JP2021532571A - 磁気トンネル接合及びその製造方法 - Google Patents

磁気トンネル接合及びその製造方法 Download PDF

Info

Publication number
JP2021532571A
JP2021532571A JP2021500283A JP2021500283A JP2021532571A JP 2021532571 A JP2021532571 A JP 2021532571A JP 2021500283 A JP2021500283 A JP 2021500283A JP 2021500283 A JP2021500283 A JP 2021500283A JP 2021532571 A JP2021532571 A JP 2021532571A
Authority
JP
Japan
Prior art keywords
layer
substrate
degrees celsius
temperature
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021500283A
Other languages
English (en)
Other versions
JP7125535B2 (ja
Inventor
リン シュエ,
チー ホン チン,
シャオトン ワン,
ロンジュン ワン,
マヘンドラ パカラ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2021532571A publication Critical patent/JP2021532571A/ja
Application granted granted Critical
Publication of JP7125535B2 publication Critical patent/JP7125535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本開示の実施形態は、磁気トンネル接合積層体の製造向けのシステム及び方法のためのものである。本製造は、(1)シード層を堆積させる前に、基板上に緩衝層を堆積させた後で基板を加熱すること、(2)構造ブロッキング層を堆積させる前に、第2のピンニング層を堆積させた後で基板を冷却すること、(3)トンネルバリア層の堆積中に基板を加熱し、次いで、トンネルバリア層の堆積が完了した後で、基板を冷却すること、(4)トンネルバリア層上に磁気記憶層を堆積させた後で、基板を加熱すること、及び(5)キャッピング層の第1の中間層を堆積させる前に、磁気記憶層を堆積させた後で基板を冷却すること、のうちの1以上を含む方法を介して行うことができる。【選択図】図1A

Description

[0001] 本開示の実施形態は、広くは、磁気ランダムアクセスメモリ(MRAM)用途向けの磁気トンネル接合構造を製造することに関する。
[0002] スピントランスファートルク磁気ランダムアクセスメモリ、すなわちSTT-MRAMは、そのメモリセルに磁気トンネル接合構造を採用し、2つの強磁性層が、薄い絶縁層又は「誘電体」層によって互いから離間されている。磁性層の一方は、固定された磁気極性を有し、他方は、自由層と称されてよく、2つの状態の間で選択的に変更可能な磁気極性を有する。磁性層が、垂直磁気異方性を有する場合、変更可能な極性層の極性は、磁気トンネル接合構造すなわち「MTJ」構造を含む膜層の積層体の深さ方向において、固定された極性層と同じ極性を有するか、又は固定された極性層とは逆の極性を有するかの間で切り替えることができる。MTJの両端間の電気抵抗は、固定された極性層に対して変更可能な極性層の極性の関数である。2つの層の極性が、MTJの深さ方向において同じである場合、MTJの両端間の電気抵抗は低く、MTJの深さ方向において互いに逆であるときに、MTJの両端間の電気抵抗は高くなる。したがって、セルの両端間の電気抵抗は、0又は1の値を示すために使用することができ、したがって、例えば、低抵抗状態を0のデータ値を有するものとして使用し、高抵抗状態を1のデータ値として使用することによって、データ値を記憶することができる。
[0003] MTJ積層体を形成するために、第1のピンニング層及び第2のピンニング層、並びに第1のピンニング層と第2のピンニング層との間にある合成反フェリ磁性(SyF)結合層を含む、膜層積層体が製造される。第1のピンニング層と第2のピンニング層のモーメントは、層間交換結合効果によりSyF結合層を介して結合されている。ある厚さを有するSyF結合層は、第1のピンニング層と第2のピンニング層の磁気モーメントの逆平行(anti-parallel)位置合わせを維持する。第1のピンニング層は、典型的には、自由層から離れるほど、より大きな磁気モーメントを有し、これは、積層体の残りの部分からの自由層への双極子場を最小化する助けとなり得る。
[0004] MTJが、非磁性層によって分離された2つ以上の強磁性層を含む合成反フェリ磁性(SyF)層を採用する場合、SyF結合は、その高温処理、例えば、摂氏約400度以上の温度での処理の後に失われ得る。
[0005] したがって、処理温度に耐え得る改善されたMTJ積層体が、依然として必要とされている。
[0006] 本開示の上述の特徴を詳細に理解することができるように、上記で簡単に要約された本開示のより具体的な説明は、実施形態を参照することによって得られる。そのうちの幾つかの実施形態は添付の図面で例示されている。しかし、添付図面は例示的な実施形態のみを示すものであり、したがって、本開示の範囲を限定すると見なすべきではなく、その他の等しく有効な実施形態も許容され得ることに留意されたい。
[0007] 本開示の実施形態に従って製造される例示的な磁気トンネル接合(MTJ)積層体の概略図である。 [0008] 本開示の実施形態による、磁気トンネル接合(MTJ)積層体を含むメモリデバイスを製造する方法のフロー図である。 [0009] 本開示の実施形態による、MTJ積層体の緩衝層の拡大図である。 [0010] 本開示の実施形態による、MTJ積層体の第1のピンニング層の拡大図である。 [0011] 本開示の実施形態による、MTJ積層体の第2のピンニング層の拡大図である。 [0012] 本開示の実施形態による、MTJ積層体の例示的なトンネルバリア層の拡大図である。 [0013] 本開示の実施形態による、MTJ積層体の例示的な磁気記憶層の拡大図である。 [0014] 本開示の一実施形態による、例示的なキャッピング層122の拡大図である。 [0015] 本開示の実施形態による、MTJ積層体を製造するように構成された物理的気相堆積(PVD)チャンバの概略図である。 [0016] 本開示の実施形態による、PVDチャンバ内で使用される例示的なターゲットカートリッジである。
[0017] 理解し易くするために、可能な場合には、図面に共通する同一の要素を指し示すのに同一の参照番号が使用されている。一実施形態の要素及び特徴は、更なる記述がなくとも、他の実施形態に有益に組み込まれ得ると考えられている。
発明の概要
[0018] 一実施形態では、デバイスを製造する方法が、磁気トンネル接合積層体を形成することを含む。磁気トンネル接合積層体を形成することは、物理的気相堆積(PVD)を介して、緩衝堆積温度にある基板上に緩衝層を堆積させること、PVDを介して、緩衝層上にシード層を堆積させることであって、シード層の堆積中に基板が摂氏200度から摂氏600度の範囲内のシード層堆積温度にある、シードを堆積させること、PVDを介して、緩衝層上に第1のピンニング層を堆積させることであって、第1のピンニング層の堆積中に基板が第1のピンニング層堆積温度にある、第1のピンニング層を堆積させること、PVDを介して、第1のピンニング層上に合成反フェリ磁性(SyF)結合層を堆積させることであって、SyF結合層の堆積中に基板がSyF結合層温度にある、SyF結合層を堆積させること、PVDを介して、基板が第2のピンニング層堆積温度にある間に、SyF結合層上に第2のピンニング層を堆積させること、基板温度を第2のピンニング層堆積温度から摂氏約−270度から摂氏約100度の範囲内にある構造ブロッキング層堆積温度まで下げること、及び、PVDを介して、基板が構造ブロッキング層堆積温度にある間に、第2のピンニング層上に構造ブロッキング層を堆積させることを含む。
[0019] 一実施形態では、コンピュータ可読媒体に含まれた指示命令が、計算システムに、緩衝層上にシード層を堆積させることであって、シード層の堆積中に基板が摂氏200度から摂氏600度の範囲内のシード層堆積温度にある、シード層を堆積させること、基板が第1のピンニング層堆積温度にある間に、緩衝層上に第1のピンニング層を堆積させること、基板が合成反フェリ磁性(SyF)結合層堆積温度にある間に、第1のピンニング層上にSyF結合層を堆積させること、SyF結合層上に第2のピンニング層を堆積させること、基板温度を第2のピンニング層堆積温度から摂氏約−270度から摂氏約100度の範囲内にある構造ブロッキング層堆積温度まで下げること、及び、続いて、基板が構造ブロッキング層堆積温度にある間に、第2のピンニング層上に構造ブロッキング層を堆積させることを、実行させるように構成されている。
[0020] 一実施形態では、磁気トンネル接合を製造する方法が、物理的気相堆積(PVD)を介して、基板上のSyF結合層上に第2のピンニング層を堆積させることであって、第2のピンニング層を堆積させた後で、基板が摂氏約−270度から摂氏約100度の範囲内の第2のピンニング層堆積温度にある、第2のピンニング層を堆積させること、PVDを介して、基板が摂氏約−270度から摂氏約100度の範囲内の構造ブロッキング層堆積温度にある間に、第2のピンニング層上に構造ブロッキング層を堆積させること、及び、PVDを介して、磁気基準層の堆積中に基板が摂氏約−270度から摂氏約100度の範囲内の磁気基準層堆積温度にある間に、構造ブロッキング層上に磁気基準層を堆積させることを含む。本実施形態では、該方法が、PVDを介して、磁気基準層上にトンネルバリア層を堆積させることを更に含む。磁気基準層上にトンネルバリア層を堆積させることは、基板が第1のトンネルバリア堆積温度にある間に、トンネルバリア層の第1の部分を堆積させること、基板温度を摂氏約300度から摂氏約600度の範囲内の第2のトンネルバリア層堆積温度まで上げること、及び、トンネルバリア層の第2の部分を堆積させることによって行われる。その場合、第1の部分は、トンネルバリア層の全体的な厚さの10%から90%を占める。
詳細な説明
[0021] 本開示の実施形態は、磁気トンネル接合(MTJ)積層体、並びにSTT MRAMメモリセル及びメモリに関する。ここで、MTJ積層体は、MTJ積層体が上部電極と下部電極との間に挟まれるように、上部電極及び下部電極を含む膜積層体内に組み込まれる。MTJ積層体をパターニングして、磁気抵抗ランダムアクセスメモリ(MRAM)内で使用される複数の個別メモリセルを形成することができる。MRAMセルの各MTJ積層体内には、2つの磁性層が存在し、一方の磁性層は固定された極性を有し、他方は、層の両端間に電圧を印加するか又はその磁性層に電流を印加することによって切り替えることができる極性を有する。MRAMの両端間の電気抵抗は、第1の磁性層と第2の磁性層との間の相対的な極性に基づいて変化する。第1の磁性層と第2の磁性層は、本明細書では、磁気基準層と磁気記憶層と称される。MTJ積層体から形成されたメモリセルは、セルの両端間に印加された電圧が存在するとき、又はセルを通過する電流が存在するときに動作する。十分な強度の電圧の印加に応じて、切り替え可能な磁性層の極性が変更され得る。加えて、セルの抵抗は、磁気記憶層の磁気極性を切り替えるために必要とされる閾値を下回る比較的低い電圧で、セルの両端間の電流対電圧の関係性を測定することによって特定され得る。
[0022] 本明細書で説明されるMTJ積層体は、基板上に薄膜層を堆積させ、究極的にはそれらの堆積した膜層をパターニングし、エッチングするために、堆積チャンバを含む複数のチャンバを使用して形成される。本明細書で説明されるMTJ積層体を形成するために使用される堆積チャンバは、物理的気相堆積(PVD)チャンバを含む。従来のMTJ積層体製造では、基板の温度が、約室温(摂氏20度〜摂氏25度)から摂氏約350度未満であり、MTJ積層体の層の堆積の間で及びその間に変更されない場合がある。対照的に、本明細書で説明されるシステム及び方法を使用して、MTJは、MTJ積層体の様々な層の堆積の間で及びその間に、基板の温度が上昇、下降、又は保持される一連の堆積動作において製造される。MTJ積層体製造中の温度の変動は、各層の所望の格子(結晶性の)構造の形成を改善及び促進し、層間の格子整合を改善する。本開示の実施形態に従って製造されたMTJ積層体は、摂氏約400度での約3時間のアニーリング動作を含んで、製造後に処理され、アニーリング後のロバストな磁気特性と電気特性の両方、並びに層間の粗さの低減を示す。
[0023] MTJ積層体の形成中に使用される本明細書で説明される堆積温度は、基板支持体を加熱若しくは冷却することによって、又は放射加熱ランプを使用することによって、或いは532nmレーザー若しくは810nmレーザーなどのレーザーを介して基板を加熱することによって実現することができる。基板の温度制御は、格子構造の改善された制御をもたらし、したがって、層間の格子整合を改善することができ、それによって、摂氏400度のオーダーの後続の高温処理に耐えることができる、よりロバスト(robust)なMTJ積層体を生成する。堆積の前、最中、又は後に基板を加熱すると、下層の格子テクスチャ(texture)に沿った堆積材料層の成長が促進される。層堆積の間に温度を保持することによって、下層の格子構造と同じである上層の格子構造の形成を容易にすることもできる。逆に、層堆積の前、最中、又は後に基板を冷却することは、堆積された層が下層の格子構造を形成することを妨げ、堆積された層の格子構造を維持する。
[0024] 一実施形態では、MTJ積層体基板が、(1)シード層が堆積される前に、基板上に緩衝層が堆積された後で加熱され、(2)構造ブロッキング層が堆積される前に、第2のピンニング層が堆積された後で冷却され、(3)トンネルバリア層の堆積中に加熱され、次いで、トンネルバリア層の堆積が完了した後で冷却され、(4)トンネルバリア層上に磁気記憶層が堆積された後で加熱され、(5)キャッピング層の第1の中間層の意図された格子構造に応じて、第1の中間層が堆積される前に、磁気記憶層が堆積された後で冷却される、うちの1以上であってよい。
[0025] 一実施例では、第1の層が、面心立方(fcc)結晶構造を有し、第2の層が、fcc構造を有するように第1の層の上に堆積されるときに、基板は、第1の層(又は層の第1の中間層)の堆積中又は堆積後に加熱されてよく、第2の層がfcc構造を形成するように、第2の層(又は層の第2の中間層)の堆積中、上昇した温度が維持されてよい。逆に、第1の層がfccの結晶構造を有し、第2の層が体心立方(bcc)構造を有するように第1の層の上に堆積される場合、基板は、第1の層の堆積中又は堆積後に冷却されてよい。第2の層が、bcc構造を形成し、下層のfcc構造を採用しないように、第2の層の堆積中に低温が維持されてよい。
[0026] MTJ積層体を形成するために使用される、本明細書で説明されるPVD動作では、チャンバが減圧状態に維持されている間に、スパッタリングチャンバ内で、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、及び/又はキセノン(Xe)などの不活性ガスや希ガスから、プラズマが生成される。本明細書で使用されるPVDチャンバは、少なくとも1つのスパッタリングターゲットを更に含み、基板は、スパッタリングターゲットの概して平坦な表面に対向して内部に配置される。スパッタリングターゲットは、電気的に駆動されるように電源に接続されるか、又は、プラズマを介して電源の回路内の陰極状態を自己確立して、例えば、スパッタリングチャンバの接地部分を接地する。基板は、スパッタリングチャンバ内のペデスタル又は別の構造上に配置され、ペデスタル又は別の構造は、浮遊電位であっても、接地に接続されても、又は、バイアスされて、アノード若しくは接地回路にプラズマを誘導するためにカソードターゲット内にアノードを形成してもよい。スパッタリングチャンバ内の不活性ガス原子の正にイオン化された部分は、負にバイアスされたターゲットに電気的に引き付けられ、したがって、プラズマのイオンがターゲットに衝突し、それによって、ターゲット材料の原子を放出させ、基板上に堆積させて、基板上の(1以上の)ターゲット材料を含む薄膜を形成する。
[0027] 図1Aは、磁気トンネル接合(MTJ)積層体の概略図である。図1Aは、タングステン(W)、窒化タンタル(TaN)、窒化チタン(Tin)の導電層、又はそれらの他の金属層を含む、基板102を含む、MTJ積層体100Aを示している。幾つかの実施例では、基板102が、1以上のトランジスタ、ビット若しくはソースライン、及び他のメモリライン(前もってその中又はその上に製造されている)、又は、MRAMメモリを形成するために使用され、前もってその上に製造若しくは形成される他の素子を含む。その上にMTJ積層体が形成される基板は、200mm未満の直径、200mmの直径、約300mm、約450mmの直径、又は他の直径を含む寸法を有してよく、円形又は矩形若しくは正方形の板を有してよい。MTJ積層体100A内の緩衝層104は、内部に基板を有するPVDチャンバ内で1以上のターゲットをスパッタリングすることによって基板102上に形成され、ここでは、CoxFeyBz、TaN、Ta、又はそれらの組み合わせのうちの1以上の層を含む。シード層106は、PVDチャンバ内でのスパッタリングを介して緩衝層104の上に堆積され、緩衝層104とシード層106との間の格子不整合を低減させ又は排除することによって、MTJ積層体100A内で続いて堆積される層の接着及びシーディング(seeding)を改善するために使用される。一実施形態では、シード層106が、fcc格子構造を含む。緩衝層104は、基板へのシード層106の接着を改善するために、MTJ積層体100A内で使用される。ここで、シード層106は、プラチナ(Pt)、クロム(Cr)、又はルテニウム(Ru)を含み、内部に基板を有するPVDチャンバ内で、Pt、Cr、若しくはRu、又はそれらの合金のターゲットをスパッタリングすることによって形成される。
[0028] 第1のピンニング層108が、スパッタリングによってシード層106上に形成され、fcc格子構造を有する。第1のピンニング層108は、Co層及び/又は1以上の二重層を含む。各二重層は、Coの第1の中間層と、ニッケル(Ni)又はプラチナ(Pt)の第2の中間層とを含む。合成反フェリ磁性(SyF)結合層110は、ここで、スパッタリングによって第1のピンニング層108の上に形成され、形成されたままのfcc格子構造を有する。SyF結合層110は、そのターゲットからスパッタリングされたルテニウム(Ru)、ロジウム(Rh)、Cr、又はイリジウム(Ir)から形成されてよい。第2のピンニング層112は、スパッタリングによってSyF結合層110の上に形成される。形成されたままの第2のピンニング層112は、fcc格子構造を有し、単一のコバルト(Co)層及び/又はCoの第1の中間層とニッケル(Ni)若しくはプラチナ(Pt)の第2の中間層とを含む二重層を含むことができる。SyF結合層110は、第1のピンニング層108と第2のピンニング層112との間に位置付けられ、第1のピンニング層108と第2のピンニング層112の表面原子を、磁場に曝露されたときに、SyF結合層110の表面原子と整列させ、それによって、第1のピンニング層108と第2のピンニング層112のそれぞれの磁気モーメントの配向をピンニング(ピン止め)する。第1のピンニング層108と第2のピンニング層112は、それぞれ、同様な磁気モーメントを有し、したがって、外部磁場がMTJ積層体100Aに印加されたときに、同様に反応することとなる。SyF結合層110は、第1のピンニング層108と第2のピンニング層112の磁気モーメントの逆平行(anti-parallel)位置合わせを維持する。
[0029] 第2のピンニング層112の上には、ここで、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、又はこれらの組み合わせを含む、構造ブロッキング層114が形成される。構造ブロッキング層114は、形成されたままのbcc格子構造を有し、第1のピンニング層108及び第2のピンニング層112の結晶構造とは異なるその結晶構造のために採用される。構造ブロッキング層114は、MTJ積層体100Aと、MRAMメモリセルを形成するためにMTJ積層体100Aに接続され得る金属接点と、の間の短絡の形成を防止する。更に、MTJ積層体100Aでは、磁気基準層116が、PVDチャンバ内でスパッタリングすることによって、構造ブロッキング層114の上に形成される。トンネルバリア層118が、磁気基準層116の上に形成され、磁気記憶層120が、トンネルバリア層118の上に形成される。磁気基準層116、トンネルバリア層118、及び磁気記憶層120は、それぞれbcc格子構造を有する。トンネルバリア層118、磁気基準層116、及び磁気記憶層120のそれぞれは、1以上のPVDチャンバ内でプラズマを使用して、1以上のターゲットをスパッタリングすることによって形成される。磁気基準層116と磁気記憶層120は、それぞれ、組成が異なり得るCoxFeyBz合金を含む。更に、磁気記憶層120は、Ta、Mo、W、若しくはHf、又はそれらの組み合わせのうちの1以上の層を含んでよい。トンネルバリア層118は、絶縁材料を含み、MgOのような誘電体材料から製造されてよい。MTJ積層体100Aのトンネルバリア層118内で大きなトンネル磁気抵抗比(TMR)を生成するように、トンネルバリア層118の組成と厚さが、それぞれ選択される。TMRは、MTJ積層体100A内の抵抗の逆平行状態(Rap)から平行状態(Rp)への変化を測定したものであり、式((Rap-Rp)/Rp)を使用してパーセントで表すことができる。MTJ積層体100Aにバイアスを印加すると、トンネルバリア層118は、スピン偏極電子によって横断され、このトンネルバリア層118を通る電子の透過は、磁気基準層116と磁気記憶層120との間の電気伝導をもたらす。
[0030] PVDチャンバ内でのスパッタリングによって、キャッピング層122が、磁気記憶層120上に形成され、本実施形態では、複数の中間層を含む。キャッピング層122は、第1のキャッピング中間層122Aと第2のキャッピング中間層122Bを含む。第1のキャッピング中間層122Aは、MgO及び/又は鉄酸化物などの誘電体材料から製造することができ、キャッピング中間層122ARu及び/又はIrを更に含んでよい。Ru、Ir、Ta、又はそれらの組み合わせなどの金属材料を含む第2のキャッピング中間層122Bが、第1のキャッピング中間層122Aの上に形成される。第1のキャッピング中間層122Aは、ハードマスクエッチングのためのエッチング停止層として作用し、MTJ積層体100Aを腐食から保護する。第2のキャッピング中間層122Bは、図1Bに関して以下で説明されるように、MTJ積層体100Aが後でパターニングされるときに、トランジスタ又は接点と電気的に通じるように構成されている。第1のキャッピング中間層122Aと第2のキャッピング中間層122Bの格子構造は、それぞれの中間層の組成に応じて変化し得る。MTJ積層体100Aを保護するための第2のキャッピング中間層122Bの上のハードマスク層124は、その後の動作中にパターニングされてよい。ハードマスク層124は、その組成に応じて様々なプロセスで形成することができる。
[0031] PVDシステムは、図3において以下で示されている例示的なチャンバなどの1以上のPVDスパッタリングチャンバを含んでよい。1以上のPVDスパッタリングチャンバは、中央ロボット基板移送チャンバに連結されている。中央ロボット基板移送チャンバは、それに連結された装填ステーションと、それに連結されたスパッタリングチャンバとの間で、基板を移動させるように構成されている。PVDシステムは、例えば、10×10−9Torrのベース減圧に維持される。それによって、その上にMTJ積層体が形成されている基板は、基板上でのMTJ膜層積層体の製造中にPDVチャンバの間で及びPVDチャンバ間で移動されるときに、外部の雰囲気に曝露されない。MTJ積層体製造中の温度の変動は、所望の格子構造、例えば面心立法や体心立法などの層を形成する。MTJ積層体形成中の温度制御は、層間及びその間の格子整合を改善し、その結果、摂氏約400度のオーダーの温度でのアニーリングの後で、その磁気特性及び電気特性を維持する、よりロバストなMTJ積層体をもたらす。
[0032] 図1Bは、MTJ積層体100Aを含むメモリデバイスを製造する方法100Bのフロー図である。方法100Bは、スパッタリングによって薄膜層を堆積させるように構成されたPVDシステムの複数のPVDチャンバ内で部分的に実行される。基板102は、PVDシステムの中央ロボット移送チャンバを介して、スパッタリングチャンバの間及びスパッタリングチャンバ間で移動されてよく、図1AのMTJ積層体100A及び本開示の実施形態に従って製造された以下で示され説明されるMTJ積層体を含む、様々な薄膜層を形成することができる。従来のMTJ積層体製造方法とは対照的に、方法100Bの動作は、摂氏約20度から摂氏約600度のオーダーの温度で行われてよく、基板温度は、本明細書で説明される動作の間、前、並びに/又は後で、基板支持ペデスタル内のヒータ、放射加熱ランプ、及び/若しくはレーザーアニーリング装置を介して調整され得る。方法100Bの間の温度の調整は、MTJ積層体100Aの層間の格子構造形成及び格子整合を促進し、摂氏400度のオーダーの処理動作に耐え得る、よりロバストなMTJ積層体を生成する。本明細書で説明される(1以上の)やり方で動作することができる例示的なPVDチャンバが、図3において以下で示される。
[0033] したがって、図1Aの層は、方法100Bに関して本明細書で参照される。方法100Bの動作は、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、キセノン(Xe)、酸素(O2)、又は窒素(N2)を含む1以上のガスをプラズマ種として使用して、1以上のPVDチャンバ内で実行される。PVDチャンバ内の処理圧力は、方法100B中に、約2mTorrから約3mTorrであってよい。基板102は、MTJ積層体100Aのそれぞれの層に使用される(1以上の)スパッタリングターゲットの組成に応じて、PVDチャンバの間で及びPVDチャンバ間で移動されてよい。方法100Bでは、動作126において、基板が、ガス抜き及びArガスプラズマ内又はHe/Hプラズマ内での予洗浄を含む動作を受ける。動作126で説明された基板102は、以前の動作中に形成されたMTJ接点(基板102とは別にして図示せず)を含む複数の層を含むことができる。方法100B中、基板は、中央ロボット基板移送チャンバを通るか又は介してプロセスチャンバ間で移動されてよい。動作128Bでは、基板102が、中央ロボット基板移送チャンバから複数のPVDチャンバのうちのPVDチャンバに移送される。続いて、動作130では、緩衝層104が、PVDチャンバのターゲットにおけるスパッタリングによって、基板102上に堆積される。1kWから100kWの電力が、本明細書で説明される1以上のPVDチャンバに印加されて、Arの一部分をイオン化し、動作130で使用されるプラズマを生成する。ターゲットの放出された表面原子は、基板102上に堆積して、緩衝層104を形成する。動作130で緩衝層104を形成する間、CoxFeyBz、TaN、及び/又はTaを含む1以上のスパッタリングターゲットが、Arプラズマを使用して、PVDチャンバ内でスパッタリングされて、緩衝層104を形成する。緩衝層104がTaであるか又はTaを含む一実施形態では、緩衝層104が、Taターゲット及びArプラズマを使用して、PVDチャンバ内でスパッタリングされる。
[0034] 一実施形態では、動作130が、基板102が室温(摂氏約20度から摂氏約25度)であるときに実行されてよい。一実施例では、基板温度が、基板支持ペデスタル内の複数のヒータを介して制御され、他の実施例では、温度を制御するために、基板上で放射加熱ランプ又はレーザーアニールの動作が実行されてよい。緩衝層104がTaNであるか又はTaNを含む一実施例では、窒素ガス(N2)がPVDチャンバ中に存在し、TaスパッタリングターゲットをスパッタリングするためにArプラズマが使用されるときに、動作130が実行されて、TaNを含む緩衝層104が形成される。緩衝層104がTaNであるか又はTaNを含む別の一実施例では、緩衝層104を形成するために、TaNスパッタリングターゲット及びArプラズマを使用して、PVDチャンバ内で動作130が実行される。緩衝層104及びそれに続く層の形成中に、使用される1以上のPVDチャンバは、温度が以下で説明されるように変化する間に減圧に維持される。続いて、動作132では、シード層106が、PVDチャンバ内でターゲットをスパッタリングすることによって緩衝層104上に堆積される。シード層106は、動作132で堆積したままのfcc格子構造を有する。動作132中、シード層106の堆積中の基板102の温度は、摂氏約200度から摂氏約600度の範囲内であり、幾つかの実施形態では、摂氏約350度から摂氏約500度の範囲内である。
[0035] 第1のピンニング層108は、動作134において、PVDチャンバ内でターゲットをスパッタリングすることによって、シード層106上に堆積される。第1のピンニング層108は、MTJ積層体100Aにおいて図示されており、Arプラズマを使用して1以上のターゲットをスパッタリングすることによって、動作134において、PVDチャンバ内で堆積されてよい。動作134での第1のピンニング層108の堆積中の基板102の温度は、摂氏約200度から摂氏約600度の範囲内であり、動作132中の基板温度以下である。動作134中の基板温度は、下にあるシード層106と同じ格子構造である第1のピンニング層108のfcc格子構造の形成を促進する。第1のピンニング層108がCo層である一実施例では、PVDチャンバ内でArプラズマを使用してCoターゲットがスパッタリングされる。第1のピンニング層108が1以上の二重層を含む一実施例では、動作134が、二重層の第1の中間層を形成するためにCoスパッタリングターゲットを使用し、二重層の第2の中間層を形成するために異なる元素を含む別のスパッタリングターゲットを使用する。実施形態に応じて、Coスパッタリングターゲットと他の元素(ニッケルやプラチナなど)のスパッタリングターゲットは、複数のターゲットを使用して同じPVDチャンバ内でArプラズマを使用してスパッタリングされてよく、又は二重層の各層が個別のPVDチャンバ内で形成されてよい。
[0036] 一実施形態では、第1のピンニング層108を堆積させるために、キセノン(Xe)又はアルゴン(Ar)ガスが、約2sccm〜40sccmの流量でPVDチャンバ内に導入され、その間、プラズマを生成するために、50Wから10000Wの電力が、負電圧でターゲットに印加される。別の一実施例では、Xe又はArガスが、5sccmから20sccmの流量で、幾つかの実施例では、10sccmの流量で、PVDチャンバに導入される。別の一実施例では、第1のピンニング層108を形成するために使用される1以上のスパッタリングターゲットに印加される電力が、100Wから800Wである。別の一実施例では、1以上のスパッタリングターゲットに印加される電力が、400Wであってよい。第1のピンニング層108の組成に応じて、Xeガスを、動作134において、PVDチャンバ内のスパッタリング動作で使用して、プラズマを生成してよい。というのも、Xeは、Arよりも重いガスであり、したがって、Ar又は他のより軽いガスを使用して生成されたイオンよりも高い原子量を有するイオンを生成するからである。したがって、Xeプラズマは、Arプラズマよりも大きいエネルギーでターゲットに衝突し、Ptなどの層をスパッタリング堆積させるために使用されてよい。本開示における第1のピンニング層108の一実施例では、Xe、Ar、又はそれらの混合物が、約10sccmからの流量でPVDチャンバの中に導入され、400Wの電力が、負電圧でターゲットに印加されて、Ar又はXeプラズマを生成する。
[0037] 第1のピンニング層108の二重層は、動作134において、Coターゲットと、Pt若しくはNi、又はそれらの組み合わせ若しくは合金から形成されたターゲットとを含む、複数のターゲットを含むPVDチャンバ内、又は個別のPVDチャンバ内で形成されてよい。個別のPVDチャンバでは、1つのPVDチャンバが、Coターゲットを含み、他のPVDチャンバが、Pt若しくはNi、又はそれらの組み合わせ若しくは合金のターゲットを含む。一実施例では、複数のスパッタリングターゲットが、単一のPVDチャンバ内に配置され、Arプラズマ及び/又はXeプラズマを使用してスパッタリングされる。Coターゲットと他の元素のターゲットのそれぞれを、本明細書で説明されるシールドを使用してプラズマに選択的に曝露させて、二重層のCo中間層を形成し、他の元素の中間層を形成して、結果として得られる二重層を形成することができる。図2Bで示されているように、中間層の堆積は、第1のピンニング層108の複数の二重層を形成するために、複数の反復で、動作134において繰り返されてよい。
[0038] PVDチャンバ内でAr、Kr、又はXeプラズマを使用して、Ru、Cr、Rh、又はIrのターゲットをスパッタリングすることによって、動作136において、第1のピンニング層108上にSyF結合層110が堆積される。一実施例では、SyF結合層110が、Ru、Cr、Rh、又はIrのスパッタリングターゲットを使用して、動作136においてPVDチャンバ内で堆積される。一実施形態では、動作136中の基板102の温度は、動作134における基板温度以下であり、これは、上述のように、摂氏約200度から摂氏約600度の範囲内である。動作136での基板温度は、下にある第1のピンニング層108のfcc格子構造と整合する、SyF結合層110のfcc格子構造の形成を促進する。動作136でSyF結合層110を形成する一実施例では、Kr又はXeをプラズマガスとして使用して、PVDチャンバ内でIrスパッタリングターゲットがスパッタリングされる。そこからプラズマが生成されるところのXeガス又はKrガスは、10sccmから25sccmの流量で、幾つかの実施例では、16sccmのガス流量で、PVDチャンバの中に導入される。動作136でSyF結合層110を形成する別の一実施例では、PVDチャンバ内で、Arプラズマを使用して、Ruスパッタリングターゲットがスパッタリングされる。Ruターゲットをスパッタリングするためにそこからプラズマが生成されるところのArガスは、2sccmから10sccmのガス流量でPVDチャンバに導入され、幾つかの実施例では、Arガスの流量が6sccmである。更に、動作136における一実施例では、Kr、Xe、又はArガスがPVDチャンバ内で使用されるときに、150Wと300Wの間の電力が負電圧でターゲットに印加されて、Kr、Xe、又はArプラズマを生成し、維持する。幾つかの実施例では、約250Wの電力が使用される。
[0039] 第2のピンニング層112は、動作138において、PVDチャンバ内でSyF結合層110上に堆積される。動作138中、基板102の温度は、動作136中の基板102の温度とほぼ同じである(摂氏約200度から摂氏約600度)。形成されたままの第2のピンニング層112は、fcc格子構造を有し、これは、下にあるSyF結合層110のfcc格子構造と整合する。第2のピンニング層112のfcc格子構造の形成は、動作138中の温度によって促進される。一実施例では、第2のピンニング層112が、PVDチャンバ内でCoターゲット及びArプラズマを使用してCoから形成される。別の一実施例では、第2のピンニング層112が、二重層を含み、二重層と接触するように形成されたCo層を含んでも含まなくてもよい。
[0040] 少なくとも1つの二重層が第2のピンニング層112の一部として形成される実施例では、第1のピンニング層108の一部として形成される上述した二重層と同様のやり方で、PVDのチャンバ内で形成される。一実施形態では、第2のピンニング層112が、少なくとも1つの二重層の上に形成された最大10Åまでの厚さのCo層を更に含む。一実施形態では、第2のピンニング層112が、0.3nmから15nmの全体的な厚さを有してよい。PVDチャンバ内でプラズマを生成するためにXeガスが使用される一実施形態では、Xeガスが、約2sccmから約40sccm、又は5sccmから20sccmの流量でPVDチャンバの中に導入され、幾つかの実施形態では、Xeガスが、約10sccmの流量でPVDチャンバの中に導入される。第2のピンニング層112の形成中に、50Wから約1000Wの電力が、負電圧でターゲットに印加されて、Ar及び/又はXeプラズマを生成し、維持する。幾つかの実施例では、100Wから600Wの電力が、負電圧でターゲットに印加されて、Ar及び/又はXeプラズマを生成し、維持し、幾つかの実施形態では、約200 Wの電力が、負電圧でターゲットに印加される。一実施形態では、動作138Aにおいて、動作138での第2のピンニング層112の堆積に続いて、基板102の温度が、摂氏約−200から摂氏約100度、又は摂氏約−200度から摂氏約25度の範囲内の温度に下げられる。基板102の温度は、動作138Aで下げられ、fcc格子構造を有する第2のピンニング層112を冷却し、それによって、以下で説明されるように、引き続いて堆積された層が、bcc格子構造などの他の格子構造を形成する。
[0041] 構造ブロッキング層114は、動作140において、bcc格子構造を含むように堆積される。動作140における構造ブロッキング層114のbcc格子構造の形成は、動作140における構造ブロッキング層114の堆積の前に、動作138Aにおいて基板温度を下げることによって促進される。一実施形態では、構造ブロッキング層114が、PDVチャンバ内で形成される。そのチャンバは、構造ブロッキング層114の意図された組成に応じて、Ta、Mo、及び/又はWを含むスパッタリングターゲットを含む。動作140中、基板102の温度は、動作138Aで確立された範囲内、例えば、摂氏約−270度から摂氏約100度であってよい。基板温度は、動作140中、一定の温度に保つことができ、又は動作138における温度から摂氏−270度から摂氏約100度の範囲内の別の温度まで上昇させることができる。動作140における堆積温度は、bcc格子構造としての構造ブロッキング層114の形成を促進し、これとは対称的に、より高い堆積温度は、構造ブロッキング層114が、下にある第2のピンニング層112のfcc格子構造などの他の格子構造を望ましくないように形成し得る。
[0042] 続いて、動作142において、磁気基準層116が、構造ブロッキング層114上に堆積される。磁気基準層116は、CoxFeyBzの合金であるスパッタリングターゲットを使用して、又はCo、Fe、若しくはBの個々のスパッタリングターゲットを使用して、或いは、例えばCoFeターゲット及びBターゲットなどの合金スパッタリングターゲット及び(1以上の)単一元素スパッタリングターゲットの組み合わせによって、PVDのチャンバ内で形成することができる。動作142中、基板の温度は、摂氏約−270度から摂氏約100度の範囲内であり、動作140における基板温度以上である。形成されたままの磁気基準層116は、bcc格子構造を有し、これは、下にある構造ブロッキング層114のbcc格子構造と整合する。
[0043] トンネルバリア層118が、動作144において、磁気基準層116上に堆積される。トンネルバリア層118は、動作144において、bcc格子構造を有するように堆積される。動作144中の基板102の温度は、以下で説明するように変化する。一実施例では、基板が、動作142向けに使用されるのと同じ温度(摂氏約−270度から摂氏約100度)である第1の温度にある間に、トンネルバリア層118の第1の部分が、動作144中に堆積される。この実施例では、トンネルバリア層118の第1の部分が堆積された後、基板温度が、摂氏約300度から摂氏約600度、又は摂氏約450から摂氏約500度の範囲内の第2の温度まで上昇し、トンネルバリア層118の第2の部分が、第2の温度で堆積される。トンネルバリア層118の全体的な厚さは、約1Åから約15Åである。トンネルバリア層118の第1の部分は、トンネルバリア層118の全体的な厚さの約10%から約90%、又は全体的な厚さの40%から60%であってよい。動作144の一実施例では、トンネルバリア層118が、MgOなどの金属-酸化物ターゲット及びArガスベースのプラズマを使用して、PVDチャンバ内で形成される。代替的な一実施形態では、トンネルバリア層118が、動作144において、金属‐酸化物を形成するために、O2がPVDチャンバ内に存在する間に、Mg、Ti、Hf、Ta、又はAlなどの金属ターゲット、及びArガスベースのプラズマを使用して、PVDチャンバ内で形成される。
[0044] 動作144Aでは、動作144でトンネルバリア層118を形成した後で、基板102の温度が、トンネルバリア層118のbcc格子構造を促進するように修正される。動作144A中、基板温度は、動作144でのトンネルバリア層118の第2の部分の堆積に使用される第2の温度(摂氏300から摂氏600の範囲内)から、摂氏−270度から摂氏約100度、又は摂氏約−200度から摂氏約25度の範囲内の温度まで下げられる。動作144でのトンネルバリア層118の第1の部分と第2の部分の堆積の間に加熱することによって、トンネルバリア層118の全体にわたってbcc格子構造の形成が促進される。動作144Aにおけるその後の冷却は、トンネルバリア層内の望ましくない格子構造の形成を阻止する助けとなる
[0045] 動作146では、磁気記憶層120が、PVDチャンバ内で形成される。動作146中の基板の温度は、摂氏−270度から摂氏約100度の範囲内であってよい。磁気記憶層120は、形成されたままのbcc格子構造を有する。磁気記憶層120の形成は、意図された組成に応じて様々なやり方で行われ得る。磁気記憶層120は、CoxFeyBzの1以上の層、及び、幾つかの実施例では、Ta、Mo、W、又はHfの1以上の層を含んでよい。したがって、PVDチャンバ内での磁気記憶層120の堆積は、Arプラズマと、CoxFeyBz合金ターゲット、若しくはCo、Fe、及びBの個々のターゲット、又はCoFeターゲット及びBターゲットなどの合金ターゲット及び元素ターゲットの組み合わせを含んでよい。磁気記憶層120がTa、Mo、W、又はHfを含む実施例では、Ta、Mo、W、又はHfのスパッタリングターゲットが、Arから生成されたプラズマを使用して、チャンバ内でスパッタリングされる。
[0046] 一実施例では、磁気記憶層120が、CoxFeyBz及びTa、Mo、W、又はHfの層を形成するために使用される上述のものなどの、1以上のターゲットを露出又は保護するためのシールドを調整することによって、Arを使用して生成されたプラズマを使用して、単一のPVDチャンバ内で形成されてよい。別の一実施例では、磁気記憶層120のCoxFeyBz層が、Arプラズマを使用して、CoxFeyBz合金ターゲットを使用して、PVDチャンバ内でスパッタリングされる。別の一実施例では、CoxFeyBz層が、個々のCo、Fe、及びBターゲット並びにArガスベースのプラズマを使用して、PVDチャンバ内で形成される。更に別の一実施例では、CoxFeyBz層が、Arガスベースのプラズマと、合金ターゲット及び化合物元素ターゲット(例えば、CoFeターゲット及びBターゲット)とを使用して、PVDチャンバ内で形成される。磁気記憶層120のTa、Mo、W、又はHf層は、Taターゲット、Moターゲット、Wターゲット、又はHfターゲットを使用して、PVDチャンバ内でスパッタリングされてよい。動作148では、キャッピング層122の第1のキャッピング中間層122Aが、磁気記憶層120上に堆積される。
[0047] 一実施形態では、磁気記憶層120の堆積に続く動作146Aにおいて、基板102の温度を更に修正することができる。動作146Aにおける基板温度の修正の一実施例では、基板温度を、最初に、摂氏約300度から摂氏約600度、又は摂氏約350度から摂氏約450度の範囲内の温度に上昇させる。動作146において、磁気記憶層120を堆積させた後で加熱することによって、磁気記憶層120の格子構造が、bcc格子構造としてより容易に形成される。更に、動作146Bにおいて、任意選択的に、基板102は、動作146Aで加熱した後に、摂氏約−270度から摂氏約100度、又は摂氏約−200度から摂氏約25度の範囲内の温度に冷却される。動作146Bは、この実施例では任意選択的である。というのも、磁気記憶層120は、bcc格子構造を有するように形成され、したがって、動作146Bが実行されるか否かは、第1のキャッピング中間層122Aの意図された格子構造に応じるからである。以下で説明される第1のキャッピング中間層122Aが、fcc格子構造などのbcc格子構造とは異なる格子構造を有する場合、動作146Bは、動作148における第1のキャッピング中間層の形成の前に実行されてよい。別の一実施例では、第1のキャッピング中間層122Aが、bcc格子構造、例えば、下にある磁気記憶層120と同じ格子構造で形成される場合、動作146Bは、動作148の前に実行されなくてよい。
[0048] 一実施形態では、動作148において、キャッピング層122の第1のキャッピング中間層122Aが、非酸化物層が形成されるPVDチャンバとは異なり得るPVDチャンバ内で形成される。というのも、動作148中、酸化物層が形成されるとき、ArプラズマとO2の両方がPVDチャンバ内に存在するからである。第1のキャッピング中間層122Aは、Arプラズマを使用して、Mgターゲットをスパッタリングすることによって、動作148でPVDチャンバ内に堆積される。O2も、そのPVDチャンバ内に存在する。動作148における別の一実施例では、第1のキャッピング中間層122Aが、MgOスパッタリングターゲット及びArプラズマを使用して、PVDチャンバ内で形成される。第1のキャッピング中間層122Aを形成するために、MgOや鉄含有酸化物が使用される本実施例では、第1のキャッピング中間層122Aが、形成されたままのbcc格子構造を有してよい。この実施例では、第1のキャッピング中間層122Aが、下にある磁気記憶層120と同じ格子構造なので、動作146Aにおける任意選択的な冷却は使用されなくてもよい。第1のキャッピング中間層122Aが、トンネルバリア層118と同じ材料(例えば、Mg)から形成される一実施例では、動作144に使用されるPVDチャンバが、第1のキャッピング中間層122Aを形成するために動作148で使用されるのと同じPVDチャンバであってよい。第1のキャッピング中間層122Aの別の一実施例では、第1のキャッピング中間層122Aが、Ru及び/又はIrから形成され、bcc格子構造を有する下にある磁気記憶層120とは異なるfcc格子構造を有する。この実施例では、動作148で第1のキャッピング中間層122Aを形成する前に、動作146Aを使用して基板温度が下げられる。動作150では、第2のキャッピング中間層122Bが、第1のキャッピング中間層122A上に堆積される。動作150は、動作148でO2が使用される場合、第1のキャッピング中間層122Aをスパッタリングするために使用されたものとは別の異なるPVDのチャンバ内で行われてよい。というのも、第1のキャッピング中間層122Aを形成するためにPVDチャンバ内でO2が使用されないからである。第2のキャッピング中間層122Bは、Arプラズマと、Ru、Ir、及び/又はTaから成る1以上のスパッタリングターゲットとを使用して、PVDチャンバ内で形成される。第2のキャッピング中間層122Bの組成に応じて、動作150は、例えば、動作136でSyF結合層110を形成するためにも使用されるPVDチャンバ内で行われてよい。第2のキャッピング層は、Ta及び/又はRu及び/又はIrを含み、fcc格子を有してよい。
[0049] 更に、方法100Bでは、動作152において、ハードマスク層124が、PVDチャンバ内で、第2のキャッピング中間層122Bの上に堆積される。MTJ積層体100Aで使用されるハードマスク層124の種類に応じて、動作152は、O2の存在下で又はO2が存在しない状態で行われてよい。例えば、ハードマスク層124が、金属-酸化物ハードマスクである場合、動作152中に、金属-酸化物層を形成するために1以上の金属スパッタリングターゲットと共にO2及びArベースのプラズマを使用することができ、或いは、ハードマスク層124を堆積させるために金属-酸化物スパッタリングターゲットを使用することができ、この場合、動作150でハードマスク層124を形成するためにO2を使用しない。ハードマスク層124がアモルファスカーボン又はスピンオンカーボンである幾つかの実施形態では、動作152が、CVDチャンバ又はスピンオン堆積チャンバ内で行われる。動作152における基板温度は、形成されるハードマスクの種類に応じて変化する。動作126〜152で形成されたMTJ積層体100Aは、方法100Bの動作154によって集合的に示される1以上のプロセスを受けることができる。これらの動作には、高温(摂氏400度のオーダー)動作を含めることができる。一実施例では、動作154におけるプロセスが、予パターニングアニール動作(pre-patterning anneal operation)を含んでよく、それに続いて、MTJパターニング動作が行われる。代替的な一実施形態では、動作154におけるMTJパターニングが、ハードマスク層124をパターニングするなどの複数のプロセスを含んでよく、ハードマスク層124がパターニングされた後に、パターニングされたハードマスク層をエッチングマスクとして使用して、MTJ積層体100Aをエッチングして、MTJ積層体100Aから複数の個別のピラーを形成する動作を更に含んでよい。
[0050] 動作154における代替的な一実施形態では、MTJ積層体100A内の(1以上の)磁気記憶層及び(1以上の)磁気基準層を含む、膜積層体の格子構造を、修復、圧縮、及び強化するために、熱アニーリング動作が実行される。動作154で実行される熱アニーリングは、少なくとも(1以上の)磁気基準層116及び(1以上の)磁気記憶層120の材料を更に結晶化させるように作用することができる。これらの層の堆積時の(1以上の)磁気基準層及び(1以上の)磁気記憶層の結晶化は、所望の電気特性及び機械特性を維持しながら、MTJ積層体100Aの垂直異方性を確立する。方法100Bの動作の後で製造されるMTJ積層体の実施形態が、以下で図示され、説明される。それらの実施形態は、動作154で実行される熱アニーリング動作の後、及び/又は、摂氏400度のオーダーの高温で行われる追加の又は代替的なバックエンド処理動作の間、第1及び第2のピンニング層の堆積したままの面心立法(fcc)<111>結晶構造を維持するように構成されている。
[0051] 図2A〜図2Fは、本開示の実施形態に従って製造されたMTJ積層体の層の概略図である。図2Aは、本開示の実施形態による、緩衝層104の拡大図である。緩衝層104は、タンタル(Ta)若しくはTaN、又はTaとTaNの層状積層体を含み、幾つかの実施例では、CoxFeyBzを、単独で又はTa、TaN、若しくはTa/TaN層状積層体との組み合わせで含む。緩衝層104の一実施例では、緩衝層104が、少なくとも1つの二重層204Dを含む。少なくとも1つの二重層204Dは、少なくとも1つの二重層204Dの少なくとも1回の反復で、基板102上に交互様式で形成された第1の緩衝中間層204A及び第2の緩衝中間層204Bを含む。この実施例では、第1の緩衝中間層204AがTaを含み、第2の緩衝中間層204BがTaNを含み、第1の緩衝中間層204Aが基板102と接触している。別の一実施例では、第1の緩衝中間層204AがTaNを含み、第2の緩衝中間層204BがTaを含み、したがって、TaNが基板102と直接接触している。緩衝層104の他の実施例では、図1Aで示されるように、CoxFeyBzが、緩衝層104に単独で使用され、したがって、基板102と直接接触するだろう。別の一実施例では、図2Aで示されているように、第3の緩衝層204Cが、少なくとも1つの二重層204Dの上に形成される。この実施例では、第3の緩衝層204Cが、CoxFeyBzから製造され、最大10Åまでの厚さで形成される。したがって、緩衝層104の構成に応じて、緩衝層104の厚さは、1Åから60Åの範囲内である。第3の緩衝層204C(CoxFeyBz)が採用される一実施例では、zは約10重量%から約40重量%であり、yは約20重量%から約60重量%であり、xは70重量%以下である。
[0052] 図2Bは、本開示の一実施形態による、第1のピンニング層108の拡大図である。第1のピンニング層108は、少なくとも1つの二重層230から製造され、2つ以上の二重層230が採用されるときに、それらの2つ以上の二重層は、二重層積層体234を形成すると言うことができる。各二重層230は、第1の中間層208A及び第2の中間層208Bから製造される。第1のピンニング層108の二重層は、(X/Y)n、(208A/208B)nとして表され、ここで、各二重層は、第1の材料Xと第2の異なる材料Yとの組み合わせであり、nは、第1のピンニング層108内の二重層の数である。一実施形態では、XがCoであり、YがPt又はNiのうちの一方である。図2Bの実施例では、n=4であるが、代替的な実施形態では、nは1から10である。一実施形態では、少なくとも1つの二重層230が、約2Åから約16Åの厚さを有する。一実施例では、第1の中間層208Aが、Coを含み、約1Åから約8Åの厚さを有し、第2の中間層208Bが、Pt若しくはNi、又はそれらの組み合わせ若しくは合金を含み、約1Åから約8Åの厚さを有する。第1のピンニング層108の更に別の一実施形態では、少なくとも1つの二重層230が、シード層106上に直接的に且つそれと接触するように形成され、上層208Cが、少なくとも1つの二重層230の頂部の上に形成される。上層208Cは、SyF結合層110と接触している。一実施形態では、上層208Cが、約1Åから約10Åの厚さを有する。この実施例では、上層208CがCoである。実施形態に応じて、第1のピンニング層108の全体的な厚さは、1nmから約18nmである。他の実施例では、第1のピンニング層108とシード層106との間に、MTJ積層体の特性に悪影響を及ぼさない1以上の遷移層が形成されてよい。
[0053] 図2Cは、本開示の実施形態による、第2のピンニング層112の拡大図である。一実施形態では、第2のピンニング層112が、少なくとも1つの二重層232から製造される。各二重層232は、Coであってよい第1の中間層212Aと、Pt若しくはNi、又はそれらの組み合わせ若しくは合金であってよい第2の中間層212Bとを含む。二重層232などの2つ以上の二重層が、第2のピンニング層112内で採用されたときに、2つ以上の二重層は、二重層積層体236と称され得る。したがって、図1Bの動作138では、1以上の二重層が堆積されるときに、個別のスパッタリングターゲットを使用して、二重層232の第1の中間層208Aと第2の中間層208Bを形成することができる。第2のピンニング層112の少なくとも1つの二重層232は、(X/Y)n、(212A/212B)nとして表され、ここで、nは二重層の数である。図2Cの実施例では、n=4であるが、代替的な実施形態では、nは1から5である。一実施形態では、少なくとも1つの二重層232が、約2Åから約16Åの全体的な厚さを有する。一実施例では、第1の中間層212Aが、約1Åから約8Åの厚さを有するCo層であり、第2の中間層212Bが、約1Åから約8Åの厚さを有する。様々な実施形態では、第2の中間層212Bが、Ni若しくはPt、又はこれらの組み合わせ若しくは合金を含む。
[0054] 更に別の一実施形態では、第2のピンニング層112が、少なくとも1つの二重層232の頂部の上に形成されたCoの上層212Cを含む。第2のピンニング層112の他の実施例では、上層212Cが存在しない。一実施形態では、上層212Cが、約1Åから約10Åの厚さを有する。実施形態に応じて、第2のピンニング層112の全体的な厚さは、0.3nmから15nmである。第2のピンニング層112は、本明細書で説明されるように、少なくとも1つの二重層232を含む1以上の層を含んでよい。幾つかの実施例では、少なくとも1つの二重層232と第2のピンニング層112との間、若しくは少なくとも1つの二重層232とSyF結合層110との間、又はそれらの両方に、遷移層が採用されてよく、そのような(1以上の)遷移層は、MTJ積層体の性能に影響を及ぼさない。
[0055] 一実施形態では、第1のピンニング層108と第2のピンニング層112が、それぞれ、同じ中間層の組成及び/又は異なる中間層の厚さを有する。代替的な一実施形態では、第1のピンニング層108と第2のピンニング層112は、それぞれ、異なる組成及び/又は厚さを有する。一実施形態では、第1のピンニング層108が、Coの第1の中間層及びPtの第2の中間層を含む、少なくとも1つの二重層を含み、少なくとも1つの二重層の上に形成されたCo上層を更に含む。一実施例では、第2のピンニング層112が、SyF結合層110の上に形成され、1以上の二重層を含む。一実施形態では、第2のピンニング層112の1以上の二重層が、Coの第1の中間層及びPtの第2の中間層を含む。別の一実施形態では、第1のピンニング層108が、Coの第1の中間層及びNiの第2の中間層を含む、少なくとも1つの二重層を含み、更に、Co上層がIrから形成されたSyF結合層110と接触するように、少なくとも1つの二重層の上に形成されたCo上層を更に含む。この実施例では、第2のピンニング層112が、1以上の二重層を含む。この実施例では、第2のピンニング層112の1以上の二重層が、Coの第1の中間層及びPtの第2の中間層を含む。
[0056] 図2Dは、本開示の実施形態による、例示的なトンネルバリア層118の拡大図である。トンネルバリア層118は、全体的な厚さT118を有する。図1Bの動作144で上述したように、第1の部分118Aは、動作142に使用されるのと同じ温度又は実質的に同様な温度(摂氏−270度から摂氏約100度)であってよい第1の温度で堆積される。この実施例では、トンネルバリア層118の第1の部分118Aが堆積された後、基板温度は、摂氏約300度から摂氏約600度の範囲内に上げられ、トンネルバリア層118の第2の部分118Bが形成される。第1の部分118Aは、基板102が第1の温度にある間に、厚さT118Aで形成することができる。厚さT118Aは、トンネルバリア層118の全体的な厚さT118の約10%から約90%、又は全体的な厚さの40%から60%である。第2の部分118Bは、第2の厚さT118Bで形成することができ、T118BとT118Aの合計は、トンネルバリア層118の全体的な厚さT118である。トンネルバリア層118の全体的な厚さは、約1Åから約15Åである。
[0057] 図2Eは、本開示の実施形態による、例示的な磁気記憶層120の拡大図である。図2Eで示されているように、磁気記憶層120の第1の磁性層220Aと磁気記憶層120の第2の磁性層220Bは、それぞれ、CoxFeyBzから製造される。Ta、Mo、W、Hf、又はそれらの組み合わせから製造された第3の層220Cが、それらの間に配置され、ホウ素、酸素、又は他のドーパントなどのドーパントを含む。したがって、磁気記憶層120は、3つの層、すなわち、第1の磁性層220A及び第2の磁性層220B、並びに第1の磁性層220Aと第2の磁性層220Bとの間に配置された第3の層220Cから製造される。第3の層220Cは、基板平面(例えば、基板102に垂直な平面)に垂直なピンニング(ピン止め)モーメントを強め、これは、磁気異方性、すなわち構造の磁気特性の方向依存性を促進する。
[0058] 図2Fは、本開示の一実施形態による、例示的なキャッピング層122の拡大図である。キャッピング層122の全体的な厚さは、2Åから120Åであり、幾つかの実施形態では、キャッピング層の全体的な所望の厚さ(例えば、図2Fで示されているような中間層の全てを含む)は、約60Åである。一実施形態では、キャッピング層122が、複数の中間層を含む。第1のキャッピング中間層222Aは、磁気記憶層120上に直接的に形成されたMgO又は別の鉄含有酸化物から製造されて、約2Åから約10Åの厚さを有する。第1のキャッピング中間層222Aの頂部の上に、Ru、Ir、又はそれらの組み合わせの第2のキャッピング中間層222Bが、1Åから約30Åの厚さで形成される。一実施形態では、任意選択的に、第3のキャッピング中間層222Cが、第2のキャッピング中間層222B上に、1Åから約30Åの厚さで、Taから形成される。したがって、キャッピング層122の幾つかの実施形態は、第3のキャッピング中間層222Cを含まない。一実施形態では、任意選択的に、第2のキャッピング中間層222Dが、第3のキャッピング中間層222C上に形成され、Ru、Ir、又はそれらの組み合わせから、最大50Åまでの厚さで形成される。様々な実施形態では、キャッピング層122が、第1のキャッピング中間層222Aのみ、若しくは第1のキャッピング中間層222A及び第2のキャッピング中間層222B、又は第1のキャッピング中間層222A、第2のキャッピング中間層222B、及び第3のキャッピング中間層222C、すなわち、第1、第2、及び第3のキャッピング層222A〜222Cを含む。幾つかの実施形態では、MTJ積層体の性能が(1以上の)遷移層によって悪影響を受けないように、遷移層が、第1のキャッピング中間層222A、第2のキャッピング中間層222B、及び第3のキャッピング中間層222Cのうちの幾つか又は全部の間で使用されてよく、或いは、キャッピング層122と磁気記憶層120との間にあってもよい。
[0059] 図3は、本明細書で説明される実施形態による、PVDチャンバ300を示している。上述のように、複数のPVDチャンバを採用して、MTJ積層体100Aを形成することができる。PVDチャンバ300は、MTJ積層体100Aの1以上の層を形成するように構成することができる例示的なPVDチャンバである。PVDチャンバ300は、チャンバ上部330、チャンバ下部332、及びチャンバ壁328を備える。ターゲット支持体302は、少なくとも1つのスパッタリングターゲットを備えたターゲットカートリッジ304を受け入れるようになっており、チャンバ上部330に連結されている。幾つかの実施形態では、ターゲット支持体302が、本明細書で説明される遮蔽ターゲットなどの回転可能ターゲットを支持及び/又は駆動するようになっていてよい。ターゲットカートリッジ304は、銅ベースの材料などの導電性材料から製造されてよく、又はターゲット306A若しくは306Bなどのカートリッジに連結されたターゲットと同じ材料から製造されてもよい。代替的な実施形態では、カートリッジが、非導電性材料から製造されてよく、導電性要素を備えてよい。例示的なPVDチャンバ300が本明細書で示されているが、複数のPVDチャンバを上述のように使用して、MTJ積層体を形成することができ、一部のPVDチャンバは、酸化物層又は窒化物層を形成するように構成されてよく、1以上のターゲットが提供される場合、1以上のPVDチャンバが、図3で示されるように構成されてよい。一実施例では、PVDチャンバ300が、306A及び306Bとして図示されている1以上のスパッタリングターゲットを備え得るターゲットカートリッジ304を含む。ターゲットカートリッジ304は、図4において以下で説明される。遮蔽機構308は、ターゲット支持体302に対向して配置され、方法100Bで説明されたMTJ積層体形成中に、ターゲットカートリッジ304内の1以上のターゲット(306A/306B)を、プラズマから選択的に遮蔽する。遮蔽機構308は、方法100Bの種々の動作において回転されてよく、1以上のターゲット(306A、306B)を、連続的に又は同時にPVDチャンバ内のプラズマに曝露することができる。
[0060] 更に、例示的なPVDチャンバ300内では、基板支持ペデスタル320が、チャンバ下部332に向かってターゲットカートリッジ304の反対側に配置され、ペデスタル320が、上述のように堆積のために所定の温度にあるとき、基板310が、基板支持ペデスタル320上に配置される。基板支持ペデスタル320は、連結された又は内部に配置された1以上の加熱要素318を有してよい。加熱要素318を使用して、図1Bで上述されたものなどのMTJ積層体形成動作中に、基板310の温度を上げたり下げたりすることができる。コントローラ324が、PVDチャンバ300と通信し、MTJ積層体を形成するための複数の指示命令を実行するように構成されている。コントローラ324は、例えば、計算システムに方法100Bを実行させるように構成された、コンピュータ可読媒体からの指示命令を実行するように構成されている。コントローラ324によって実行される指示命令は、どの1以上のターゲット306A/306Bが堆積プロセス中に露出若しくは遮蔽されるか、PVDチャンバの圧力、並びに/又はMTJ積層体の各層の形成前、形成中、及び形成後のPVDチャンバの温度を含む、方法100Bの様々な態様を含んでよい。指示命令は、PVDチャンバ300以外の別のPVDチャンバに基板を移送するかどうか、及び/又は何時移送するかを更に含んでよい。図3は、基板支持ペデスタル320を示しているが、基板支持体向けに他の構成が採用されてもよい。PVDチャンバ300は、カソード(例えば、ターゲットカートリッジ304及び/又は(1以上の)ターゲット306A/306Bであってよい)とアノード(例えば、基板310であってよい)に電圧を印加するための電源312を更に含む。一実施例として、図3では、ターゲット306A及び306Bが、カソードとして示され、基板支持ペデスタル320が、アノードとして示されている。幾つかの実施例では、各ターゲット306A及び306Bが、別個の電極として働く。印加電圧は、処理領域330内に電界を生成し、これを使用して、ターゲットカートリッジ304内の1以上のターゲット306A/306Bをスパッタリングするためのプラズマを生成することができる。本明細書で説明される実施形態によるPVDチャンバ300は、チャンバ壁328内に形成された第1のガス入口314と第2のガス入口316に連結されたガスマニホールド(図示せず)を有してよい。ガスマニホールドは、PVDチャンバ300が、酸化物層及び/若しくは窒化物層又は中間層を形成するように構成されている場合、プラズマを生成するために使用することができるAr、Xe、及びKr、更には、HeとH2、及び/又はO2若しくはN2などのガスを含む、ガス源(図示せず)からガスを供給するように構成されている。一実施形態では、第1のガス入口314が、コーティングされる基板表面に向けてガスを供給する。第1のガス入口314は、堆積プロセス中に基板に第1のガスを供給するために、基板受入部分308に向けられてよい。第2のガス入口316は、PVDチャンバ300内でプラズマに変えられるガス(例えば、アルゴンのような希ガス)を供給するために設けられてよい。第1のガス入口314及び第2のガス入口316の場所及び位置は、実施形態に応じて変更することができる。幾つかの実施例では、3つ以上のガス入口が、PVDチャンバ300内で採用されてよい。
[0061] PVDチャンバ300の動作中、例えば、MTJ積層体の形成中に、基板310を所定の温度にするように基板内のヒータ318が調整される。別の一実施例では、PVDチャンバ300が、基板310の温度を上昇又は下降させるために使用される複数の放射加熱ランプ326を備える。複数の放射加熱ランプ326は、基板支持ペデスタル320の下に配置されるように図3で示されているが、他の実施例では、複数の放射加熱ランプ326が、基板310の上方、及び/又は基板310に対してチャンバ内の他の位置に配置されてよい。更に他の実施形態では、レーザーを使用して、基板310の温度を制御することができる。レーザーは、レーザーチャンバ内で動作するように構成されてよい。レーザーチャンバは、PVDチャンバ300に連結され、又はこれもまたPVDチャンバ300に連結された移送チャンバに連結されている。基板の温度の調整は、コントローラ324によって実行されるMTJ積層体製造指示命令の実行に応じて行われてよい。これらの指示命令は、MTJ積層体の層を形成するために使用される材料やそれらの層の意図される格子構造を含む要因に応じてよい。
[0062] 図4は、本開示の実施形態による、例示的なターゲットカートリッジである。図4は、図3のターゲットカートリッジ304と同様であってよいターゲットカートリッジ402を示している。ターゲットカートリッジ402は、複数のスパッタリングターゲット404A、404B、404C、及び404Dを備える。図4には4つのスパッタリングターゲットが示されているが、幾つかの実施例では、単一のターゲットが使用され、他の実施例では、2〜10又はそれより上の数のターゲットが使用されてよい。各ターゲット404A、404B、404C、及び404Dは、1つの元素又は合金若しくは化合物を含んでよい。図3の遮蔽機構308は、様々な層の堆積中に、1以上のスパッタリングターゲットを選択的に露出するように移動されてよい。支持構造物406が、スパッタリングターゲット404A、404B、404C、及び404Dを更に分離するように構成されている。支持構造物406は、隣接するターゲット間の壁として作用し、図3の遮蔽機構308と協働するように作用して、堆積中に1以上のターゲットをプラズマから隔離する。ターゲットカートリッジ402は、図4では円形状を有するものとして示されているが、他の実施形態では、多角形、楕円形、又は他の形状寸法をターゲットカートリッジ向けに使用することができる。同様に、スパッタリングターゲット404A、404B、404C、及び404Dは、図4では、円形状を有し、同様な形状及びサイズであるように示されているが、多角形を含む様々な形状寸法を代替的な実施形態で採用することができ、スパッタリングターゲットは、形状とサイズの両方で変更することができる。
[0063] 本明細書で説明されるシステム及び方法を使用して、MTJ積層体の様々な層の層堆積中、前、及び/又は後に、基板温度を変更することによって、改善されたMTJ積層体が製造される。様々な層の堆積中の基板温度は、下層の格子構造と同じである層の格子構造の形成を促進するか、又は、下層の上部に堆積された層が下層のものとは異なる格子構造を形成するように、下層のテクスチャをブロックするように調整され得る。したがって、結果として得られたMTJ積層体は、格子整合が改善され、摂氏400度のオーダーの温度での処理の後で複数の磁気特性及び電気特性を維持するように製造される。
[0064] 以上の説明は本開示の実施形態を対象としているが、本開示の基本的な範囲から逸脱せずに本開示の他の実施形態及び更なる実施形態が考案されてよく、本開示の範囲は、以下の特許請求の範囲によって規定される。
[0048] 一実施形態では、動作148において、キャッピング層122の第1のキャッピング中間層122Aが、非酸化物層が形成されるPVDチャンバとは異なり得るPVDチャンバ内で形成される。というのも、動作148中、酸化物層が形成されるとき、ArプラズマとO2の両方がPVDチャンバ内に存在するからである。第1のキャッピング中間層122Aは、Arプラズマを使用して、Mgターゲットをスパッタリングすることによって、動作148でPVDチャンバ内に堆積される。O2も、そのPVDチャンバ内に存在する。動作148における別の一実施例では、第1のキャッピング中間層122Aが、MgOスパッタリングターゲット及びArプラズマを使用して、PVDチャンバ内で形成される。第1のキャッピング中間層122Aを形成するために、MgOや鉄含有酸化物が使用される本実施例では、第1のキャッピング中間層122Aが、形成されたままのbcc格子構造を有してよい。この実施例では、第1のキャッピング中間層122Aが、下にある磁気記憶層120と同じ格子構造なので、動作146Aにおける任意選択的な冷却は使用されなくてもよい。第1のキャッピング中間層122Aが、トンネルバリア層118と同じ材料(例えば、Mg)から形成される一実施例では、動作144に使用されるPVDチャンバが、第1のキャッピング中間層122Aを形成するために動作148で使用されるのと同じPVDチャンバであってよい。第1のキャッピング中間層122Aの別の一実施例では、第1のキャッピング中間層122Aが、Ru及び/又はIrから形成され、bcc格子構造を有する下にある磁気記憶層120とは異なるfcc格子構造を有する。この実施例では、動作148で第1のキャッピング中間層122Aを形成する前に、動作146Aを使用して基板温度が下げられる。動作150では、第2のキャッピング中間層122Bが、第1のキャッピング中間層122A上に堆積される。動作150は、動作148でO2が使用される場合、第1のキャッピング中間層122Aをスパッタリングするために使用されたものとは別の異なるPVDのチャンバ内で行われてよい。というのも、第のキャッピング中間層122を形成するためにPVDチャンバ内でO2が使用されないからである。第2のキャッピング中間層122Bは、Arプラズマと、Ru、Ir、及び/又はTaから成る1以上のスパッタリングターゲットとを使用して、PVDチャンバ内で形成される。第2のキャッピング中間層122Bの組成に応じて、動作150は、例えば、動作136でSyF結合層110を形成するためにも使用されるPVDチャンバ内で行われてよい。第2のキャッピング層は、Ta及び/又はRu及び/又はIrを含み、fcc格子を有してよい。
[0051] 図2A〜図2Fは、本開示の実施形態に従って製造されたMTJ積層体の層の概略図である。図2Aは、本開示の実施形態による、緩衝層104の拡大図である。緩衝層104は、タンタル(Ta)若しくはTaN、又はTaとTaNの層状積層体を含み、幾つかの実施例では、CoxFeyBzを、単独で又はTa、TaN、若しくはTa/TaN層状積層体との組み合わせで含む。緩衝層104の一実施例では、緩衝層104が、少なくとも1つの二重層204Dを含む。少なくとも1つの二重層204Dは、少なくとも1つの二重層204Dの少なくとも1回の反復で、基板102上に交互様式で形成された第1の緩衝中間層204A及び第2の緩衝中間層204Bを含む。この実施例では、第1の緩衝中間層204AがTaを含み、第2の緩衝中間層204BがTaNを含み、第1の緩衝中間層204Aが基板102と接触している。別の一実施例では、第1の緩衝中間層204AがTaNを含み、第2の緩衝中間層204BがTaを含み、したがって、TaNが基板102と直接接触している。緩衝層104の他の実施例では、図1Aで示されるように、CoxFeyBzが、緩衝層104に単独で使用され、したがって、基板102と直接接触するだろう。別の一実施例では、図2Aで示されているように、第3の緩衝層204Cが、少なくとも1つの二重層204Dの上に形成される。この実施例では、第3の緩衝層204Cが、CoxFeyBzから製造され、最大10Åまでの厚さで形成される。したがって、緩衝層104の構成に応じて、緩衝層104の厚さは、1Åから60Åの範囲内である。Co x Fe y B z 第3の緩衝層204Cが採用される一実施例では、zは約10重量%から約40重量%であり、yは約20重量%から約60重量%であり、xは70重量%以下である。

Claims (15)

  1. デバイスを製造する方法であって、
    磁気トンネル接合積層体を形成することを含み、前記磁気トンネル接合積層体を形成することが、
    PVDを介して、基板上に配置された緩衝層上にシード層を堆積させることであって、前記基板が、前記シード層の堆積中に摂氏200度から摂氏600度の範囲内のシード層堆積温度にある、シード層を堆積させることと、
    PVDを介して、前記緩衝層上に第1のピンニング層を堆積させることであって、前記基板が、前記第1のピンニング層の堆積中に第1のピンニング層堆積温度にある、第1のピンニング層を堆積させることと、
    PVDを介して、前記第1のピンニング層上に合成反フェリ磁性(SyF)結合層を堆積させることであって、前記基板が、前記SyF結合層の堆積中にSyF結合層堆積温度にある、SyF結合層を堆積させることと、
    PVDを介して、前記基板が第2のピンニング層堆積温度にある間に、前記SyF結合層上に第2のピンニング層を堆積させることと、
    PVDを介して、前記基板が構造ブロッキング層堆積温度にある間に、前記第2のピンニング層上に構造ブロッキング層を堆積させることと、
    PVDを介して、前記構造ブロッキング層と接触するように磁気基準層を堆積させることと、
    PVDを介して、前記磁気基準層と接触するようにトンネルバリア層を堆積させることと、
    PVDを介して、前記トンネルバリア層と接触するように磁気記憶層を堆積させることとを含む、方法。
  2. 前記シード層堆積温度が、ほぼ室温であり、前記第1のピンニング層堆積温度が、前記シード層堆積温度以下であり、前記SyF結合層堆積温度が、前記第1のピンニング層堆積温度以下であり、前記第2のピンニング層堆積温度が、前記第1のピンニング層堆積温度以下である、請求項1に記載の方法。
  3. 前記基板温度を、前記第2のピンニング層堆積温度から、摂氏約−270度から摂氏約100度の範囲内にある前記構造ブロッキング層堆積温度まで下げることを更に含む、請求項1に記載の方法。
  4. 前記トンネルバリア層を堆積させることが、
    前記基板が第1のトンネルバリア層堆積温度にある間に、前記トンネルバリア層の第1の部分を堆積させること、
    前記基板温度を、摂氏約300度から摂氏約600度の範囲内にある第2のトンネルバリア層堆積温度まで上げること、
    前記トンネルバリア層の第2の部分を堆積させることであって、前記第1の部分が、前記トンネルバリア層の全体的な厚さの10%から90%を占める、第2の部分を堆積させること、及び
    前記トンネルバリア層の前記第2の部分を堆積させた後で、前記基板の前記温度を、摂氏約−270度から摂氏約100度の範囲内にある堆積後温度まで下げることを含む、請求項1に記載の方法。
  5. 前記磁気記憶層を形成した後で、前記基板の温度を、摂氏約300度から摂氏約600度の範囲内まで上げること、
    前記基板温度を、摂氏約−270度から摂氏約100度の範囲内にあるキャッピング層堆積温度まで下げること、
    前記磁気記憶層上にキャッピング層の第1の中間層を堆積させること、
    前記第1の中間層上に前記キャッピング層の第2の中間層を堆積させること、及び
    前記第2の中間層上にハードマスク層を堆積させることを更に含む、請求項4に記載の方法。
  6. 指示命令を含むコンピュータ可読媒体であって、前記指示命令が、計算システムに、
    緩衝層上にシード層を堆積させること、
    前記緩衝層上に第1のピンニング層を堆積させること、
    前記第1のピンニング層上に合成反フェリ磁性(SyF)結合層を堆積させること、
    前記SyF結合層上に第2のピンニング層を堆積させること、
    前記第2のピンニング層上に構造ブロッキング層を堆積させること、
    前記構造ブロッキング層上に磁気基準層を堆積させること、
    基板が第1のトンネルバリア層堆積温度にある間に、前記磁気基準層上にトンネルバリア層の第1の部分を堆積させること、
    前記基板の温度を、摂氏約300度から摂氏約600度の範囲内にある第2のトンネルバリア層堆積温度まで上げること、
    前記第1の部分上に前記トンネルバリア層の第2の部分を堆積させることであって、前記第1の部分が、前記トンネルバリア層の全体的な厚さの10%から90%を占める、第2の部分を堆積させること、
    前記基板の前記温度を、摂氏約300から摂氏約600度の範囲内にある磁気記憶層堆積温度まで下げること、及び
    前記基板が前記磁気記憶層堆積温度にある間に、前記トンネルバリア層上に磁気記憶層を堆積させること、を実行させるように構成されている、コンピュータ可読媒体。
  7. 前記指示命令が、
    前記磁気基準層の前記堆積前に、前記基板の前記温度を、摂氏約−270度から摂氏約100度の範囲内にある磁気基準層堆積温度まで冷却すること、
    前記磁気記憶層の堆積後に、前記基板の前記温度を摂氏約300から摂氏約600度の範囲内まで上げること、
    続いて、前記基板の前記温度を、摂氏約−270度から摂氏約100度の範囲内にあるキャッピング層堆積温度まで下げること、
    前記基板が前記キャッピング層堆積温度にある間に、前記磁気記憶層上にキャッピング層の第1の中間層を堆積させることであって、前記磁気記憶層が第1の結晶構造を含み、前記第1の中間層が第2の結晶構造を含み、前記第1の結晶構造と前記第2の結晶構造が異なる、第1の中間層を堆積させること、
    前記基板が前記キャッピング層堆積温度にある間に、前記第1の中間層上に前記キャッピング層の第2の中間層を堆積させること、及び
    前記キャッピング層の前記第2の中間層上にハードマスク層を堆積させること、を実行するように更に構成されている、請求項6に記載のコンピュータ可読媒体。
  8. 前記指示命令が、
    前記基板が摂氏約300度から摂氏約600度の範囲内のキャッピング層堆積温度にある間に、前記磁気記憶層上にキャッピング層の第1の中間層を堆積させることであって、前記磁気記憶層が第1の結晶構造を含み、前記第1のキャッピング中間層が同じ結晶構造を含む、第1の中間層を堆積させること、及び
    前記基板が前記キャッピング層堆積温度にある間に、前記第1の中間層上に前記キャッピング層の第2の中間層を堆積させること、を実行するように更に構成されている、請求項6に記載のコンピュータ可読媒体。
  9. 磁気トンネル接合積層体を製造する方法であって、
    構造ブロッキング層上に磁気基準層を堆積させることであって、基板上に第2のピンニング層が形成される、磁気基準層を堆積させること、
    前記磁気基準層上にトンネルバリア層を堆積させること、
    前記トンネルバリア層を堆積させた後で、摂氏約−270度から摂氏約20度の範囲内であるように前記基板の温度を確立すること、及び
    前記トンネルバリア層上に磁気記憶層を堆積させることを含む、方法。
  10. 前記磁気基準層を堆積させる前に、前記基板上に緩衝層を堆積させることと、
    前記緩衝層上にシード層を堆積させることであって、前記シード層を堆積させる前又は前記シード層を堆積させた後のうちの少なくとも一方で、前記基板が摂氏約300度から摂氏約600度の範囲内の温度にある、シード層を堆積させることと、
    前記シード層上に第1のピンニング層を堆積させることと、
    前記第1のピンニング層上にSyF結合層を堆積させることと、
    前記SyF結合層上に第2のピンニング層を堆積させることと、
    前記SyF結合層上に前記構造ブロッキング層を堆積させることとを更に含む、請求項9に記載の方法。
  11. 前記磁気記憶層を堆積させた後で、摂氏約300度から摂氏約600度の範囲内であるように前記基板の温度を確立すること、
    続いて、前記基板の前記温度を、摂氏約−270度から摂氏約100度の範囲内まで下げること、
    前記磁気記憶層上にキャッピング層の第1の中間層を堆積させること、
    前記第1の中間層上に前記キャッピング層の第2の中間層を堆積させること、及び
    前記キャッピング層の前記第2の中間層上にハードマスク層を堆積させることを更に含む、請求項10に記載の方法。
  12. 前記第1の中間層の前記堆積中に、前記基板が、摂氏約−270度から摂氏約100度の範囲内のキャッピング層堆積温度にある、請求項11に記載の方法。
  13. 前記基板が前記キャッピング層堆積温度にある間に、前記第1の中間層上に前記キャッピング層の前記第2の中間層が堆積される、請求項12に記載の方法。
  14. 前記磁気記憶層が第1の結晶構造を含み、前記第1の中間層が第2の結晶構造を含み、前記第1の結晶構造と前記第2の結晶構造が異なる、請求項9に記載の方法。
  15. 前記構造ブロッキング層、前記磁気基準層、前記トンネルバリア層、及び前記磁気記憶層が、それぞれ、体心立法(bcc)結晶構造を有し、前記第2のピンニング層及び前記SyF結合層が、それぞれ、面心立法(fcc)結晶構造を有する、請求項10に記載の方法。
JP2021500283A 2018-07-09 2019-06-04 磁気トンネル接合及びその製造方法 Active JP7125535B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/029,844 2018-07-09
US16/029,844 US10468592B1 (en) 2018-07-09 2018-07-09 Magnetic tunnel junctions and methods of fabrication thereof
PCT/US2019/035457 WO2020013930A1 (en) 2018-07-09 2019-06-04 Magnetic tunnel junctions and methods of fabrication thereof

Publications (2)

Publication Number Publication Date
JP2021532571A true JP2021532571A (ja) 2021-11-25
JP7125535B2 JP7125535B2 (ja) 2022-08-24

Family

ID=68391782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021500283A Active JP7125535B2 (ja) 2018-07-09 2019-06-04 磁気トンネル接合及びその製造方法

Country Status (6)

Country Link
US (1) US10468592B1 (ja)
JP (1) JP7125535B2 (ja)
KR (1) KR102445327B1 (ja)
CN (1) CN112335064A (ja)
TW (1) TWI750479B (ja)
WO (1) WO2020013930A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957849B2 (en) * 2018-05-24 2021-03-23 Applied Materials, Inc. Magnetic tunnel junctions with coupling-pinning layer lattice matching
US10910557B2 (en) * 2018-09-14 2021-02-02 Applied Materials, Inc. Apparatus and methods of fabricating a magneto-resistive random access memory (MRAM) device
US10784310B2 (en) * 2018-11-08 2020-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling for PMA (perpendicular magnetic anisotropy) enhancement of STT-MRAM (spin torque transfer-magnetic random access memory) devices
EP3739640B1 (en) * 2019-05-13 2022-08-24 IMEC vzw A layer stack for a magnetic tunnel junction device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198523A1 (ja) * 2014-06-24 2015-12-30 富士電機株式会社 磁性薄膜および磁性薄膜を含む応用デバイス
WO2016125200A1 (ja) * 2015-02-02 2016-08-11 キヤノンアネルバ株式会社 垂直磁化型mtj素子の製造方法
WO2017134697A1 (ja) * 2016-02-01 2017-08-10 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
CN108232003A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种垂直型磁电阻元件及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958927B1 (en) * 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
WO2006022183A1 (ja) * 2004-08-27 2006-03-02 Japan Science And Technology Agency 磁気抵抗素子及びその製造方法
US7598579B2 (en) 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
KR101746615B1 (ko) * 2010-07-22 2017-06-14 삼성전자 주식회사 자기 메모리 소자 및 이를 포함하는 메모리 카드 및 시스템
US9028910B2 (en) 2010-12-10 2015-05-12 Avalanche Technology, Inc. MTJ manufacturing method utilizing in-situ annealing and etch back
US20130064971A1 (en) * 2011-09-13 2013-03-14 Matthew J. Carey Method for making a current-perpendicular-to-the-plane (cpp) magnetoresistive (mr) sensor with an antiparallel free (apf) structure formed of an alloy requiring post-deposition high temperature annealing
US9093639B2 (en) 2012-02-21 2015-07-28 Western Digital (Fremont), Llc Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
KR101446338B1 (ko) * 2012-07-17 2014-10-01 삼성전자주식회사 자기 소자 및 그 제조 방법
JP6251130B2 (ja) * 2013-06-17 2017-12-20 アイメックImec 磁気メモリ素子
US9564582B2 (en) 2014-03-07 2017-02-07 Applied Materials, Inc. Method of forming magnetic tunneling junctions
KR101537715B1 (ko) 2014-04-18 2015-07-21 한양대학교 산학협력단 메모리 소자
KR102277490B1 (ko) 2014-07-18 2021-07-14 삼성전자주식회사 자기 기억 소자 및 그의 형성 방법
US9768377B2 (en) * 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US9634237B2 (en) * 2014-12-23 2017-04-25 Qualcomm Incorporated Ultrathin perpendicular pinned layer structure for magnetic tunneling junction devices
US20160351799A1 (en) 2015-05-30 2016-12-01 Applied Materials, Inc. Hard mask for patterning magnetic tunnel junctions
US11245069B2 (en) 2015-07-14 2022-02-08 Applied Materials, Inc. Methods for forming structures with desired crystallinity for MRAM applications
KR102567975B1 (ko) * 2016-07-12 2023-08-17 삼성전자주식회사 자기 소자

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198523A1 (ja) * 2014-06-24 2015-12-30 富士電機株式会社 磁性薄膜および磁性薄膜を含む応用デバイス
JP2016009753A (ja) * 2014-06-24 2016-01-18 富士電機株式会社 磁性薄膜および磁性薄膜を含む応用デバイス
US20160372657A1 (en) * 2014-06-24 2016-12-22 Fuji Electric Co., Ltd. Magnetic thin film and application device including magnetic thin film
WO2016125200A1 (ja) * 2015-02-02 2016-08-11 キヤノンアネルバ株式会社 垂直磁化型mtj素子の製造方法
US20170317274A1 (en) * 2015-02-02 2017-11-02 Canon Anelva Corporation Method of manufacturing perpendicular mtj device
WO2017134697A1 (ja) * 2016-02-01 2017-08-10 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US20180331280A1 (en) * 2016-02-01 2018-11-15 Canon Anelva Corporation Manufacturing method of magneto-resistive effect device
CN108232003A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种垂直型磁电阻元件及其制造方法

Also Published As

Publication number Publication date
JP7125535B2 (ja) 2022-08-24
WO2020013930A1 (en) 2020-01-16
CN112335064A (zh) 2021-02-05
US10468592B1 (en) 2019-11-05
KR102445327B1 (ko) 2022-09-21
TW202017213A (zh) 2020-05-01
TWI750479B (zh) 2021-12-21
KR20210019122A (ko) 2021-02-19

Similar Documents

Publication Publication Date Title
JP7125535B2 (ja) 磁気トンネル接合及びその製造方法
TWI821274B (zh) 磁性穿隧接合結構及其製造方法
US8993351B2 (en) Method of manufacturing tunneling magnetoresistive element
JP7100150B2 (ja) 調整可能な大きい垂直磁気異方性を有する磁気トンネル接合
KR102649026B1 (ko) 결합-피닝 층 격자 정합을 갖는 자기 터널 접합들
TW202105385A (zh) 用於磁性隧道接面應用的頂緩衝層
JP7507693B2 (ja) 磁気トンネル接合構造及びその製造方法
US11522126B2 (en) Magnetic tunnel junctions with protection layers
JP6538590B2 (ja) 半導体構造での層の上面を保護する方法
US10910557B2 (en) Apparatus and methods of fabricating a magneto-resistive random access memory (MRAM) device
CN112652709A (zh) 磁性隧道结的种子层形成方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220812

R150 Certificate of patent or registration of utility model

Ref document number: 7125535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150