JP2021170495A - 高周波アンテナ及びプラズマ処理装置 - Google Patents

高周波アンテナ及びプラズマ処理装置 Download PDF

Info

Publication number
JP2021170495A
JP2021170495A JP2020073436A JP2020073436A JP2021170495A JP 2021170495 A JP2021170495 A JP 2021170495A JP 2020073436 A JP2020073436 A JP 2020073436A JP 2020073436 A JP2020073436 A JP 2020073436A JP 2021170495 A JP2021170495 A JP 2021170495A
Authority
JP
Japan
Prior art keywords
frequency antenna
current
plasma processing
fiber sheet
metal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020073436A
Other languages
English (en)
Other versions
JP2021170495A5 (ja
Inventor
明憲 江部
Akinori Ebe
統 津田
Osamu Tsuda
英輝 森内
Hideki Moriuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emd Kk
EMD Corp
Tomoegawa Co Ltd
Original Assignee
Emd Kk
Tomoegawa Paper Co Ltd
EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emd Kk, Tomoegawa Paper Co Ltd, EMD Corp filed Critical Emd Kk
Priority to JP2020073436A priority Critical patent/JP2021170495A/ja
Priority to TW110107865A priority patent/TW202211540A/zh
Priority to CN202110367273.XA priority patent/CN113539774A/zh
Priority to KR1020210046263A priority patent/KR20210128342A/ko
Priority to EP22210192.5A priority patent/EP4163951A1/en
Priority to EP21168282.8A priority patent/EP3896717B1/en
Priority to US17/232,789 priority patent/US20210327683A1/en
Publication of JP2021170495A publication Critical patent/JP2021170495A/ja
Publication of JP2021170495A5 publication Critical patent/JP2021170495A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/26Supports; Mounting means by structural association with other equipment or articles with electric discharge tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Details Of Aerials (AREA)

Abstract

【課題】プラズマ生成のための高周波においても効率よく大電流を流すことができる高周波アンテナ及び該高周波アンテナを用いたプラズマ処理装置を提供する。【解決手段】本発明に係る高周波アンテナ10は、金属繊維シートから成る。本発明に係るプラズマ処理装置は、壁211に開口部213を有する真空容器21と、開口部213に配置された、金属繊維シートから成る高周波アンテナ10と、高周波アンテナ10よりも真空容器21の内部側に、開口部213を気密に閉鎖するように設けられた誘電体製の保護板12とを備える。金属繊維シートから成る高周波アンテナ10は、同形状の金属板から成る高周波アンテナよりも表面積が大きいため、高周波電流に対するインピーダンスが低い。そのため、プラズマ生成のために一般的に用いられる(例えば周波数13.56MHzの)高周波電流を、より効率よく大電流で流すことができる。【選択図】図1

Description

本発明は、高周波アンテナ、及び該高周波アンテナを用いたプラズマ処理装置に関する。
誘導結合型プラズマ処理装置において、装置内に生成するプラズマの密度を高くするためには、高周波アンテナに大電流を流すことによって電磁界の強度を高くする必要がある。
大電流を流すことができる高周波アンテナの例として、特許文献1には、長方形の金属板から成る面状高周波アンテナが記載されている。このような面状高周波アンテナにおいて長方形の対向する2辺間に電流を流すことにより、線状の高周波アンテナを同様の面内に配線した場合よりもインピーダンスが小さくなり、より大きい電流を流すことができる。
特許文献1では、面状高周波アンテナは真空容器の開口に設けられており、開口を塞ぐ蓋としても用いられている。面状高周波アンテナの、真空容器の内部側には誘電体製の保護板が設けられており、この保護板によって真空容器の内部で生成されるプラズマから面状高周波アンテナが保護される。
国際公開WO2009/142016号
導体においては、電流を流す方向に関する断面積を大きくするほど大電流を流すことができる。しかし、高周波電流の場合、表皮効果により電流が流れるのは表面近傍のみであり、断面積を大きくしたことによる電流増大効果は限定的でしかない。
本発明が解決しようとする課題は、プラズマ生成のための高周波においても効率よく大電流を流すことができる高周波アンテナ及び該高周波アンテナを用いたプラズマ処理装置を提供することである。
上記課題を解決するために成された本発明に係る高周波アンテナは、金属繊維シートから成ることを特徴とする。
本発明に係るプラズマ処理装置は、
a) 壁に開口部を有する真空容器と、
b) 前記開口部に配置された、金属繊維シートから成る高周波アンテナと、
c) 前記高周波アンテナよりも前記真空容器の内部側に、前記開口部を気密に閉鎖するように設けられた誘電体製の保護板と
を備えることを特徴とする。
本発明では、高周波アンテナとして金属繊維シートを用いる。金属繊維シートは金属繊維から構成されるシート状物である。このような金属繊維シートとして、金属繊維がランダムに配置された不織布を好適に用いることができる。金属繊維同士は少なくとも一部が結着していることが好ましい。また、金属繊維シートは多孔質構造を有することが好ましい。
金属繊維シートから成る高周波アンテナは、該金属繊維シートと同形状の金属板から成る高周波アンテナよりも表面積が大きいため、高周波電流に対するインピーダンスが低い。従って、プラズマ生成のために一般的に用いられる(例えば周波数13.56MHzの)高周波電流を、より効率よく大電流で流すことができる。
金属繊維シートにおいて、全体の体積のうち金属繊維が占める割合を「占積率」と呼ぶ。占積率が低すぎると、表面積が小さくなり、流すことができる高周波電流も小さくなってしまう。一方、占積率が高すぎると、金属繊維が他の金属繊維と接触する部分が大きくなるため、表面積が小さくなり、流すことができる高周波電流も小さくなってしまう。なお、温度変化によって個々の金属繊維が膨張・収縮するため、占積率は温度によって変化する。これらの点を勘案して、本発明で用いる金属繊維シートの占積率は、温度が25℃において5〜60%であることが好ましい。
本発明に係るプラズマ処理装置では、金属繊維シートから成る高周波アンテナよりも真空容器の内部側に誘電体製の保護板を設ける。本発明における保護板は、真空容器の内部に生成されるプラズマから高周波アンテナを保護する役割を有すると共に、真空容器の開口部を気密に閉鎖する役割を有する。真空容器の開口部を気密に閉鎖する役割は、従来は金属板から成る高周波アンテナが担っていたが、金属繊維シートから成る高周波アンテナは気密性を有しないため、本発明では高周波アンテナの代わりに保護板が開口部を気密に閉鎖する役割を担う。
本発明に係るプラズマ処理装置は、さらに前記高周波アンテナの前記内部側とは反対側に絶縁体製の板から成る強度補強板を備え、前記保護板と該高周波アンテナ及び該高周波アンテナと該強度補強板が密着していることが好ましい。これにより、保護板、高周波アンテナ及び強度補強板が一体となって真空容器の開口部を気密に閉鎖する蓋として機能するため、保護板のみによって開口部を閉鎖する場合よりも機械的強度を高くすることができる。
前記強度補強板を備える構成において、前記保護板は該強度補強板よりも薄いことが好ましい。この構成によれば、真空容器の開口部を塞ぐ蓋全体としての機械的強度を確保しつつ、保護板を薄くすることによって、保護板を通して高周波アンテナから真空容器内部に生成される高周波電磁界の強度を高くすることができ、それによってプラズマ密度を高くすることができる。
本発明に係るプラズマ処理装置はさらに、前記高周波アンテナに導入される高周波電流の電流値を測定する電流測定部を備えることが好ましい。これにより、プラズマ処理装置の使用者が金属繊維シートに導入される高周波電流の電流値を監視することができ、高周波アンテナに過大な電流が流れることで該高周波アンテナを構成する金属繊維シートが溶融することを防ぐことに資する。
前記電流測定部を備える構成においてさらに、前記電流測定部で測定される電流値が所定値を超えたときに、前記高周波アンテナに導入される高周波電流を停止させる電流停止制御部を備えることがより好ましい。これにより、金属繊維シートが溶融することをより確実に防ぐことができる。
本発明によれば、金属繊維シートから成る高周波アンテナを用いることにより、プラズマ生成のための高周波においても効率よく高周波アンテナに大電流を流すことができる。
本発明に係るプラズマ処理装置の一実施形態を示す概略構成図(a)、及び高周波アンテナ付近の部分拡大図(b)。 本実施形態のプラズマ処理装置における高周波アンテナ全体での高周波電流の流れを矢印で示す図。 本実施形態のプラズマ処理装置と、従来の金属板から成るアンテナを用いたプラズマ処理装置において生成されるプラズマの電子密度を示すグラフ。 本発明に係るプラズマ源の変形例を示す概略構成図。
図1〜図4を用いて、本発明に係るプラズマ処理装置及び高周波アンテナの実施形態を説明する。
(1) 本実施形態のプラズマ処理装置及び高周波アンテナの構成
図1は、本発明の一実施形態であるプラズマ処理装置1の構成の概略を示す図である。このプラズマ処理装置1はプラズマCVD法による成膜装置であって、プラズマ源10と、真空容器21と、真空ポンプ22と、ガス供給部23と、基体保持部24と、基体搬入出口25と、高周波電源26と、インピーダンス整合器27と、電流測定部28と、電流停止制御部29とを有する。
まず、プラズマ源10以外のプラズマ処理装置1の構成要素を説明する。真空容器21は金属(例えばステンレス鋼)製の壁211を有し、壁211の内側に形成されている真空容器21の内部空間212にプラズマが生成される。真空ポンプ22は、内部空間212を真空引きするポンプである。ガス供給部23はガスボンベ(図示省略)及びガス導入管で構成されており、アルゴンガスや水素ガス等のプラズマ生成ガス、及び成膜原料のガスを内部空間212に供給するものである。なお、スパッタ法による成膜やプラズマを用いた基体Sの洗浄等、成膜原料のガスを用いることなく基体Sに対する処理を行う場合には、ガス供給部23からはプラズマ生成ガスのみを内部空間212に供給する。基体保持部24は、基体Sを保持するものである。基体搬入出口25は壁211に設けられており、成膜前に真空容器21の外から基体保持部24に基体Sを搬入する際、及び成膜後に基体保持部24から真空容器21の外に基体Sを搬出する際に、基体Sを通過させる搬入出口である。基体Sを搬入出するとき以外は、基体搬入出口25は蓋251で密閉されている。
高周波電源26は、周波数13.56MHzの高周波電流を生成し、後述の高周波アンテナ11に高周波電流を供給する電源である。インピーダンス整合器27は、高周波電源26からの高周波電流が効率よく高周波アンテナ11に導入されるようにインピーダンスを調整するものである。電流測定部28は、高周波アンテナ11に接続される給電線163に流れる高周波電流の電流値を測定する電流計であって、それによって高周波アンテナ11に導入される高周波電流の電流値を測定するものである。電流停止制御部29は、電流測定部28で測定される電流値が所定値を超えたときに、高周波アンテナ11に導入される高周波電流を停止させるよう、高周波電源26を制御するものである。
プラズマ源10は、本実施形態では1台のプラズマ処理装置1に2個設けられている。但し、プラズマ源10の個数はこれには限定されず、1個のみであってもよいし、3個以上であってもよい。各プラズマ源10は、高周波アンテナ11と、保護板12と、強度補強板13と、アンテナ固定枠14と、気密保持部15と、2本の高周波電流供給バー16とを有する。
本実施形態では、高周波アンテナ11として金属繊維シートを用いる。金属繊維シートは、金属繊維からなるシート状物であればよい。金属繊維からなるシート状物は、金属繊維がランダムに配置された不織布であってもよく、金属繊維からなる織布やメッシュであってもよい。また、金属繊維シートは、多孔質構造を有していてもよい。さらに、金属繊維シートは、金属繊維以外の構成要素を含んでいてもよい。金属繊維シートを構成する金属繊維は、金属繊維同士の少なくとも一部が結着していることが好ましい。金属繊維同士の少なくとも一部が結着しているとは、金属繊維同士が物理的に固定されている態様をいう。金属繊維同士は直接固定されていてもよいし、金属繊維の金属成分以外の成分(第2の金属成分)によって固定されていてもよい。ここまでに述べた様々な形態の金属繊維シートのうち、金属繊維同士の少なくとも一部が結着した不織布が特に好ましい。
このように多数の金属繊維で構成される金属繊維シートから成る高周波アンテナ11は、該金属繊維シートと同形状の金属板から成る高周波アンテナよりも表面積が大きいため、高周波電流に対するインピーダンスが低い。従って、プラズマ生成のために一般的に用いられる(例えば周波数13.56MHz の)高周波電流を、より効率よく大電流で流すことができる。
本実施形態で用いる金属繊維シートにおける金属繊維の金属成分及び第2の金属成分は特に限定されないが、いずれも、銅をはじめとして、ステンレス、鉄、銅、アルミニウム、青銅、黄銅、ニッケル、クロム等、複数の金属の合金等、任意の金属を用いることができる。
本実施形態で用いる金属繊維シートにおける金属繊維の平均繊維径は、任意に設定可能であるが、好ましくは1μm〜30μm、更に好ましくは2μm〜20μmである。「平均繊維径」とは、顕微鏡で撮像された金属繊維シートの任意の場所における垂直断面に基づき金属繊維の断面積を算出し(例えば、公知のソフトウエアによって)、前記断面積と同一面積を有する円の直径を算出することにより導かれた面積径の平均値(例えば、20個の繊維の平均値)である。また、本実施形態で用いる金属繊維シートにおける金属繊維の平均繊維長は、1mm〜10mmであることが好ましく、更に好ましくは、3mm〜6mmである。「平均繊維長」とは、顕微鏡で測定した複数(例えば20本分)の測定値を平均した値である。金属繊維の平均繊維径及び平均繊維長が上記のような範囲であると、金属繊維シートの表面積を高め易く、高周波電流に対するインピーダンスを低減させ易い。
本実施形態で用いる金属繊維シートにおける占積率は、温度が25℃において5〜60%であることが好ましい。占積率が低すぎると、表面積が小さくなり、高周波アンテナ11に流すことができる高周波電流も小さくなってしまう。一方、占積率が高すぎると、金属繊維が他の金属繊維と接触する部分が大きくなるため、表面積が小さくなり、高周波アンテナ11に流すことができる高周波電流も小さくなってしまう。占積率の測定は、温度25℃における金属繊維シート全体(孔の部分も含む)の体積と、金属繊維シートを構成する金属繊維の体積から算出することができる。金属繊維シートの体積は、金属繊維シートの厚みと面積を公知の方法で測定して求めることができる。
金属繊維シートの厚さは特に限定されないが、100μm〜1mmであることが好ましい。金属繊維シートの厚さをこの範囲とすることで、高周波アンテナに流すことができる高周波電流の量を確保しやすくなる。金属繊維シートの厚さは、例えば、ミツトヨ製デジマチックインジケータID−C112Xで測定することができる。
保護板12は誘電体製の板材から成り、高周波アンテナ11の一方の表面に接触するように設けられている。強度補強板13は保護板12よりも厚い誘電体製の板材から成り、高周波アンテナ11の前記一方の面とは反対側の面に接触するように設けられている。従って、高周波アンテナ11は保護板12と強度補強板13によって挟まれた状態となっている。言い換えれば、強度補強板13、高周波アンテナ11、保護板12の順に積層された積層体110が形成されている。積層体110は、保護板12の側を、真空容器21の壁(上壁)211に設けられた開口部213に向けて配置されている。保護板12及び強度補強板13の材料には、酸化アルミニウム、酸化ジルコニウム、窒化珪素、窒化アルミニウム等を用いることができる。保護板12と強度補強板13は同じ材料から成るものであってもよいし、異なる材料から成るものであってもよい。本実施形態では、使用時に高周波アンテナ11やプラズマから生じる熱を逃がしやすくするために、保護板12及び強度補強板13には共に、誘電体の中では熱伝導率が高い窒化アルミニウムを用いている。
アンテナ固定枠14は、高周波アンテナ11、保護板12及び強度補強板13の側面を囲む枠本体部141と、該枠本体部141から強度補強板13の高周波アンテナ11とは反対側の表面にせり出して該表面の一部を覆うせり出し部142とを有する。強度補強板13側を上側とすると、アンテナ固定枠14は強度補強板13に垂直な断面において逆L字形の形状を呈している。枠本体部141には上面から下面に貫く孔が設けられており、この孔に挿通されたボルトによって、アンテナ固定枠14は、開口部213の周囲にある真空容器21の壁(上壁)211に固定されている。壁(上壁)211の上面の枠本体部141よりも内側には気密保持部15が配置されており、積層体110はせり出し部142と気密保持部15に上下を挟まれた状態で固定されている。気密保持部15は、枠状部材151の上面にシール材(Oリング)152が、下面にシール材(Oリング)153が、それぞれ設けられたものである。上面のシール材152は保護板12に押さえつけられ、下面のシール材152は壁(上壁)211に押さえつけられる。
このような構成により、積層体110は、高周波アンテナ11と保護板12、及び高周波アンテナ11と強度補強板13が密着して一体のものとなり、開口部213を気密に閉鎖する蓋として機能する。高周波アンテナ11は保護板12で真空容器21の内部空間212から仕切られるため、内部空間212に生成されるプラズマから保護板12によって保護される。
強度補強板13には、1方向に長い直方体状の刳り貫きが2箇所、互いに略平行に設けられており、それらの刳り貫きには、金属製の直方体状の棒から成る高周波電流供給バー16が収容されている。各高周波電流供給バー16の上面にはそれぞれ、該高周波電流供給バー16の上面の全体に接触し、該上面から強度補強板13の上面に跨がって配置された金属製の給電ブロック161が、ボルトで該高周波電流供給バー16に固定されている。各給電ブロック161にはそれぞれ給電端子162が取り付けられ、各給電端子162にはそれぞれ給電線163が接続されている。一方の給電線163は高周波電源26の一方の端子に接続され、他方の給電線163はインピーダンス整合器27を介して高周波電源26の他方の端子に接続されている。各高周波電流供給バー16の長さは30mm、2本の高周波電流供給バー16の間隔は150mmである。
真空容器21の内部空間212に生成される高周波電磁界を大きくするためには、保護板12は薄い方が望ましい。一方、積層体110が保護板12側において真空容器21の内部空間212と接し、強度補強板13側が大気と接しており、真空と大気圧との圧力差による力を受けるため、この圧力差に耐えるように、強度補強板13は厚い方が望ましい。但し、強度補強板13を厚くし過ぎると、高周波アンテナ11に生じる熱を逃がし難くなってしまう。また、必要となる機械的強度は、真空容器21の開口部213の大きさにも依存する。以上の点を勘案して、保護板12及び強度補強板13の厚さを定めることが望ましい。本実施形態では、開口部213が長辺210mm、短辺160mmの長方形であって、保護板12の厚さは3mm、強度補強板13の厚さは20mmとした。もちろん、これらの厚さは適宜変更することが可能である。例えば、保護板12の厚さは1〜5mmの範囲内、強度補強板13の厚さは5〜30mmの範囲内とすることができる。保護板12及び強度補強板13の厚さはここで挙げた範囲の外であってもよい。
(2) 本実施形態のプラズマ処理装置の動作
本実施形態のプラズマ処理装置1の動作を説明する。まず、基体搬入出口25の蓋251を開放し、基体Sを真空容器21の内部空間212に搬入する。そのうえで、基体Sを、基体保持部24の上に載置することにより保持させる。その後、蓋251を閉鎖し、真空ポンプ22により真空容器21の内部空間212を真空にする。さらに、ガス供給部23より、プラズマ生成ガス及び成膜原料ガスを内部空間212に供給する。そして、高周波電源26からインピーダンス整合器27、給電線163、給電端子162、給電ブロック161及び高周波電流供給バー16を介して高周波アンテナ11に高周波電流を導入する。このように高周波アンテナ11に高周波電流を導入することにより、内部空間212に高周波電磁界が生成され、プラズマ生成ガスの分子が電離することによりプラズマが生成される。このプラズマにより、成膜原料ガスの分子が分解されて基体S上に堆積し、成膜がなされる。
高周波アンテナ11の全体を見ると、高周波電流は図2に矢印で示すように、互いに略平行に配置された2本の高周波電流供給バー16の間を、面状に拡がって流れる。高周波アンテナ11の一部に着目すると、高周波電流は、高周波アンテナ11を構成する個々の金属繊維の表面を流れる。
本実施形態のプラズマ処理装置1では、金属繊維シートから成る高周波アンテナ11を用いることにより、それと同じ平面形状を有する金属板から成る高周波アンテナよりも、高周波電流が流れる金属体(金属繊維)の表面積が大きくなるため、高周波電流をより効率よく大電流で流すことができる。そのため、真空容器21の内部空間212に導入される高周波電磁界の強度を高くすることができ、該内部空間212に生成されるプラズマの密度を高くすることができる。
以下、本実施形態のプラズマ処理装置1の内部空間212に生成したプラズマの電子密度を測定する実験を行った結果を示す。この実験では、高周波アンテナ11には、平均繊維長3mm、平均繊維径9μmの銅繊維を湿式抄造法により抄造・乾燥した後、不活性ガス中で銅繊維同士を結着させた、占積率が13%である金属繊維シートを用いた。比較例として、高周波アンテナ11と同じ平面形状を有する従来の金属板から成る高周波アンテナを用いて同様の実験を行った。本実施形態、比較例共に、高周波アンテナは1個のみ用い、プラズマ生成ガスとして窒素ガスを圧力1.0Pa、流量100sccmとなるように真空容器内に導入した。そのうえで、高周波アンテナに高周波電力を100〜1000Wの範囲内で投入し、アンテナから120mm離れた位置でラングミュアプローブによりプラズマの電子密度を測定した。
実験結果を図3に示す。本実施形態、比較例共に、高周波電力の大きさに比例して電子密度が高くなっている。高周波電力が同じ値である場合に本実施形態と比較例を対比すると、測定を行った全ての高周波電力の範囲内で、電子密度は比較例よりも本実施形態の方が約15〜20%高くなることがわかる。これは、本実施形態の方が、各金属繊維の表面を高周波電流が流れることによって高周波アンテナ11のインダクタンスが小さくなり、それによって高周波電流が大きくなるため、真空容器21の内部空間212における高周波電磁界の強度が高くなることによると考えられる。
以上のように、本実施形態のプラズマ処理装置1は、金属繊維シートから成る高周波アンテナ11を用いることによって高周波電流が流れる表面積を大きくし、それによって効率よく高周波アンテナに大電流を流すことができるという本発明の効果を奏するが、以下に述べる他の効果も奏する。
本実施形態のプラズマ処理装置1では、高周波アンテナ11及び保護板12に加えて強度補強板13を用い、高周波アンテナ11と保護板12、及び高周波アンテナ11と強度補強板13が密着させて一体化させることにより、開口部213を気密に閉鎖する蓋の機械的強度を高くすることができる。それに伴い、強度補強板13が無い場合よりも保護板12の強度が弱いことが許容されるため、保護板12を薄く(例えば強度補強板13よりも薄く)することができる。これにより、高周波アンテナ11によって保護板12を通して真空容器21の内部空間212に生成される高周波電磁界の強度を高くすることができる。
一般に、面状の高周波アンテナと保護板を密着させた場合には、金属製の高周波アンテナの方が誘電体製の保護板よりも、昇温に伴う熱膨張及び降温に伴う熱収縮が大きくなり、高周波アンテナと保護板の間に摩擦が生じ、高周波アンテナ及び/又は保護板が摩耗するという問題が生じる。それに対して本実施形態のプラズマ処理装置1では、高周波アンテナ11が金属繊維シート製であることから、昇温時には金属繊維同士の隙間を狭めるように金属繊維が膨張し、降温時には隙間を拡げるように金属繊維が収縮するため、高周波アンテナ11全体としての熱膨張/熱収縮は従来の金属板製の高周波アンテナよりも小さくなる。これにより、金属繊維シート製の高周波アンテナ11は従来の金属板製の高周波アンテナよりも、保護板12との熱膨張/熱収縮の差が小さくなり、高周波アンテナ11と保護板12との摩擦を低減することができる。そのため、摩擦による高周波アンテナ11及び/又は保護板12の摩耗を抑制することができる。
また、本実施形態のプラズマ処理装置1は、電流測定部28によって高周波アンテナ11に流れる高周波電流の電流値を測定し、該電流値が所定値を超えたときに電流停止制御部29によって高周波アンテナ11への高周波電流の供給を停止するように高周波電源26を制御することにより、高周波アンテナ11に過大な電流が流れることで高周波アンテナ11が溶融することを防ぐことができる。
(3) 変形例
本発明は上記実施形態には限定されず、種々の変形が可能である。
例えば、本発明に係るプラズマ処理装置1において、上記プラズマ源10の代わりに、図4に示すプラズマ源10Aを用いることができる。このプラズマ源10Aは、高周波アンテナ11Aと、保護板12と、第1強度補強板131Aと、第2強度補強板132Aと、アンテナ固定枠14と、気密保持部15と、2個の給電ブロック161Aとを有する。保護板12及び気密保持部15の構成は上記実施形態のものと同じであるため、説明を省略する。
第1強度補強板131Aは、絶縁体製の板材の中央を刳り抜いた枠状の形状を有しており、その枠内に第2強度補強板132Aが収容されている。高周波アンテナ11Aは、上記実施形態と同様の金属繊維シート製であるが、プラズマ源10Aへの取り付け方が上記実施形態とは異なる。具体的には、第2強度補強板132Aの一側面1322に接する上面の一部の領域1321から、該側面1322、底面1323、前記側面1322に対向する側面1324、及び該側面1324に接する上面の一部の領域1325に接し、第2強度補強板132Aに巻き付けるように設けられている。金属繊維シートが可撓性を有するため、このように高周波アンテナ11Aを第2強度補強板132Aに巻き付けることができる。
領域1321及び1325の上にはそれぞれ給電ブロック161Aが載置されている。各給電ブロック161Aは複数本のボルトによって第2強度補強板132Aに固定されている。それによって高周波アンテナ11Aが給電ブロック161Aで第2強度補強板132Aに押さえつけられることにより、高周波アンテナ11Aが第2強度補強板132Aに固定されている。各給電ブロック161Aにはそれぞれ給電端子162Aが取り付けられ、各給電端子162Aには給電線163が接続されている。上記実施形態と同様に、一方の給電線163は高周波電源26の一方の端子に接続され、他方の給電線163はインピーダンス整合器27を介して高周波電源26の他方の端子に接続されている。
第1強度補強板131Aと高周波アンテナ11Aとの間、及び高周波アンテナ11Aと保護板との間には隙間が設けられており、この隙間には誘電体であって樹脂であるシリコーングリースから成る接着剤135が充填されている。この接着剤135により、第1強度補強板131Aと高周波アンテナ11Aとの間、及び高周波アンテナ11Aと保護板との間の熱接触が良好になるため、高周波アンテナ11Aで発生する熱や、プラズマ生成に伴って発生する熱をプラズマ処理装置の外部に放出しやすくなる。
この変形例におけるプラズマ源10A及び該プラズマ源10Aを有するプラズマ処理装置の動作は、上記実施形態のプラズマ源10及びプラズマ処理装置1の動作と同様である。
本発明はさらなる変形も可能である。例えば、上記実施形態のプラズマ処理装置1には強度補強板13を設けたが、強度補強板13は省略してもよい。その場合には、保護板12には、真空容器の内部と外部との圧力差に耐えることができる機械的強度を有するものを用いる。
上記実施形態のプラズマ処理装置1には電流測定部28及び電流停止制御部29を用いたが、電流測定部28のみを設け、電流停止制御部29を省略してもよい。同一の条件でプラズマ処理を行う場合にはおおむね同程度の大きさの電流が高周波アンテナ11に流れることから、電流測定部28のみをプラズマ処理装置に設けた場合には、プラズマ処理の条件を決定する際の予備実験のときに使用者が電流測定部28で測定された電流値を見ながら予備実験を行うことで当該条件を決定する(その後は、電流値をモニターする必要はない)という方法で電流測定部28を使用することができる。あるいは、電流測定部28及び電流停止制御部29の双方を省略してもよい。
1…プラズマ処理装置
10、10A…プラズマ源
11、11A…高周波アンテナ
110…積層体
12…保護板
13…強度補強板
131A…第1強度補強板
132A…第2強度補強板
1321、1325…第2強度補強板上の領域
1322、1324…第2強度補強板の側面
1323…第2強度補強板の底面
135…接着剤
14…アンテナ固定枠
141…アンテナ固定枠の枠本体部
142…アンテナ固定枠のせり出し部
15…気密保持部
151…気密保持部の枠状部材
152…シール材
16…高周波電流供給バー
161、161A…給電ブロック
162、162A…給電端子
163…給電線
21…真空容器
211…真空容器の壁
212…真空容器の内部空間
213…真空容器の壁の開口部
22…真空ポンプ
23…ガス供給部
24…基体保持部
25…基体搬入出口
251…基体搬入出口の蓋
26…高周波電源
27…インピーダンス整合器
28…電流測定部
29…電流停止制御部
S…基体

Claims (10)

  1. 金属繊維シートから成ることを特徴とする高周波アンテナ。
  2. 前記金属繊維シートが、金属繊維同士の少なくとも一部が結着しているものであることを特徴とする請求項1に記載の高周波アンテナ。
  3. 温度が25℃であるときの前記金属繊維シートの占積率が5〜60%であることを特徴とする請求項1又は2に記載の高周波アンテナ。
  4. a) 壁に開口部を有する真空容器と、
    b) 前記開口部に配置された、金属繊維シートから成る高周波アンテナと、
    c) 前記高周波アンテナよりも前記真空容器の内部側に、前記開口部を気密に閉鎖するように設けられた誘電体製の保護板と
    を備えることを特徴とするプラズマ処理装置。
  5. さらに前記高周波アンテナの前記内部側とは反対側に絶縁体製の板から成る強度補強板を備え、前記保護板と該高周波アンテナ及び該高周波アンテナと該強度補強板が密着していることを特徴とする請求項4に記載のプラズマ処理装置。
  6. 前記保護板が前記強度補強板よりも薄いことを特徴とする請求項5に記載のプラズマ処理装置。
  7. さらに、前記高周波アンテナに導入される高周波電流の電流値を測定する電流測定部を備えることを特徴とする請求項4〜6のいずれか1項に記載のプラズマ処理装置。
  8. さらに、前記電流測定部で測定される電流値が所定値を超えたときに、前記高周波アンテナに導入される高周波電流を停止させる電流停止制御部を備えることを特徴とする請求項7に記載のプラズマ処理装置。
  9. 前記金属繊維シートが、金属繊維同士の少なくとも一部が結着しているものであることを特徴とする請求項4〜8のいずれか1項に記載のプラズマ処理装置。
  10. 温度が25℃であるときの前記金属繊維シートの占積率が5〜60%であることを特徴とする請求項4〜9のいずれか1項に記載のプラズマ処理装置。
JP2020073436A 2020-04-16 2020-04-16 高周波アンテナ及びプラズマ処理装置 Pending JP2021170495A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020073436A JP2021170495A (ja) 2020-04-16 2020-04-16 高周波アンテナ及びプラズマ処理装置
TW110107865A TW202211540A (zh) 2020-04-16 2021-03-05 高頻天線及電漿處理裝置
CN202110367273.XA CN113539774A (zh) 2020-04-16 2021-04-06 高频天线及等离子处理装置
KR1020210046263A KR20210128342A (ko) 2020-04-16 2021-04-09 고주파 안테나 및 플라즈마 처리 장치
EP22210192.5A EP4163951A1 (en) 2020-04-16 2021-04-14 Radio-frequency antenna
EP21168282.8A EP3896717B1 (en) 2020-04-16 2021-04-14 Plasma processing device with utilizing a high frequency antenna
US17/232,789 US20210327683A1 (en) 2020-04-16 2021-04-16 Radio-frequency antenna and plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073436A JP2021170495A (ja) 2020-04-16 2020-04-16 高周波アンテナ及びプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2021170495A true JP2021170495A (ja) 2021-10-28
JP2021170495A5 JP2021170495A5 (ja) 2023-02-02

Family

ID=76250030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073436A Pending JP2021170495A (ja) 2020-04-16 2020-04-16 高周波アンテナ及びプラズマ処理装置

Country Status (6)

Country Link
US (1) US20210327683A1 (ja)
EP (2) EP3896717B1 (ja)
JP (1) JP2021170495A (ja)
KR (1) KR20210128342A (ja)
CN (1) CN113539774A (ja)
TW (1) TW202211540A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142016A1 (ja) * 2008-05-22 2009-11-26 株式会社イー・エム・ディー プラズマ生成装置およびプラズマ処理装置
US20140091982A1 (en) * 2012-09-24 2014-04-03 George C. Hansen Highly conductive fiber reinforced antennas
WO2016076523A1 (en) * 2014-11-10 2016-05-19 Unist Academy-Industry Research Corporation Biosensor, transparent circuitry and contact lens including same
JP2019009306A (ja) * 2017-06-26 2019-01-17 東京エレクトロン株式会社 給電部材及び基板処理装置
JP2019068256A (ja) * 2017-09-29 2019-04-25 アルプスアルパイン株式会社 通信機器
JP2019517125A (ja) * 2016-05-20 2019-06-20 クリストフ−ヘルベルト ディーナー、 高周波エネルギ供給用回路アセンブリ及び電気放電生成システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239044A (ja) * 1985-04-11 1986-10-24 旭化成株式会社 導電性繊維材料
JP6010305B2 (ja) * 2012-02-07 2016-10-19 東京エレクトロン株式会社 誘導結合プラズマ用アンテナユニット、誘導結合プラズマ処理装置および誘導結合プラズマ処理方法
JP6840633B2 (ja) * 2017-06-26 2021-03-10 株式会社巴川製紙所 金属繊維シート、配線部材、及びバスバー
US20210183619A1 (en) * 2018-07-26 2021-06-17 Lam Research Corporation Compact high density plasma source
JP7085963B2 (ja) * 2018-10-29 2022-06-17 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142016A1 (ja) * 2008-05-22 2009-11-26 株式会社イー・エム・ディー プラズマ生成装置およびプラズマ処理装置
US20140091982A1 (en) * 2012-09-24 2014-04-03 George C. Hansen Highly conductive fiber reinforced antennas
WO2016076523A1 (en) * 2014-11-10 2016-05-19 Unist Academy-Industry Research Corporation Biosensor, transparent circuitry and contact lens including same
JP2019517125A (ja) * 2016-05-20 2019-06-20 クリストフ−ヘルベルト ディーナー、 高周波エネルギ供給用回路アセンブリ及び電気放電生成システム
JP2019009306A (ja) * 2017-06-26 2019-01-17 東京エレクトロン株式会社 給電部材及び基板処理装置
JP2019068256A (ja) * 2017-09-29 2019-04-25 アルプスアルパイン株式会社 通信機器

Also Published As

Publication number Publication date
EP3896717B1 (en) 2023-01-11
EP3896717A1 (en) 2021-10-20
TW202211540A (zh) 2022-03-16
KR20210128342A (ko) 2021-10-26
US20210327683A1 (en) 2021-10-21
CN113539774A (zh) 2021-10-22
EP4163951A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP5747231B2 (ja) プラズマ生成装置およびプラズマ処理装置
CN102027574B (zh) 等离子体处理室部件的保护性涂层及其使用方法
JP4898718B2 (ja) 載置台及びプラズマ処理装置
US20060081564A1 (en) Method and system for arc suppression in a plasma processing system
JP7126431B2 (ja) シャワーヘッドおよびガス処理装置
US20120031562A1 (en) Plasma processing apparatus
TW200826186A (en) Stage for plasma processing apparatus, and plasma processing apparatus
TWI724258B (zh) 電漿處理裝置
TW201003774A (en) Plasma processing apparatus
KR20140046059A (ko) 기판 처리 장치 및 금속막의 에칭 방법, 자기 저항 효과 소자의 제조 방법
WO2012032596A1 (ja) プラズマ処理装置
JP5461040B2 (ja) マイクロ波プラズマ処理装置
JP2021170495A (ja) 高周波アンテナ及びプラズマ処理装置
JP6277398B2 (ja) プラズマcvd装置及び配管内の成膜方法
WO2011058608A1 (ja) プラズマ処理装置
JP7426709B2 (ja) プラズマ源
TWI517243B (zh) 電漿處理裝置
KR101897394B1 (ko) 진공 장치
CN112702829A (zh) 等离子源
TWI813699B (zh) 噴氣頭及電漿處理裝置
TWI243803B (en) Glass, plasma resisting component, component for electromagnetic wave-transparent window and plasma processing apparatus
JP2017010820A (ja) プラズマ処理装置
CN110944443B (zh) 等离子体处理装置及其驱动方法
JP2008147384A (ja) ドライエッチング装置
JP6546041B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417