JP5495232B2 - Degradation diagnosis method and surface resistance measurement method of polymer material - Google Patents

Degradation diagnosis method and surface resistance measurement method of polymer material Download PDF

Info

Publication number
JP5495232B2
JP5495232B2 JP2010089117A JP2010089117A JP5495232B2 JP 5495232 B2 JP5495232 B2 JP 5495232B2 JP 2010089117 A JP2010089117 A JP 2010089117A JP 2010089117 A JP2010089117 A JP 2010089117A JP 5495232 B2 JP5495232 B2 JP 5495232B2
Authority
JP
Japan
Prior art keywords
polymer material
surface resistance
deterioration
temperature
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010089117A
Other languages
Japanese (ja)
Other versions
JP2011220782A (en
Inventor
忠幸 和田
俊明 植田
琢弥 畑岸
哲雄 小山
能仁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Chubu Electric Power Co Inc
Original Assignee
Meidensha Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Chubu Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP2010089117A priority Critical patent/JP5495232B2/en
Publication of JP2011220782A publication Critical patent/JP2011220782A/en
Application granted granted Critical
Publication of JP5495232B2 publication Critical patent/JP5495232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は高分子材料の絶縁劣化を診断するための技術に関する。   The present invention relates to a technique for diagnosing insulation deterioration of a polymer material.

従来の電気設備の絶縁劣化を診断するための技術としては、例えば、特許文献1〜3に開示された診断方法が挙げられる。   As a technique for diagnosing the insulation deterioration of the conventional electrical equipment, for example, there are diagnostic methods disclosed in Patent Documents 1 to 3.

特許文献1の沿面絶縁劣化検出装置は、直接的に絶縁材表面の汚損度を測定するものである。直接的に絶縁材の劣化を測定する方法としては、絶縁フレームに櫛形電極を付して表面抵抗をモニターし、モニターされた抵抗値がしきい値以下の状態になったらアラーム信号を出力している。   The creeping insulation deterioration detection device disclosed in Patent Document 1 directly measures the degree of contamination on the surface of an insulating material. As a method of directly measuring the deterioration of the insulating material, a comb-shaped electrode is attached to the insulating frame to monitor the surface resistance, and when the monitored resistance value is below the threshold value, an alarm signal is output. Yes.

特許文献2の診断方法は、受配電設備を構成する主回路部分に用いる固体絶縁材料と同等材料からなる未劣化部位と劣化部位の表面電気抵抗率の変化を測定し、予め測定された表面電気抵抗率の時間依存性基準曲線に基づいて受配電設備の余寿命を算出している。   The diagnostic method of Patent Document 2 measures the change in surface electrical resistivity of an undegraded part and a deteriorated part made of a material equivalent to a solid insulating material used for a main circuit part constituting a power distribution facility, The remaining life of the power distribution facility is calculated based on the time-dependent reference curve of resistivity.

これらの診断方法は、絶縁材料が短絡事故を起こした時、事故前後の装置における絶縁抵抗の測定では、図7(a)に示したように絶縁材の抵抗測定では周囲の温度や湿度による表面抵抗の変動が激しく、絶縁劣化状態を正確に測定することが困難である。   These diagnostic methods are used to measure the insulation resistance of the device before and after the accident when the insulation material causes a short-circuit accident. As shown in FIG. Resistance fluctuations are severe and it is difficult to accurately measure the state of insulation degradation.

特開平8−220158号公報JP-A-8-220158 特開2002−372561号公報JP 2002-372561 A 特開2007−285930号公報JP 2007-285930 A 特開2010−071961号公報JP 2010-071961 A

電力機器等に使用されている固体絶縁物の沿面は、長期間に渡り安定した絶縁抵抗特性が求められる。しかし、真空遮断器の絶縁フレームにおいて材質や使用環境により絶縁抵抗が低下し、不具合に進展する事例が報告されている。今後も、経年により同様の事象が発生することが懸念される。不具合を事前に把握するためには、正確な絶縁診断技術や余寿命推定の手法の確立が必要である。   Creeping surfaces of solid insulators used in power equipment and the like require stable insulation resistance characteristics over a long period of time. However, there have been reports of cases where the insulation resistance of a vacuum circuit breaker frame is reduced depending on the material and the usage environment, leading to problems. There are concerns that similar events will occur over time. Establishing an accurate insulation diagnosis technique and a method for estimating the remaining life is necessary to grasp the defect in advance.

特許文献2で述べられているように絶縁フレームの絶縁抵抗値は高分子材料の抵抗が高すぎるため温度や湿度等の周囲環境による抵抗値変化(測定値のばらつき)が大きすぎて高分子材料の正確な劣化診断ができない(図7(a))。また、図7(b)に示されるように、部分放電等の電気的異常が発生する前では表面抵抗率の測定範囲が狭く、電気的評価では測定は困難である。   As described in Patent Document 2, the insulation resistance value of the insulating frame is too high because the resistance of the polymer material is too high, and the change in resistance value (variation in measured values) due to the ambient environment such as temperature and humidity is too large. Cannot be accurately diagnosed (FIG. 7A). Further, as shown in FIG. 7B, the measurement range of the surface resistivity is narrow before an electrical abnormality such as partial discharge occurs, and measurement is difficult by electrical evaluation.

以上のように従来、絶縁フレームの劣化評価方法は主に絶縁抵抗測定によって行われてきたが、周囲の温湿度による影響を受け、劣化兆候を正確に把握することは困難であった。   As described above, conventionally, the degradation evaluation method of the insulating frame has been mainly performed by measuring the insulation resistance. However, it is difficult to accurately grasp the signs of degradation due to the influence of ambient temperature and humidity.

絶縁物の表面抵抗測定は、一般的に高抵抗測定器を用いた二重リング電極法(JIS K6271)に準拠して行われる。表面抵抗測定時の温湿度は、実環境で想定される温湿度条件を考慮して通常設定されるものであり、通常室温から対象となる絶縁物が熱や湿度により破壊しない値に設定される。特に、高温・高湿度条件では温湿度急変時に絶縁物表面に表面結露が生じ、絶縁物の表面抵抗が大幅に低下することが知られている。温度や湿度が急変した場合に発生する表面抵抗の急激な低下量(最小値)は不安定なため、正確に計測することはできなかった。   The surface resistance of an insulator is generally measured according to the double ring electrode method (JIS K6271) using a high resistance measuring instrument. The temperature and humidity at the time of surface resistance measurement is normally set in consideration of the temperature and humidity conditions assumed in the actual environment, and is normally set from room temperature to a value that does not destroy the target insulator due to heat or humidity. . In particular, it is known that surface condensation occurs on the surface of the insulator when the temperature and humidity change suddenly under high temperature and high humidity conditions, and the surface resistance of the insulator is significantly reduced. The rapid decrease (minimum value) of the surface resistance that occurs when the temperature or humidity changes suddenly is unstable and cannot be measured accurately.

また、これらの現象は瞬間的に起こることが多く、表面抵抗測定は原理的に2分間隔(例えば1分は待機時間、残り1分は電圧印加と抵抗計測時間)で行われるため、抵抗の最小値を正確に計測することが困難であった。そして、絶縁物の表面抵抗値は、代表的な試験温度での計測値をその絶縁物の表面抵抗と位置づけているが、上記のように最小値の計測値については絶縁物測定の誤差が2〜3桁に達することもある。   In addition, these phenomena often occur instantaneously, and surface resistance measurement is performed at intervals of 2 minutes in principle (for example, 1 minute is standby time, the remaining 1 minute is voltage application and resistance measurement time). It was difficult to accurately measure the minimum value. And the surface resistance value of an insulator positions the measured value at a representative test temperature as the surface resistance of the insulator. As described above, the measurement error of the insulator is 2 for the minimum measured value. It can reach ~ 3 digits.

そこで、前記課題を解決するための高分子材料の劣化診断方法は、高分子材料の表面抵抗を測定することにより前記高分子材料の劣化を診断する高分子材料の劣化診断方法であって、前記測定温度を変化させた時の前記高分子材料の表面抵抗を測定し、前記測定温度と該温度における表面抵抗の最小値の関数を算出し、前記関数において、前記高分子材料が劣化したと評価される表面抵抗値のしきい値を定め、前記関数の前記しきい値における温度に基づいて、高分子材料の劣化診断を行うことを特徴としている。   Accordingly, a polymer material deterioration diagnosis method for solving the above-described problem is a polymer material deterioration diagnosis method for diagnosing deterioration of the polymer material by measuring the surface resistance of the polymer material, Measure the surface resistance of the polymer material when the measurement temperature is changed, calculate a function of the measurement temperature and the minimum value of the surface resistance at the temperature, and evaluate that the polymer material has deteriorated in the function The threshold value of the surface resistance value to be determined is determined, and deterioration of the polymer material is diagnosed based on the temperature at the threshold value of the function.

また、前記課題を解決するための高分子材料の劣化診断方法は、高分子材料の表面抵抗を測定することにより前記高分子材料の劣化を診断する高分子材料の劣化診断方法であって、前記測定温度を変化させた時の前記高分子材料の表面抵抗を測定し、前記測定温度と該温度における表面抵抗の平均値の関数を算出し、前記関数において、前記高分子材料が劣化したと評価される表面抵抗値のしきい値を定め、前記関数の前記しきい値における温度に基づいて、高分子材料の劣化診断を行うことを特徴としている。   Further, a degradation diagnosis method for a polymer material for solving the above-described problem is a degradation diagnosis method for a polymer material that diagnoses degradation of the polymer material by measuring a surface resistance of the polymer material, Measure the surface resistance of the polymer material when the measurement temperature is changed, calculate a function of the measurement temperature and the average value of the surface resistance at the temperature, and evaluate that the polymer material has deteriorated in the function The threshold value of the surface resistance value to be determined is determined, and deterioration of the polymer material is diagnosed based on the temperature at the threshold value of the function.

また、上記高分子材料の劣化診断方法において、前記劣化診断を、劣化する前の高分子材料と劣化した後の高分子材料について行い、劣化する前の高分子材料での劣化診断に基づいて、劣化した後の高分子材料劣化度合いを評価してもよい。   Moreover, in the deterioration diagnosis method of the polymer material, the deterioration diagnosis is performed on the polymer material before deterioration and the polymer material after deterioration, and based on the deterioration diagnosis on the polymer material before deterioration, The degree of deterioration of the polymer material after deterioration may be evaluated.

また、前記課題を解決するための高分子材料の表面抵抗測定方法は、高分子材料の表面抵抗を測定する方法であって、前記測定温度を変化させた時の前記高分子材料の表面抵抗を測定し、前記測定温度と該温度における表面抵抗の最小値の関数を算出することを特徴としている。   The method for measuring the surface resistance of a polymer material for solving the above problem is a method for measuring the surface resistance of a polymer material, and the surface resistance of the polymer material when the measurement temperature is changed. The measurement is performed, and a function of the measurement temperature and the minimum value of the surface resistance at the temperature is calculated.

また、前記課題を解決するための高分子材料の表面抵抗測定方法は、高分子材料の表面抵抗を測定する方法であって、前記測定温度を変化させた時の前記高分子材料の表面抵抗を測定し、前記測定温度と該温度における表面抵抗の平均値の関数を算出することを特徴としている。   The method for measuring the surface resistance of a polymer material for solving the above problem is a method for measuring the surface resistance of a polymer material, and the surface resistance of the polymer material when the measurement temperature is changed. And measuring a function of the measurement temperature and an average value of the surface resistance at the temperature.

以上の発明によれば、高分子材料の表面抵抗の測定精度の向上に寄与することができる。したがって、高分子材料の劣化診断精度の向上に寄与することができる。   According to the above invention, it can contribute to the improvement of the measurement accuracy of the surface resistance of the polymer material. Therefore, it can contribute to the improvement of the degradation diagnosis accuracy of the polymer material.

高分子材料の絶縁劣化の温湿度特性を検証するための表面抵抗/環境測定システムの概略図。Schematic of a surface resistance / environment measurement system for verifying the temperature and humidity characteristics of insulation deterioration of a polymer material. 新品及び経年30年品のVCBの絶縁物からなる絶縁フレーム用高分子材料の湿度90%に於ける温度/表面抵抗特性図。The temperature / surface resistance characteristic figure in 90% of the humidity of the polymeric material for insulation frames which consists of a new and 30-year-old VCB insulator. 絶縁物(フィールド劣化品)からなる絶縁フレーム用高分子材料の湿度90%に於ける温度/表面抵抗特性図。The temperature / surface resistance characteristic figure in 90% of humidity of the polymer material for insulation frames which consists of an insulator (field deterioration goods). 絶縁物の表面抵抗の最小値と、表面抵抗測定温度との関係を示す特性図。The characteristic view which shows the relationship between the minimum value of the surface resistance of an insulator, and surface resistance measurement temperature. 絶縁物の経年数とTc低下率との関係を示す特性図。The characteristic view which shows the relationship between the age of an insulator, and Tc fall rate. 絶縁物の経年数と抵抗低下率との関係を示す特性図。The characteristic view which shows the relationship between the age of an insulator, and a resistance fall rate. (a)絶縁抵抗に対する湿度の影響、(b)表面抵抗率の経年変化。(A) Influence of humidity on insulation resistance, (b) Secular change of surface resistivity.

本発明は高分子材料(以下、絶縁物という)の絶縁劣化診断等を行うための、絶縁抵抗特性の評価方法に関するものである。絶縁物の表面抵抗測定方法において、測定温度を変化させた時の絶縁物の表面抵抗を測定し、測定温度とこの温度における表面抵抗の最小値(または、平均値)の関数(例えば、指数近似した直線)を算出するものである。このような関数を求めることにより、温湿度変化時に発生する表面抵抗の急激な低下の現象(ドロップダウン)を、従来の表面抵抗値測定方法よりも精度良く定量化することが可能となる。ドロップダウンとは、一時的に2〜3桁の絶縁抵抗値が低下する現象である。   The present invention relates to a method for evaluating insulation resistance characteristics for performing insulation deterioration diagnosis of a polymer material (hereinafter referred to as an insulator). In the method of measuring the surface resistance of an insulator, the surface resistance of the insulator is measured when the measurement temperature is changed, and a function (for example, exponential approximation) of the measured temperature and the minimum value (or average value) of the surface resistance at this temperature is measured. Calculated straight line). By obtaining such a function, it is possible to quantify the phenomenon (drop-down) of the rapid decrease in surface resistance that occurs when temperature and humidity change more accurately than in the conventional surface resistance value measuring method. Drop-down is a phenomenon in which the insulation resistance value of 2 to 3 digits temporarily decreases.

また、上記関数において、絶縁物表面で部分放電を引き起こす可能性が高くなる表面抵抗の値をしきい値として設定し、このしきい値に対応する測定温度に基づいて、絶縁物の劣化診断をすることにより、絶縁物の劣化診断精度を向上させることができる。   In addition, in the above function, the value of the surface resistance that is likely to cause partial discharge on the surface of the insulator is set as a threshold, and the deterioration diagnosis of the insulator is performed based on the measured temperature corresponding to this threshold. By doing so, the degradation diagnosis accuracy of the insulator can be improved.

本発明の実施形態に係る高分子材料の表面抵抗測定方法及び高分子材料の劣化診断方法についてより詳細に説明する。   The method for measuring the surface resistance of a polymer material and the method for diagnosing deterioration of the polymer material according to an embodiment of the present invention will be described in more detail.

高分子材料の表面抵抗測定方法において、通常の環境における絶縁抵抗では、測定時の誤差が大きく劣化による差異が観測できない。よって、本発明の実施形態に係る高分子材料の表面抵抗測定方法では、絶縁フレーム(高分子材料)をサンプルとして切り出し、このサンプルを図1に示したように環境試験装置1内の抵抗セル2に設置し、これに図示省略の測定電極を貼り付け、温度と湿度を制御しながらハイレジスタンスメータ3を用いて表面抵抗の挙動を測定した。測定された表面抵抗は端末PCにおいてモニタリングした。   In the method for measuring the surface resistance of a polymer material, the insulation resistance in a normal environment has a large error during measurement, and a difference due to deterioration cannot be observed. Therefore, in the method for measuring the surface resistance of a polymer material according to an embodiment of the present invention, an insulating frame (polymer material) is cut out as a sample, and this sample is a resistance cell 2 in the environmental test apparatus 1 as shown in FIG. The measurement resistance (not shown) was affixed to this, and the behavior of the surface resistance was measured using the high resistance meter 3 while controlling the temperature and humidity. The measured surface resistance was monitored on a terminal PC.

図2は、新品及び経年30年品のVCB(Vacuum Circuit Breaker:真空遮断器)で使用された絶縁物からなる絶縁フレーム用高分子材料の湿度90℃における温度/表面抵抗特性図である。   FIG. 2 is a temperature / surface resistance characteristic diagram at a humidity of 90 ° C. of a polymer material for an insulating frame made of an insulating material used in new and 30-year-old VCB (Vacuum Circuit Breaker).

図2に示されたように湿度90%における新品の絶縁フレーム用高分子材料表面の表面抵抗と温度変化による特性は温度を変えた瞬間に多少のゆらぎがあるものの、絶縁材料の表面温度と周囲温度の差がなくなると安定するという特性が示されている。   As shown in FIG. 2, the surface resistance of the new polymeric material for the insulating frame at 90% humidity and the characteristics due to the temperature change have some fluctuations at the moment when the temperature is changed, but the surface temperature of the insulating material and the surroundings. It shows the characteristic that it stabilizes when the temperature difference disappears.

一方、経年30品の絶縁フレーム用高分子材料では、温度の切り替わり直後には漏洩電流による抵抗の低下が観測され、109Ω以下では部分放電による短絡も再現した。 On the other hand, in the 30-year polymer material for insulating frames, a decrease in resistance due to leakage current was observed immediately after the temperature was switched, and a short circuit due to partial discharge was reproduced below 10 9 Ω.

図3に、絶縁物(フィールド劣化品)の表面抵抗測定を行った結果を示す。図3に示すように、表面抵抗測定温度と、各測定温度で測定されたドロップダウンに伴う表面抵抗の最小値との関数として、指数近似した直線を算出した。算出された直線において、部分放電のリスクが発現する表面抵抗値(例えば、図3では109Ω)をしきい値として設定し、このしきい値に対応する測定温度(ここではTcとする)に基づいて絶縁物の劣化診断を行った。絶縁物の劣化診断は、(1)式で示すTc低下率に基づいて行った。
c低下率(%)=100−(Tcx−25)/(Tc0−25)×100…(1)
cx:経年X年の試料(加速寿命試験試料、フィールド劣化品等)のTc(℃)
c0:新品試料のTc(℃)
ここで、未使用の絶縁物のTcをTc0とし、この場合の絶縁物の劣化率(ここではTc低下率)を0%と定義した。また、環境中の平均温度を25℃として、Tcが25℃に達した場合のTc低下率を100%と定義した。
FIG. 3 shows the result of measuring the surface resistance of an insulator (field deteriorated product). As shown in FIG. 3, an exponential approximated straight line was calculated as a function of the surface resistance measurement temperature and the minimum value of the surface resistance associated with the dropdown measured at each measurement temperature. In the calculated straight line, a surface resistance value (for example, 10 9 Ω in FIG. 3) at which a partial discharge risk appears is set as a threshold value, and a measured temperature (here, T c ) corresponding to this threshold value. ) Was used to diagnose the deterioration of insulators. Diagnosis of the deterioration of the insulator was performed based on the Tc reduction rate expressed by the equation (1).
T c decrease rate (%) = 100− (T cx −25) / (T c0 −25) × 100 (1)
T cx : T c (° C) of a sample of X years (accelerated life test sample, field deteriorated product, etc.)
T c0 : T c of new sample (° C)
Here, T c of the unused insulator is defined as T c0, and the deterioration rate of the insulator in this case (here, T c decrease rate) is defined as 0%. Further, the 25 ° C. The average temperature in the environment, and the T c decrease rate when T c reaches 25 ° C. was defined as 100%.

すなわち、図4に例示するように、対象絶縁物の表面抵抗の最小値を指数近似した直線を算出し、この算出された直線としきい値(109Ω)の交点からTc(69.4℃)を算出することができた。そして、算出されたTcを(1)式に代入することで、絶縁物の劣化率(すなわち、Tc低下率:53.3%)を算出することができた。 That is, as illustrated in FIG. 4, a straight line that exponentially approximates the minimum value of the surface resistance of the target insulator is calculated, and T c (69.4) is calculated from the intersection of the calculated straight line and the threshold value (10 9 Ω). ° C) could be calculated. Then, by substituting the calculated T c into the equation (1), the deterioration rate of the insulator (that is, the T c decrease rate: 53.3%) could be calculated.

このように、測定温度と、各測定温度で測定された表面抵抗値の最小値の関数として、指数近似した直線を用いることにより、表面抵抗の最小値(すなわち、ドロップダウン)を精度よく検出することができた。また、指数近似した直線において、しきい値を設定することにより、温度を指標とした絶縁物の劣化診断を行うことができた。   In this way, the minimum value of the surface resistance (that is, the drop-down) is accurately detected by using an exponential approximated line as a function of the measurement temperature and the minimum value of the surface resistance value measured at each measurement temperature. I was able to. In addition, by setting a threshold value on a straight line approximated by an exponent, it was possible to diagnose the deterioration of an insulator using temperature as an index.

次に、具体的な例を挙げて、本発明の実施形態に係る高分子材料の劣化診断方法についてより詳細に説明する。   Next, with reference to a specific example, the degradation diagnosis method for a polymer material according to an embodiment of the present invention will be described in more detail.

30年使用した絶縁物(絶縁物A)、20年使用した絶縁物(絶縁物B)、16年使用した絶縁物(絶縁物C)、未使用の絶縁物(未使用品)を試料としてTc及びTc低下率を測定した。測定結果を表1に示す。Tc測定時の試験湿度は95%に設定した。また、経年数に対するTc低下率の関係を図5に示す。 Samples of insulators used for 30 years (insulator A), insulators used for 20 years (insulator B), insulators used for 16 years (insulator C), and unused insulators (unused products) c and T c reduction rates were measured. The measurement results are shown in Table 1. The test humidity at the time of Tc measurement was set to 95%. Further, FIG. 5 shows the relationship between the Tc reduction rate and the aging.

Figure 0005495232
Figure 0005495232

図5に示すように、経年数と共にTc低下率は単調に増加しており、相関係数も0.97と良好であった。したがって、Tcを用いることにより、経年に伴う絶縁抵抗低下の傾向が明確となっている。 As shown in FIG. 5, the rate of decrease in Tc monotonously increased with age, and the correlation coefficient was 0.97, which was good. Therefore, by using T c , the tendency of the insulation resistance to decrease with time is clear.

このように、経年に伴う絶縁低下の傾向が明確になるので、絶縁物の劣化診断精度が向上し、絶縁物の劣化度合いを評価することができる。   As described above, since the tendency of the insulation decrease with time becomes clear, the deterioration diagnosis accuracy of the insulator can be improved, and the deterioration degree of the insulator can be evaluated.

比較例として、上記絶縁物A、絶縁物B、絶縁物C、未使用品の試料の表面抵抗を測定し、それぞれの試料において表面抵抗の最小値を算出した。表面抵抗の測定条件は、25℃、湿度95%で行った。そして、(2)式に基づいて抵抗低下率を算出した。
抵抗低下率(%)=100−〔(経年X年で測定された表面抵抗の最小値)/(未使用品で測定された表面抵抗の最小値)〕×100…(2)
表2に、表面抵抗の最小値と抵抗低下率の算出結果を示す。また、図6に経年数に対する抵抗低下率の関係を示す。
As a comparative example, the surface resistances of the insulator A, insulator B, insulator C, and unused samples were measured, and the minimum value of the surface resistance was calculated for each sample. The measurement conditions for the surface resistance were 25 ° C. and 95% humidity. And the resistance reduction rate was computed based on (2) Formula.
Resistance reduction rate (%) = 100 − [(minimum value of surface resistance measured in years X) / (minimum value of surface resistance measured in unused product)] × 100 (2)
Table 2 shows the calculation result of the minimum value of the surface resistance and the resistance decrease rate. FIG. 6 shows the relationship of the resistance decrease rate with respect to the aging.

Figure 0005495232
Figure 0005495232

図6に示すように、経過年数と抵抗低下率の関係を近似した関数の相関係数は0.87とTc低下率に基づいて評価した場合と比較して小さい。また、表面抵抗値の最小値は、絶縁物Aと絶縁物Cでは約3桁異なるが、抵抗低下率は3%の差であり、抵抗低下率の変化率が極めて小さい。したがって、表面抵抗値の最小値に基づいて絶縁物の劣化を評価した場合、絶縁物の劣化度合いの判断が困難となる。 As shown in FIG. 6, the correlation coefficient of the function approximating the relationship between the number of years elapsed and the resistance decrease rate is 0.87, which is smaller than the case of evaluation based on the T c decrease rate. The minimum value of the surface resistance value differs between the insulator A and the insulator C by about three orders of magnitude, but the resistance reduction rate is a difference of 3%, and the change rate of the resistance reduction rate is extremely small. Therefore, when the deterioration of the insulator is evaluated based on the minimum value of the surface resistance value, it is difficult to determine the degree of deterioration of the insulator.

なお、絶縁物の劣化診断は、各測定温度における表面抵抗の最小値だけでなく、例えば、同一湿度における各温度で測定した表面抵抗の平均値を用いた場合についても、同様の手法で行うことができる。なお、表面抵抗の平均値を算出する場合、各測定温度で測定したすべての表面抵抗値の平均をとるとよい。また、ドロップダウンが生じている部分の表面抵抗値の平均をとってもよい。   Diagnosis of deterioration of insulators should be performed by the same method not only when the minimum value of surface resistance at each measurement temperature but also when using the average value of surface resistance measured at each temperature at the same humidity, for example. Can do. In addition, when calculating the average value of surface resistance, it is good to take the average of all the surface resistance values measured at each measurement temperature. Further, the average of the surface resistance values of the portions where the drop-down occurs may be taken.

つまり、表面抵抗測定温度と、各測定温度で測定されたドロップダウンに伴う表面抵抗の平均値との関数として、指数近似した直線を算出してもよい。そして、算出された直線において、しきい値を設定し、このしきい値に対応する測定温度(Tac)に基づいて絶縁物の劣化診断を行うとよい。絶縁物の劣化診断は、(3)式で示すTac低下率に基づいて行うことができる。
ac低下率(%)=100−(Tacx−25)/(Tc0−25)×100…(3)
acx:経年X年の試料(加速寿命試験試料、フィールド劣化品等)のTac(℃)
c0:新品試料のTac(℃)
以上のように、本発明の高分子材料の表面抵抗測定方法によれば、絶縁物に発生する表面結露による急激な抵抗低下現象(ドロップダウン)を、精度よく定量化することができる。
That is, an exponential approximate straight line may be calculated as a function of the surface resistance measurement temperature and the average value of the surface resistance associated with the drop-down measured at each measurement temperature. Then, it is preferable to set a threshold value on the calculated straight line and perform an insulation deterioration diagnosis based on the measured temperature (T ac ) corresponding to the threshold value. Diagnosis of deterioration of the insulator can be performed based on the Tac reduction rate expressed by the equation (3).
T ac decrease rate (%) = 100− (T acx −25) / (T c0 −25) × 100 (3)
T acx : T ac (° C) of X year old samples (accelerated life test samples, field deteriorated products, etc.)
T c0 : New sample T ac (° C)
As described above, according to the method for measuring the surface resistance of a polymer material according to the present invention, it is possible to accurately quantify a rapid resistance decrease phenomenon (drop-down) due to surface condensation generated on an insulator.

本発明の高分子材料の表面抵抗測定方法は、ドロップダウンに伴う表面抵抗最小値を精度良く評価することができるので、ドロップダウンに伴う表面抵抗最小値と環境ガスとの相関性を把握することができる。更に、ドロップダウンに起因する環境ガス以外の因子(絶縁物の種類、絶縁コート材、撥水加工塗膜、など)との相関性を精度良く求める場合にも適用することができる。   Since the method for measuring the surface resistance of the polymer material of the present invention can accurately evaluate the surface resistance minimum value associated with the drop-down, it is necessary to grasp the correlation between the surface resistance minimum value associated with the drop-down and the environmental gas. Can do. Furthermore, the present invention can also be applied to the case where the correlation with factors other than the environmental gas caused by the drop-down (insulator type, insulating coating material, water repellent coating film, etc.) is accurately obtained.

例えば、高分子劣化による絶縁抵抗値の低下と加水分解生成物である水酸基の増加量には相関性が高いことが確認されている(例えば、特許文献4)。そして、表面の水酸基量を計測することにより劣化度を判定する手法が提案されている。本発明の高分子材料の表面抵抗測定方法によれば、恒温恒湿槽による表面抵抗値の正確な測定(または、評価)ができるので、高分子材料の表面に存在する水酸基と高分子材料の表面抵抗の相関性や加速率をより精度よく算出することができる。   For example, it has been confirmed that there is a high correlation between a decrease in insulation resistance value due to polymer degradation and an increase in the amount of hydroxyl groups as hydrolysis products (for example, Patent Document 4). And the method of determining a deterioration degree by measuring the amount of hydroxyl groups on the surface is proposed. According to the method for measuring the surface resistance of the polymer material of the present invention, the surface resistance value can be accurately measured (or evaluated) using a constant temperature and humidity chamber. The correlation and acceleration rate of the surface resistance can be calculated with higher accuracy.

また、本発明の高分子材料の劣化診断方法によれば、測定温度を指標とした絶縁物の劣化診断を行うことにより、絶縁物の劣化診断精度が向上し、絶縁物の劣化度合いを評価することができる。さらに、本発明の高分子材料の劣化診断方法は、ドロップダウンを考慮した指標が用いられているため、より正確な絶縁診断及び余寿命推定を行うことができる。   In addition, according to the method for diagnosing deterioration of a polymer material of the present invention, the deterioration diagnosis accuracy of the insulator is improved by performing the deterioration diagnosis of the insulator using the measurement temperature as an index, and the deterioration degree of the insulator is evaluated. be able to. Furthermore, since the degradation diagnosis method for a polymer material according to the present invention uses an index considering drop-down, more accurate insulation diagnosis and remaining life estimation can be performed.

なお、本発明に係る高分子材料の表面抵抗測定方法、及び高分子材料の劣化診断方法は上記実施形態に限定されるものではなく、本発明の技術思想の範囲で多彩な変形及び修正が可能であることは、当業者にとって明白なことであり、このような変形及び修正が本発明の技術範囲に属することは当然のことである。   The method for measuring the surface resistance of the polymer material and the method for diagnosing deterioration of the polymer material according to the present invention are not limited to the above embodiments, and various modifications and corrections are possible within the scope of the technical idea of the present invention. It will be apparent to those skilled in the art that such variations and modifications fall within the scope of the present invention.

例えば、表面抵抗値の測定に基づいて評価を行う例を示しているが、表面抵抗値の逆数である導電率に基づいて評価を行うこともできる。   For example, although the example which evaluates based on the measurement of a surface resistance value is shown, it can also evaluate based on the electrical conductivity which is the reciprocal number of a surface resistance value.

また、指数近似した直線に設定されるしきい値は、109Ωに限定されるものではなく、劣化評価を行う材料ごとに、部分放電のリスクが発現する表面抵抗値をしきい値として適宜選択するとよい。 In addition, the threshold value set for the exponential approximate straight line is not limited to 10 9 Ω, and the surface resistance value at which the risk of partial discharge appears is appropriately set as a threshold value for each material to be evaluated for deterioration. It is good to choose.

Claims (5)

高分子材料の表面抵抗を測定することにより前記高分子材料の劣化を診断する高分子材料の劣化診断方法であって、
漏洩電流によるドロップダウンに伴う表面抵抗の経時変化を、異なる測定温度毎に取得し、
予め、劣化評価を行う高分子材料毎に、部分放電のリスクが発現する表面抵抗値を、前記高分子材料の劣化を判定するしきい値として設定し、
各測定温度と、該測定温度で測定されたドロップダウンに伴う表面抵抗の最小値との関数として、指数近似した直線を算出し、
当該指数近似した直線に基づいて、前記しきい値における測定温度を算出し、算出された測定温度に基づいて、高分子材料の劣化診断を行う
ことを特徴とする高分子材料の劣化診断方法。
A degradation diagnosis method for a polymer material for diagnosing degradation of the polymer material by measuring the surface resistance of the polymer material,
Obtain the time-dependent changes in surface resistance due to drop-down due to leakage current at different measurement temperatures,
For each polymer material to be evaluated for deterioration in advance, a surface resistance value at which the risk of partial discharge is expressed is set as a threshold value for determining the deterioration of the polymer material,
As a function of each measured temperature and the minimum value of the surface resistance associated with the drop-down measured at the measured temperature, an exponential approximate straight line is calculated,
A method for diagnosing deterioration of a polymer material , comprising: calculating a measurement temperature at the threshold based on the straight line approximated by the exponent, and diagnosing the deterioration of the polymer material based on the calculated measurement temperature .
高分子材料の表面抵抗を測定することにより前記高分子材料の劣化を診断する高分子材料の劣化診断方法であって、
漏洩電流によるドロップダウンに伴う表面抵抗の経時変化を、異なる測定温度毎に取得し、
予め、劣化評価を行う高分子材料毎に、部分放電のリスクが発現する表面抵抗値を、前記高分子材料の劣化を判定するしきい値として設定し、
各測定温度と、該測定温度で測定されたすべての表面抵抗の平均値との関数として、指数近似した直線を算出し、
当該指数近似した直線に基づいて、前記しきい値における測定温度を算出し、算出された測定温度に基づいて、高分子材料の劣化診断を行う
ことを特徴とする高分子材料の劣化診断方法。
A degradation diagnosis method for a polymer material for diagnosing degradation of the polymer material by measuring the surface resistance of the polymer material,
Obtain the time-dependent changes in surface resistance due to drop-down due to leakage current at different measurement temperatures,
For each polymer material to be evaluated for deterioration in advance, a surface resistance value at which the risk of partial discharge is expressed is set as a threshold value for determining the deterioration of the polymer material,
As a function of each measured temperature and the average value of all the surface resistances measured at the measured temperature, an exponential approximated straight line is calculated,
A method for diagnosing deterioration of a polymer material , comprising: calculating a measurement temperature at the threshold based on the straight line approximated by the exponent, and diagnosing the deterioration of the polymer material based on the calculated measurement temperature .
前記劣化診断を、劣化する前の高分子材料と劣化した後の高分子材料について行い、
劣化する前の高分子材料での劣化診断に基づいて、劣化した後の高分子材料劣化度合いを評価する
ことを特徴とする請求項1または請求項2に記載の高分子材料の劣化診断方法。
The deterioration diagnosis is performed on the polymer material before deterioration and the polymer material after deterioration,
3. The deterioration diagnosis method for a polymer material according to claim 1, wherein the deterioration degree of the polymer material after deterioration is evaluated based on a deterioration diagnosis for the polymer material before deterioration.
温度と湿度を制御して高分子材料の表面抵抗を測定する方法であって、
漏洩電流によるドロップダウンに伴う表面抵抗の経時変化を、異なる測定温度毎に取得し、
各測定温度と、該測定温度で測定されたドロップダウンに伴う表面抵抗の最小値との関数として、指数近似した直線を算出し、
当該指数近似した直線に基づいて、任意の測定温度における前記表面抵抗の最小値を検出する
ことを特徴とする高分子材料の表面抵抗測定方法。
A method for measuring the surface resistance of a polymer material by controlling temperature and humidity ,
Obtain the time-dependent changes in surface resistance due to drop-down due to leakage current at different measurement temperatures,
As a function of each measured temperature and the minimum value of the surface resistance associated with the drop-down measured at the measured temperature, an exponential approximate straight line is calculated,
A method for measuring a surface resistance of a polymer material, wherein the minimum value of the surface resistance at an arbitrary measurement temperature is detected based on the straight line approximated by the exponent .
温度と湿度を制御して高分子材料の表面抵抗を測定する方法であって、
漏洩電流によるドロップダウンに伴う表面抵抗の経時変化を、異なる測定温度毎に取得し、
各測定温度と、該測定温度で測定されたすべての表面抵抗の平均値との関数として、指数近似した直線を算出し、
当該指数近似した直線に基づいて、任意の測定温度における前記表面抵抗の平均値を検出する
ことを特徴とする高分子材料の表面抵抗測定方法。
A method for measuring the surface resistance of a polymer material by controlling temperature and humidity ,
Obtain the time-dependent changes in surface resistance due to drop-down due to leakage current at different measurement temperatures,
As a function of each measured temperature and the average value of all the surface resistances measured at the measured temperature, an exponential approximated straight line is calculated,
A method for measuring the surface resistance of a polymer material, comprising: detecting an average value of the surface resistance at an arbitrary measurement temperature based on the straight line approximated by the exponent .
JP2010089117A 2010-04-08 2010-04-08 Degradation diagnosis method and surface resistance measurement method of polymer material Active JP5495232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089117A JP5495232B2 (en) 2010-04-08 2010-04-08 Degradation diagnosis method and surface resistance measurement method of polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089117A JP5495232B2 (en) 2010-04-08 2010-04-08 Degradation diagnosis method and surface resistance measurement method of polymer material

Publications (2)

Publication Number Publication Date
JP2011220782A JP2011220782A (en) 2011-11-04
JP5495232B2 true JP5495232B2 (en) 2014-05-21

Family

ID=45037966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089117A Active JP5495232B2 (en) 2010-04-08 2010-04-08 Degradation diagnosis method and surface resistance measurement method of polymer material

Country Status (1)

Country Link
JP (1) JP5495232B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891411B1 (en) * 2016-12-14 2018-08-23 부산대학교 산학협력단 Method for measuring a deterioration degree of high hardness coating product by external stress and apparatus for measuring a deterioration degree of high hardness coating product by external stress

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084020A (en) * 2001-06-21 2003-03-19 Toyobo Co Ltd Non-contact surface resistance measuring device
JP4937012B2 (en) * 2007-06-26 2012-05-23 三菱電機株式会社 Remaining life diagnosis method for power distribution equipment

Also Published As

Publication number Publication date
JP2011220782A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP4121430B2 (en) Insulation diagnosis method for electrical equipment
CN110646466B (en) Calibration method, system and equipment of semiconductor type gas sensor
CN104181457B (en) Method for selecting optimal semiconductor device temperature and humidity combined stress acceleration model
JP4750185B2 (en) Lifetime estimation method and apparatus for electronic weighing device
CN111758038A (en) Method and system for estimating degradation of wire bonded power semiconductor modules
JP2013089596A (en) Systems and methods for monitoring electrical contacts
JP5836904B2 (en) Insulation material degradation diagnosis method and apparatus
JP5944773B2 (en) Method for diagnosing remaining life of insulators in substation equipment
JP5562287B2 (en) Remaining life diagnosis method and remaining life diagnosis device for power distribution equipment
JP4045776B2 (en) Life diagnosis method for power distribution facilities
JP6334271B2 (en) Remaining life calculation method, deterioration diagnosis method, deterioration diagnosis device, and program
KR101036757B1 (en) Method for detection of shunt in sensor
JP5495232B2 (en) Degradation diagnosis method and surface resistance measurement method of polymer material
JP4865516B2 (en) measuring device
JP2020046336A (en) Corrosion sensor and corrosion evaluation system
JP5787565B2 (en) Insulation deterioration diagnosis method
RU2373546C2 (en) Method of determination of condition and resource of isolation
CN110865250A (en) Power distribution equipment state monitoring device integrating current monitoring and heating detection method
CN116430176A (en) Diagnosis method for transformer oil paper insulation state under lightning impulse voltage
JP5550034B2 (en) Degradation diagnosis method for polymer materials
CN114167235B (en) Insulation state evaluation method and device for high-voltage cable based on heat capacity change
Woodworth Arrester Condition Monitors
JP7395395B2 (en) Polluting substance amount measuring device and polluting substance amount measuring method
JP2013195226A (en) Deterioration diagnosis device and deterioration diagnosis method
CN114187745B (en) Semiconductor gas sensor, compensation method thereof, alarm method and alarm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5495232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150