JP2021148687A - Fouling substance detection sensor, fouling substance quantity measuring device, and fouling substance quantity measuring method - Google Patents

Fouling substance detection sensor, fouling substance quantity measuring device, and fouling substance quantity measuring method Download PDF

Info

Publication number
JP2021148687A
JP2021148687A JP2020050662A JP2020050662A JP2021148687A JP 2021148687 A JP2021148687 A JP 2021148687A JP 2020050662 A JP2020050662 A JP 2020050662A JP 2020050662 A JP2020050662 A JP 2020050662A JP 2021148687 A JP2021148687 A JP 2021148687A
Authority
JP
Japan
Prior art keywords
amount
frequency
substance
crystal oscillator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020050662A
Other languages
Japanese (ja)
Other versions
JP7395395B2 (en
Inventor
豊 茶円
Yutaka Chaen
豊 茶円
雄一 角本
Yuichi Kakumoto
雄一 角本
広明 長
Hiroaki Cho
広明 長
智 原口
Satoshi Haraguchi
智 原口
隆 水出
Takashi Mizuide
隆 水出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020050662A priority Critical patent/JP7395395B2/en
Publication of JP2021148687A publication Critical patent/JP2021148687A/en
Priority to JP2023200884A priority patent/JP2024020564A/en
Application granted granted Critical
Publication of JP7395395B2 publication Critical patent/JP7395395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a fouling substance detection sensor, a fouling substance quantity measuring device, and a fouling substance quantity measuring method, which can measure the sticking amount of fouling substance with good accuracy.SOLUTION: The fouling substance detection sensor of an embodiment comprises: a first and a second crystal vibrator arranged in mutually the same environment; a first frequency oscillation unit and a first frequency measurement unit connected to the first crystal vibrator; and a second frequency oscillation unit and a second frequency measurement unit connected to the second crystal vibrator. The first crystal vibrator includes a first electrode that contains first metal. The second crystal vibrator includes a second electrode that contains second metal. When a fouling substance sticks to the second electrode, the second metal exhibits the action of causing the second resonance frequency outputted by the second crystal vibrator to change in relation to the first resonance frequency outputted by the first crystal vibrator.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、汚損物質検出センサ、汚損物質量測定装置および汚損物質量測定方法に関する。 Embodiments of the present invention relate to a pollutant substance detection sensor, a pollutant substance amount measuring device, and a pollutant substance amount measuring method.

電力設備は社会インフラストラクチャを支える重要な設備であり、長期にわたり安定して稼動できることを求められる。安定稼動のためには、電力設備の劣化状態を把握し、保全・更新を計画的に実施する必要がある。電力設備の導体支持またはバリヤなどに用いられる絶縁材料は材料自体の経年劣化や、設置環境に浮遊する塵埃または水分の付着などで絶縁特性が低下する。絶縁特性が低下すると放電やトラッキングを生じて設備停止に至る虞もあることから、絶縁材料の状態は電力設備の劣化を診断するためのバロメータになる。 Electric power equipment is an important equipment that supports social infrastructure, and is required to be able to operate stably for a long period of time. For stable operation, it is necessary to grasp the deterioration state of electric power equipment and systematically carry out maintenance and renewal. Insulating materials used for conductor support or barriers of electric power equipment have deteriorated insulation characteristics due to aging deterioration of the material itself and adhesion of dust or moisture floating in the installation environment. If the insulation characteristics deteriorate, discharge or tracking may occur and the equipment may stop. Therefore, the state of the insulating material becomes a barometer for diagnosing the deterioration of the power equipment.

設置環境が絶縁材料の劣化に及ぼす影響は、塵埃や水分の付着だけとは限らない。絶縁材料の成分と化学反応する環境因子が存在する環境では、通常の経年劣化を上回る速度で、絶縁材料が劣化する場合がある。例えば炭酸カルシウムは、絶縁材料の無機充填材として多く使用される。炭酸カルシウムが塩素系ガスや窒素酸化物ガスなどと反応すると、絶縁材料表面に塩化カルシウムまたは硝酸カルシウムが形成される。これらの物質は湿度40%RH以下の低湿度であっても大気中の水分を吸入して潮解するので、低湿度条件であっても絶縁材料の表面が結露し、絶縁材料の表面を漏れ電流が流れることがある。これが甚だしくなると絶縁が破壊され、最悪の場合には設備停止に至ることもある。 The effect of the installation environment on the deterioration of the insulating material is not limited to the adhesion of dust and moisture. In an environment where environmental factors that chemically react with the components of the insulating material are present, the insulating material may deteriorate at a rate higher than that of normal aging. For example, calcium carbonate is often used as an inorganic filler for insulating materials. When calcium carbonate reacts with chlorine-based gas, nitrogen oxide gas, etc., calcium chloride or calcium nitrate is formed on the surface of the insulating material. Since these substances absorb moisture from the atmosphere and deliquesce even at a low humidity of 40% RH or less, dew condensation occurs on the surface of the insulating material even under low humidity conditions, and leakage current leaks from the surface of the insulating material. May flow. If this becomes severe, the insulation will be destroyed, and in the worst case, the equipment may be shut down.

電力設備に使われている絶縁材料の絶縁抵抗値を、フィールドで直接測定することは可能である。しかしながらその測定値は測定場所の雰囲気、具体的には湿度に大きく影響される。例えば乾燥した環境下では絶縁抵抗値は現状よりも高くなることが多く、絶縁材料の劣化が見逃されるケースがある。また、電力設備が絶縁不良で停止するのは、ほとんど梅雨時の高温多湿の時期である。このように抵抗値を直接測定することは実地の運用には向いているといえない。 It is possible to directly measure the insulation resistance value of the insulating material used in electric power equipment in the field. However, the measured value is greatly affected by the atmosphere at the measurement location, specifically the humidity. For example, in a dry environment, the insulation resistance value is often higher than the current value, and deterioration of the insulating material may be overlooked. In addition, electric power equipment stops due to poor insulation most of the time during the hot and humid season during the rainy season. It cannot be said that the direct measurement of the resistance value in this way is suitable for practical operation.

そこで、多変量解析などの数値的な演算により絶縁材料の絶縁抵抗を推定する方法が提案されている。つまり、絶縁抵抗と相関を持ち測定場所の雰囲気に影響されない項目を測定し、その項目の値に基づいて絶縁抵抗値を算出する方法である。この方法ではフィールドで使用されている絶縁材料、および強制劣化させた絶縁材料について、絶縁抵抗と相関のあるデータを取得し、多変量解析により診断指標である絶縁抵抗の推定式を策定する。絶縁診断では、推定式を策定した項目を測定し、絶縁抵抗推定式から、任意の温度や湿度の絶縁抵抗を推定するようにする。 Therefore, a method of estimating the insulation resistance of an insulating material by numerical calculation such as multivariate analysis has been proposed. That is, it is a method of measuring an item that has a correlation with the insulation resistance and is not affected by the atmosphere of the measurement place, and calculates the insulation resistance value based on the value of the item. In this method, data that correlates with the insulation resistance is acquired for the insulation material used in the field and the insulation material that has been forcibly deteriorated, and an estimation formula for the insulation resistance, which is a diagnostic index, is formulated by multivariate analysis. In the insulation diagnosis, the items for which the estimation formula is formulated are measured, and the insulation resistance at an arbitrary temperature or humidity is estimated from the insulation resistance estimation formula.

絶縁抵抗と相関のあるデータとして、大きく分類すると、材料そのものの特性、及び設置個所周囲の大気環境による因子が挙げられる。これらの項目の測定に関しては、従来は検査員が実際に対象機器そのものを測定し、対象機器からサンプリング作業を実施する必要がある。そのため、連続的な材料特性及び環境因子の監視は不可能であり、離散的な評価となってしまうという課題があった。近年の計測技術の進歩により、材料特性、大気環境因子を連続的に測定することが可能となってきており、例えば材料特性を絶縁材料の分光反射率から推定する技術や、大気環境に含まれるイオン性の汚損物質を計測する技術を適用することで、連続的な絶縁性能の監視を実現可能となってきている。そこで、塵埃や水分などによる通常の経年劣化を上回る速度で絶縁材料を劣化させる汚損物質の量を精度よく測定することができる技術が要望されている。 Data that correlates with insulation resistance can be broadly classified into factors due to the characteristics of the material itself and the atmospheric environment around the installation site. Regarding the measurement of these items, conventionally, it is necessary for the inspector to actually measure the target device itself and perform sampling work from the target device. Therefore, it is impossible to continuously monitor the material properties and environmental factors, and there is a problem that the evaluation becomes discrete. Recent advances in measurement technology have made it possible to continuously measure material properties and atmospheric environment factors. For example, the technology for estimating material properties from the spectral reflectance of insulating materials and the atmospheric environment are included. By applying the technology for measuring ionic pollutants, it has become possible to continuously monitor the insulation performance. Therefore, there is a demand for a technique capable of accurately measuring the amount of a fouling substance that deteriorates an insulating material at a speed higher than that of normal aged deterioration due to dust or moisture.

特許第5951299号公報Japanese Patent No. 5591299 特許第5836904号公報Japanese Patent No. 5836904 特許第5872643号公報Japanese Patent No. 5872643

本発明が解決しようとする課題は、汚損物質の付着量を精度よく測定することができる汚損物質検出センサ、汚損物質量測定装置および汚損物質量測定方法を提供することである。 An object to be solved by the present invention is to provide a fouling substance detection sensor, a fouling substance amount measuring device, and a fouling substance amount measuring method capable of accurately measuring the adhering amount of a fouling substance.

実施形態の汚損物質検出センサは、互いに同一の環境に配置される第一水晶振動子と第二水晶振動子と、前記第一水晶振動子に接続する第一周波数発振部と第一周波数計測部、および前記第二水晶振動子に接続する第二周波数発振部と第二周波数計測部を持つ。前記第一水晶振動子は第一金属を含む第一電極を備える。前記第二水晶振動子は第二金属を含む第二電極を備える。前記第二金属は、前記第二電極に汚損物質が付着したときに、前記第二水晶振動子が出力する第二共振周波数を、前記第一水晶振動子が出力する第一共振周波数に対して変化させる作用を有する。 The fouling substance detection sensor of the embodiment includes a first crystal oscillator and a second crystal oscillator arranged in the same environment, and a first frequency oscillator and a first frequency measuring unit connected to the first crystal oscillator. , And a second frequency oscillator and a second frequency measuring unit connected to the second crystal oscillator. The first crystal unit includes a first electrode containing a first metal. The second crystal unit includes a second electrode containing a second metal. The second metal has a second resonance frequency output by the second crystal oscillator with respect to the first resonance frequency output by the first crystal oscillator when a fouling substance adheres to the second electrode. It has the effect of changing.

実施形態の汚損物質量測定装置を示すブロック図。The block diagram which shows the pollutant substance amount measuring apparatus of embodiment. 実施形態の汚損物質量測定装置の第一水晶振動子及び第二水晶振動子に汚損物質と非汚損物質が付着した直後の状態を示す断面図。The cross-sectional view which shows the state immediately after the fouling substance and the non-staining substance adhere to the 1st crystal oscillator and the 2nd crystal oscillator of the fouling substance amount measuring apparatus of embodiment. 実施形態の汚損物質量測定装置の第一水晶振動子及び第二水晶振動子に汚損物質と非汚損物質が付着してから時間が経過した後の状態を示す断面図。FIG. 5 is a cross-sectional view showing a state after a lapse of time has passed since the polluted substance and the non-polluted substance adhered to the first crystal oscillator and the second crystal oscillator of the fouled substance amount measuring apparatus of the embodiment. 汚損物質量測定装置の第一水晶振動子及び第二水晶振動子に汚損物質が付着したときの共振周波数の変化を示すグラフ。The graph which shows the change of the resonance frequency when the fouling substance adheres to the 1st crystal oscillator and the 2nd crystal oscillator of the fouling substance amount measuring apparatus. 図4に示す第一水晶振動子の共振周波数と第二水晶振動子の共振周波数と差分である差分周波数を示すグラフ。The graph which shows the difference frequency which is the difference between the resonance frequency of the 1st crystal oscillator and the resonance frequency of the 2nd crystal oscillator shown in FIG. 図5に示す差分周波数の最初のピークの差分周波数の微分量の変化量を示すグラフ。The graph which shows the change amount of the differential amount of the difference frequency of the first peak of the difference frequency shown in FIG. 実施形態の汚損物質量測定装置の第一水晶振動子及び第二水晶振動子に汚損物質が付着したときの差分周波数の時間変化曲線を示すグラフ。The graph which shows the time change curve of the difference frequency when the fouling substance adheres to the 1st crystal oscillator and the 2nd crystal oscillator of the fouling substance amount measuring apparatus of embodiment. 図5に示す差分周波数の最初のピークの差分周波数の微分量の変化量から算出される差分周波数の微分量の変化予測値を示すグラフ。FIG. 5 is a graph showing a change prediction value of the differential amount of the differential frequency calculated from the change amount of the differential amount of the differential frequency of the first peak of the difference frequency shown in FIG. 図8に示す差分周波数の微分量の変化予測値と、本実施形態の汚損物質量測定装置10で取得された差分周波数の微分量との関係を示すグラフ。The graph which shows the relationship between the change prediction value of the differential amount of the difference frequency shown in FIG. 8 and the differential amount of the difference frequency acquired by the pollutant substance amount measuring apparatus 10 of this embodiment. 実施形態の汚損物質量測定装置の第二水晶振動子の第二電極に付着した汚損物質の量を示すグラフ。The graph which shows the amount of the fouling substance adhering to the 2nd electrode of the 2nd crystal oscillator of the fouling substance amount measuring apparatus of embodiment. 実施形態の汚損物質量測定装置の第二水晶振動子の第二電極に付着した汚損物質の量の積算値を示すグラフ。The graph which shows the integrated value of the amount of the pollutant adhered to the 2nd electrode of the 2nd crystal oscillator of the pollutant substance amount measuring apparatus of embodiment. 対象機器に対する実施形態の汚損物質量測定装置の配置の例を示す図。The figure which shows the example of arrangement of the pollutant substance amount measuring apparatus of embodiment with respect to a target device.

以下、実施形態の汚損物質検出センサ、汚損物質量測定装置および汚損物質量測定方法を、図面を参照して説明する。
図1は、実施形態の汚損物質量測定装置を示すブロック図である。
汚損物質量測定装置10は、汚損物質検出センサ20と、汚損物質量算出装置30とを有する。なお、本実施形態の汚損物質量測定装置10では、汚損物質検出センサ20と汚損物質量算出装置30が有線で接続している。なお、汚損物質検出センサ20と汚損物質量算出装置30とは無線で接続していてもよいし、インターネットを介して接続していてもよい。
Hereinafter, the fouling substance detection sensor, the fouling substance amount measuring device, and the fouling substance amount measuring method of the embodiment will be described with reference to the drawings.
FIG. 1 is a block diagram showing a pollutant substance amount measuring device of the embodiment.
The polluted substance amount measuring device 10 includes a polluted substance detection sensor 20 and a polluted substance amount calculating device 30. In the polluted substance amount measuring device 10 of the present embodiment, the polluted substance detection sensor 20 and the polluted substance amount calculating device 30 are connected by wire. The pollutant substance detection sensor 20 and the pollutant substance amount calculation device 30 may be connected wirelessly or via the Internet.

汚損物質検出センサ20は、第一水晶振動子21aと第二水晶振動子21b、第一水晶振動子21aに接続する第一周波数発振部25aと第一周波数計測部26a、および第二水晶振動子21bに接続する第二周波数発振部25bと第二周波数計測部26bを含む。第一水晶振動子21aと第二水晶振動子21bは、互いに隣接していて、同一の環境に配置される。 The fouling substance detection sensor 20 includes a first crystal oscillator 21a and a second crystal oscillator 21b, a first frequency oscillator 25a and a first frequency measurement unit 26a connected to the first crystal oscillator 21a, and a second crystal oscillator. It includes a second frequency oscillator 25b and a second frequency measurement unit 26b connected to 21b. The first crystal oscillator 21a and the second crystal oscillator 21b are adjacent to each other and are arranged in the same environment.

第一水晶振動子21aは、第一周波数発振部25aから送られた電流により所定の周波数を出力し、その周波数(第一共振周波数)は第一周波数計測部26aにて計測される。第二水晶振動子21bは、第二周波数発振部25bから送られた電流により所定の周波数を出力し、その周波数(第二共振周波数)は第二周波数計測部26bにて計測される。 The first crystal oscillator 21a outputs a predetermined frequency by the current sent from the first frequency oscillation unit 25a, and the frequency (first resonance frequency) is measured by the first frequency measurement unit 26a. The second crystal oscillator 21b outputs a predetermined frequency by the current sent from the second frequency oscillation unit 25b, and the frequency (second resonance frequency) is measured by the second frequency measurement unit 26b.

第一水晶振動子21aは、水晶板23と、水晶板23の両面に備えられた一対の第一金属を含む第一電極22a、24aとからなる。第二水晶振動子21bは、水晶板23と、水晶板23の両面に備えられた一対の第二金属を含む第二電極22b、24bとからなる。第一水晶振動子21aおよび第二水晶振動子21bは、例えば、QCM(水晶振動子マイクロバランス)である。第一水晶振動子21aおよび第二水晶振動子21bは、初期状態において、電極の質量変化が同じである場合、周波数の変動が等しくなるように予め校正されている。 The first crystal oscillator 21a includes a crystal plate 23 and first electrodes 22a and 24a containing a pair of first metals provided on both sides of the crystal plate 23. The second crystal oscillator 21b includes a crystal plate 23 and second electrodes 22b and 24b containing a pair of second metals provided on both sides of the crystal plate 23. The first crystal oscillator 21a and the second crystal oscillator 21b are, for example, QCM (quartz crystal microbalance). In the initial state, the first crystal oscillator 21a and the second crystal oscillator 21b are pre-calibrated so that the frequency fluctuations are equal when the mass changes of the electrodes are the same.

第一電極22a、24aに含まれる第一金属と、第二電極22b、24bに含まれる第二金属とは互いに異なる金属であることが好ましい。第一金属と第二金属は互いにイオン化傾向(標準電極電位)が異なる金属であることが好ましい。第二金属は、第一金属よりもイオン化傾向(標準電極電位)が低い金属であることが好ましい。すなわち、第二金属は、第一金属と比較して、イオン性の汚損物質によって腐食が起こりやすい金属であることが好ましい。この場合、第一水晶振動子21aの第一電極22a、24aと、第二水晶振動子21bの第二電極22b、24bの両者にイオン性の汚損物質が付着したときは、第二電極22b、24bに腐食生成物が生成しやすくなる。そして、その腐食生成物の生成量による第二電極22b、24bの質量の変化に応じて第二共振周波数が第一共振周波数に対して変化する。よって、第二金属は、第二電極22b、24bにイオン性の汚損物質が付着したときに、第二水晶振動子21bが出力する第二共振周波数を、第一水晶振動子21aが出力する第一共振周波数に対して変化させる作用を有する。 It is preferable that the first metal contained in the first electrodes 22a and 24a and the second metal contained in the second electrodes 22b and 24b are different metals from each other. The first metal and the second metal are preferably metals having different ionization tendencies (standard electrode potentials) from each other. The second metal is preferably a metal having a lower ionization tendency (standard electrode potential) than the first metal. That is, it is preferable that the second metal is a metal that is more easily corroded by an ionic fouling substance than the first metal. In this case, when an ionic fouling substance adheres to both the first electrodes 22a and 24a of the first crystal oscillator 21a and the second electrodes 22b and 24b of the second crystal oscillator 21b, the second electrode 22b, Corrosion products are likely to be formed in 24b. Then, the second resonance frequency changes with respect to the first resonance frequency according to the change in the mass of the second electrodes 22b and 24b due to the amount of the corrosion product produced. Therefore, in the second metal, the first crystal oscillator 21a outputs the second resonance frequency output by the second crystal oscillator 21b when an ionic fouling substance adheres to the second electrodes 22b and 24b. It has the effect of changing with respect to one resonance frequency.

第一金属は、金(標準電極電位:+1.52V)、銀(標準電極電位:+0.799V)及び白金(標準電極電位:+1.188V)のうちのいずれ一つであることが好ましい。第二金属は、銅(標準電極電位:+0.34V)またはアルミニウム(標準電極電位:−1.68V)であることが好ましい。ただし、第一金属及び第二金属は、上記の例に限定されるものではなく、測定対象の汚損物質に応じて適宜選定することができる。 The first metal is preferably any one of gold (standard electrode potential: + 1.52V), silver (standard electrode potential: + 0.799V) and platinum (standard electrode potential: + 1.188V). The second metal is preferably copper (standard electrode potential: + 0.34 V) or aluminum (standard electrode potential: −1.68 V). However, the first metal and the second metal are not limited to the above examples, and can be appropriately selected according to the fouling substance to be measured.

ここで、第一水晶振動子21aと第二水晶振動子21bに、汚損物質及び非汚損物質が付着したときの挙動を、図2と図3を用いて説明する。
本実施形態の汚損物質量測定装置10の第一水晶振動子21a及び第二水晶振動子21bに汚損物質と非汚損物質が付着した直後の状態を示す断面図である。図2の(a)は、第一水晶振動子21aの第一電極22aに汚損物質Aと非汚損物質Bが付着した直後の状態である。図2の(b)は、第二水晶振動子21bの第二電極22bに汚損物質Aと非汚損物質Bが付着した直後の状態である。汚損物質Aは、イオン性物質である。イオン性物質は、例えば、塩素系ガスや窒素酸化物ガスである。非汚損物質Bは、例えば、塵埃や水である。図2(a)と(b)に示すように、汚損物質Aと非汚損物質Bが付着することによって、第一電極22aと第二電極22bの質量が変化する。このため、第一水晶振動子21aの第一共振周波数と第二水晶振動子21bの第二共振周波数は、それぞれ変動する。ただし、汚損物質Aと非汚損物質Bが付着した直後の状態では、第二電極22bは腐食しておらず、第一電極22aと第二電極22bとに質量の差は生じない。このため、電極の質量増加による第一共振周波数と第二共振周波数の変動量は同じである。よって、第一共振周波数に対する第二共振周波数は変動しない。
Here, the behavior when a polluted substance and a non-stained substance adhere to the first crystal oscillator 21a and the second crystal oscillator 21b will be described with reference to FIGS. 2 and 3.
It is sectional drawing which shows the state immediately after the fouling substance and the non-fouling substance adhere to the 1st crystal oscillator 21a and the 2nd crystal oscillator 21b of the fouling substance amount measuring apparatus 10 of this embodiment. FIG. 2A shows a state immediately after the fouling substance A and the non-staining substance B adhere to the first electrode 22a of the first crystal oscillator 21a. FIG. 2B shows a state immediately after the fouling substance A and the non-staining substance B adhere to the second electrode 22b of the second crystal oscillator 21b. The fouling substance A is an ionic substance. The ionic substance is, for example, a chlorine-based gas or a nitrogen oxide gas. The non-staining substance B is, for example, dust or water. As shown in FIGS. 2A and 2B, the masses of the first electrode 22a and the second electrode 22b change due to the adhesion of the fouling substance A and the non-staining substance B. Therefore, the first resonance frequency of the first crystal oscillator 21a and the second resonance frequency of the second crystal oscillator 21b fluctuate, respectively. However, in the state immediately after the fouling substance A and the non-staining substance B are attached, the second electrode 22b is not corroded, and there is no difference in mass between the first electrode 22a and the second electrode 22b. Therefore, the amount of fluctuation of the first resonance frequency and the second resonance frequency due to the increase in the mass of the electrodes is the same. Therefore, the second resonance frequency with respect to the first resonance frequency does not fluctuate.

図3は、本実施形態の汚損物質量測定装置10の第一水晶振動子21a及び第二水晶振動子21bに汚損物質と非汚損物質が付着してから時間が経過した後の状態を示す断面図である。図3の(a)は、第一水晶振動子21aの第一電極22aに汚損物質Aと非汚損物質Bが付着してから時間が経過した状態を示す断面図である。図3の(b)は、第二水晶振動子21bの第二電極22bに汚損物質Aと非汚損物質Bが付着してから時間が経過した状態を示す断面図である。
図3(a)に示すように、第一水晶振動子21aの第一電極22aは、汚損物質Aと非汚損物質Bが付着してから時間が経過しても変化しない。一方、図3(b)に示すように、第二水晶振動子21bの第二電極22bは、非汚損物質Bが付着した部分は変化しないが、汚損物質Aが付着した部分は腐食して、腐食生成物Cが生成する。腐食生成物Cの生成量の変化に伴う第二電極22bの質量の変化によって、第二共振周波数は変動する。すなわち、第一共振周波数に対する第二共振周波数が変動する。よって、本実施形態の汚損物質量測定装置10は、非汚損物質Bの付着量の影響を受けずに、第二共振周波数の変動に基づいて、腐食生成物Cの生成量、すなわち汚損物質Aの付着量を測定することができる。
FIG. 3 is a cross section showing a state after a lapse of time from the adhesion of the polluted substance and the non-stained substance to the first crystal oscillator 21a and the second crystal oscillator 21b of the polluted substance amount measuring device 10 of the present embodiment. It is a figure. FIG. 3A is a cross-sectional view showing a state in which time has passed since the fouling substance A and the non-staining substance B adhered to the first electrode 22a of the first crystal oscillator 21a. FIG. 3B is a cross-sectional view showing a state in which time has passed since the fouling substance A and the non-staining substance B adhered to the second electrode 22b of the second crystal oscillator 21b.
As shown in FIG. 3A, the first electrode 22a of the first crystal oscillator 21a does not change even after a lapse of time after the fouling substance A and the non-staining substance B adhere to each other. On the other hand, as shown in FIG. 3B, in the second electrode 22b of the second crystal oscillator 21b, the portion to which the non-staining substance B is attached does not change, but the portion to which the non-staining substance A is attached is corroded. Corrosion product C is produced. The second resonance frequency fluctuates due to a change in the mass of the second electrode 22b accompanying a change in the amount of corrosion product C produced. That is, the second resonance frequency with respect to the first resonance frequency fluctuates. Therefore, the fouling substance amount measuring device 10 of the present embodiment is not affected by the adhering amount of the non-fouling substance B, and based on the fluctuation of the second resonance frequency, the amount of the corrosion product C produced, that is, the fouling substance A. The amount of adhesion can be measured.

汚損物質検出センサ20は、さらに、第二水晶振動子21bの周囲に配置された温度・湿度計測部27を有する。温度・湿度計測部27は、第二水晶振動子21bの周囲に配置されている。 The fouling substance detection sensor 20 further has a temperature / humidity measuring unit 27 arranged around the second crystal oscillator 21b. The temperature / humidity measuring unit 27 is arranged around the second crystal oscillator 21b.

汚損物質量算出装置30は、計測データ保存部31、第一データ照合部32、第一演算部33、第二演算部34、第三演算部35、第二データ照合部36および第四演算部37を有する。 The pollutant substance amount calculation device 30 includes a measurement data storage unit 31, a first data collation unit 32, a first calculation unit 33, a second calculation unit 34, a third calculation unit 35, a second data collation unit 36, and a fourth calculation unit. Has 37.

計測データ保存部31は、第一周波数計測部26aにて計測された第一共振周波数、第二周波数計測部26bにて計測された第二共振周波数、温度・湿度計測部27にて計測された温度および湿度を一定の時間ステップで記憶する。時間ステップは、特に制限はないが、例えば1時間である。 The measurement data storage unit 31 was measured by the first resonance frequency measured by the first frequency measurement unit 26a, the second resonance frequency measured by the second frequency measurement unit 26b, and the temperature / humidity measurement unit 27. Memorize temperature and humidity in fixed time steps. The time step is not particularly limited, but is, for example, one hour.

第一データ照合部32および第一演算部33は、第二水晶振動子21bの周囲の温度と湿度に基づいて第二電極22b、24bの温度・湿度補正値を算出する補正値算出部である。第二水晶振動子21bの第二電極22b、24bに汚損物質が付着して腐食生成物が生成した場合、腐食生成物の吸湿によって第二電極22b、24bの質量が変化するおそれがある。腐食生成物の吸湿による質量変化の変化は、第一共振周波数と第二共振周波数の差分からでは算出できない。このため、第二水晶振動子21bの周囲の温度と湿度に基づく第二電極22b、24bの温度・湿度補正値を用いて第二共振周波数を補正することが必要となる場合がある。 The first data collation unit 32 and the first calculation unit 33 are correction value calculation units that calculate the temperature / humidity correction values of the second electrodes 22b and 24b based on the ambient temperature and humidity of the second crystal oscillator 21b. .. When a fouling substance adheres to the second electrodes 22b and 24b of the second crystal oscillator 21b to generate a corrosion product, the mass of the second electrodes 22b and 24b may change due to the absorption of moisture of the corrosion product. The change in mass change due to moisture absorption of corrosion products cannot be calculated from the difference between the first resonance frequency and the second resonance frequency. Therefore, it may be necessary to correct the second resonance frequency by using the temperature / humidity correction values of the second electrodes 22b and 24b based on the ambient temperature and humidity of the second crystal oscillator 21b.

第一データ照合部32は、温度・湿度計測部27で測定された温度ならびに湿度と、予め測定した温度ならびに湿度および汚損物質が付着した第二電極22b、24bの共振周波数の相関を規定するデータベースと、に基づいて、第二共振周波数の予測値を算出する。データベースは、例えば、温度ならびに湿度と、汚損物質によって生成する腐食生成物の水分吸湿量との関係を規定する第一データベースと、腐食生成物の水分吸湿量と第二電極の共振周波数の変化量との関係を規定する第二データベースである。この場合、現在の時間ステップでの温度ならびに湿度と、一つ前の時間ステップでの腐食生成物量と、第一データベースとを照合することによって現在の時間ステップでの腐食生成物の水分吸湿量を得ることができる。そして得られた腐食生成物による水分吸湿量と第二データベースを照合することにより、現在の時間ステップでの第二共振周波数の予測値を得ることができる。 The first data collation unit 32 is a database that defines the correlation between the temperature and humidity measured by the temperature / humidity measurement unit 27 and the resonance frequencies of the second electrodes 22b and 24b to which the temperature and humidity measured in advance and the fouling substance are attached. And, based on, the predicted value of the second resonance frequency is calculated. The databases include, for example, a first database that defines the relationship between temperature and humidity and the amount of moisture absorbed by corrosion products produced by pollutants, and the amount of moisture absorbed by corrosion products and the amount of change in the resonance frequency of the second electrode. This is the second database that defines the relationship with. In this case, by comparing the temperature and humidity in the current time step with the amount of corrosion products in the previous time step and the first database, the amount of moisture absorbed by the corrosion products in the current time step can be determined. Obtainable. Then, by collating the obtained moisture absorption amount by the corrosion product with the second database, the predicted value of the second resonance frequency in the current time step can be obtained.

第一演算部33は、第一データ照合部32によって得られた現在の時間ステップでの第二共振周波数の予測値に基づいて、第二共振周波数の温度・湿度補正値を算出する。この温度・湿度補正値は、後述の第三演算部35に送られる。 The first calculation unit 33 calculates the temperature / humidity correction value of the second resonance frequency based on the predicted value of the second resonance frequency in the current time step obtained by the first data collation unit 32. This temperature / humidity correction value is sent to the third calculation unit 35, which will be described later.

温度・湿度補正値を算出するためには、各時間ステップにおいて、1ステップ前に得られた腐食生成物量を参照する必要がある。計測開始時(t0)には腐食生成物がないため、時間ステップt1で参照するデータは腐食生成物量=0である。各時間ステップtn(nは、時間ステップを示す数を表す)で得られる腐食生成物量をMn(nは、時間ステップを示す数を表す)とすると、第一データ照合部32で参照する腐食生成物量とは下記の表1の関係となる。 In order to calculate the temperature / humidity correction value, it is necessary to refer to the amount of corrosion product obtained one step before in each time step. Since there is no corrosion product at the start of measurement (t0), the data referred to in time step t1 is the amount of corrosion product = 0. Assuming that the amount of corrosion product obtained in each time step tn (n represents a number indicating a time step) is Mn (n represents a number indicating a time step), the corrosion generation referred to by the first data collation unit 32. The physical quantity has the relationship shown in Table 1 below.

Figure 2021148687
Figure 2021148687

第二演算部34は、第二周波数計測部26bにて測定された第二共振周波数から第一周波数計測部26aにて測定された第一共振周波数を差し引いた差分周波数を取得する差分周波数取得部である。差分周波数を所定の間隔で取得することができる。差分周波数を取得する間隔は、例えば、1時間である。 The second calculation unit 34 acquires a difference frequency obtained by subtracting the first resonance frequency measured by the first frequency measurement unit 26a from the second resonance frequency measured by the second frequency measurement unit 26b. Is. The difference frequency can be acquired at predetermined intervals. The interval for acquiring the difference frequency is, for example, one hour.

第三演算部35は、差分周波数の微分量の変化量を取得する変化量取得部である。すなわち、時間ステップごとに差分周波数の微分量(時間微分量)を算出して、微分量が所定の数値を超えて変化したときの値を変化量として取得する。所定の数値は、例えば微分量が10%以上変化したときである。
また、第三演算部35は、第二電極の温度・湿度補正値を算出した後に取得された差分周波数の微分量を、第一演算部33にて算出された第二共振周波数の温度・湿度補正値に基づいて補正する補正部としても機能する。
The third calculation unit 35 is a change amount acquisition unit that acquires a change amount of the differential amount of the difference frequency. That is, the differential amount (time differential amount) of the difference frequency is calculated for each time step, and the value when the differential amount changes beyond a predetermined value is acquired as the change amount. The predetermined numerical value is, for example, when the differential amount changes by 10% or more.
Further, the third calculation unit 35 uses the differential amount of the difference frequency acquired after calculating the temperature / humidity correction value of the second electrode as the temperature / humidity of the second resonance frequency calculated by the first calculation unit 33. It also functions as a correction unit that corrects based on the correction value.

第二データ照合部36は、予測差分量と、予め測定した第二電極22b、24bの汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、第二電極22b、24bの汚損物質の付着量を判定する判定部である。また、第二データ照合部36は、変化量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースとを用いて、差分周波数の微分量の変化予測値を算出する変化予測値算出部でもある。 The second data collation unit 36 is based on a database that defines the correlation between the predicted difference amount, the adhesion amount of the polluted substances on the second electrodes 22b and 24b measured in advance, and the time change curve of the difference frequency, and the second electrode. This is a determination unit for determining the amount of the polluted substances attached to 22b and 24b. Further, the second data collation unit 36 uses a database that defines the correlation between the amount of change, the amount of the polluted substance attached to the second electrode measured in advance, and the time change curve of the difference frequency, and uses the database to define the correlation of the differential amount of the difference frequency. It is also a change prediction value calculation unit that calculates change prediction values.

第四演算部37は、変化予測値と、第二電極22b、24bの汚損物質の付着量を判定した後に取得された差分周波数の微分量とが異なる場合は、当該差分周波数の微分量とその変化予測値との予測差分量を取得する予測差分量取得部である。予測差分量は、第二データ照合部36(判定部)に送られる。そして、判定部は、予測差分量と、予め測定した第二電極22b、24bの汚損物質の付着量および差分周波数の時間変動変化曲線の相関を規定するデータベースと、に基づいて、第二電極22b、24bの汚損物質の付着量を判定する。 If the change prediction value and the differential amount of the difference frequency acquired after determining the amount of the polluted substance adhered to the second electrodes 22b and 24b are different from each other, the fourth calculation unit 37 sets the differential amount of the difference frequency and the differential amount thereof. It is a predicted difference amount acquisition unit that acquires the predicted difference amount from the change predicted value. The predicted difference amount is sent to the second data collation unit 36 (determination unit). Then, the determination unit is based on a database that defines the correlation between the predicted difference amount, the amount of the polluted substances attached to the second electrodes 22b and 24b measured in advance, and the time fluctuation change curve of the difference frequency, and the second electrode 22b. , 24b The amount of the polluted substance attached is determined.

次に、本実施形態の汚損物質量測定装置10を用いた汚損物質量測定方法について説明する。
本実施形態の汚損物質量測定方法は、汚損物質検出センサ20の設置工程と、第一共振周波数と第二共振周波数の差分周波数を取得する差分周波数取得工程と、差分周波数の微分量の変化量を取得する変化量取得工程と、汚損物質の付着量を判定する第1判定工程とを含む。
Next, a method for measuring the amount of polluted substances using the polluted substance amount measuring device 10 of the present embodiment will be described.
The method for measuring the amount of polluted substance in the present embodiment includes a step of installing the polluted substance detection sensor 20, a step of acquiring a difference frequency for acquiring the difference frequency between the first resonance frequency and the second resonance frequency, and an amount of change in the differential amount of the difference frequency. The change amount acquisition step of acquiring the above, and the first determination step of determining the adhesion amount of the polluted substance are included.

設置工程では、汚損物質量測定装置10を汚損物質の測定対象場所に設置する。汚損物質量測定装置10は、汚損物質検出センサ20が汚損物質を検出しやすい場所、例えば、吸気口の周囲などに設置することが好ましい。汚損物質量測定装置10の配置の例は後述する。 In the installation process, the pollutant substance amount measuring device 10 is installed at the place where the pollutant substance is measured. The pollutant substance amount measuring device 10 is preferably installed in a place where the pollutant substance detection sensor 20 can easily detect the polluted substance, for example, around the intake port. An example of the arrangement of the pollutant substance amount measuring device 10 will be described later.

差分周波数取得工程では、第二周波数計測部26bにて測定された第二共振周波数から第一周波数計測部26aにて測定された第一共振周波数を差し引いた差分周波数を取得する。この工程は、第二演算部34にて行われる。 In the difference frequency acquisition step, the difference frequency obtained by subtracting the first resonance frequency measured by the first frequency measurement unit 26a from the second resonance frequency measured by the second frequency measurement unit 26b is acquired. This step is performed by the second calculation unit 34.

図4は、本実施形態の汚損物質量測定装置10の第一水晶振動子21a及び第二水晶振動子21bに汚損物質が付着したときの共振周波数の変化を示すグラフである。すなわち、図4は、第一周波数計測部26aにて計測された第一共振周波数と第二周波数計測部26bにて計測された第二共振周波数であり、計測データ保存部31に記憶されるデータである。
図4において、横軸は共振周波数の測定時間であり、縦軸は、第一水晶振動子21a及び第二水晶振動子21bの共振周波数である。また、図4において、21aは、第一水晶振動子21aの共振周波数(第一共振周波数)である。21bは、第二水晶振動子21bの共振周波数(第二共振周波数)である。図4のグラフでは、第一共振周波数及び第二共振周波数は、共に4時間と8時間の時点で大きく増大している。これは、第一水晶振動子21aの第一電極22a、24aと第二水晶振動子21bの第二電極22b、24bのそれぞれに汚損物質が付着したためである。
FIG. 4 is a graph showing changes in the resonance frequency when a polluted substance adheres to the first crystal oscillator 21a and the second crystal oscillator 21b of the polluted substance amount measuring device 10 of the present embodiment. That is, FIG. 4 shows the first resonance frequency measured by the first frequency measurement unit 26a and the second resonance frequency measured by the second frequency measurement unit 26b, and is the data stored in the measurement data storage unit 31. Is.
In FIG. 4, the horizontal axis is the measurement time of the resonance frequency, and the vertical axis is the resonance frequency of the first crystal oscillator 21a and the second crystal oscillator 21b. Further, in FIG. 4, 21a is a resonance frequency (first resonance frequency) of the first crystal oscillator 21a. 21b is the resonance frequency (second resonance frequency) of the second crystal oscillator 21b. In the graph of FIG. 4, the first resonance frequency and the second resonance frequency are both greatly increased at 4 hours and 8 hours. This is because the fouling substance adheres to the first electrodes 22a and 24a of the first crystal oscillator 21a and the second electrodes 22b and 24b of the second crystal oscillator 21b, respectively.

図5は、図4に示す第一水晶振動子21aの共振周波数と第二水晶振動子21bの共振周波数と差分である差分周波数を示すグラフである。
図5のグラフでは、汚損物質が付着した時点(4時間、8時間)から差分周波数が増加している。これは、第二水晶振動子21bの第二電極22b、24bが、汚損物質によって腐食して腐食生成物が生成したためである。すなわち、差分周波数の微分量(時間微分量)は、腐食生成物の生成速度を表している。
FIG. 5 is a graph showing a difference frequency which is a difference between the resonance frequency of the first crystal oscillator 21a and the resonance frequency of the second crystal oscillator 21b shown in FIG.
In the graph of FIG. 5, the difference frequency increases from the time when the fouling substance adheres (4 hours, 8 hours). This is because the second electrodes 22b and 24b of the second crystal oscillator 21b are corroded by the fouling substance to generate a corrosion product. That is, the differential amount (time differential amount) of the difference frequency represents the formation rate of the corrosion product.

変化量取得工程では、差分周波数の微分量が所定の数値(例えば10%以上)を超えて変化したときの値を変化量△1として取得する。変化量△1が大きいことは、差分周波数の微分量が大きく変化したこと、すなわち腐食生成物が急激に生成したことを意味する。この工程は、第三演算部35にて行われる。 In the change amount acquisition step, the value when the differential amount of the difference frequency changes beyond a predetermined value (for example, 10% or more) is acquired as the change amount Δ1. A large change amount Δ1 means that the differential amount of the difference frequency has changed significantly, that is, a corrosion product has been rapidly generated. This step is performed by the third calculation unit 35.

図6は、図5に示すグラフの差分周波数の微分量が最初に変化したときの変化量を示すグラフである。すなわち、図6は、図5の4時間の時点での差分周波数の微分量の変化量を示したグラフである。 FIG. 6 is a graph showing the amount of change when the differential amount of the differential frequency of the graph shown in FIG. 5 first changes. That is, FIG. 6 is a graph showing the amount of change in the differential amount of the differential frequency at the time of 4 hours in FIG.

第1判定工程では、変化量△1と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースとを用いて、第二電極22b、24bの汚損物質の付着量を判定する。この工程は、第二データ照合部36にて行われる。 In the first determination step, the fouling of the second electrodes 22b and 24b is performed by using the change amount Δ1 and the database that defines the correlation between the adhering amount of the fouling substance on the second electrode and the time change curve of the difference frequency measured in advance. Determine the amount of substance attached. This step is performed by the second data collation unit 36.

図7は、本実施形態の汚損物質量測定装置10の第一水晶振動子21a及び第二水晶振動子21bに汚損物質が付着したときの差分周波数の時間変化曲線を示すグラフである。
図7において、横軸は、汚損物質が付着してから経過時間であり、縦軸は、差分周波数の微分量である。また、図7において、汚損物質の付着量a〜amg/cmは、第二水晶振動子21bの第二電極22b、24bに付着した汚損物質の量を意味し、付着量はamg/cmが最も多く、amg/cmが次に多く、amg/cmが最も少ない。図7に示すように、差分周波数の微分量の変化と汚損物質の付着量とは相関関係があり、汚損物質の付着量がamg/cmのときがもっと大きく、次にamg/cmのときが大きく、amg/cmのときが最も小さい。よって、第二電極の汚損物質の付着量と差分周波数の時間変化曲線の相関を規定するデータベースを予め作成しておくことによって、差分周波数の微分量の変化量△1から汚損物質の付着量を判定することができる。
FIG. 7 is a graph showing a time change curve of the difference frequency when the polluted substance adheres to the first crystal oscillator 21a and the second crystal oscillator 21b of the polluted substance amount measuring device 10 of the present embodiment.
In FIG. 7, the horizontal axis represents the elapsed time since the fouling substance adhered, and the vertical axis represents the differential amount of the difference frequency. Further, in FIG. 7, the adhering amount of the polluted substance a 1 to a 3 mg / cm 2 means the amount of the polluted substance adhering to the second electrodes 22b and 24b of the second crystal oscillator 21b, and the adhering amount is a. 3 mg / cm 2 is the most, a 2 mg / cm 2 is the second most, and a 1 mg / cm 2 is the least. As shown in FIG. 7, there is a correlation between the change in the differential amount of the difference frequency and the adhesion amount of the polluted substance, and it is larger when the adhesion amount of the pollutant substance is a 3 mg / cm 2 , and then a 2 mg. When it is / cm 2 , it is large, and when it is a 1 mg / cm 2 , it is the smallest. Therefore, by creating a database in advance that defines the correlation between the amount of the polluted substance attached to the second electrode and the time change curve of the difference frequency, the amount of the polluted substance attached can be calculated from the amount of change in the differential amount of the difference frequency Δ1. It can be determined.

汚損物質付着量判定工程はさらに、差分周波数微分量の変化量の予測値を算出する変化量予測工程と、変化予測値と取得された差分周波数の微分量を対比する対比工程と、差分量を取得する差分量取得工程と、差分量から汚損物質の付着量を判定する第2判定工程とを含む。 The fouling substance adhesion amount determination step further includes a change amount prediction step of calculating a predicted value of the change amount of the differential frequency differential amount, a comparison step of comparing the change predicted value with the acquired differential amount of the differential frequency, and a difference amount. It includes a step of acquiring the difference amount to be acquired and a second determination step of determining the amount of the polluted substance adhered from the difference amount.

変化量予測工程では、変化量Δ1と、予め測定した第二電極22b、24bの汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースとを用いて、差分周波数の微分量の変化予測値を算出する。この工程は、第四演算部にて行われる。
データベースとしては、図7に示す差分周波数の時間変化曲線を用いることができる。
In the change amount prediction step, the differential amount of the difference frequency is determined by using the change amount Δ1 and the database that defines the correlation between the amount of the polluted substance attached to the second electrodes 22b and 24b measured in advance and the time change curve of the difference frequency. Calculate the predicted change value. This step is performed in the fourth calculation unit.
As the database, the time change curve of the difference frequency shown in FIG. 7 can be used.

図8は、図5に示す差分周波数の最初のピークの差分周波数の微分量の変化量から算出される差分周波数の微分量の変化予測値を示すグラフである。
図8において、横軸は、時間であり、縦軸は、差分共振周波数の微分量である。図8において、符号(1)は、実測した第一共振周波数と第二共振周波数に基づいて算出した値を示し、符号(1)’は、予測値を示す。図8の予測値から4時間の時点で付着した汚損物質による腐食生成物の生成による質量変化は、9時間まで継続することがわかる。
FIG. 8 is a graph showing a change prediction value of the differential amount of the differential frequency calculated from the change amount of the differential amount of the differential frequency of the first peak of the difference frequency shown in FIG.
In FIG. 8, the horizontal axis is time and the vertical axis is the differential amount of the differential resonance frequency. In FIG. 8, reference numeral (1) indicates a value calculated based on the actually measured first resonance frequency and second resonance frequency, and reference numeral (1)'indicates a predicted value. From the predicted value in FIG. 8, it can be seen that the mass change due to the formation of the corrosion product due to the adhering fouling substance at 4 hours continues up to 9 hours.

対比工程では、さらに、上記の差分周波数の微分量の変化予測値と、第2判定工程で第二電極22b、24bの汚損物質の付着量を判定した後に取得された差分周波数の微分量とを対比する。この工程は、第四演算部にて行われる。 In the comparison step, the predicted value of the change in the differential amount of the difference frequency described above and the differential amount of the difference frequency obtained after determining the amount of the polluted substance attached to the second electrodes 22b and 24b in the second determination step are further obtained. Contrast. This step is performed in the fourth calculation unit.

図9は、図8に示す差分周波数の微分量の変化予測値と、本実施形態の汚損物質量測定装置10で取得された差分周波数の微分量との関係を示すグラフである。
図9において、横軸は、時間であり、縦軸は、差分共振周波数の微分量である。図8において、符号(1)および(2)は、実測した第一共振周波数と第二共振周波数に基づいて算出した値を示し、符号(1)’および(2)’は、予測値を示す。すなわち、図8のグラフは、8時間まで差分周波数の微分量を取得した結果を表している。
FIG. 9 is a graph showing the relationship between the predicted change value of the differential amount of the differential frequency shown in FIG. 8 and the differential amount of the differential amount acquired by the pollutant substance amount measuring device 10 of the present embodiment.
In FIG. 9, the horizontal axis is time and the vertical axis is the differential amount of the differential resonance frequency. In FIG. 8, reference numerals (1) and (2) indicate values calculated based on the actually measured first resonance frequency and second resonance frequency, and reference numerals (1)'and (2)' indicate predicted values. .. That is, the graph of FIG. 8 shows the result of acquiring the differential amount of the difference frequency for up to 8 hours.

対比工程において、図8と図9とを比較すると、5時間〜7時間までは、差分周波数の微分量の変化予測値(図8の(1)’)と汚損物質量測定装置10で取得された差分周波数の微分量の実測値(図9の(1))とは一致していることがわかる。一方、8時間では、変化予測値に対して差分周波数の微分量の実測値が大きくなっている。これは、8時間の時点で新たな汚損物質が第二水晶振動子21bの第二電極22b、24bに付着したことを意味する。この場合は、差分量取得工程にて、差分周波数の微分量の実測値と変化予測値との差分である予測差分量△2を取得する。 Comparing FIGS. 8 and 9 in the comparison step, the predicted value of the change in the differential amount of the difference frequency ((1)'in FIG. 8) and the pollutant substance amount measuring device 10 are obtained from 5 hours to 7 hours. It can be seen that it is in agreement with the measured value of the differential amount of the difference frequency ((1) in FIG. 9). On the other hand, in 8 hours, the measured value of the differential amount of the difference frequency is larger than the predicted change value. This means that a new fouling substance adhered to the second electrodes 22b and 24b of the second crystal oscillator 21b at the time of 8 hours. In this case, in the difference amount acquisition step, the predicted difference amount Δ2, which is the difference between the measured value of the differential amount of the differential frequency and the predicted change value, is acquired.

第2判定工程では、取得された予測差分量△2と、予め測定した第二電極22b、24bの汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースとを用いて、第二電極22b、24bの汚損物質の付着量を判定する。この工程は、第二データ照合部36にて行われる。第2判定工程での汚損物質の付着量の判定方法は、変化量△1の代わりに予測差分量△2を用いること以外は、第1判定工程と同じである。 In the second determination step, the acquired predicted difference amount Δ2 is used, and a database that defines the correlation between the amount of adhering contaminants on the second electrodes 22b and 24b measured in advance and the time change curve of the difference frequency is used. The amount of the polluted substance attached to the two electrodes 22b and 24b is determined. This step is performed by the second data collation unit 36. The method for determining the amount of the polluted substance adhered in the second determination step is the same as that in the first determination step, except that the predicted difference amount Δ2 is used instead of the change amount Δ1.

さらに、得られた予測差分量△2に基づいて、変化量予測工程、対比工程、予測差分量取得工程、そして予測差分量から汚損物質の付着量を判定する判定工程を、予測差分量が取得されなくなるまで繰り返し行うことによって、長期間にわたって、第二電極22b、24bに付着した汚損物質の付着量を測定することができる。これらの工程は、差分周波数の微分量が0となるまで行われる。 Further, based on the obtained predicted difference amount Δ2, the predicted difference amount acquires the change amount prediction step, the comparison process, the predicted difference amount acquisition step, and the determination step of determining the adhesion amount of the polluted substance from the predicted difference amount. It is possible to measure the amount of the pollutant adhering to the second electrodes 22b and 24b over a long period of time by repeating the process until the amount is not increased. These steps are performed until the differential amount of the difference frequency becomes 0.

さらに、本実施形態の汚損物質量測定装置10を用いた汚損物質量測定方法では、温度・湿度補正値に基づいて、差分周波数の微分量を補正する工程を含む。この工程は、温度・湿度測定工程と、補正値算出工程と、補正工程とを含む。 Further, the method for measuring the amount of polluted substance using the polluted substance amount measuring device 10 of the present embodiment includes a step of correcting the differential amount of the difference frequency based on the temperature / humidity correction value. This step includes a temperature / humidity measurement step, a correction value calculation step, and a correction step.

温度・湿度測定工程では、第二水晶振動子21bの周囲の温度と湿度を測定する。この工程は、温度・湿度計測部27で行われる。
補正値算出工程では、測定された温度と湿度と、予め測定した温度ならびに湿度および汚損物質が付着した第二電極の共振周波数の相関を規定するデータベースと、に基づいて、第二電極の温度・湿度補正値を算出する。この工程は、第一データ照合部32および第一演算部33にて行われる。
補正工程では、第二電極の温度・湿度補正値を算出した後に取得された差分周波数の微分量を前記第二電極の温度・湿度補正値に基づいて補正する。この工程は、第三演算部35にて行われる。
In the temperature / humidity measuring step, the temperature and humidity around the second crystal unit 21b are measured. This step is performed by the temperature / humidity measuring unit 27.
In the correction value calculation process, the temperature of the second electrode and the temperature of the second electrode are based on a database that defines the correlation between the measured temperature and humidity, the temperature measured in advance, and the resonance frequency of the humidity and the second electrode to which the fouling substance is attached. Calculate the humidity correction value. This step is performed by the first data collation unit 32 and the first calculation unit 33.
In the correction step, the differential amount of the difference frequency acquired after calculating the temperature / humidity correction value of the second electrode is corrected based on the temperature / humidity correction value of the second electrode. This step is performed by the third calculation unit 35.

図10は、汚損物質量測定装置10の第二水晶振動子21bの第二電極22b、24bに付着した汚損物質の量を示すグラフである。図11は、汚損物質量測定装置10の第二水晶振動子21bの第二電極22b、24bに付着した汚損物質の量の積算値を示すグラフである。
図10および図11において、横軸は、時間であり、縦軸は、汚損物質の付着量である。図10および図11のグラフから、4時間と8時間の時点で汚損物質が付着していることがわかる。このように、汚損物質量測定装置10を用いることにより、例えば、電力設備などの対象機器で使用されている絶縁材料への汚損物質の付着量を見積もることができる。また、その汚損物質が特定の時期に付着したのか、短期間に集中的に付着したのか、長期間かけて連続的に付着したのかなど汚損形態を確認することができる。汚損形態を確認することによって、対象機器の設置環境に変化が起きたことをいち早く察知することができ、異常の早期発見につながる。
FIG. 10 is a graph showing the amount of the polluted substance adhering to the second electrodes 22b and 24b of the second crystal oscillator 21b of the pollutant substance amount measuring device 10. FIG. 11 is a graph showing an integrated value of the amount of the polluted substance adhering to the second electrodes 22b and 24b of the second crystal oscillator 21b of the polluted substance amount measuring device 10.
In FIGS. 10 and 11, the horizontal axis represents time and the vertical axis represents the amount of polluted substances attached. From the graphs of FIGS. 10 and 11, it can be seen that the fouling substance is attached at the time points of 4 hours and 8 hours. In this way, by using the fouling substance amount measuring device 10, it is possible to estimate the adhering amount of the fouling substance to the insulating material used in the target equipment such as electric power equipment. In addition, it is possible to confirm the form of fouling, such as whether the fouling substance adhered at a specific time, intensively in a short period of time, or continuously attached over a long period of time. By confirming the form of contamination, it is possible to quickly detect that a change has occurred in the installation environment of the target device, leading to early detection of abnormalities.

計測データ保存部31、第一データ照合部32、第一演算部33、第二演算部34、第三演算部35、第二データ照合部36および第四演算部37の機能は、例えば汚損物質量算出装置30が備えるCPU(Central Processing Unit)及びメモリによってプログラムが実行されることによって実現されてもよい。また、上記各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。実行されるプログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 The functions of the measurement data storage unit 31, the first data collation unit 32, the first calculation unit 33, the second calculation unit 34, the third calculation unit 35, the second data collation unit 36, and the fourth calculation unit 37 are, for example, polluted substances. It may be realized by executing a program by a CPU (Central Processing Unit) and a memory included in the amount calculation device 30. Further, all or a part of each of the above functions may be realized by using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program to be executed may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a flexible disk, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, or a storage device such as a hard disk built in a computer system. The program may be transmitted over a telecommunication line.

図12は、対象機器45に対する汚損物質量測定装置10の配置の例を示す図である。
図12において、対象機器45は、筐体41に収容されている。筐体41は、吸気口42と排気口43を有する。汚損物質量測定装置10は、対象機器45の異なる側面に沿って2つ設置されている。一つの汚損物質量測定装置10は、対象機器45の吸気口42側の側面に配置されていて、他方の汚損物質量測定装置10は、対象機器45の上面に配置されている。対象機器の45の異なる側面に沿って汚損物質量測定装置10を設置することにより、局所的な汚損形態の違いを特定することができ、この汚損形態の違いは今後の絶縁材料の劣化診断技術に活かすことが可能となる。対象機器45は、汚損物質によって汚損される材料を用いた電気装置であり、例えば、電力設備である。
FIG. 12 is a diagram showing an example of arrangement of the pollutant substance amount measuring device 10 with respect to the target device 45.
In FIG. 12, the target device 45 is housed in the housing 41. The housing 41 has an intake port 42 and an exhaust port 43. Two fouling substance amount measuring devices 10 are installed along different side surfaces of the target device 45. One pollutant substance amount measuring device 10 is arranged on the side surface of the target device 45 on the intake port 42 side, and the other pollutant substance amount measuring device 10 is arranged on the upper surface of the target device 45. By installing the pollutant substance amount measuring device 10 along 45 different aspects of the target device, it is possible to identify the local difference in the fouling form, and this difference in the fouling form is the deterioration diagnosis technology for the insulating material in the future. It becomes possible to utilize it. The target device 45 is an electric device using a material that is polluted by a pollutant substance, and is, for example, an electric power facility.

以上説明した少なくともひとつの実施形態によれば、汚損物質検出センサ20が第一水晶振動子21aと第二水晶振動子21bを含み、第二水晶振動子21bは第二金属を含む第二電極22b、24bを備え、その第二金属は、第二電極22b、24bに汚損物質が付着したときに、第二水晶振動子21bが出力する第二共振周波数を、第一水晶振動子21aが出力する第一共振周波数に対して変化させる作用を有することにより、汚損物質の付着量を精度よく測定することができる。 According to at least one embodiment described above, the fouling substance detection sensor 20 includes a first crystal oscillator 21a and a second crystal oscillator 21b, and the second crystal oscillator 21b is a second electrode 22b containing a second metal. , 24b, and the second metal outputs the second resonance frequency output by the second crystal oscillator 21b when a fouling substance adheres to the second electrodes 22b and 24b. By having an action of changing with respect to the first resonance frequency, it is possible to accurately measure the amount of the polluted substance attached.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

10…汚損物質量測定装置、20…汚損物質検出センサ、21a…第一水晶振動子、21b…第二水晶振動子、22a…第一電極、22b…第二電極、23…水晶板、24a…第一電極、24b…第二電極、25a…第一周波数発振部、25b…第二周波数発振部、26a…第一周波数計測部、26b…第二周波数計測部、27…温度・湿度計測部、30…汚損物質量算出装置、31…計測データ保存部、32…第一データ照合部、33…第一演算部、34…第二演算部、35…第三演算部、36…第二データ照合部、37…第四演算部、41…筐体、42…吸気口、43…排気口、45…対象機器、A…汚損物質、B…非汚損物質、C…腐食生成物 10 ... Stainable substance amount measuring device, 20 ... Stainable substance detection sensor, 21a ... First crystal oscillator, 21b ... Second crystal oscillator, 22a ... First electrode, 22b ... Second electrode, 23 ... Crystal plate, 24a ... First electrode, 24b ... Second electrode, 25a ... First frequency oscillator, 25b ... Second frequency oscillator, 26a ... First frequency measurement unit, 26b ... Second frequency measurement unit, 27 ... Temperature / humidity measurement unit, 30 ... Contamination substance amount calculation device, 31 ... Measurement data storage unit, 32 ... First data collation unit, 33 ... First calculation unit, 34 ... Second calculation unit, 35 ... Third calculation unit, 36 ... Second data collation Unit, 37 ... Fourth calculation unit, 41 ... Housing, 42 ... Intake port, 43 ... Exhaust port, 45 ... Target device, A ... Stainable substance, B ... Non-staining substance, C ... Corrosion product

Claims (12)

互いに同一の環境に配置される第一水晶振動子と第二水晶振動子、前記第一水晶振動子に接続する第一周波数発振部と第一周波数計測部、および前記第二水晶振動子に接続する第二周波数発振部と第二周波数計測部を含み、
前記第一水晶振動子は第一金属を含む第一電極を備え、前記第二水晶振動子は第二金属を含む第二電極を備え、前記第二金属は、前記第二電極に汚損物質が付着したときに、前記第二水晶振動子が出力する第二共振周波数を、前記第一水晶振動子が出力する第一共振周波数に対して変化させる作用を有する汚損物質検出センサ。
Connected to the first crystal oscillator and the second crystal oscillator arranged in the same environment, the first frequency oscillator and the first frequency measuring unit connected to the first crystal oscillator, and the second crystal oscillator. Including the second frequency oscillator and the second frequency measurement unit
The first crystal oscillator includes a first electrode containing a first metal, the second crystal oscillator includes a second electrode containing a second metal, and the second metal has a fouling substance on the second electrode. A fouling substance detection sensor having an action of changing the second resonance frequency output by the second crystal oscillator with respect to the first resonance frequency output by the first crystal oscillator when attached.
前記第一金属と前記第二金属とが、互いに異なる金属である請求項1に記載の汚損物質検出センサ。 The fouling substance detection sensor according to claim 1, wherein the first metal and the second metal are different metals from each other. 前記第一金属が、金、銀または白金のうちのいずれか一つである請求項1または請求項2に記載の汚損物質検出センサ。 The fouling substance detection sensor according to claim 1 or 2, wherein the first metal is any one of gold, silver and platinum. 前記第二金属が、前記第一金属よりもイオン化傾向が低い金属である請求項1から請求項3のいずれか一項に記載の汚損物質検出センサ。 The pollutant substance detection sensor according to any one of claims 1 to 3, wherein the second metal is a metal having a lower ionization tendency than the first metal. 前記第二金属が、銅またはアルミニウムである請求項1から請求項4のいずれか一項に記載の汚損物質検出センサ。 The fouling substance detection sensor according to any one of claims 1 to 4, wherein the second metal is copper or aluminum. 前記汚損物質が、イオン性物質である請求項1から請求項5のいずれか一項に記載の汚損物質検出センサ。 The fouling substance detection sensor according to any one of claims 1 to 5, wherein the fouling substance is an ionic substance. 汚損物質検出センサと、汚損物質量算出装置とを有し、
前記汚損物質検出センサは、互いに同一の環境に配置される第一水晶振動子と第二水晶振動子、前記第一水晶振動子に接続する第一周波数発振部と第一周波数計測部、および前記第二水晶振動子に接続する第二周波数発振部と第二周波数計測部を含み、
前記第一水晶振動子は第一金属を含む第一電極を備え、前記第二水晶振動子は第二金属を含む第二電極を備え、前記第二金属は、前記第二電極に汚損物質が付着したときに、前記第二水晶振動子が出力する第二共振周波数を、前記第一水晶振動子が出力する第一共振周波数に対して変化させる作用を有し、
前記汚損物質量算出装置は、前記第二周波数計測部にて測定された第二共振周波数から前記第一周波数計測部にて測定された第一共振周波数を差し引いた差分周波数を取得する差分周波数取得部と、
差分周波数の微分量の変化量を取得する変化量取得部と、
前記変化量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、前記第二電極の汚損物質の付着量を判定する判定部と、を含む汚損物質量測定装置。
It has a pollutant substance detection sensor and a pollutant substance amount calculation device.
The fouling substance detection sensor includes a first crystal oscillator and a second crystal oscillator arranged in the same environment, a first frequency oscillator and a first frequency measuring unit connected to the first crystal oscillator, and the above. Including the second frequency oscillator and the second frequency measurement unit connected to the second crystal unit,
The first crystal oscillator includes a first electrode containing a first metal, the second crystal oscillator includes a second electrode containing a second metal, and the second metal has a fouling substance on the second electrode. When attached, it has the effect of changing the second resonance frequency output by the second crystal oscillator with respect to the first resonance frequency output by the first crystal oscillator.
The pollutant substance amount calculation device acquires a difference frequency that acquires a difference frequency obtained by subtracting the first resonance frequency measured by the first frequency measurement unit from the second resonance frequency measured by the second frequency measurement unit. Department and
A change amount acquisition unit that acquires the change amount of the differential amount of the difference frequency,
Judgment to determine the amount of stains on the second electrode based on the amount of change and the database that defines the correlation between the amount of stains on the second electrode and the time change curve of the difference frequency measured in advance. A fouling substance amount measuring device including a part.
前記変化量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、差分周波数の微分量の変化予測値を算出する変化予測値算出部と、
前記変化予測値と、前記第二電極の汚損物質の付着量を判定した後に取得された差分周波数の微分量との予測差分量を取得する予測差分量取得部をさらに含み、
前記判定部は、前記予測差分量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、前記第二電極の汚損物質の付着量を判定する請求項7に記載の汚損物質量測定装置。
Change prediction that calculates the change prediction value of the differential amount of the difference frequency based on the change amount and the database that defines the correlation between the amount of stain on the second electrode and the time change curve of the difference frequency measured in advance. Value calculation unit and
Further including a predicted difference amount acquisition unit for acquiring a predicted difference amount between the change predicted value and the differential amount of the difference frequency acquired after determining the adhesion amount of the polluted substance on the second electrode.
The determination unit determines the amount of the polluted substance of the second electrode based on the predicted difference amount and the database that defines the correlation between the amount of the polluted substance adhered to the second electrode and the time change curve of the difference frequency measured in advance. The fouling substance amount measuring device according to claim 7, wherein the adhering amount is determined.
さらに、前記汚損物質検出センサは、前記第二水晶振動子の周囲に配置された温度・湿度計を有し、
前記温度・湿度計で測定された温度と湿度と、予め測定した温度ならびに湿度および汚損物質が付着した第二電極の共振周波数の相関を規定するデータベースと、に基づいて、第二電極の温度・湿度補正値を算出する補正値算出部と、
前記第二電極の温度・湿度補正値を算出した後に取得された差分周波数の微分量を前記第二電極の温度・湿度補正値に基づいて補正する補正部と、を含む請求項7又は請求項8に記載の汚損物質量測定装置。
Further, the pollutant substance detection sensor has a temperature / humidity meter arranged around the second crystal oscillator, and has a temperature / humidity meter.
Based on the temperature and humidity measured by the temperature / hygrometer, the temperature measured in advance, and the database that defines the correlation between the humidity and the resonance frequency of the second electrode to which the fouling substance is attached, the temperature of the second electrode A correction value calculation unit that calculates the humidity correction value, and
7. 8. The pollutant substance amount measuring device according to 8.
互いに同一の環境に配置される第一水晶振動子と第二水晶振動子、前記第一水晶振動子に接続する第一周波数発振部と第一周波数計測部、および前記第二水晶振動子に接続する第二周波数発振部と第二周波数計測部を含み、
前記第一水晶振動子は第一金属を含む第一電極を備え、前記第二水晶振動子は第二金属を含む第二電極を備え、前記第二金属は、前記第二電極に汚損物質が付着したときに、前記第二水晶振動子が出力する第二共振周波数を、前記第一水晶振動子が出力する第一共振周波数に対して変化させる作用を有する汚損物質検出センサを用い、
前記第二周波数計測部にて測定された第二共振周波数から前記第一周波数計測部にて測定された第一共振周波数を差し引いた差分周波数を取得する工程と、
差分周波数の微分量の変化量を取得する工程と、
前記変化量と、予め測定した第二電極の汚損物質の付着量とおよび差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、前記第二電極の汚損物質の付着量を判定する工程と、を含む汚損物質量測定方法。
Connected to the first crystal oscillator and the second crystal oscillator arranged in the same environment, the first frequency oscillator and the first frequency measuring unit connected to the first crystal oscillator, and the second crystal oscillator. Including the second frequency oscillator and the second frequency measurement unit
The first crystal oscillator includes a first electrode containing a first metal, the second crystal oscillator includes a second electrode containing a second metal, and the second metal has a fouling substance on the second electrode. A fouling substance detection sensor having an action of changing the second resonance frequency output by the second crystal oscillator with respect to the first resonance frequency output by the first crystal oscillator when attached is used.
A step of acquiring a difference frequency obtained by subtracting the first resonance frequency measured by the first frequency measuring unit from the second resonance frequency measured by the second frequency measuring unit.
The process of acquiring the amount of change in the differential amount of the difference frequency and
The amount of the polluted substance adhered to the second electrode is determined based on the amount of change, the amount of the polluted substance adhered to the second electrode measured in advance, and the database that defines the correlation of the time change curve of the difference frequency. Steps and methods for measuring the amount of polluted substances, including.
さらに、前記変化量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、差分周波数の微分量の変化予測値を算出する工程と、
前記変化予測値と、前記第二電極の汚損物質の付着量を判定した後に取得された差分周波数の微分量との予測差分量を取得する工程と、
前記予測差分量と、予め測定した第二電極の汚損物質の付着量および差分周波数の時間変化曲線の相関を規定するデータベースと、に基づいて、前記第二電極の汚損物質の付着量を判定する工程と、を含む請求項10に記載の汚損物質量測定方法。
Further, the predicted value of the change in the differential amount of the difference frequency is calculated based on the change amount and the database that defines the correlation between the amount of the fouling substance attached to the second electrode and the time change curve of the difference frequency measured in advance. Process and
A step of acquiring the predicted difference amount between the change prediction value and the differential amount of the difference frequency acquired after determining the adhesion amount of the polluted substance on the second electrode.
The amount of the polluted substance attached to the second electrode is determined based on the predicted difference amount and the database that defines the correlation between the amount of the polluted substance adhered to the second electrode and the time change curve of the difference frequency measured in advance. The method for measuring the amount of a polluted substance according to claim 10, which comprises a step.
さらに、前記第二水晶振動子の周囲の温度と湿度を測定する工程と、
前記温度と前記湿度と、予め測定した温度ならびに湿度および汚損物質が付着した第二電極の共振周波数の相関を規定するデータベースと、に基づいて、第二電極の温度・湿度補正値を算出する工程と、
前記第二電極の温度・湿度補正値を算出した後に取得された差分周波数の微分量を前記第二電極の温度・湿度補正値に基づいて補正する工程と、を含む請求項10又は請求項11に記載の汚損物質量測定方法。
Further, a step of measuring the temperature and humidity around the second crystal unit, and
A step of calculating the temperature / humidity correction value of the second electrode based on the temperature, the humidity, the temperature measured in advance, and the database that defines the correlation between the humidity and the resonance frequency of the second electrode to which the fouling substance is attached. When,
Claim 10 or claim 11 including a step of correcting the differential amount of the difference frequency acquired after calculating the temperature / humidity correction value of the second electrode based on the temperature / humidity correction value of the second electrode. The method for measuring the amount of polluted substances described in 1.
JP2020050662A 2020-03-23 2020-03-23 Polluting substance amount measuring device and polluting substance amount measuring method Active JP7395395B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020050662A JP7395395B2 (en) 2020-03-23 2020-03-23 Polluting substance amount measuring device and polluting substance amount measuring method
JP2023200884A JP2024020564A (en) 2020-03-23 2023-11-28 Contaminant amount measuring device and contaminant amount measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020050662A JP7395395B2 (en) 2020-03-23 2020-03-23 Polluting substance amount measuring device and polluting substance amount measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023200884A Division JP2024020564A (en) 2020-03-23 2023-11-28 Contaminant amount measuring device and contaminant amount measuring method

Publications (2)

Publication Number Publication Date
JP2021148687A true JP2021148687A (en) 2021-09-27
JP7395395B2 JP7395395B2 (en) 2023-12-11

Family

ID=77848482

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020050662A Active JP7395395B2 (en) 2020-03-23 2020-03-23 Polluting substance amount measuring device and polluting substance amount measuring method
JP2023200884A Pending JP2024020564A (en) 2020-03-23 2023-11-28 Contaminant amount measuring device and contaminant amount measuring method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023200884A Pending JP2024020564A (en) 2020-03-23 2023-11-28 Contaminant amount measuring device and contaminant amount measuring method

Country Status (1)

Country Link
JP (2) JP7395395B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193937A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Electronic apparatus and corrosion monitor
US20120264220A1 (en) * 2011-04-14 2012-10-18 Rahmathullah M Aflal Apparatus for Monitoring Corrosion and Method Thereof
JP2012202766A (en) * 2011-03-24 2012-10-22 Fujitsu Ltd Environment monitoring device
JP2013224871A (en) * 2012-04-23 2013-10-31 Fujitsu Ltd Qcm sensor apparatus and corrosive environment evaluation method
WO2013186856A1 (en) * 2012-06-12 2013-12-19 富士通株式会社 Environmental measuring device and environmental measuring method
WO2014188594A1 (en) * 2013-05-24 2014-11-27 富士通株式会社 Environmental measurement device and environmental measurement method
JP2018080947A (en) * 2016-11-14 2018-05-24 日本電波工業株式会社 Substance detecting system and substance detecting method
JP2019138668A (en) * 2018-02-06 2019-08-22 株式会社東芝 Deterioration diagnostic system, deterioration diagnostic device, deterioration diagnostic method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193937A (en) * 1995-01-17 1996-07-30 Hitachi Ltd Electronic apparatus and corrosion monitor
JP2012202766A (en) * 2011-03-24 2012-10-22 Fujitsu Ltd Environment monitoring device
US20120264220A1 (en) * 2011-04-14 2012-10-18 Rahmathullah M Aflal Apparatus for Monitoring Corrosion and Method Thereof
JP2013224871A (en) * 2012-04-23 2013-10-31 Fujitsu Ltd Qcm sensor apparatus and corrosive environment evaluation method
WO2013186856A1 (en) * 2012-06-12 2013-12-19 富士通株式会社 Environmental measuring device and environmental measuring method
WO2014188594A1 (en) * 2013-05-24 2014-11-27 富士通株式会社 Environmental measurement device and environmental measurement method
JP2018080947A (en) * 2016-11-14 2018-05-24 日本電波工業株式会社 Substance detecting system and substance detecting method
JP2019138668A (en) * 2018-02-06 2019-08-22 株式会社東芝 Deterioration diagnostic system, deterioration diagnostic device, deterioration diagnostic method, and program

Also Published As

Publication number Publication date
JP7395395B2 (en) 2023-12-11
JP2024020564A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP3895087B2 (en) Deterioration diagnosis method
JP4724649B2 (en) Method for estimating corrosion rate of structures using ACM sensor
JP6094673B2 (en) Environmental measuring apparatus and environmental measuring method
JP7516642B2 (en) Diagnostic system, resistance value estimation method, and computer program
JP2022125119A (en) Deterioration diagnostic system, deterioration diagnostic device, deterioration diagnostic method, and program
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP2004093241A (en) Gas sensor characteristic compensation device and gas concentration measurement device
JP2021148687A (en) Fouling substance detection sensor, fouling substance quantity measuring device, and fouling substance quantity measuring method
JP2020046336A (en) Corrosion sensor and corrosion evaluation system
CN114787623A (en) Method and device for operating a gas sensor
JP5951299B2 (en) Deterioration diagnosis apparatus and deterioration diagnosis method
JP5912516B2 (en) Humidity evaluation method
JP7437286B2 (en) Corrosive environment monitoring system and corrosive environment monitoring method
JP3602782B2 (en) Degradation degree measuring kit and method for diagnosing deterioration life of electronic circuit board using this deterioration degree measuring kit
JP5495232B2 (en) Degradation diagnosis method and surface resistance measurement method of polymer material
JP2023045986A (en) Contaminant detection sensor, contaminant amount calculation device and contaminant amount calculation method
JP7006718B2 (en) Corrosion amount prediction method and equipment and steel material selection method using this
JP2002333398A (en) Method and apparatus for diagnosing deterioration caused by pollution
RU2631536C2 (en) Device for corrosion rate monitoring
JP2023183460A (en) Structure management method, structure management device and program
JP2021051068A (en) Method and device for predicting corrosion amount
JP2012047590A (en) Method for recognizing corrosion state of steel structure
JP2024001706A (en) Program, information processing device, power apparatus and information processing method
JP2007101184A (en) Deterioration diagnosing apparatus of coating film and deterioration diagnosing method of coating film
JP2017083456A (en) Dew condensation detection method of switch gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7395395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150