52の圧下率rwとの差をαw、フランジ波の発生限界となるフランジ相当部53の圧下率rfと腕相当部54の圧下率raとの差をαaとしたときに、次の(B)式及び(D)式を満たすように圧延する。
rf-rw<αw ・・・(B)
rf-ra<αa ・・・(D)
Therefore, in the method for manufacturing a hat-shaped steel sheet pile according to the present embodiment, when the length of the flange corresponding portion 53 is lengthened by rolling a plurality of times with one or a plurality of hole molds 10 in the intermediate rolling mill 5. In addition to the above-mentioned equations (A) and (C), the difference between the rolling reduction ratio rf of the flange corresponding portion 53 and the rolling reduction ratio rf of the web corresponding portion 52, which is the limit of flange wave generation, is αw, and the flange wave is generated. When the difference between the rolling reduction ratio rf of the flange corresponding portion 53 and the rolling reduction ratio ra of the arm corresponding portion 54, which is the limit, is αa, rolling is performed so as to satisfy the following equations (B) and (D).
rf-rw <αw ・ ・ ・ (B)
rf-ra <αa ・ ・ ・ (D)

また、本実施形態に係るハット形鋼矢板の製造設備(形鋼圧延ライン1)にあっては、中間圧延機5における1又は複数の孔型10では、前述の(A)式及び(C)式に加えて、フランジ波の発生限界となるフランジ相当部53の圧下率rfとウェブ相当部52の圧下率rwとの差をαw、フランジ波の発生限界となるフランジ相当部53の圧下率rfと腕相当部54の圧下率raとの差をαaとしたときに、前述の(B)式及び(D)式を満たすように複数回圧延する。
これにより、フランジ波の発生を抑制することができる。
Further, in the hat-shaped steel sheet pile manufacturing facility (shaped steel rolling line 1) according to the present embodiment, in the one or more hole molds 10 in the intermediate rolling mill 5, the above-mentioned formulas (A) and (C) are used. In addition to the equation, the difference between the rolling reduction ratio rf of the flange equivalent portion 53, which is the generation limit of the flange wave, and the rolling reduction ratio rn of the web equivalent portion 52 is αw, and the rolling reduction ratio rf of the flange equivalent portion 53, which is the generation limit of the flange wave. When the difference between the rolling ratio ra and the rolling reduction ratio ra of the arm corresponding portion 54 is αa, rolling is performed a plurality of times so as to satisfy the above-mentioned equations (B) and (D).
This makes it possible to suppress the generation of flange waves.

なお、これまでの操業実績から、フランジ波の発生限界となるフランジ相当部53の圧下率rfとウェブ相当部52の圧下率rwとの差αw、及びフランジ波の発生限界となるフランジ相当部53の圧下率rfと腕相当部54の圧下率raとの差αaはともに0.2であることが分かっている。
従って、rf-rw及びrf-raは共に0.2未満を満たせばよく、(B)式はrf-rw<0.2、(D)式はrf-ra<0.2となる。
また、rf-rw及びrf-raが共に0.1未満であることがより望ましく、rf-rw<0.1…(E)、rf-ra<0.1…(F)を満たすように圧延することがより好ましい。
From the operation results so far, the difference αw between the reduction rate rf of the flange equivalent portion 53, which is the limit of flange wave generation, and the reduction rate rn of the web equivalent portion 52, and the flange equivalent portion 53, which is the flange wave generation limit. It is known that the difference αa between the reduction rate rf and the reduction rate ra of the arm corresponding portion 54 is 0.2.
Therefore, both rf-rw and rf-ra need to satisfy less than 0.2, and the formula (B) is rf-rw <0.2 and the formula (D) is rf-ra <0.2.
Further, it is more desirable that both rf-rw and rf-ra are less than 0.1, and rolling is performed so as to satisfy rf-rw <0.1 ... (E) and rf-ra <0.1 ... (F). It is more preferable to do so.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、被圧延材における圧延入側のフランジ相当部の長さより圧延出側のフランジ相当部の長さを長くする複数回の圧延は、中間圧延機5における1又は複数の孔型10で行う場合に限らない。フランジ相当部を長くする複数回の圧延は、粗圧延機4における1又は複数の孔型で行っても、仕上圧延機6における1又は複数の孔型で行っても、粗圧延機4及び中間圧延機5における1又は複数の孔型で行っても、中間圧延機5及び仕上圧延機6における1又は複数の孔型で行っても、粗圧延機4、中間圧延機5及び仕上圧延機6における1又は複数の孔型で行ってもよい。但し、いずれの場合においても、前述の(A)~(D)式を満足するように圧延することが必要である。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various changes and improvements can be made.
For example, when a plurality of rolling times in which the length of the flange corresponding portion on the rolling out side is made longer than the length of the flange corresponding portion on the rolling in side of the material to be rolled is performed by one or a plurality of hole molds 10 in the intermediate rolling mill 5. Not limited to. Whether the multiple rollings for lengthening the flange corresponding portion are performed with one or more hole molds in the rough rolling mill 4 or with one or more hole molds in the finish rolling mill 6, the rough rolling mill 4 and the intermediate rolls are performed. Whether it is performed with one or more hole molds in the rolling mill 5, or with one or more hole molds in the intermediate rolling mill 5 and the finish rolling mill 6, the rough rolling mill 4, the intermediate rolling mill 5 and the finishing rolling mill 6 are used. It may be performed with one or more hole types in. However, in any case, it is necessary to roll so as to satisfy the above-mentioned formulas (A) to (D).

形鋼圧延ライン1によってハット形鋼矢板101を圧延した。そして、粗圧延機4における1又は複数の孔型での複数回の圧延により被圧延材における圧延入側のフランジ相当部の長さより圧延出側のフランジ相当部の長さを長くした。フランジ相当部の長さを長くする際の比較例1~比較例3及び実施例の圧延条件を表1に示す。 The hat-shaped steel sheet pile 101 was rolled by the shaped steel rolling line 1. Then, by rolling the rough rolling mill 4 a plurality of times with one or a plurality of hole molds, the length of the flange corresponding portion on the rolling out side was made longer than the length of the flange corresponding portion on the rolling in side of the material to be rolled. Table 1 shows the rolling conditions of Comparative Examples 1 to 3 and Examples when increasing the length of the flange corresponding portion.

Figure 2022018937000002
Figure 2022018937000002

また、表1に示す圧延条件から算出される比較例1~比較例3及び実施例のウェブ相当部、フランジ相当部、及び腕相当部の圧下率(%)等及び比較例1~比較例3及び実施例の圧延条件で圧延した場合の引き込み変形とフランジ波の発生結果を表2に示す。 Further, the rolling reduction ratio (%) of the web equivalent portion, the flange equivalent portion, and the arm equivalent portion of Comparative Examples 1 to 3 and Examples calculated from the rolling conditions shown in Table 1 and Comparative Examples 1 to 3 Table 2 shows the results of pull-in deformation and flange wave generation when rolling under the rolling conditions of the examples.

Figure 2022018937000003
Figure 2022018937000003

表2において、I1-1は、フランジ相当部の圧下率をrf、ウェブ相当部の圧下率をrwとしたときの次式で表される圧下率差(%)、I1-2は、フランジ相当部の圧下率をrf、腕相当部の圧下率をraとしたときの次式で表される圧下率差(%)である。
I1-1=rf-rw
I1-2=rf-ra
また、表2において、I2は、フランジ相当部の圧下率をrf、圧延入側のフランジ相当部の長さをLf0、フランジ相当部の延伸量をΔLfとしたときの次式で示される値(%)である。
I2=(1-ff)×ΔLf/Lf0
In Table 2, I1-1 is the reduction rate difference (%) expressed by the following equation when the reduction rate of the flange equivalent portion is rf and the reduction rate of the web equivalent portion is rf, and I1-2 is the flange equivalent. It is the reduction rate difference (%) expressed by the following equation when the reduction rate of the portion is rf and the reduction rate of the arm corresponding portion is ra.
I1-1 = rf-rw
I1-2 = rf-ra
Further, in Table 2, I2 is a value represented by the following equation when the reduction ratio of the flange equivalent portion is rf, the length of the flange equivalent portion on the rolling entry side is Lf0, and the stretching amount of the flange equivalent portion is ΔLf. %).
I2 = (1-ff) × ΔLf / Lf0

判定結果として、I1-1>I2のとき(前述した(A)式を満たすとき)ときはOK、I1-2>I2のとき(前述した(C)式を満たすとき)はOK、I1-1≦I2のときはNG、I1-2≦I2のときはNG、I1-1<αw(αw=0.2)のとき(前述した(B)式を満たすとき)はOK、I1-2<αa(αa=0.2)のとき(前述した(D)式を満たすとき)はOK、I1-1≧αw(αw=0.2)のとき(前述した(B)式を満たさないとき)はNG、I1-2≧αa(αa=0.2)のとき(前述した(D)式を満たさないとき)はNGとした。 As a judgment result, when I1-1> I2 (when the above-mentioned formula (A) is satisfied), it is OK, and when I1-2> I2 (when the above-mentioned formula (C) is satisfied), it is OK, I1-1. NG when ≤I2, NG when I1-2≤I2, OK when I1-1 <αw (αw = 0.2) (when the above-mentioned equation (B) is satisfied), I1-2 <αa When (αa = 0.2) (when the above-mentioned equation (D) is satisfied) is OK, and when I1-1 ≧ αw (αw = 0.2) (when the above-mentioned equation (B) is not satisfied) When NG, I1-2 ≧ αa (αa = 0.2) (when the above-mentioned equation (D) is not satisfied), it was NG.

比較例1は、ウェブ相当部の出側の厚みを、他の比較例2、比較例3、及び実施例におけるウェブ相当部の出側の厚みよりも薄くして、フランジ相当部の圧下率とウェブ相当部の圧下率との差を小さくした条件である。比較例1では、表3からわかるように、ウェブ相当部でI2>I1-1((A)式を満たさない)であり、判定結果はNGとなっている。 In Comparative Example 1, the thickness of the protruding side of the web-corresponding portion is made thinner than the thickness of the protruding side of the web-corresponding portion in the other Comparative Examples 2, Comparative Example 3, and Examples, and the reduction rate of the flange-corresponding portion is used. It is a condition that the difference from the reduction rate of the web equivalent part is small. In Comparative Example 1, as can be seen from Table 3, I2> I1-1 (does not satisfy the formula (A)) in the web corresponding portion, and the determination result is NG.

比較例2は、腕相当部の出側の厚みを、他の比較例1、比較例3、及び実施例における腕相当部の出側の厚みよりも薄くして、フランジ相当部の圧下率と腕相当部の圧下率との差を小さくした条件である。比較例2では、表3からわかるように、腕相当部でI2>I1-2((C)式を満たさない)であり、判定結果はNGとなっている。 In Comparative Example 2, the thickness of the protruding side of the arm corresponding portion is made thinner than the thickness of the protruding side of the arm corresponding portion in the other Comparative Examples 1, Comparative Example 3, and Examples, and the reduction rate of the flange corresponding portion is obtained. It is a condition that the difference from the reduction rate of the arm corresponding part is small. In Comparative Example 2, as can be seen from Table 3, I2> I1-2 (does not satisfy the equation (C)) in the arm corresponding portion, and the determination result is NG.

比較例3は、フランジ相当部の出側の厚みを、他の比較例1、比較例2、及び実施例におけるフランジ相当部の出側の厚みよりも極端に薄くして、フランジ相当部の圧下率を極端に大きくした条件である。比較例3では、表3からわかるように、ウェブ相当部でI1-1>αw(αw=0.2)((B)式を満たさない)、腕相当部でI1-2>αa(αa=0.2)((D)式を満たさない)であり、判定結果はNGとなっている。 In Comparative Example 3, the thickness of the protruding side of the flange corresponding portion is made extremely thinner than the thickness of the protruding side of the flange corresponding portion in the other Comparative Examples 1, Comparative Example 2, and Examples, and the flange corresponding portion is reduced. This is a condition in which the rate is extremely increased. In Comparative Example 3, as can be seen from Table 3, I1-1> αw (αw = 0.2) (does not satisfy the formula (B)) in the web corresponding part, and I1-2> αa (αa =) in the arm corresponding part. 0.2) (does not satisfy equation (D)), and the determination result is NG.

また、実施例は、I1-1>I2、I1-2>I2、I1-1<αw(αw=0.2)、I1-2<αa(αa=0.2)を満たすように、ウェブ相当部、フランジ相当部、及び腕相当部の入側及び出側の厚みを設定した条件である。ウェブ相当部及び腕相当部で判定結果はOKである。
そして、比較例1では引き込み変形が発生し、比較例2でも引き込み変形が発生した。比較例3では、引き込み変形は発生しなかったが、フランジ波が発生した。
Further, the examples correspond to the web so as to satisfy I1-1> I2, I1-2> I2, I1-1 <αw (αw = 0.2), and I1-2 <αa (αa = 0.2). It is a condition that the thickness of the entrance side and the exit side of the portion, the flange equivalent portion, and the arm equivalent portion is set. The judgment result is OK in the web corresponding part and the arm corresponding part.
Then, the pull-in deformation occurred in Comparative Example 1, and the pull-in deformation occurred in Comparative Example 2. In Comparative Example 3, the pull-in deformation did not occur, but the flange wave was generated.

一方、実施例では、引き込み変形もフランジ波も発生しなかった。
実施例により、粗圧延機4における1又は複数の孔型で複数回の圧延により被圧延材における圧延入側のフランジ相当部の長さより圧延出側のフランジ相当部の長さを長くする際に、(A)式~(D)式を満足するように圧延することで、引き込み変形を抑制できるとともにフランジ波の発生を抑制できることが確認できた。
On the other hand, in the embodiment, neither pull-in deformation nor flange wave occurred.
According to the embodiment, when the length of the flange corresponding portion on the rolling out side is made longer than the length of the flange corresponding portion on the rolling in side of the material to be rolled by rolling a plurality of times with one or more hole molds in the rough rolling mill 4. , It was confirmed that by rolling to satisfy the equations (A) to (D), the pull-in deformation can be suppressed and the generation of flange waves can be suppressed.

1 形鋼圧延ライン
2 搬送テーブル
3 加熱炉
4 粗圧延機
5 中間圧延機
6 仕上圧延機
7 ホットソー
10 孔型
11 上圧延ロール
12 下圧延ロール
51 被圧延材
52 ウェブ相当部
53 フランジ相当部
54 腕相当部
55 継手相当部
101 ハット形鋼矢板
102 ウェブ部
103 フランジ部
104 腕部
105 継手部
1 Shaped steel rolling line 2 Transfer table 3 Heating furnace 4 Rough rolling machine 5 Intermediate rolling machine 6 Finishing rolling machine 7 Hot saw 10 Hole type 11 Top rolling roll 12 Bottom rolling roll 51 Rolled material 52 Web equivalent part 53 Flange equivalent part 54 Arm Corresponding part 55 Joint equivalent part 101 Hat-shaped steel sheet pile 102 Web part 103 Flange part 104 Arm part 105 Joint part

Claims (4)

ウェブ部、該ウェブ部の両端に設けられた一対のフランジ部、該一対のフランジ部の各々の先端に設けられた一対の腕部、該一対の腕部の各々の先端に設けられた2つの継手部を有するハット形鋼矢板を、粗圧延機、中間圧延機、及び仕上圧延機の各々における1又は複数の孔型での複数回の圧延によって製造するハット形鋼矢板の製造方法であって、
複数回の圧延により被圧延材における圧延入側のフランジ相当部の長さより圧延出側のフランジ相当部の長さを長くする際に、被圧延材における腕相当部の圧下率をra、被圧延材におけるウェブ相当部の圧下率をrw、被圧延材におけるフランジ相当部の圧下率をrf、圧延入側のフランジ相当部の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、次の(A)~(D)式を満たすように圧延することを特徴とするハット形鋼矢板の製造方法。
(1-ff)×ΔLf/Lf0<rf-rw ・・・(A)
rf-rw<0.2 ・・・(B)
(1-ff)×ΔLf/Lf0<rf-ra ・・・(C)
rf-ra<0.2 ・・・(D)
A web portion, a pair of flange portions provided at both ends of the web portion, a pair of arm portions provided at the tips of each of the pair of flange portions, and two provided at the tips of each of the pair of arm portions. A method for manufacturing a hat-shaped steel sheet pile having a joint portion by rolling the hat-shaped steel sheet pile having a joint portion a plurality of times in one or more hole molds in each of a rough rolling mill, an intermediate rolling mill, and a finish rolling mill. ,
When the length of the part corresponding to the flange on the rolled out side is made longer than the length of the part corresponding to the flange on the rolling in side of the material to be rolled by rolling multiple times, the rolling reduction ratio of the part corresponding to the arm in the material to be rolled is ra. When the rolling reduction of the web-corresponding part of the material is rf, the rolling of the flange-corresponding part of the material to be rolled is rf, the length of the flange-corresponding part on the rolling-in side is Lf0, and the stretching amount of the flange-corresponding part is ΔLf. A method for manufacturing a hat-shaped steel sheet pile, which comprises rolling so as to satisfy the following formulas (A) to (D).
(1-ff) × ΔLf / Lf0 <rf-rw ・ ・ ・ (A)
rf-rw <0.2 ... (B)
(1-ff) × ΔLf / Lf0 <rf-ra ・ ・ ・ (C)
rf-ra <0.2 ... (D)
被圧延材における腕相当部の圧下率ra、被圧延材におけるウェブ相当部の圧下率rw、及び被圧延材におけるフランジ相当部の圧下率rfが、さらに次の(E)、(F)式を満たすように圧延することを特徴とする請求項1に記載のハット形鋼矢板の製造方法。
rf-rw<0.1 ・・・(E)
rf-ra<0.1 ・・・(F)
The reduction rate ra of the arm corresponding part in the material to be rolled, the reduction rate rf of the web corresponding part in the material to be rolled, and the reduction rate rf of the flange corresponding part in the material to be rolled further have the following equations (E) and (F). The method for manufacturing a hat-shaped steel sheet pile according to claim 1, wherein the product is rolled so as to satisfy the requirements.
rf-rw <0.1 ... (E)
rf-ra <0.1 ... (F)
ウェブ部、該ウェブ部の両端に設けられた一対のフランジ部、該一対のフランジ部の各々の先端に設けられた一対の腕部、該一対の腕部の各々の先端に設けられた2つの継手部を有するハット形鋼矢板を製造するハット形鋼矢板の製造設備であって、
粗圧延機、中間圧延機、及び仕上圧延機を備え、
被圧延材における腕相当部の圧下率をra、被圧延材におけるウェブ相当部の圧下率をrw、被圧延材におけるフランジ相当部の圧下率をrf、圧延入側のフランジ相当部の長さをLf0、フランジ相当部の延伸量をΔLfとしたときに、粗圧延機、中間圧延機、及び仕上圧延機の少なくとも1つの圧延機は、次の(A)~(D)式を満たすように複数回圧延する1又は複数の孔型を有することを特徴とするハット形鋼矢板の製造設備。
(1-ff)×ΔLf/Lf0<rf-rw ・・・(A)
rf-rw<0.2 ・・・(B)
(1-ff)×ΔLf/Lf0<rf-ra ・・・(C)
rf-ra<0.2 ・・・(D)
A web portion, a pair of flange portions provided at both ends of the web portion, a pair of arm portions provided at the tips of each of the pair of flange portions, and two provided at the tips of each of the pair of arm portions. It is a manufacturing facility for hat-shaped steel sheet piles that manufactures hat-shaped steel sheet piles with joints.
Equipped with a rough rolling mill, an intermediate rolling mill, and a finishing rolling mill,
The reduction rate of the arm corresponding part in the material to be rolled is ra, the reduction rate of the web equivalent part in the material to be rolled is rf, the reduction rate of the flange equivalent part in the material to be rolled is rf, and the length of the flange corresponding part on the rolling entry side is When Lf0 and the stretching amount of the flange corresponding portion are ΔLf, at least one rolling mill of the rough rolling mill, the intermediate rolling mill, and the finish rolling mill shall satisfy the following formulas (A) to (D). A hat-shaped steel sheet pile manufacturing facility characterized by having one or more hole types to be rolled.
(1-ff) × ΔLf / Lf0 <rf-rw ・ ・ ・ (A)
rf-rw <0.2 ... (B)
(1-ff) × ΔLf / Lf0 <rf-ra ・ ・ ・ (C)
rf-ra <0.2 ... (D)
前記1又は複数の孔型では、被圧延材における腕相当部の圧下率ra、被圧延材におけるウェブ相当部の圧下率rw、及び被圧延材におけるフランジ相当部の圧下率rfが、さらに次の(E)、(F)式を満たすように複数回圧延することを特徴とする請求項3に記載のハット形鋼矢板の製造設備。
rf-rw<0.1 ・・・(E)
rf-ra<0.1 ・・・(F)
In the one or more hole types, the reduction rate ra of the arm corresponding portion in the material to be rolled, the reduction rate rf of the web corresponding part in the material to be rolled, and the reduction rate rf of the flange corresponding part in the material to be rolled are further as follows. The equipment for manufacturing a hat-shaped steel sheet pile according to claim 3, wherein the rolling sheet is rolled a plurality of times so as to satisfy the equations (E) and (F).
rf-rw <0.1 ... (E)
rf-ra <0.1 ... (F)
JP2020122394A 2020-07-16 2020-07-16 Hat-shaped steel sheet pile manufacturing method and manufacturing equipment Active JP7235014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020122394A JP7235014B2 (en) 2020-07-16 2020-07-16 Hat-shaped steel sheet pile manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020122394A JP7235014B2 (en) 2020-07-16 2020-07-16 Hat-shaped steel sheet pile manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2022018937A true JP2022018937A (en) 2022-01-27
JP7235014B2 JP7235014B2 (en) 2023-03-08

Family

ID=80203509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122394A Active JP7235014B2 (en) 2020-07-16 2020-07-16 Hat-shaped steel sheet pile manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7235014B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144497A (en) * 2003-11-14 2005-06-09 Jfe Steel Kk Rough rolling roll and rough rolling method used for manufacturing steel sheet pile having projected line on joint
JP2006088176A (en) * 2004-09-22 2006-04-06 Jfe Steel Kk Method for manufacturing hat shape steel sheet pile
JP2018090845A (en) * 2016-11-30 2018-06-14 Jfeスチール株式会社 Steel sheet pile and method for manufacturing the same
JP2019038014A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Method for manufacturing steel sheet pile having flange
JP2019042806A (en) * 2017-09-06 2019-03-22 新日鐵住金株式会社 Hat-shaped steel sheet pile manufacturing method and rolling machine
JP2019188457A (en) * 2018-04-27 2019-10-31 Jfeスチール株式会社 Device for and method of producing steel sheet pile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144497A (en) * 2003-11-14 2005-06-09 Jfe Steel Kk Rough rolling roll and rough rolling method used for manufacturing steel sheet pile having projected line on joint
JP2006088176A (en) * 2004-09-22 2006-04-06 Jfe Steel Kk Method for manufacturing hat shape steel sheet pile
JP2018090845A (en) * 2016-11-30 2018-06-14 Jfeスチール株式会社 Steel sheet pile and method for manufacturing the same
JP2019038014A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Method for manufacturing steel sheet pile having flange
JP2019042806A (en) * 2017-09-06 2019-03-22 新日鐵住金株式会社 Hat-shaped steel sheet pile manufacturing method and rolling machine
JP2019188457A (en) * 2018-04-27 2019-10-31 Jfeスチール株式会社 Device for and method of producing steel sheet pile

Also Published As

Publication number Publication date
JP7235014B2 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2016148030A1 (en) H-shaped steel production method
JP2019111584A (en) Rolled H-shaped steel
CN109562420B (en) Method for manufacturing H-shaped steel
JP2022018937A (en) Hat-shaped steel sheet pile manufacturing method and manufacturing equipment
JP5347912B2 (en) Thick steel plate manufacturing method
JP2023173278A (en) Method and facility for manufacturing hat-shaped steel sheet pile
JP5037418B2 (en) Rolling method for section steel with flange
JP6565691B2 (en) H-section steel manufacturing method and H-section steel products
JP6446716B2 (en) Manufacturing method of H-section steel
JP6597321B2 (en) H-section steel manufacturing method and H-section steel products
JP6855885B2 (en) H-section steel manufacturing method and H-section steel products
JP3496554B2 (en) Manufacturing method of channel steel, rough universal rolling mill and finish universal rolling mill
JP4167572B2 (en) Rough rolling method for H-section steel
JP3339466B2 (en) H-section steel and its rolling method
JP7231882B2 (en) Hat-shaped steel sheet pile manufacturing method and rolling mill
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JP2017205785A (en) H-shaped steel manufacturing method
JP3658433B2 (en) Rolling method of continuous joint shape steel
JP3389831B2 (en) Rolling method for channel steel
JP6747256B2 (en) Method for manufacturing H-section steel
JP2023113155A (en) Method for manufacturing hat-shaped steel sheet pile
JP6669044B2 (en) Method of manufacturing H-section steel
JP2819832B2 (en) Hot rolling method and apparatus for H-section steel
JP6447285B2 (en) Manufacturing method of H-section steel
JP2021109180A (en) Method of manufacturing h-shaped steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7235014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150