JP2021140177A - Optical filter and imaging apparatus - Google Patents

Optical filter and imaging apparatus Download PDF

Info

Publication number
JP2021140177A
JP2021140177A JP2021082503A JP2021082503A JP2021140177A JP 2021140177 A JP2021140177 A JP 2021140177A JP 2021082503 A JP2021082503 A JP 2021082503A JP 2021082503 A JP2021082503 A JP 2021082503A JP 2021140177 A JP2021140177 A JP 2021140177A
Authority
JP
Japan
Prior art keywords
wavelength
transmittance
light
layer
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021082503A
Other languages
Japanese (ja)
Inventor
好晴 大井
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2021082503A priority Critical patent/JP2021140177A/en
Publication of JP2021140177A publication Critical patent/JP2021140177A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

To provide an optical filter that inhibits incident angle dependency of spectral transmittance, less absorbing light in a visible region, and exhibiting high transmittance, and an imaging apparatus including the optical filter and excellent in color reproducibility.SOLUTION: The optical filter comprises: an absorber layer including a near-infrared absorption agent containing specifically structured squarylium-based compound, having absorption maximum wavelength in wavelength 660 to 750 nm, in which transmittance is 10 to 40% at absorption maximum wavelength, 80% or more at wavelength 600 nm, and 55% or more at wavelength 650 nm, and a difference between wavelength between wavelength 650 nm and the absorption maximum wavelength and wavelength between the absorption maximum wavelength and wavelength 1150 nm where the transmittance is 50% falls within 50 nm; and a reflective layer composed of a dielectric multilayer in which wavelength transmittance of which is 5% or less in wavelength 720 to 1150 nm and transmittance of which is 50% in wavelength 680 to 750 nm has a certain relation with a specific wavelength of the absorber layer, and wavelength difference of light having transmittance 50% at incidence angles 30° and 0° in wavelength 680 to 750 nm is 25 nm or less.SELECTED DRAWING: Figure 5A

Description

可視光を透過し、近赤外光を遮断する光学フィルタ、および該光学フィルタを備えた撮像装置に関する。 The present invention relates to an optical filter that transmits visible light and blocks near-infrared light, and an image pickup apparatus provided with the optical filter.

デジタルスチルカメラ等に搭載されるCCDやCMOSイメージセンサ等の固体撮像素子を用いた撮像装置では、色調を良好に再現し、かつ鮮明な画像を得るために、可視光を透過し、紫外光および近赤外光を遮蔽する光学フィルタが用いられている。 In an image pickup device using a solid-state image sensor such as a CCD or CMOS image sensor mounted on a digital still camera or the like, visible light is transmitted to obtain a clear image while reproducing color tones well, and ultraviolet light and ultraviolet light are transmitted. An optical filter that blocks near-infrared light is used.

従来、光学フィルタとして、近赤外吸収剤を含有する吸収層と、紫外光および近赤外光を反射する誘電体多層膜からなる反射層とを備えた構成が知られている。これは、誘電体多層膜が有する入射光の角度によって分光透過率曲線を変化(シフト)させる性質、すなわち入射角依存性を、吸収層との併用により抑制する構成である。特に、固体撮像素子の感度および視感度の高い可視域透過帯から近赤外域反射帯に至る波長660〜750nm内である遷移波長域における分光透過率曲線の変化を抑制する効果を奏する。このような光学フィルタとしては、透過率の入射角依存性が極めて小さい吸収層の吸収波長領域を、反射層の近赤外反射波長領域に重ね、光の入射角依存性を抑制したものが開示されている(特許文献1)。 Conventionally, as an optical filter, a configuration including an absorption layer containing a near-infrared absorber and a reflection layer made of a dielectric multilayer film that reflects ultraviolet light and near-infrared light is known. This is a configuration in which the property of changing (shifting) the spectral transmittance curve depending on the angle of the incident light of the dielectric multilayer film, that is, the dependence on the incident angle is suppressed by the combined use with the absorption layer. In particular, it has the effect of suppressing changes in the spectral transmittance curve in the transition wavelength region within the wavelength range of 660 to 750 nm from the visible region transmission band to the near infrared region reflection band, which has high sensitivity and visibility of the solid-state image sensor. As such an optical filter, a filter in which the absorption wavelength region of the absorption layer having extremely small transmittance dependence on the incident angle is superimposed on the near-infrared reflection wavelength region of the reflection layer to suppress the dependence of light on the incident angle is disclosed. (Patent Document 1).

光学フィルタにおけるこの入射角依存性を抑制するため、上記遷移波長域における光吸収効果が得られるよう、近赤外吸収剤の種類および濃度と、誘電体多層膜からなる反射層を設計する。しかし、遷移波長域に吸収極大を有する近赤外吸収剤を含有する吸収層中の吸収剤濃度を調整し、吸収極大波長における透過率を10%以下にした場合、該吸収極大波長周辺でも光吸収を有するため、可視域の長波長帯の光の透過率低下をもたらす。また、近赤外吸収剤の多くは可視域の短波長帯の光に対して弱い光吸収を示すため、吸収層中の吸収剤濃度の増加に伴い可視域の短波長帯の光に対する透過率低下をもたらす。 In order to suppress this dependence on the incident angle in the optical filter, the type and concentration of the near-infrared absorber and the reflective layer made of a dielectric multilayer film are designed so that the light absorption effect in the transition wavelength region can be obtained. However, when the transmittance in the absorption layer containing the near-infrared absorber having the absorption maximum in the transition wavelength region is adjusted and the transmittance at the absorption maximum wavelength is set to 10% or less, light is emitted even in the vicinity of the absorption maximum wavelength. Since it has absorption, it causes a decrease in the transmittance of light in the long wavelength band in the visible region. In addition, since most near-infrared absorbers show weak light absorption for light in the short wavelength band in the visible region, the transmittance for light in the short wavelength band in the visible region increases as the concentration of the absorber in the absorption layer increases. Brings a decline.

このため、従来の光学フィルタは、入射角依存性を抑制しようとするほど、可視域の透過率が低下するという問題があった。具体的には、波長600〜700nmの透過率低下、あるいは、波長420〜460nmの透過率低下をもたらし、撮像装置における感度低下を引き起こすおそれがあった。 Therefore, the conventional optical filter has a problem that the transmittance in the visible region decreases as the incident angle dependence is suppressed. Specifically, the transmittance may decrease at a wavelength of 600 to 700 nm or the transmittance at a wavelength of 420 to 460 nm, which may cause a decrease in sensitivity in the imaging apparatus.

特開2014−52482号公報Japanese Unexamined Patent Publication No. 2014-52482

したがって、本発明は、分光透過率の入射角依存性を抑制するとともに、可視光の光吸収が少なく高透過率を示す光学フィルタの提供を目的とする。特に、可視域と近赤外域の境界の700nm付近で透過から遮断に遷移する領域の光の入射角依存性が抑制され、600〜680nmの可視域中の長波長帯の光の透過率低下が抑制された光学フィルタ、および該光学フィルタを備え、撮像画像の色再現性に優れた撮像装置の提供を目的とする。 Therefore, an object of the present invention is to provide an optical filter that suppresses the incident angle dependence of the spectral transmittance and exhibits a high transmittance with little light absorption of visible light. In particular, the incident angle dependence of light in the region transitioning from transmission to blocking is suppressed near 700 nm, which is the boundary between the visible region and the near infrared region, and the transmittance of light in the long wavelength band in the visible region of 600 to 680 nm is reduced. It is an object of the present invention to provide an image pickup apparatus provided with a suppressed optical filter and the optical filter, which is excellent in color reproducibility of a captured image.

本発明の一態様に係る光学フィルタは、近赤外吸収剤を含み下記(i−1)〜(i−4)の要件を満たす吸収層と、下記(ii−1)〜(ii−3)の要件を満たす誘電体多層膜からなる反射層と、を有し、前記近赤外吸収剤が下記式(A1)で示されるスクアリリウム系化合物を含むことを特徴とする。
(i−1)波長420〜1150nmの分光透過率曲線において、波長660〜750nmに吸収極大波長λ(DA_Tmin)を有する。
(i−2)前記波長λ(DA_Tmin)の光の透過率が10〜40%の範囲内である。
(i−3)波長600nmの光の透過率が80%以上であり、波長650nmの光の透過率が55%以上である。
(ii−1)波長720〜1150nmにおいて、入射角0°の光に対する透過率が5%以下となる反射帯を有する。
(ii−2)波長680〜750nmにおいて、入射角0°の光に対する透過率が50%となる波長をλ(0°_T50%)とすると、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)である。(ただし、λSh(DA_T50%)は、波長650nm〜λ(DA_Tmin)において吸収層の透過率が50%となる波長であり、λLo(DA_T50%)は、波長λ(DA_Tmin)〜1150nmにおいて吸収層の透過率が50%となる波長である。)
(ii−3)波長680〜750nmにおいて、入射角30°の光の透過率が50%となる波長をλ(30°_T50%)とすると、前記λ(0°_T50%)とλ(30°_T50%)との差δλSh(T50%)は、0nm<δλSh(T50%)≦25nmである。
(i−4)吸収極大波長λ(DA_Tmin)の光の透過率が10%のときの分光透過率曲線において、
λLo(DA_T50%)−λSh(DA_T50%)≦50nmである。
The optical filter according to one aspect of the present invention includes an absorption layer containing a near-infrared absorber and satisfying the following requirements (i-1) to (i-4), and the following (ii-1) to (ii-3). It has a reflective layer made of a dielectric multilayer film satisfying the above requirements, and the near-infrared absorber contains a squarylium-based compound represented by the following formula (A1).
(I-1) In the spectral transmittance curve having a wavelength of 420 to 1150 nm, it has an absorption maximum wavelength λ (DA_T min ) at a wavelength of 660 to 750 nm.
(I-2) The light transmittance of the wavelength λ (DA_T min ) is in the range of 10 to 40%.
(I-3) The transmittance of light having a wavelength of 600 nm is 80% or more, and the transmittance of light having a wavelength of 650 nm is 55% or more.
(Ii-1) It has a reflection band having a transmittance of 5% or less for light having an incident angle of 0 ° at a wavelength of 720 to 1150 nm.
(Ii-2) If the wavelength at which the transmittance for light at an incident angle of 0 ° is 50% at a wavelength of 680 to 750 nm is λ R (0 ° _T50%), then λR (DA_T50%) + 20 nm ≦ λ R (0 °). _T50%) <λLo (DA_T50%). (However, λSh (DA_T50%) is the wavelength at which the transmittance of the absorption layer is 50% at a wavelength 650nm~λ (DA_T min), λLo ( DA_T50%) , the wavelength lambda (absorption at DA_T min) ~1150nm This is the wavelength at which the transmittance of the layer is 50%.)
(Ii-3) Assuming that the wavelength at which the incident angle of 30 ° has a light transmittance of 50% at a wavelength of 680 to 750 nm is λ R (30 ° _T50%), the above-mentioned λ R (0 ° _T50%) and λ R The difference δλ R Sh (T50%) from (30 ° _T50%) is 0 nm <δλ R Sh (T50%) ≦ 25 nm.
(I-4) In the spectral transmittance curve when the light transmittance of the absorption maximum wavelength λ (DA_T min) is 10%,
λLo (DA_T50%) −λSh (DA_T50%) ≦ 50 nm.

Figure 2021140177
Figure 2021140177

〔式(A1)中の記号は以下のとおりである。
Xは、独立して1つ以上の水素原子が炭素数1〜12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
−(CHn1− …(1)
式(1)中n1は、2または3である。
−(CHn2−O−(CHn3− …(2)
式(2)中、n2とn3はそれぞれ独立して0〜2の整数であり、n2+n3は1または2である。
は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1〜12の飽和もしくは不飽和炭化水素基、炭素数3〜12の飽和環状炭化水素基、炭素数6〜12のアリール基または炭素数7〜13のアルアリール基を示す。
およびRは、独立して水素原子、ハロゲン原子、または、炭素数1〜10のアルキル基もしくはアルコキシ基を示す。
は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5〜25の炭化水素基である。〕
[The symbols in the formula (A1) are as follows.
X is a divalent organic group represented by the following formula (1) or formula (2) in which one or more hydrogen atoms may be independently substituted with an alkyl group or an alkoxy group having 1 to 12 carbon atoms. be.
− (CH 2 ) n1 −… (1)
In formula (1), n1 is 2 or 3.
− (CH 2 ) n2 −O− (CH 2 ) n3 −… (2)
In the formula (2), n2 and n3 are independently integers of 0 to 2, and n2 + n3 is 1 or 2.
R 1 may independently contain a saturated ring structure and may have a branched saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms, a saturated cyclic hydrocarbon group having 3 to 12 carbon atoms, and a carbon number of carbon atoms. It shows an aryl group of 6 to 12 or an alaryl group of 7 to 13 carbon atoms.
R 2 and R 3 independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
In R 4 , one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and unsaturated bonds, oxygen atoms, saturated or unsaturated bonds between carbon atoms are used. A hydrocarbon group having at least one or more branches and having 5 to 25 carbon atoms, which may contain a saturated ring structure. ]

本発明のさらに他の態様に係る撮像装置は、上記の光学フィルタを備えたことを特徴とする。 The image pickup apparatus according to still another aspect of the present invention is characterized by including the above-mentioned optical filter.

本発明によれば、分光透過率の入射角依存性を抑制するとともに、可視光の光吸収が少なく高透過率を示す光学フィルタが得られる。特に、可視域と近赤外域の境界の700nm付近で透過から遮断に遷移する領域の光の入射角依存性が抑制され、600〜680nmの可視光の透過率低下が抑制された光学フィルタが得られる。また、そのような光学フィルタを用いることで、色再現性に優れた撮像装置が得られる。 According to the present invention, it is possible to obtain an optical filter that suppresses the incident angle dependence of the spectral transmittance, absorbs less visible light, and exhibits high transmittance. In particular, an optical filter is obtained in which the dependence of the incident angle of light in the region transitioning from transmission to blocking is suppressed near 700 nm at the boundary between the visible region and the near infrared region, and the decrease in the transmittance of visible light at 600 to 680 nm is suppressed. Be done. Further, by using such an optical filter, an image pickup device having excellent color reproducibility can be obtained.

本発明の光学フィルタの一例を示す断面図である。It is sectional drawing which shows an example of the optical filter of this invention. 本発明の光学フィルタの他の例を示す断面図である。It is sectional drawing which shows the other example of the optical filter of this invention. 本発明の光学フィルタの他の例を示す断面図である。It is sectional drawing which shows the other example of the optical filter of this invention. 本発明の光学フィルタの他の例を示す断面図である。It is sectional drawing which shows the other example of the optical filter of this invention. 本発明の光学フィルタの他の例を示す断面図である。It is sectional drawing which shows the other example of the optical filter of this invention. 近赤外吸収剤の一例を含む吸収層においてNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算例を示す図である。It is a figure which shows the calculation example of the spectral transmittance when the NIR absorber (DA) effective thickness CL is adjusted in the absorption layer containing an example of a near-infrared absorber. 別の近赤外吸収剤を含む吸収層においてNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算例を示す図である。It is a figure which shows the calculation example of the spectral transmittance when the NIR absorber (DA) effective thickness CL is adjusted in the absorption layer containing another near-infrared absorber. さらに別の近赤外吸収剤を含む吸収層においてNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算例を示す図である。It is a figure which shows the calculation example of the spectral transmittance when the NIR absorber (DA) effective thickness CL is adjusted in the absorption layer containing another near-infrared absorber. 実施形態の光学フィルタの第1の反射層の分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the 1st reflection layer of the optical filter of an embodiment. 実施形態の光学フィルタの第2の反射層の分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the 2nd reflection layer of the optical filter of an embodiment. 実施例1の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of Example 1. FIG. 実施例2の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of Example 2. 実施例3の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of Example 3. 比較例1の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of Comparative Example 1. 比較例2の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of the comparative example 2. 比較例3の光学フィルタの分光透過率の計算結果を示すグラフである。It is a graph which shows the calculation result of the spectral transmittance of the optical filter of Comparative Example 3. 本発明の撮像装置の一例を概略的に示す断面図である。It is sectional drawing which shows typically an example of the image pickup apparatus of this invention.

以下、本発明の実施の形態を説明する。本実施形態の光学フィルタ(以下、「本フィルタ」ともいう)は、近赤外吸収剤を含み上記(i−1)〜(i−3)の要件を満たす吸収層および反射層を有し、該反射層は上記(ii−1)〜(ii−3)の要件を満たす誘電体多層膜からなる。 Hereinafter, embodiments of the present invention will be described. The optical filter of the present embodiment (hereinafter, also referred to as “the present filter”) has an absorption layer and a reflection layer containing a near-infrared absorber and satisfying the above requirements (i-1) to (i-3). The reflective layer is made of a dielectric multilayer film that satisfies the above requirements (ii-1) to (ii-3).

吸収層は、本フィルタの中に1層有してもよく、2層以上有してもよい。2層以上有する場合、各層は同じ構成であっても異なってもよい。例として、一方の層を、後述する近赤外吸収剤と透明樹脂を含む近赤外吸収層とし、もう一方の層を、後述する近紫外吸収剤と透明樹脂を含む近紫外吸収層としてもよい。また、吸収層は、それ自体が基板(樹脂基板)として機能するものでもよい。本明細書において、近赤外吸収剤を「NIR吸収剤」、近紫外吸収剤を「UV吸収剤」、とそれぞれ略記することもある。 The absorption layer may have one layer or two or more layers in the present filter. When having two or more layers, each layer may have the same configuration or may be different. As an example, one layer may be a near-infrared absorption layer containing a near-infrared absorber and a transparent resin described later, and the other layer may be a near-ultraviolet absorption layer containing a near-ultraviolet absorber and a transparent resin described later. good. Further, the absorption layer itself may function as a substrate (resin substrate). In the present specification, the near-infrared absorber may be abbreviated as "NIR absorber" and the near-ultraviolet absorber may be abbreviated as "UV absorber".

反射層は、吸収層と同様、1層有してもよく、2層以上有してもよい。2層以上有する場合、各反射層は同じ構成であっても異なってもよいが、通常、反射帯域の異なる複数の反射層で構成される。これら各反射層を構成する各誘電体多層膜中の各膜の光学膜厚の平均値は、反射帯域に応じて異なる。例として、一方を、波長720〜1150nmの近赤外域のうち短波長帯の光を遮蔽する近赤外反射層とし、もう一方を、該近赤外域の長波長帯および近紫外域の両領域の光を遮蔽する近赤外・近紫外反射層としてもよい。 Like the absorption layer, the reflection layer may have one layer or two or more layers. When having two or more layers, each reflection layer may have the same configuration or may be different, but is usually composed of a plurality of reflection layers having different reflection bands. The average value of the optical film thickness of each film in each of the dielectric multilayer films constituting each of these reflection layers differs depending on the reflection band. As an example, one is a near-infrared reflective layer that shields light in the short wavelength band of the near-infrared region having a wavelength of 720 to 1150 nm, and the other is both the long wavelength region and the near-ultraviolet region in the near-infrared region. It may be a near-infrared / near-ultraviolet reflective layer that shields the light of.

本フィルタは、透明基板をさらに有してもよい。この場合、本フィルタは、上記吸収層と上記反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。 The filter may further have a transparent substrate. In this case, the filter may have the absorption layer and the reflection layer on the same main surface of the transparent substrate or on different main surfaces. When the absorption layer and the reflection layer are provided on the same main surface, the stacking order thereof is not particularly limited.

本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。 The filter may also have other functional layers. Examples of other functional layers include an antireflection layer that suppresses a loss of transmittance of visible light. In particular, when the absorption layer has the outermost surface structure, a visible light transmittance loss due to reflection occurs at the interface between the absorption layer and air, so it is preferable to provide an antireflection layer on the absorption layer.

次に、図面を用いて本フィルタの構成例について説明する。図1Aは、吸収層11の両主面上にそれぞれ第1の反射層12aおよび第2の反射層12bを備えた光学フィルタ10の構成例である。図1Bは、吸収層11の一方の主面上に第1の反射層12aおよび第2の反射層12bを備えた光学フィルタ20の構成例である。 Next, a configuration example of this filter will be described with reference to the drawings. FIG. 1A is a configuration example of an optical filter 10 having a first reflective layer 12a and a second reflective layer 12b on both main surfaces of the absorbing layer 11. FIG. 1B is a configuration example of an optical filter 20 having a first reflective layer 12a and a second reflective layer 12b on one main surface of the absorbing layer 11.

なお、「吸収層11の一方の主面上に、第1の反射層12a等の他の層を備える」とは、吸収層11に接触して他の層が備わる場合に限らず、吸収層11と他の層との間に、別の機能層が備わっている場合も含むものとする。以下の構成も同様である。ここで、光学フィルタ10、光学フィルタ20における吸収層11は、この場合、後述するような透明基板としての機能を併せ持ってもよい。 The phrase "providing another layer such as the first reflective layer 12a on one main surface of the absorbing layer 11" is not limited to the case where the other layer is provided in contact with the absorbing layer 11. It also includes the case where another functional layer is provided between 11 and another layer. The following configuration is also the same. Here, in this case, the absorption layer 11 in the optical filter 10 and the optical filter 20 may also have a function as a transparent substrate as described later.

図1Cは、透明基板13の一方の主面上に第1の反射層12aを備え、透明基板13の他方の主面上に吸収層11および第2の反射層12bを備えた光学フィルタ30の構成例である。図1Dは、透明基板13の一方の主面上に第1の反射層12aおよび第2の反射層12bを備え、透明基板13の他方の主面上に吸収層11および反射防止層14を備えた光学フィルタ40の構成例である。図1Eは、透明基板13の両主面上にそれぞれ第1の反射層12aおよび第2の反射層12bを備え、第2の反射層12b上に吸収層11および反射防止層14を順に備えた光学フィルタ50の構成例である。 FIG. 1C shows an optical filter 30 having a first reflective layer 12a on one main surface of the transparent substrate 13 and an absorbing layer 11 and a second reflective layer 12b on the other main surface of the transparent substrate 13. This is a configuration example. FIG. 1D includes a first reflective layer 12a and a second reflective layer 12b on one main surface of the transparent substrate 13, and an absorbing layer 11 and an antireflection layer 14 on the other main surface of the transparent substrate 13. This is a configuration example of the optical filter 40. In FIG. 1E, a first reflective layer 12a and a second reflective layer 12b are provided on both main surfaces of the transparent substrate 13, and an absorption layer 11 and an antireflection layer 14 are sequentially provided on the second reflective layer 12b. This is a configuration example of the optical filter 50.

図1A〜図1Eは、いずれも2種類の異なる反射層が設けられている例である。前述のように、第1の反射層12aが上述した近赤外域の長波長帯および近紫外域の光を遮蔽する近赤外・近紫外反射層で、第2の反射層12bが上述した近赤外域の短波長帯の光を遮蔽する近赤外反射層でもよい。第1の反射層12aと第2の反射層12bの位置は特に限定されない。 1A to 1E are examples in which two different types of reflective layers are provided. As described above, the first reflective layer 12a is the near-infrared / near-ultraviolet reflective layer that shields the light in the long wavelength band and the near-ultraviolet region in the near-infrared region described above, and the second reflective layer 12b is the near-infrared region described above. A near-infrared reflective layer that blocks light in a short wavelength band in the infrared region may be used. The positions of the first reflective layer 12a and the second reflective layer 12b are not particularly limited.

本フィルタは、下記(1)〜(3)の要件の少なくとも1つを満たすとよく、少なくとも2つを満たすと好ましい。下記(1)〜(3)の要件すべてを満たすとより好ましい。 The filter may satisfy at least one of the following requirements (1) to (3), and preferably at least two. It is more preferable that all of the following requirements (1) to (3) are satisfied.

(1)波長420〜600nmにおける入射角0°の光および入射角30°の光の平均透過率が90%以上である。該平均透過率は92%以上がより好ましく、95%以上が特に好ましい。また、波長420〜600nmにおける入射角0°の光および入射角30°の光の透過率は、60%以上であればよく、70%以上が好ましく、80%以上がより好ましい。 (1) The average transmittance of light having an incident angle of 0 ° and light having an incident angle of 30 ° at a wavelength of 420 to 600 nm is 90% or more. The average transmittance is more preferably 92% or more, and particularly preferably 95% or more. The transmittance of light having an incident angle of 0 ° and light having an incident angle of 30 ° at a wavelength of 420 to 600 nm may be 60% or more, preferably 70% or more, and more preferably 80% or more.

(2)波長600nmにおける、入射角0°の光の透過率および入射角30°の光の透過率がいずれも80%以上である。該透過率は85%以上がより好ましく、90%以上が特に好ましい。
(3)波長600nm以上において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、5nm以下である。該波長差の絶対値は4nm以下がより好ましく、2nm以下が特に好ましい
(2) The transmittance of light having an incident angle of 0 ° and the transmittance of light having an incident angle of 30 ° at a wavelength of 600 nm are both 80% or more. The transmittance is more preferably 85% or more, and particularly preferably 90% or more.
(3) At a wavelength of 600 nm or more, the absolute value of the difference between the wavelength at which the transmittance of light at an incident angle of 0 ° is 50% and the wavelength at which the transmittance of light at an incident angle of 30 ° is 50% is 5 nm or less. Is. The absolute value of the wavelength difference is more preferably 4 nm or less, and particularly preferably 2 nm or less.

本フィルタは、好ましくは、(4)波長650〜720nmの光における10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率の差の絶対値の平均値△Tが10%以下である。
波長λで入射角θの光に対する光学フィルタの透過率をT(λ、θ)と記すと、波長λで入射角0°と30°の透過率差の絶対値△t(λ)は|T(λ、0°)−T(λ、30°)|で示される。すなわち、△Tは以下の計算式で示される。
△T={△t(650)+△t(660)+△t(670)+△t(680)+△t(690)+△t(700)+△t(710)+△t(720)}/8
This filter preferably has (4) the average value of the absolute value of the difference between the transmittance of light having an incident angle of 0 ° and the transmittance of light having an incident angle of 30 ° for each 10 nm wavelength in light having a wavelength of 650 to 720 nm. Is 10% or less.
When the transmittance of the optical filter with respect to light having an incident angle θ at the wavelength λ is described as T (λ, θ), the absolute value Δt (λ) of the transmittance difference between the incident angles 0 ° and 30 ° at the wavelength λ is | T. (Λ, 0 °) −T (λ, 30 °) | That is, ΔT is represented by the following formula.
ΔT = {Δt (650) + Δt (660) + Δt (670) + Δt (680) + Δt (690) + Δt (700) + Δt (710) + Δt (720) )} / 8

△Tは、波長650〜720nmの光において入射角0°の分光透過率曲線と入射角30°の分光透過率曲線で囲まれた領域の面積に比例する。△Tが11%以下であると可視域から近赤外域に遷移する遷移波長領域の光に対する入射角0°と入射角30°の波長シフト量が少ないと言える。△Tはより好ましくは9%以下である。 ΔT is proportional to the area of the region surrounded by the spectral transmittance curve at an incident angle of 0 ° and the spectral transmittance curve at an incident angle of 30 ° in light having a wavelength of 650 to 720 nm. When ΔT is 11% or less, it can be said that the amount of wavelength shift of the incident angle of 0 ° and the incident angle of 30 ° with respect to the light in the transition wavelength region transitioning from the visible region to the near infrared region is small. ΔT is more preferably 9% or less.

本フィルタは、さらに、下記要件(5)および(6)の少なくとも1つを満たすとよく、2つを満たすとより好ましい。 The filter may further meet at least one of the following requirements (5) and (6), more preferably two.

(5)入射角0°の分光透過率曲線において、波長350〜390nmの光の平均透過率が5%以下である。該平均透過率は、好ましくは3%以下、より好ましくは1%以下である。
(6)入射角0°〜30°の分光透過率曲線において、波長720〜1150nmの光の平均透過率が5%以下である。該平均透過率は、好ましくは3%以下、より好ましくは1%以下である。
(5) In the spectral transmittance curve with an incident angle of 0 °, the average transmittance of light having a wavelength of 350 to 390 nm is 5% or less. The average transmittance is preferably 3% or less, more preferably 1% or less.
(6) In the spectral transmittance curve with an incident angle of 0 ° to 30 °, the average transmittance of light having a wavelength of 720 to 1150 nm is 5% or less. The average transmittance is preferably 3% or less, more preferably 1% or less.

また、入射角0°の分光透過率曲線における、波長350〜390nmの光の透過率は、15%以下であればよく、10%以下が好ましく、5%以下がより好ましい。さらに、入射角0°〜30°の分光透過率曲線における、波長720〜1150nmの光の透過率は、15%以下であればよく、10%以下が好ましく、5%以下がより好ましい。 Further, the transmittance of light having a wavelength of 350 to 390 nm in the spectral transmittance curve at an incident angle of 0 ° may be 15% or less, preferably 10% or less, and more preferably 5% or less. Further, the transmittance of light having a wavelength of 720 to 1150 nm in the spectral transmittance curve having an incident angle of 0 ° to 30 ° may be 15% or less, preferably 10% or less, and more preferably 5% or less.

次に、吸収層、反射層、透明基板および反射防止層について説明する。 Next, the absorption layer, the reflection layer, the transparent substrate, and the antireflection layer will be described.

<吸収層>
吸収層は、NIR吸収剤を含み、(i−1)〜(i−3)の要件を満たす。
(i−1)波長420〜1150nmの分光透過率曲線において、波長660〜750nmに吸収極大波長λ(DA_Tmin)を有する。
(i−2)前記波長λ(DA_Tmin)の光の透過率が10〜40%の範囲内である。
(i−3)波長600nmの光の透過率が80%以上であり、波長650nmの光の透過率が55%以上である。
<Absorption layer>
The absorption layer contains a NIR absorber and meets the requirements of (i-1) to (i-3).
(I-1) In the spectral transmittance curve having a wavelength of 420 to 1150 nm, it has an absorption maximum wavelength λ (DA_T min ) at a wavelength of 660 to 750 nm.
(I-2) The light transmittance of the wavelength λ (DA_T min ) is in the range of 10 to 40%.
(I-3) The transmittance of light having a wavelength of 600 nm is 80% or more, and the transmittance of light having a wavelength of 650 nm is 55% or more.

吸収層は、NIR吸収剤と、透明樹脂とを含み、典型的には、透明樹脂中にNIR吸収剤が均一に溶解または分散した層である。なお、吸収層は、NIR吸収剤以外の吸収剤、例えば、UV吸収剤を含有してもよい。 The absorption layer contains a NIR absorber and a transparent resin, and is typically a layer in which the NIR absorber is uniformly dissolved or dispersed in the transparent resin. The absorption layer may contain an absorbent other than the NIR absorber, for example, a UV absorber.

NIR吸収剤を含む吸収層の光学的性質は、屈折率nと消衰係数κを用いた複素屈折率n−iκ(ただし、iは虚数単位である。)で表され、該NIR吸収剤の消衰係数κの波長(λ)依存性に応じた光吸収にともない分光透過率が変化する。なお、本明細書における屈折率とは、波長589nmの光に対する屈折率を意味する。NIR吸収剤が透明樹脂中の厚さ方向に吸収剤濃度Cで均一に分散された吸収層の厚さをLとすると、吸収層の分光透過率T(λ)は、T(λ)=exp(−4πκL/λ)で示される。 The optical properties of the absorption layer containing the NIR absorber are represented by a complex refractive index n-iκ (where i is an imaginary unit) using a refractive index n and an extinction coefficient κ, and the NIR absorber of the NIR absorber. The spectral transmittance changes with light absorption according to the wavelength (λ) dependence of the extinction index κ. The refractive index in the present specification means the refractive index for light having a wavelength of 589 nm. Assuming that the thickness of the absorption layer in which the NIR absorber is uniformly dispersed in the transparent resin in the thickness direction at the absorber concentration C is L, the spectral transmittance T (λ) of the absorption layer is T (λ) = exp. It is indicated by (-4πκL / λ).

ここで、α=4πκ/λは吸収係数であり、常用対数を用いて表記する場合はT(λ)=10−βLとなり、吸収係数βはαにlog10(e)=0.434を乗じた値に相当する。また、吸光度Aは−log10{T(λ)}=βLで示される。吸収係数αおよびβは、吸収層中の吸収剤濃度Cにより変化する。すなわち、吸収層の分光透過率は、吸収層中の吸収剤濃度Cおよび吸収層の厚さLにより調整でき、複数のNIR吸収剤を含む場合も同様である。 Here, α = 4πκ / λ is the absorption coefficient, and when expressed using the common logarithm, T (λ) = 10 −βL , and the absorption coefficient β is α multiplied by log 10 (e) = 0.434. Corresponds to the value. The absorbance A is indicated by −log 10 {T (λ)} = βL. The absorption coefficients α and β vary depending on the absorbent concentration C in the absorption layer. That is, the spectral transmittance of the absorption layer can be adjusted by the absorbent concentration C in the absorption layer and the thickness L of the absorption layer, and the same applies when a plurality of NIR absorbers are contained.

本実施形態においては、720〜1150nmの近赤外光を遮断し、440〜640nmの可視光が高透過率となるように、吸収層を設計することが望まれる。しかし、NIR吸収剤の消衰係数κは固有の波長依存性を示し、可視光に対して高透過率を維持するとともに、吸収によって広域の近赤外光を十分に遮断できない。 In the present embodiment, it is desired to design the absorption layer so that the near-infrared light of 720 to 1150 nm is blocked and the visible light of 440 to 640 nm has a high transmittance. However, the extinction coefficient κ of the NIR absorber shows an inherent wavelength dependence, maintains high transmittance for visible light, and cannot sufficiently block wide-area near-infrared light by absorption.

そこで、本発明においては、吸収層を、上記(i−1)〜(i−3)の要件を満たように設計する。
(i−1)は、吸収層における吸収極大波長λ(DA_Tmin)の規定であり、これは、吸収層に含まれるNIR吸収剤の吸収極大波長による。
Therefore, in the present invention, the absorption layer is designed so as to satisfy the above requirements (i-1) to (i-3).
(I-1) defines the absorption maximum wavelength λ (DA_T min ) in the absorption layer, which depends on the absorption maximum wavelength of the NIR absorber contained in the absorption layer.

すなわち、吸収層の設計においては、波長420〜1150nmの分光透過率曲線において、波長660〜750nmに吸収極大波長を有するNIR吸収剤を用い、可視光の高透過率化を優先する。この場合、波長λ(DA_Tmin)の光の透過率が10〜40%の範囲内であり、波長600nmの光の透過率が80%以上、波長650nmの光の透過率が55%以上となるよう、吸収層中のNIR吸収剤濃度Cと吸収層の厚さLを調整する。 That is, in the design of the absorption layer, in the spectral transmittance curve having a wavelength of 420 to 1150 nm, an NIR absorber having an absorption maximum wavelength at a wavelength of 660 to 750 nm is used, and priority is given to increasing the transmittance of visible light. In this case, the transmittance of light having a wavelength λ (DA_T min ) is in the range of 10 to 40%, the transmittance of light having a wavelength of 600 nm is 80% or more, and the transmittance of light having a wavelength of 650 nm is 55% or more. As described above, the NIR absorber concentration C in the absorption layer and the thickness L of the absorption layer are adjusted.

なお、NIR吸収剤の分光透過率曲線は、例えば、NIR吸収剤をジクロロメタンに溶解した溶液を用いて測定できる。以下、波長660〜750nmに吸収極大波長を有するNIR吸収剤をNIR吸収剤(DA)という。吸収層は、少なくとも1種のNIR吸収剤(DA)を含有する。吸収層は2種類以上のNIR吸収剤(DA)を含有してもよく、NIR吸収剤(DA)以外の吸収剤を含有してもよい。 The spectral transmittance curve of the NIR absorber can be measured, for example, by using a solution of the NIR absorber in dichloromethane. Hereinafter, an NIR absorber having an absorption maximum wavelength at a wavelength of 660 to 750 nm is referred to as an NIR absorber (DA). The absorption layer contains at least one NIR absorber (DA). The absorption layer may contain two or more types of NIR absorbers (DA), or may contain an absorbent other than the NIR absorber (DA).

以下、吸収極大波長λ(DA_Tmin)における吸収層の透過率をTminと示す。また、波長Xnmにおける透過率をTと示す。例えば、波長600nmの透過率をT600と示す。Tminが10〜40%の範囲内であれば、近赤外域と可視域の境界付近の近赤外光を所期のレベルに遮蔽しながら、可視域全体、例えば440〜640nmの波長領域全体に亘る透過率を高く維持でき、(i−3)の要件を達成しやすい。Tminは20〜30%がより好ましい。 Hereinafter, the transmittance of the absorption layer at the absorption maximum wavelength λ (DA_T min ) is referred to as T min . The transmittance at a wavelength of X nm is indicated by TX. For example, the transmittance at a wavelength of 600 nm is shown as T 600. When T min is within the range of 10 to 40%, the entire visible region, for example, the entire wavelength region of 440 to 640 nm, is blocked while blocking the near infrared light near the boundary between the near infrared region and the visible region to the desired level. The transmittance can be maintained high, and the requirement (i-3) can be easily achieved. T min is more preferably 20 to 30%.

また、吸収層が(i−3)の要件を満たすことで、ともに用いる反射層の入射角依存性を抑制しやすくなる。上記吸収層の設計において、吸収層のT600は、好ましくは85%以上、さらに好ましくは90%以上である。また、吸収層のT650は、好ましくは60%以上である。 Further, when the absorption layer satisfies the requirement (i-3), it becomes easy to suppress the incident angle dependence of the reflection layer used together. In the design of the absorption layer, the T 600 of the absorption layer is preferably 85% or more, more preferably 90% or more. The T 650 of the absorption layer is preferably 60% or more.

NIR吸収剤(DA)を用いて、上記(i−2)および(i−3)の要件を満たす吸収層、すなわち、Tminが10〜40%の範囲であり、T600が80%以上、かつT650が55%以上の吸収層を設計するには、吸収層中のNIR吸収剤(DA)濃度Cと吸収層の厚さLを調整する。具体的には、NIR吸収剤(DA)濃度Cと吸収層の厚さLの積C×L(以下、「NIR吸収剤(DA)実効厚CL」とも記す。)を指標として設計する。 An absorption layer that meets the above requirements (i-2) and (i-3) using the NIR absorber (DA), that is, T min is in the range of 10 to 40%, and T 600 is 80% or more. In order to design an absorption layer having a T 650 of 55% or more, the NIR absorbent (DA) concentration C in the absorption layer and the thickness L of the absorption layer are adjusted. Specifically, the product of the NIR absorbent (DA) concentration C and the thickness L of the absorbing layer C × L (hereinafter, also referred to as “NIR absorbent (DA) effective thickness CL”) is used as an index for designing.

波長660〜750nmに吸収極大波長を有するNIR吸収剤(DA)は、通常、上記吸収極大波長の前後の特定の波長域に高い吸収を有し、可視域で吸収が小さく、さらに吸収極大波長より長波長側の領域で吸収が低下する。このような吸光特性のNIR吸収剤(DA)を含む吸収層は、NIR吸収剤(DA)実効厚CLを増やすと吸収極大波長λ(DA_Tmin)の光の透過率が低下するとともに吸収波長帯域が拡大し、吸収極大波長近傍の遮光性が向上する。一方、440〜640nmの可視光の透過率の低下を招き、特に、視感度が比較的高い580〜660nm波長光の透過率の低下が顕著になりやすい。したがって、本フィルタの吸収層では、NIR吸収剤(DA)実効厚CLを減少させて、Tminを10〜40%の範囲にすることで、T600が80%以上、かつT650が55%以上の吸収特性を達成している。 An NIR absorber (DA) having an absorption maximum wavelength at a wavelength of 660 to 750 nm usually has high absorption in a specific wavelength range before and after the absorption maximum wavelength, has less absorption in the visible region, and is more than the absorption maximum wavelength. Absorption decreases in the long wavelength region. In the absorption layer containing the NIR absorber (DA) having such absorption characteristics, when the effective thickness CL of the NIR absorber (DA) is increased, the light transmittance of the absorption maximum wavelength λ (DA_T min ) decreases and the absorption wavelength band Is expanded, and the light-shielding property near the absorption maximum wavelength is improved. On the other hand, it causes a decrease in the transmittance of visible light at 440 to 640 nm, and in particular, a decrease in the transmittance of light having a wavelength of 580 to 660 nm, which has a relatively high luminosity factor, tends to be remarkable. Therefore, in the absorption layer of this filter, by reducing the effective thickness CL of the NIR absorber (DA) and setting the T min to the range of 10 to 40%, the T 600 is 80% or more and the T 650 is 55%. The above absorption characteristics are achieved.

そして、本フィルタでは、吸収層において、NIR吸収剤(DA)の吸収特性が可視光の透過率低下を抑えるようにNIR吸収剤(DA)実効厚CLを調整するため、吸収極大波長λ(DA_Tmin)近傍の吸収波長帯の透過光が発生しやすい。しかし、近赤外域の遮光性が不十分となる部分を、反射層の反射特性で補っている。すなわち、本フィルタは、(ii−1)〜(ii−3)の要件を満たす反射層、とくに、後述の第1の反射層と第2の反射層のような複数の反射層を備えることで、広い波長領域の入射光を遮断できる。 Then, in this filter, in order to adjust the effective thickness CL of the NIR absorber (DA) so that the absorption characteristics of the NIR absorber (DA) suppress the decrease in the transmittance of visible light in the absorption layer, the absorption maximum wavelength λ (DA_T) is adjusted. min ) Transmitted light in the absorption wavelength band in the vicinity is likely to be generated. However, the part where the light-shielding property in the near-infrared region is insufficient is supplemented by the reflection characteristics of the reflection layer. That is, the present filter is provided with a reflective layer satisfying the requirements of (ii-1) to (ii-3), particularly a plurality of reflective layers such as the first reflective layer and the second reflective layer described later. , Can block incident light in a wide wavelength range.

なお、吸収層は、吸収極大波長が異なる複数の吸収剤を用いて吸収波長領域を拡大する構成でもよい。ただし、吸収層が、複数のNIR吸収剤を含有し、可視域におけるNIR吸収剤固有の残留吸収を有すると、可視光の透過率を低下させる場合があるため、これらを考慮してNIR吸収剤を選択し、吸収層中の濃度および吸収層の厚さも考慮する。 The absorption layer may be configured to expand the absorption wavelength region by using a plurality of absorbents having different absorption maximum wavelengths. However, if the absorption layer contains a plurality of NIR absorbers and has residual absorption peculiar to the NIR absorber in the visible region, the transmittance of visible light may be lowered. Therefore, the NIR absorber should be taken into consideration. Select, and also consider the concentration in the absorption layer and the thickness of the absorption layer.

NIR吸収剤(DA)としては、これを含有する吸収層が上記(i−1)〜(i−3)の要件を満たす限り、特に制限されない。NIR吸収剤(DA)としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、スクアリリウム系化合物等が挙げられる。 The NIR absorber (DA) is not particularly limited as long as the absorption layer containing the NIR absorber (DA) satisfies the above requirements (i-1) to (i-3). NIR absorbers (DA) include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, and indophenol compounds. Examples thereof include compounds and squarylium compounds.

本フィルタに好適なNIR吸収剤(DA)の具体例としては、KODAK社のIRDシリーズの05、22等、Epolin社のEpolightTMシリーズの6084、4037、QCR Solutions社のNIRシリーズのNIR728A、NIR720B(以上、商品名)等が挙げられる。 Specific examples of NIR absorbers (DA) suitable for this filter include KODAK's IRD series 05, 22, etc., Epolin's Epolight TM series 6084, 4037, and QCR Solutions' NIR series NIR728A, NIR720B ( As mentioned above, the product name) and the like can be mentioned.

また、下記一般式(A1)で示されるスクアリリウム系化合物(以下、「スクアリリウム系化合物(A1)」ともいう。)も、本実施形態のNIR吸収剤(DA)として好適である。 Further, a squarylium-based compound represented by the following general formula (A1) (hereinafter, also referred to as “squarylium-based compound (A1)”) is also suitable as the NIR absorber (DA) of the present embodiment.

Figure 2021140177
Figure 2021140177

式(A1)中の記号は以下のとおりである。
Xは、独立して1つ以上の水素原子が炭素数1〜12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
−(CHn1− …(1)
式(1)中n1は、2または3である。
−(CHn2−O−(CHn3− …(2)
式(2)中、n2とn3はそれぞれ独立して0〜2の整数であり、n2+n3は1または2である。
は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1〜12の飽和もしくは不飽和炭化水素基、炭素数3〜12の飽和環状炭化水素基、炭素数6〜12のアリール基または炭素数7〜13のアルアリール基を示す。
およびRは、独立して水素原子、ハロゲン原子、または、炭素数1〜10のアルキル基もしくはアルコキシ基を示す。
は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5〜25の炭化水素基である。
The symbols in the formula (A1) are as follows.
X is a divalent organic group represented by the following formula (1) or formula (2) in which one or more hydrogen atoms may be independently substituted with an alkyl group or an alkoxy group having 1 to 12 carbon atoms. be.
− (CH 2 ) n1 −… (1)
In formula (1), n1 is 2 or 3.
− (CH 2 ) n2 −O− (CH 2 ) n3 −… (2)
In the formula (2), n2 and n3 are independently integers of 0 to 2, and n2 + n3 is 1 or 2.
R 1 may independently contain a saturated ring structure and may have a branched saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms, a saturated cyclic hydrocarbon group having 3 to 12 carbon atoms, and a carbon number of carbon atoms. It shows an aryl group of 6 to 12 or an alaryl group of 7 to 13 carbon atoms.
R 2 and R 3 independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
In R 4 , one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and unsaturated bonds, oxygen atoms, saturated or unsaturated bonds between carbon atoms are used. A hydrocarbon group having at least one or more branches and having 5 to 25 carbon atoms, which may contain a saturated ring structure.

スクアリリウム系化合物(A1)は、可視域と近赤外域との境界付近における傾斜が急峻であり、かつ近赤外光に対する遮蔽能も高い。そのため、吸収層は、該化合物を少量添加しても優れた吸収特性を有し、光学フィルタの薄型化および小型化が図れる。さらに、スクアリリウム系化合物(A1)は、耐熱性に優れるため、熱プロセス中の分光透過率の変化も抑制できる。 The squarylium-based compound (A1) has a steep slope near the boundary between the visible region and the near-infrared region, and has a high shielding ability against near-infrared light. Therefore, the absorption layer has excellent absorption characteristics even if a small amount of the compound is added, and the optical filter can be made thinner and smaller. Furthermore, since the squarylium compound (A1) has excellent heat resistance, changes in spectral transmittance during the thermal process can also be suppressed.

吸収層は、少なくともNIR吸収剤(DA)と透明樹脂を含有する。透明樹脂としては、種々の樹脂材料を使用できる。例えば、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエステル樹脂等が挙げられる。透明樹脂は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 The absorption layer contains at least a NIR absorber (DA) and a transparent resin. As the transparent resin, various resin materials can be used. For example, acrylic resin, epoxy resin, en-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide resin, polyamide. Examples thereof include imide resin, polyolefin resin, cyclic olefin resin, polyester resin and the like. As the transparent resin, one type may be used alone, or two or more types may be mixed and used.

吸収層を設計する際には、NIR吸収剤(DA)の吸収特性に応じて、(i−2)および(i−3)の要件を満たすように、NIR吸収剤(DA)と透明樹脂を含有する吸収層のNIR吸収剤(DA)実効厚CLを調整する。 When designing the absorbent layer, the NIR absorbent (DA) and the transparent resin are used so as to satisfy the requirements of (i-2) and (i-3) according to the absorption characteristics of the NIR absorbent (DA). The NIR absorbent (DA) effective thickness CL of the absorbing layer contained is adjusted.

NIR吸収剤(DA)実効厚CLによるが、透明樹脂100質量部に対する、NIR吸収剤(DA)の含有量は、0.01〜20質量部が好ましく、0.05〜15質量部がより好ましく、1〜10質量部がより一層好ましい。 Although it depends on the effective thickness CL of the NIR absorber (DA), the content of the NIR absorber (DA) with respect to 100 parts by mass of the transparent resin is preferably 0.01 to 20 parts by mass, more preferably 0.05 to 15 parts by mass. 1 to 10 parts by mass is even more preferable.

吸収層の膜厚は、NIR吸収剤(DA)実効厚CLにより、使用する装置内の配置スペースや要求される吸収特性等に応じて適宜定められる。吸収層の膜厚は、0.1〜100μmが好ましい。 The film thickness of the absorption layer is appropriately determined by the NIR absorbent (DA) effective thickness CL according to the arrangement space in the apparatus to be used, the required absorption characteristics, and the like. The film thickness of the absorption layer is preferably 0.1 to 100 μm.

吸収層は、例えば、NIR吸収剤(DA)および透明樹脂または透明樹脂の原料成分を溶媒に分散し、溶解させて調製した塗工液を、基材上に塗工し、乾燥させたりして製造できる。基材は、透明基板でもよく、吸収層作製時のみに使用される剥離性の支持基材でもよい。なお、吸収層が任意成分を含む場合、塗工液が該任意成分を含有する。 In the absorption layer, for example, a coating liquid prepared by dispersing and dissolving a NIR absorbent (DA) and a transparent resin or a raw material component of a transparent resin in a solvent is applied onto a base material and dried. Can be manufactured. The base material may be a transparent substrate or a peelable support base material used only when the absorbent layer is produced. When the absorption layer contains an optional component, the coating liquid contains the optional component.

NIR吸収剤(DA)と透明樹脂を用いて、吸収層のNIR吸収剤(DA)実効厚CLを(i−2)および(i−3)の要件を満たすように調整する具体例を、上に例示したNIR吸収剤(DA)を用いて説明する。 A specific example of adjusting the NIR absorbent (DA) effective thickness CL of the absorbing layer so as to satisfy the requirements of (i-2) and (i-3) by using the NIR absorbent (DA) and the transparent resin is described above. This will be described using the NIR absorber (DA) exemplified in.

図2Aは、NIR吸収剤(DA)として吸収極大波長が700nmのスクアリリウム系化合物(A1)を含む吸収層について、吸収極大波長での透過率が40%、10%、1%、0.1%となるようにNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算結果である。 FIG. 2A shows the transmittance of the absorption layer containing the squarylium-based compound (A1) having an absorption maximum wavelength of 700 nm as the NIR absorber (DA) at 40%, 10%, 1%, and 0.1% at the absorption maximum wavelength. This is the calculation result of the spectral transmittance when the effective thickness CL of the NIR absorber (DA) is adjusted so as to be.

図2Aは、吸収極大波長λ(DA_Tmin)の透過率が0.1%以上となるNIR吸収剤(DA)実効厚CLであれば、T600≧80%かつT650≧55%を満たすことを示す。しかし、480nm以下の可視域に残留する吸収の影響で該波長の光の透過率が低下する。すなわち、吸収極大波長λ(DA_Tmin)の光の透過率が10%以上40%以下となるNIR吸収剤(DA)実効厚CLを調整することにより、近赤外域と可視域の境界付近の近赤外光を所期のレベルに遮蔽しつつ、可視域全体、例えば440〜640nmの波長域全体に亘る光の透過率を高く維持できる。具体的には、吸収層のT600、T650および420〜480nmの可視短波長域の光の透過率が所期のレベルに担保される。 FIG. 2A shows that T 600 ≧ 80% and T 650 ≧ 55% are satisfied if the NIR absorber (DA) effective thickness CL has a transmittance of the absorption maximum wavelength λ (DA_T min) of 0.1% or more. Is shown. However, the transmittance of light of that wavelength decreases due to the effect of absorption remaining in the visible region of 480 nm or less. That is, by adjusting the effective thickness CL of the NIR absorber (DA) at which the light transmittance of the absorption maximum wavelength λ (DA_T min ) is 10% or more and 40% or less, the vicinity of the boundary between the near infrared region and the visible region is near. While blocking infrared light to a desired level, it is possible to maintain high light transmittance over the entire visible region, for example, the entire wavelength region of 440 to 640 nm. Specifically, the transmittance of light in the visible short wavelength region of T 600 , T 650 and 420 to 480 nm of the absorption layer is guaranteed to the desired level.

図2Bは、NIR吸収剤(DA)として吸収極大波長が695nmのEpolin社のフタロシアニン色素Epolight6084を含む吸収層について、吸収極大波長での透過率が40%、10%、1%となるようにNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算結果である。 FIG. 2B shows the absorption layer containing Epolin's phthalocyanine dye Epolar 6084 having an absorption maximum wavelength of 695 nm as an NIR absorber (DA) so that the transmittance at the absorption maximum wavelength is 40%, 10%, and 1%. It is a calculation result of the spectral transmittance when the effective thickness CL of the absorbent (DA) is adjusted.

図2Bは、吸収極大波長λ(DA_Tmin)の光の透過率が略15%以上40%以下となるNIR吸収剤(DA)実効厚CLであれば、近赤外域と可視域の境界付近の近赤外光を所期のレベルに遮蔽しつつ、T600≧80%かつT650≧55%を満たすことを示す。また、410〜480nmの可視域の短波長帯の光でも80%以上の透過率を維持する。 FIG. 2B shows the vicinity of the boundary between the near-infrared region and the visible region if the NIR absorber (DA) effective thickness CL is such that the light transmittance of the absorption maximum wavelength λ (DA_T min) is approximately 15% or more and 40% or less. It is shown that T 600 ≥ 80% and T 650 ≥ 55% are satisfied while blocking near-infrared light to the desired level. Further, even light in a short wavelength band in the visible region of 410 to 480 nm maintains a transmittance of 80% or more.

図2Cは、NIR吸収剤(DA)として吸収極大波長が728nmのQCR solution社のNIR728Aを含む吸収層について、吸収極大波長での透過率が40%、10%、1%となるようにNIR吸収剤(DA)実効厚CLを調整したときの分光透過率の計算結果である。 FIG. 2C shows NIR absorption of the absorption layer containing NIR728A of QCR spectroscopy, which has an absorption maximum wavelength of 728 nm as an NIR absorber (DA), so that the transmittance at the absorption maximum wavelength is 40%, 10%, and 1%. It is a calculation result of the spectral transmittance when the effective thickness CL of the agent (DA) is adjusted.

図2Cは、吸収極大波長λ(DA_Tmin)の透過率が略15%以上40%以下となるNIR吸収剤(DA)実効厚CLであれば、近赤外域と可視域の境界付近の近赤外光を所期のレベルに遮蔽しつつ、T600≧80%かつT650≧55%を満たすことを示す。また、波長400〜600nmの可視光でも85%以上の透過率を維持する。 FIG. 2C shows near-red near the boundary between the near-infrared region and the visible region if the NIR absorber (DA) effective thickness CL has a transmittance of the absorption maximum wavelength λ (DA_T min) of about 15% or more and 40% or less. It is shown that T 600 ≥ 80% and T 650 ≥ 55% are satisfied while blocking external light to the desired level. Further, even visible light having a wavelength of 400 to 600 nm maintains a transmittance of 85% or more.

ここで、本フィルタが固体撮像素子とともに用いられる場合、固体撮像素子は、人間の眼に感度がない波長350〜390nmの近紫外光にも感度を有するため、本フィルタを透過した近紫外光は固体撮像素子で検知され、高精度な色再現性の妨げになる場合がある。したがって、本フィルタの吸収層は、波長350〜390nmの近紫外光を遮断し、波長420nm以上の可視光に対して高透過率となるように、波長350〜600nmの分光透過率曲線において、波長370〜405nmに吸収極大波長を有するUV吸収剤(以下、UV吸収剤(DU)ともいう。)を含むことが好ましい。なお、UV吸収剤の分光透過率曲線は、例えば、UV吸収剤をジクロロメタンに溶解した溶液を用いて測定できる。 Here, when this filter is used together with a solid-state image sensor, the solid-state image sensor also has sensitivity to near-ultraviolet light having a wavelength of 350 to 390 nm, which is insensitive to the human eye. It is detected by a solid-state image sensor and may interfere with high-precision color reproduction. Therefore, the absorption layer of this filter blocks near-ultraviolet light having a wavelength of 350 to 390 nm and has a high transmittance for visible light having a wavelength of 420 nm or more in the spectral transmittance curve having a wavelength of 350 to 600 nm. It is preferable to contain a UV absorber having a maximum absorption wavelength at 370 to 405 nm (hereinafter, also referred to as a UV absorber (DU)). The spectral transmittance curve of the UV absorber can be measured, for example, by using a solution of the UV absorber in dichloromethane.

本フィルタに好適なUV吸収剤(DU)の具体例としては、H.W.Sands社のSDA3382およびMSA3144、QCR Solutions社のUV386AおよびUV386BやUV386A、Chiba社のTINUVIN479(以上、商品名)、メロシアニン系色素、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、トリアジン系紫外線吸収剤、オキザニリド系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、無機系紫外線吸収剤等が挙げられる。 Specific examples of a UV absorber (DU) suitable for this filter include H. W. Sands SDA3382 and MSA3144, QCR Solutions UV386A and UV386B and UV386A, Chiba TINUVIN479 (trade name), merocyanine dyes, benzotriazole UV absorbers, benzophenone UV absorbers, salicylate UV absorbers. , Cyanacrylate-based UV absorbers, Triazine-based UV absorbers, Oxanilide-based UV absorbers, Nickel complex salt-based UV absorbers, Inorganic UV absorbers and the like.

これらはいずれも、前述した分光透過率曲線において、波長370〜405nmに吸収極大波長を有するとともに、440〜640nmの可視域の光吸収がほとんどなく、かつ390〜420nmの波長領域で比較的急峻な透過率変化が得られることから、UV吸収剤(DU)として好適である。 All of these have an absorption maximum wavelength at a wavelength of 370 to 405 nm, have almost no light absorption in the visible region of 440 to 640 nm, and are relatively steep in the wavelength region of 390 to 420 nm in the above-mentioned spectral transmittance curve. It is suitable as a UV absorber (DU) because it can change the transmittance.

また、本フィルタは、NIR吸収剤(DA)の吸収極大波長より長波長側で、例えば、波長750nm超1000nm以下に吸収極大波長を有し、可視光の吸収が少ないNIR吸収剤(以下、NIR吸収剤(DB)ともいう。)を併せて用いてもよい。なお、NIR吸収剤(DB)は、吸収層に含有させたときに可視光に吸収が残留する場合、少なくとも波長450〜550nmの光の透過率が90%以上となるようにNIR吸収剤(DB)の実効厚比CLを調整できることが前提となる。 Further, this filter has an absorption maximum wavelength on the longer wavelength side than the absorption maximum wavelength of the NIR absorber (DA), for example, a wavelength of more than 750 nm and 1000 nm or less, and has less visible light absorption (hereinafter, NIR). It may also be used in combination with an absorbent (DB). The NIR absorber (DB) is a NIR absorber (DB) so that the transmittance of light having a wavelength of at least 450 to 550 nm is 90% or more when absorption remains in visible light when contained in the absorption layer. It is premised that the effective thickness ratio CL of) can be adjusted.

例えば、NIR吸収剤(DB)としては、KODAK社のIRDシリーズの04、79等、Epolin社のEpolightTMシリーズの5547、5588等、QCR Solutions社のNIRシリーズの907B、910C等、H.W.Sands社のSDA8630等、Exciton社のNP800、IRA868(以上、商品名)等が挙げられる。 For example, examples of the NIR absorber (DB) include Kodak's IRD series 04, 79, etc., Epolin's Epolight TM series 5547, 5588, etc., QCR Solutions' NIR series 907B, 910C, etc. W. Examples thereof include SDA8630 manufactured by Sands, NP800 and IRA868 (trade name) manufactured by Exciton.

吸収層中の吸収剤の全量に対するNIR吸収剤(DB)およびUV吸収剤(DU)の割合は、NIR吸収剤(DA)との合計で3〜100質量%が好ましい。また、透明樹脂100質量部に対し、NIR吸収剤(DB)およびUV吸収剤(DU)は、NIR吸収剤(DA)との合計で0.01〜20質量部が好ましく、0.05〜15質量部がより好ましく、1〜10質量部がより一層好ましい。 The ratio of the NIR absorber (DB) and the UV absorber (DU) to the total amount of the absorbent in the absorption layer is preferably 3 to 100% by mass in total with the NIR absorber (DA). Further, the total amount of the NIR absorber (DB) and the UV absorber (DU) is preferably 0.01 to 20 parts by mass, and 0.05 to 15 parts by mass with respect to 100 parts by mass of the transparent resin. By mass is more preferred, and 1 to 10 parts by mass is even more preferred.

なお、本フィルタが備える吸収層は、(i−1)〜(i−3)の要件を満たすように設計されるが、上記吸収層のみでは、波長λ(DA_Tmin)を含む近赤外域の遮光性が不十分となる。さらに、上記吸収層のみでは、固体撮像素子が感度を有する波長350〜1150nmの光のうち、波長350〜390nmの近紫外光、および波長λ(DA_Tmin)より長波長側の近赤外光の遮光が不十分である。 The absorption layer included in this filter is designed to satisfy the requirements (i-1) to (i-3), but the absorption layer alone is in the near infrared region including the wavelength λ (DA_T min). The light blocking effect is insufficient. Further, in the absorption layer alone, among the light having a wavelength of 350 to 1150 nm to which the solid-state imaging device has sensitivity, the near-ultraviolet light having a wavelength of 350 to 390 nm and the near-infrared light having a wavelength longer than the wavelength λ (DA_T min) Insufficient shading.

<反射層>
上記のように、吸収層のみで不十分な遮光性を改善するため、本フィルタは、以下の(ii−1)〜(ii−3)の要件を満たす反射層を併用する。反射層は、可視光を透過し、近紫外光および近赤外光の遮光性を向上させる機能を備えるので、本フィルタを備えた撮像装置では、固体撮像素子が可視光のみ有効に検知できる。
<Reflective layer>
As described above, in order to improve the light-shielding property that is insufficient only by the absorption layer, this filter uses a reflective layer that satisfies the following requirements (ii-1) to (ii-3) in combination. Since the reflective layer has a function of transmitting visible light and improving the light blocking effect of near-ultraviolet light and near-infrared light, the solid-state image sensor can effectively detect only visible light in an image pickup device equipped with this filter.

(ii−1)波長720〜1150nmにおいて、入射角0°の光に対する透過率が5%以下となる反射帯を有する。
(ii−2)波長680〜750nmにおいて、入射角0°の光に対する透過率が50%となる波長をλ(0°_T50%)とすると、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)である。(ただし、λSh(DA_T50%)は、波長650nm〜λ(DA_Tmin)の光において吸収層の透過率が50%となる波長であり、λLo(DA_T50%)は、波長λ(DA_Tmin)〜1150nmにおいて吸収層の透過率が50%となる波長である。)
(ii−3)波長680〜750nmにおいて、入射角30°の光に対する透過率が50%となる波長をλ(30°_T50%)とすると、前記λ(0°_T50%)とλ(30°_T50%)との差δλSh(T50%)は、0nm<δλSh(T50%)≦25nmである。
(Ii-1) It has a reflection band having a transmittance of 5% or less for light having an incident angle of 0 ° at a wavelength of 720 to 1150 nm.
(Ii-2) If the wavelength at which the transmittance for light at an incident angle of 0 ° is 50% at a wavelength of 680 to 750 nm is λ R (0 ° _T50%), then λR (DA_T50%) + 20 nm ≦ λ R (0 °). _T50%) <λLo (DA_T50%). (However, λSh (DA_T50%), the transmittance of the absorbing layer in the light of the wavelength 650nm~λ (DA_T min) is the wavelength of the 50%, λLo (DA_T50%), the wavelength λ (DA_T min) ~1150nm This is the wavelength at which the transmittance of the absorption layer is 50%.
(Ii-3) Assuming that the wavelength at which the transmittance for light at an incident angle of 30 ° is 50% at a wavelength of 680 to 750 nm is λ R (30 ° _T50%), the above-mentioned λ R (0 ° _T50%) and λ R The difference δλ R Sh (T50%) from (30 ° _T50%) is 0 nm <δλ R Sh (T50%) ≦ 25 nm.

本フィルタは、吸収層と併用して用いる反射層が(ii−1)〜(ii−3)の条件を満たすことにより、入射角0°〜30°における、波長680〜750nmの光に対する透過率変化は僅かで、波長720〜1150nmの近赤外光に対して安定した遮光性が得られる。以下、「反射層」は「誘電体多層膜からなる反射層」を意味する。 This filter has a transmittance for light having a wavelength of 680 to 750 nm at an incident angle of 0 ° to 30 ° when the reflective layer used in combination with the absorption layer satisfies the conditions (ii-1) to (ii-3). The change is slight, and stable light-shielding property can be obtained with respect to near-infrared light having a wavelength of 720 to 1150 nm. Hereinafter, the "reflective layer" means a "reflective layer made of a dielectric multilayer film".

反射層は(ii−1)の要件を満たすことで、吸収層のみでは十分に遮断できない近赤外光の遮光性を改善する。反射層において、波長720〜1150nmで入射角0°の光に対する透過率が15%以下となる反射帯の幅は、300nm以上が好ましく、350nm以上がより好ましい。反射層は、波長700〜1150nmにおいて、入射角0°の光に対する平均透過率が、5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましい。 By satisfying the requirement of (ii-1), the reflective layer improves the light blocking property of near infrared light that cannot be sufficiently blocked by the absorbing layer alone. In the reflective layer, the width of the reflective band in which the transmittance for light having an incident angle of 0 ° at a wavelength of 720 to 1150 nm is 15% or less is preferably 300 nm or more, more preferably 350 nm or more. The reflective layer has an average transmittance of 5% or less, more preferably 3% or less, still more preferably 1% or less, with respect to light having an incident angle of 0 ° at a wavelength of 700 to 1150 nm.

反射層は(ii−2)の要件を満たすことで、吸収層の吸収極大波長λ(DA_Tmin)付近で生じる光漏れの遮光性が改善する。(ii−2)の要件は、吸収層の吸収極大波長λ(DA_Tmin)を含む透過率50%以下の波長域λSh(DA_T50%)〜λLo(DA_T50%)の波長幅が20nmより広くなるように実効厚CLが調整されたNIR吸収剤(DA)に対し、反射層の入射角0°の光に対する透過率が50%となる透過可視波長帯から反射近赤外波長帯の遷移領域の波長λ(0°_T50%)を規定する。その結果、入射角が例えば30°まで増加して反射層の波長λ(30°_T50%)が波長λ(0°_T50%)より短波長側にシフトしても、波長λ(DA_Tmin)付近の遮光性が維持できる。 When the reflective layer satisfies the requirement (ii-2), the light-shielding property of light leakage generated in the vicinity of the absorption maximum wavelength λ (DA_T min) of the absorption layer is improved. The requirement of (ii-2) is that the wavelength width of the wavelength range λSh (DA_T50%) to λLo (DA_T50%) including the absorption maximum wavelength λ (DA_T min) of the absorption layer and having a transmittance of 50% or less is wider than 20 nm. The wavelength of the transition region from the transmitted visible wavelength band to the reflected near-infrared wavelength band where the transmittance of the reflective layer for light at an incident angle of 0 ° is 50% with respect to the NIR absorber (DA) whose effective thickness CL has been adjusted. λ R (0 ° _T50%) is specified. As a result, even if the incident angle increases to, for example, 30 ° and the wavelength λ R (30 ° _T50%) of the reflective layer shifts to a shorter wavelength side than the wavelength λ R (0 ° _T50%), the wavelength λ (DA_T min) ) The light-shielding property in the vicinity can be maintained.

(ii−2)では、反射層の透過率が50%となる波長λ(0°_T50%)を用いたが、高い遮光性を得るためには透過率が20%となる波長λ(0°_T20%)を用いるのがより好ましく、10%となる波長λ(0°_T10%)がさらに好ましい。すなわち、λSh(DA_T50%)+20nm≦λ(0°_T20%)<λLo(DA_T50%)がより好ましく、λSh(DA_T50%)+20nm≦λ(0°_T10%)<λLo(DA_T50%)がさらに好ましい。 (Ii-2) in, although the transmittance of the reflective layer is used 50% become wavelength λ R (0 ° _T50%) , the transmittance of 20% in order to obtain high light-shielding property wavelength lambda R ( It is more preferable to use 0 ° _T 20%), and further preferably the wavelength λ R (0 ° _T 10%) which is 10%. That is, λSh (DA_T50%) + 20 nm ≦ λ R (0 ° _T20%) <λLo (DA_T50%) is more preferable, and λSh (DA_T50%) + 20 nm ≦ λ R (0 ° _T10%) <λLo (DA_T50%) is further preferable. preferable.

反射層が(ii−3)の要件を満たすことで、反射層において入射角の増加にともない分光透過率曲線の反射帯が短波長側にシフトする入射角依存性が小さくなる。δλSh(T50%)は、25nm以下が好ましく、20nm以下がより好ましく、15nm以下がさらに好ましい。 When the reflective layer satisfies the requirement (ii-3), the dependence on the incident angle at which the reflection band of the spectral transmittance curve shifts to the short wavelength side becomes smaller as the incident angle increases in the reflective layer. δλ R Sh (T50%) is preferably 25 nm or less, more preferably 20 nm or less, and even more preferably 15 nm or less.

本フィルタにおける反射層は、(ii−3)の要件を満たすことで、入射角依存性や偏光依存性が十分に小さく、(ii−1)、(ii−2)の要件と合せることで、可視光の分光透過率曲線を維持し、不要な近紫外光および近赤外光の高い遮光性を示す。 The reflective layer in this filter has sufficiently small incident angle dependence and polarization dependence by satisfying the requirements of (ii-3), and by combining with the requirements of (ii-1) and (ii-2), It maintains the spectral transmittance curve of visible light and exhibits high light-shielding properties of unnecessary near-ultraviolet light and near-infrared light.

反射層の入射角依存性に関し、以下の(ii−4)を満たすことが好ましい。
(ii−4)波長680〜750nmにおいて、入射角0°の光の透過率が20%となる波長をλ(0°_T20%)とし、入射角30°の光の透過率が20%となる波長をλ(30°_T20%)とすると、λ(0°_T20%)とλ(30°_T20%)との差δλSh(T20%)は、0nm<δλSh(T20%)≦22nmである。
δλSh(T20%)は、20nm以下が好ましく、15nm以下がより好ましい。
Regarding the incident angle dependence of the reflective layer, it is preferable to satisfy the following (ii-4).
(Ii-4) At a wavelength of 680 to 750 nm, the wavelength at which the transmittance of light at an incident angle of 0 ° is 20% is λ R (0 ° _T20%), and the transmittance of light at an incident angle of 30 ° is 20%. Assuming that the wavelength is λ R (30 ° _T20%), the difference between λ R (0 ° _T20%) and λ R (30 ° _T20%) δλ R Sh (T20%) is 0 nm <δλ R Sh (T20). %) ≦ 22 nm.
δλ R Sh (T20%) is preferably 20 nm or less, more preferably 15 nm or less.

反射層は、近赤外域の特定の波長λの光に対し光学膜厚がλ/4となるような誘電体多層膜の構成にすると、λ近傍だけでなくλ/3近傍にも反射帯が生成される。この反射層の特性により、一群の誘電体多層膜は、波長390nm以下の近紫外光および波長720〜1150nmの近赤外光に対して安定した遮光性が得られる。 Reflective layer, when the structure of a dielectric multilayer film as an optical film thickness for a particular wavelength lambda 0 of the light in the near infrared region is lambda 0/4, not only the lambda 0 near lambda 0/3 in the vicinity Also a reflection band is generated. Due to the characteristics of this reflective layer, the group of dielectric multilayer films can obtain stable light-shielding properties against near-ultraviolet light having a wavelength of 390 nm or less and near-infrared light having a wavelength of 720 to 1150 nm.

誘電体多層膜の材料は、可視光透過率が高く、高屈折率の誘電体膜の屈折率と低屈折率の誘電体膜の屈折率を各々、n、nとしたとき(n−n)/(n+n)が大きいと、後述する所定の近赤外反射帯幅ΔλNIRの確保や高い反射率が得られやすい。 The material of the dielectric multilayer film has a high visible light transmittance, and when the refractive index of the dielectric film having a high refractive index and the refractive index of the dielectric film having a low refractive index are n H and n L , respectively (n H). When −n L ) / (n H + n L ) is large, it is easy to secure a predetermined near-infrared reflection band width Δλ NIR , which will be described later, and obtain a high refractive index.

以下、高屈折率の誘電体膜は「高屈折率層」、低屈折率の誘電体膜は「低屈折率層」ともいう。各層の屈折率は、例えば、nを2以上とし、nを1.6以下とする。n≧2.15の高屈折率層は、TiO、Ta、Nb、ZnS、ZnSe等により構成できる。低屈折率層は、n=1.46のSiO以外にn≦1.38のNaAl14、NaAlF、MgF等により構成できる。また、誘電体多層膜中には、分光透過率曲線の調整、膜応力低減、密着性向上等の目的で、高屈折率層、低屈折率層以外に、中間屈折率を示す誘電体膜を含んでもよい。 Hereinafter, a dielectric film having a high refractive index is also referred to as a “high refractive index layer”, and a dielectric film having a low refractive index is also referred to as a “low refractive index layer”. The refractive index of each layer is, for example, n H of 2 or more and n L of 1.6 or less. The high refractive index layer of n H ≧ 2.15 can be composed of TiO 2 , Ta 2 O 5 , Nb 2 O 5 , ZnS, ZnSe and the like. The low refractive index layer can be composed of Na 5 Al 3 F 14 , Na 3 Al F 6 , Mg F 2 and the like having n L ≤ 1.38 in addition to SiO 2 having n L = 1.46. Further, in the dielectric multilayer film, in addition to the high refractive index layer and the low refractive index layer, a dielectric film exhibiting an intermediate refractive index is provided for the purpose of adjusting the spectral transmittance curve, reducing the film stress, improving the adhesion, and the like. It may be included.

誘電体多層膜は、高屈折率層と低屈折率層とからなる単位屈折率層が複数積層され、単位屈折率層の全層数が15以上とする。さらに、単位屈折率層における高屈折率層の光学膜厚をn、低屈折率層の光学膜厚をnとしたとき、誘電体多層膜におけるn/n≧3を満足する単位屈折率層の層数が10以上である構成が好ましい。以下該構成の誘電体多層膜を「誘電体多層膜A」という。 In the dielectric multilayer film, a plurality of unit refractive index layers composed of a high refractive index layer and a low refractive index layer are laminated, and the total number of the unit refractive index layers is 15 or more. Further, when the optical film thickness of the high refractive index layer in the unit refractive index layer is n H d H and the optical film thickness of the low refractive index layer is n L d L , n H d H / n L in the dielectric multilayer film. It is preferable that the number of layers of the unit refractive index layer satisfying d L ≧ 3 is 10 or more. Hereinafter, the dielectric multilayer film having the above structure will be referred to as "dielectric multilayer film A".

誘電体多層膜Aによれば、上記(ii−1)〜(ii−3)の要件、さらには(ii−4)の要件を容易に満たす。なお、誘電体多層膜Aにおいて、n/n≧5を満足する単位屈折率層の層数が15以上の構成がより好ましい。 According to the dielectric multilayer film A, the above requirements (ii-1) to (ii-3) and further the requirements (ii-4) can be easily satisfied. In the dielectric multilayer film A, it is more preferable that the number of layers of the unit refractive index layer satisfying n H d H / n L d L ≧ 5 is 15 or more.

誘電体多層膜Aにおける単位屈折率層の層数は80以下が好ましく、50以下がより好ましい。また、n/n≧3を満足する単位屈折率層の層数は60以下が好ましく、40以下がより好ましい。さらに、n/n≧5を満足する単位屈折率層の層数は50以下が好ましく、40以下がより好ましい。 The number of layers of the unit refractive index layer in the dielectric multilayer film A is preferably 80 or less, more preferably 50 or less. The number of units of the unit refractive index layer satisfying n H d H / n L d L ≧ 3 is preferably 60 or less, more preferably 40 or less. Further, the number of layers of the unit refractive index layer satisfying n H d H / n L d L ≧ 5 is preferably 50 or less, more preferably 40 or less.

誘電体多層膜Aにおけるn/n≧3を満足する単位屈折率層全体におけるn/nの平均値は4〜12が好ましく、6〜10がより好ましい。誘電体多層膜Aにおける個々の単位屈折率層のn/nは、0.1〜20が好ましく、0.1〜13が好ましい。 The average value of n H d H / n L d L in the entire unit refractive index layer satisfying n H d H / n L d L ≧ 3 in the dielectric multilayer film A is preferably 4 to 12, more preferably 6 to 10. preferable. N H d H / n L d L of each unit refractive index layer in the dielectric multilayer film A is preferably 0.1 to 20, preferably from 0.1 to 13.

誘電体多層膜Aにおける高屈折率層の光学膜厚nの平均値は、10〜500nmが好ましく、10〜400nmがより好ましい。誘電体多層膜Aにおける低屈折率層の光学膜厚nの平均値、100〜500nmが好ましく、200〜350nmがより好ましい。誘電体多層膜Aにおける個々の高屈折率層の光学膜厚nは、10〜400nmが好ましく、個々の低屈折率層の光学膜厚nは20〜200nmが好ましい。 The average value of the optical film thickness n H d H of the high refractive index layer in the dielectric multilayer film A is preferably 10 to 500 nm, more preferably 10 to 400 nm. The average value of the optical film thickness n L d L of the low refractive index layer in the dielectric multilayer film A is preferably 100 to 500 nm, more preferably 200 to 350 nm. The optical film thickness n H d H of each high refractive index layer in the dielectric multilayer film A is preferably 10 to 400 nm, and the optical film thickness n L d L of each low refractive index layer is preferably 20 to 200 nm.

また、反射層は、波長720〜1150nmの光に対して、高反射性を示す400nm程度の反射帯幅ΔλNIRを確保するため、最大反射波長λが異なる2種の誘電体多層膜を含む構成でもよい。具体的に、該構成の反射層は、近赤外域のうち、短波長側の反射帯用の第1の反射層と、長波長側の反射帯用の第2の反射層の2種(群)の誘電体多層膜を含む。本フィルタにおいて、反射層における(ii−1)〜(ii−4)の要件は、第1の反射層のみで満たす。ただし、本フィルタの反射層は、第1の反射層と第2の反射層を組み合わせて(ii−1)〜(ii−4)の要件を満たす構成でもよい。 Further, the reflective layer includes two types of dielectric multilayer films having different maximum reflection wavelengths λ 0 in order to secure a reflection bandwidth Δλ NIR of about 400 nm showing high reflectivity for light having a wavelength of 720 to 1150 nm. It may be configured. Specifically, there are two types of reflection layers (group) of the first reflection layer for the reflection band on the short wavelength side and the second reflection layer for the reflection band on the long wavelength side in the near infrared region. ) Includes a dielectric multilayer film. In this filter, the requirements of (ii-1) to (ii-4) in the reflective layer are satisfied only by the first reflective layer. However, the reflective layer of this filter may be configured to satisfy the requirements of (ii-1) to (ii-4) by combining the first reflective layer and the second reflective layer.

図1A〜1Eに構成例を示す本フィルタは、いずれも第1の反射層12aと第2の反射層12bを有する。例えば、第1の反射層12aを、波長720〜1150nmの近赤外域の短波長側の光の反射帯用の反射層として、上記(ii−1)〜(ii−4)の要件を満たす誘電体多層膜Aで構成できる。第2の反射層12bは、波長720〜1150nmの近赤外域の長波長側の光および近紫外光の反射帯用の反射層として設計できる。 The filters shown in the configuration examples in FIGS. 1A to 1E each have a first reflective layer 12a and a second reflective layer 12b. For example, the first reflective layer 12a is a dielectric that satisfies the above requirements (ii-1) to (ii-4) as a reflective layer for a light reflection band on the short wavelength side in the near-infrared region having a wavelength of 720 to 1150 nm. It can be composed of a body multilayer film A. The second reflection layer 12b can be designed as a reflection layer for a reflection band of light on the long wavelength side in the near infrared region having a wavelength of 720 to 1150 nm and near-ultraviolet light.

第2の反射層12bとしては、例えば、屈折率が2以上の高屈折率層と屈折率が1.6以下の低屈折率層とからなる単位屈折率層を複数積層した以下の誘電体多層膜(以下、「誘電体多層膜B」ともいう)が挙げられる。誘電体多層膜Bにおける単位屈折率層の全層数は、紫外線光および近赤外光を効果的に遮蔽する観点から、3以上が好ましく、4以上がより好ましい。また、誘電体多層膜Bにおける単位屈折率層の全層数は、生産性等との観点から、55以下が好ましく、50以下がより好ましい。 The second reflective layer 12b is, for example, the following dielectric multilayer layer in which a plurality of unit refractive index layers composed of a high refractive index layer having a refractive index of 2 or more and a low refractive index layer having a refractive index of 1.6 or less are laminated. Examples thereof include a film (hereinafter, also referred to as “dielectric multilayer film B”). The total number of unit refractive index layers in the dielectric multilayer film B is preferably 3 or more, and more preferably 4 or more, from the viewpoint of effectively shielding ultraviolet light and near-infrared light. The total number of unit refractive index layers in the dielectric multilayer film B is preferably 55 or less, more preferably 50 or less, from the viewpoint of productivity and the like.

誘電体多層膜Bにおける単位屈折率層の全体のn/nの平均値は、0.7〜1.3が好ましく、0.8〜1.2がより好ましい。また、誘電体多層膜Bにおける個々の単位屈折率層のn/n値は、0.1〜5が好ましく、0.1〜3が好ましい。 The average value of n H d H / n L d L of the entire unit refractive index layer in the dielectric multilayer film B is preferably 0.7 to 1.3, more preferably 0.8 to 1.2. Further, n H d H / n L d L values of the individual units refractive index layer in the dielectric multilayer film B is preferably from 0.1 to 5, 0.1 to 3 are preferred.

誘電体多層膜Bにおける高屈折率層の光学膜厚nの平均値は、100〜300nmが好ましく、160〜260nmがより好ましい。また、誘電体多層膜Bにおける低屈折率層の光学膜厚nの平均値は、100〜300nmが好ましく、180〜280nmがより好ましい。 The average value of the optical film thickness n H d H of the high refractive index layer in the dielectric multilayer film B is preferably 100 to 300 nm, more preferably 160 to 260 nm. The average value of the optical film thickness n L d L of the low refractive index layer in the dielectric multilayer film B is preferably 100 to 300 nm, more preferably 180 to 280 nm.

誘電体多層膜Bにおける個々の高屈折率層の光学膜厚nは、10〜350nmが好ましく、20〜300nmがより好ましい。誘電体多層膜Bにおける個々の低屈折率層の光学膜厚nについては、20〜400nmが好ましく、30〜350nmがより好ましい。 Optical film thickness n H d H of each of the high refractive index layer in the dielectric multilayer film B is preferably 10~350Nm, 20 to 300 nm is more preferable. The optical film thickness n L d L of each low refractive index layer in the dielectric multilayer film B is preferably 20 to 400 nm, more preferably 30 to 350 nm.

<透明基板>
本フィルタに透明基板を用いる場合、透明基板は、略400〜700nmの可視光を透過すれば、構成する材料は特に制限されず、近赤外光や近紫外光を吸収する材料でもよい。例えば、ガラスや結晶等の無機材料や、透明樹脂等の有機材料が挙げられる。また、透明基板の形状も特に限定されず、ブロック状、板状、フィルム状でもよく、それの厚さは、例えば、0.03〜5mmが好ましく、薄型化の観点からは、0.03〜0.5mmがより好ましい。また、透明基板は、光学フィルタとしての光学特性、機械特性等の長期にわたる信頼性に係る形状安定性の観点、フィルタ製造時のハンドリング性等から無機材料が好ましい。加工性の観点から、板厚0.05〜0.5mmのガラスが好ましい。
<Transparent substrate>
When a transparent substrate is used for this filter, the transparent substrate is not particularly limited as long as it transmits visible light of about 400 to 700 nm, and may be a material that absorbs near-infrared light or near-ultraviolet light. Examples thereof include inorganic materials such as glass and crystals, and organic materials such as transparent resins. Further, the shape of the transparent substrate is not particularly limited, and may be block-shaped, plate-shaped, or film-shaped, and the thickness thereof is preferably, for example, 0.03 to 5 mm, and from the viewpoint of thinning, 0.03 to. 0.5 mm is more preferable. Further, the transparent substrate is preferably an inorganic material from the viewpoint of shape stability related to long-term reliability such as optical characteristics as an optical filter and mechanical characteristics, and handleability during filter manufacturing. From the viewpoint of workability, glass having a plate thickness of 0.05 to 0.5 mm is preferable.

また、ガラスとしては、ガラス転移点以下の温度で、イオン交換により、ガラス板主面に存在するイオン半径が小さいアルカリ金属イオン(例えば、Liイオン、Naイオン)を、イオン半径のより大きいアルカリイオン(例えば、Liイオンに対してはNaイオンまたはKイオンであり、Naイオンに対してはKイオンである。)に交換して得られる化学強化ガラスを使用してもよい。 Further, as glass, alkali metal ions having a small ionic radius (for example, Li ion and Na ion) existing on the main surface of the glass plate are converted into alkali ions having a larger ionic radius by ion exchange at a temperature below the glass transition point. (For example, a chemically strengthened glass obtained by exchanging with (for example, Na ion or K ion for Li ion and K ion for Na ion) may be used.

透明基板として使用できる透明樹脂材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂等が挙げられる。 Examples of the transparent resin material that can be used as a transparent substrate include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymers, and acrylic resins such as norbornene resin, polyacrylate and polymethylmethacrylate. , Urethane resin, vinyl chloride resin, fluororesin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin and the like.

透明基板に使用できるガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型のガラス(近赤外線吸収ガラス)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩系ガラス」は、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含む。本フィルタは、透明基板が近赤外線吸収ガラスの場合、透明基板を吸収層としてもよい。 Glasses that can be used for transparent substrates include absorbent glass (near-infrared absorbing glass) in which CuO is added to fluoride-based glass, phosphate-based glass, etc., soda lime glass, borosilicate glass, non-alkali glass, etc. Examples include quartz glass. The "phosphate-based glass" also includes silicate glass in which a part of the skeleton of the glass is composed of SiO 2. In this filter, when the transparent substrate is near-infrared absorbing glass, the transparent substrate may be used as an absorbing layer.

また、透明基板に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイア等の複屈折性結晶が挙げられる。透明基板の光学特性は、上記吸収層、反射層等と積層して得られる光学フィルタとして、前述した光学特性を有するとよい。 Examples of the crystal material that can be used for the transparent substrate include birefringent crystals such as quartz, lithium niobate, and sapphire. The optical characteristics of the transparent substrate may have the above-mentioned optical characteristics as an optical filter obtained by laminating the absorption layer, the reflection layer, and the like.

<反射防止層>
反射防止層は、吸収層の表面に形成される場合、空気と、吸収層との界面で屈折率差に応じて生じる4%程度のフレネル反射損失を、略400〜700nm可視域全域における入射角0°〜30°の入射光に対し、略1.5%以下の反射率に低減する機能が得られる構成が好ましい。
<Anti-reflective layer>
When the antireflection layer is formed on the surface of the absorption layer, the Frenel reflection loss of about 4% generated at the interface between the air and the absorption layer according to the difference in refractive index is caused by the incident angle in the entire visible region of about 400 to 700 nm. It is preferable to have a configuration in which a function of reducing the reflectance to about 1.5% or less with respect to incident light of 0 ° to 30 ° can be obtained.

反射防止層は、透明基板の一方の面が空気と接する光学フィルタの構成でも、透明基板と空気との間に備えられるとよく、誘電体材料を用い、薄膜の光干渉を利用できる。特に、略400〜700nmの可視域全域で有効な反射防止効果を得るためには、例えば、屈折率の異なる誘電体膜を3〜9層で総膜厚が200〜400nm程度となるように積層すればよい。誘電体多層膜からなる反射防止層を吸収層の表面に直接形成する場合、吸収層の透明樹脂の劣化を抑制するため、低膜応力となる成膜条件および総膜厚を薄くする設計が好ましい。なお、反射防止層は、誘電体多層膜からなる構成に限らず、モスアイ構造と呼ばれる反射防止構造でもよい。さらに、SiOやMgFを、ナノサイズの微細粒子で粗な構造を形成可能なゾル−ゲル法等の成膜法によりさらに屈折率を低下させ、屈折率nが1.2〜1.3の誘電体膜としてもよい。 The antireflection layer may be provided between the transparent substrate and the air even in the configuration of an optical filter in which one surface of the transparent substrate is in contact with air, and a dielectric material can be used to utilize the optical interference of the thin film. In particular, in order to obtain an effective antireflection effect in the entire visible region of approximately 400 to 700 nm, for example, dielectric films having different refractive indexes are laminated in 3 to 9 layers so that the total film thickness is about 200 to 400 nm. do it. When the antireflection layer made of a dielectric multilayer film is directly formed on the surface of the absorption layer, in order to suppress the deterioration of the transparent resin of the absorption layer, it is preferable to design the film formation conditions that cause low film stress and reduce the total film thickness. .. The antireflection layer is not limited to the structure made of a dielectric multilayer film, and may be an antireflection structure called a moth-eye structure. Further, the refractive index of SiO 2 or MgF 2 is further lowered by a film forming method such as a sol-gel method capable of forming a coarse structure with nano-sized fine particles, and the refractive index n is 1.2 to 1.3. It may be a dielectric film of.

本フィルタは、好ましくは、上記(1)〜(3)の特性を有し、さらに上記(4)〜(6)の特性を有する。その結果、本フィルタは、分光透過率の入射角依存性を低減し、紫外光および近赤外波長光を遮断するとともに可視光の透過率を向上できる。 This filter preferably has the above-mentioned characteristics (1) to (3), and further has the above-mentioned characteristics (4) to (6). As a result, this filter can reduce the incident angle dependence of the spectral transmittance, block ultraviolet light and near-infrared wavelength light, and improve the visible light transmittance.

本フィルタは、デジタルスチルカメラ等の撮像装置に使用できる。また、本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。 This filter can be used in an imaging device such as a digital still camera. Further, this filter can be used, for example, by being arranged between an image pickup lens and a solid-state image sensor, or by being directly attached to a solid-state image sensor, an image sensor, or the like of an image pickup device via an adhesive layer.

以下に図7を参照しながら、本フィルタを撮像レンズと固体撮像素子との間に配置して用いた本発明の撮像装置の一例を説明する。 Hereinafter, an example of the image pickup apparatus of the present invention in which the filter is arranged between the image pickup lens and the solid-state image pickup device and used with reference to FIG. 7 will be described.

図7は、上記光学フィルタ30を用いた撮像装置を例示する断面図である。この撮像装置100は、固体撮像素子21と、その前面に以下の順に、光学フィルタ30と、撮像レンズ23を有し、さらにこれらを固定する筐体24とを有する。固体撮像素子21は図示されないが光入射側の画素毎にRGBカラーフィルタを備える。 FIG. 7 is a cross-sectional view illustrating an image pickup apparatus using the optical filter 30. The image pickup device 100 has a solid-state image pickup element 21, an optical filter 30 and an image pickup lens 23 in the following order on the front surface thereof, and a housing 24 for fixing these. Although not shown, the solid-state image sensor 21 is provided with an RGB color filter for each pixel on the light incident side.

撮像レンズ23は、筐体24の内側にさらに設けられたレンズユニット22により固定されている。光学フィルタ30は固体撮像素子21側に第2の反射層12bが、撮像レンズ23側に第1の反射層12aが位置するように配置されている。固体撮像素子21と、撮像レンズ23とは、光軸Xに沿って配置されている。このようにNIRフィルタを装置に設置する際の方向については、設計に応じて適宜選択される。 The image pickup lens 23 is fixed by a lens unit 22 further provided inside the housing 24. The optical filter 30 is arranged so that the second reflective layer 12b is located on the solid-state image sensor 21 side and the first reflective layer 12a is located on the imaging lens 23 side. The solid-state image sensor 21 and the image pickup lens 23 are arranged along the optical axis X. The direction in which the NIR filter is installed in the device is appropriately selected according to the design.

[実施例1]
図1Cに示す光学フィルタ30を製造する。
屈折率1.52で厚さ200μmのホウケイ酸ガラスD263Teco(ショット社)からなる透明基板13の片面に、NIR吸収剤(DA)としてスクアリリウム系化合物(A1)と、UV吸収剤(DU)としてSDA3382とを含む吸収層11を形成する。なお、本例で用いたスクアリリウム系化合物(A1)は、図2Aの特性を示すスクアリリウム系化合物(A1)を用いる。
[Example 1]
The optical filter 30 shown in FIG. 1C is manufactured.
On one side of a transparent substrate 13 made of borosilicate glass D263Teco (SHOTT AG) having a refractive index of 1.52 and a thickness of 200 μm, a squarylium compound (A1) as an NIR absorber (DA) and SDA3382 as a UV absorber (DU). The absorption layer 11 including the above is formed. As the squarylium-based compound (A1) used in this example, the squarylium-based compound (A1) exhibiting the characteristics shown in FIG. 2A is used.

まず、スクアリリウム系化合物(A1)およびSDA3382と、屈折率1.49のアクリル樹脂の15質量%シク口ヘキサノン溶液とを、スクアリリウム系化合物(A1)およびSDA3382がアクリル樹脂100質量部に対して合計で0.01〜20質量部となる範囲で調整して混合した後、室温にて撹拌・溶解することで塗工液を得る。得られた塗工液を、透明基板13の表面にダイコート法により塗布し、150℃で30分間加熱乾燥させ膜厚10μmの吸収層11を形成する。 First, the squarylium compound (A1) and SDA3382 and a 15 mass% shikuguchi hexanone solution of an acrylic resin having a refractive index of 1.49 are added to the total of the squarylium compound (A1) and SDA3382 with respect to 100 parts by mass of the acrylic resin. A coating solution is obtained by adjusting and mixing in a range of 0.01 to 20 parts by mass, and then stirring and dissolving at room temperature. The obtained coating liquid is applied to the surface of the transparent substrate 13 by a die coating method and dried by heating at 150 ° C. for 30 minutes to form an absorption layer 11 having a film thickness of 10 μm.

ここで、吸収層11の波長λ(DU_Tmin)≒385nmの光における透過率は略14%、波長λ(DA_Tmin)≒700nmの光における透過率は略31%で、波長域410〜650nmの光の透過率(空気界面の反射をゼロと仮定)が90%以上である。すなわち、吸収層11は、(i−1)〜(i−3)の要件を満たしている。 Here, the transmittance of the absorption layer 11 in light having a wavelength λ (DU_T min ) ≈385 nm is approximately 14%, and the transmittance in light having a wavelength λ (DA_T min ) ≈700 nm is approximately 31%, which is in the wavelength range of 410 to 650 nm. The light transmittance (assuming zero reflection at the air interface) is 90% or more. That is, the absorption layer 11 satisfies the requirements of (i-1) to (i-3).

次に、表1に示した第1の反射層12aと、表2に示した第2の反射層12bを、透明基板13および吸収層11の表面に形成する。なお、表1、表2において、光学膜厚(λ)は、nまたはnを示し、λを単位とし、表1ではλ=700nm、表2ではλ=950nmである。これにより、吸収層11が十分に遮断できない波長720〜1150nmの近赤外光を、第1の反射層12aと第2の反射層12bの反射帯により遮光する。なお、第1の反射層12aの反射帯を、(ii−1)〜(ii−3)の要件を満たす反射層とする。 Next, the first reflective layer 12a shown in Table 1 and the second reflective layer 12b shown in Table 2 are formed on the surfaces of the transparent substrate 13 and the absorbing layer 11. In tables 1 and 2, the optical thickness (lambda 0) is, n H d represents H or n L d L, the lambda 0 units, Table 1 lambda 0 = 700 nm, in Table 2 lambda 0 = It is 950 nm. As a result, near-infrared light having a wavelength of 720 to 1150 nm, which the absorption layer 11 cannot sufficiently block, is shielded by the reflection bands of the first reflection layer 12a and the second reflection layer 12b. The reflection band of the first reflection layer 12a is a reflection layer that satisfies the requirements of (ii-1) to (ii-3).

Figure 2021140177
Figure 2021140177

Figure 2021140177
Figure 2021140177

本例の第1の反射層12aは、(設計A)〜(設計D)の順に仕様を決定した。
まず、入射角/偏光依存性によるシフト量を低減するため、設計波長λ=700nmでn=2.37のTiOとn=1.46のSiOとが交互に積層された多層膜構成を前提に、隣り合うTiO/SiO単位屈折率層の光学膜厚の和(n+n)をλ/2に、光学膜厚比(n/n)を6.0に設定した(設計A)。
The specifications of the first reflective layer 12a of this example were determined in the order of (design A) to (design D).
First, in order to reduce the shift amount by the incident angle / polarization dependence, multilayer and SiO 2 of TiO 2 and n L = 1.46 in n H = 2.37 at the design wavelength lambda 0 = 700 nm are stacked alternately assuming film structure, the optical thickness sum of the TiO 2 / SiO 2 units refractive index layer adjacent the (n H d H + n L d L) to lambda 0/2, the optical thickness ratio (n H d H / n L d L ) was set to 6.0 (design A).

次に、入射角0°時の波長710〜820nmの光に対し、透過率50%以下の反射帯が生じるとともに、波長730〜800nmの光において透過率が5%以下となる反射帯、好ましくは、透過率が1%以下となる反射帯幅の確保や遷移波長領域の透過率変化の急峻性を考慮して、32層構成とした(設計B)。なお、透明基板13の屈折率を1.52、吸収層11の屈折率を略1.49とした。 Next, a reflection band having a transmittance of 50% or less is generated for light having a transmittance of 70 to 820 nm when the incident angle is 0 °, and a reflection band having a transmittance of 5% or less for light having a wavelength of 730 to 800 nm, preferably. In consideration of securing the reflection bandwidth at which the transmittance is 1% or less and the steepness of the transmittance change in the transition wavelength region, a 32-layer configuration is used (Design B). The refractive index of the transparent substrate 13 was 1.52, and the refractive index of the absorption layer 11 was approximately 1.49.

次に、可視光のリップルを低減するため、隣り合う16対(32層)のTiOとSiOからなる単位屈折率層の光学膜厚の和(n+n)を、λ/2から略±10%程度ずらした構成とした(設計C)。さらに、空気と該32層の界面および透明基板との界面に、TiOとSiOの2層を、該32層の略中間層部分に交互に8層のTiOとSiOを、それぞれ追加し、合計44層の構成とし、所期の分光反射率を得るように各層の膜厚を最適化した(設計D=表1)。その結果、n/nが3以上の隣り合う16対のn/nが、6.7〜11.8(平均値=9.4)で分布した。また、第1の反射層(44層)の平均屈折率(多層膜全体の光学膜厚/物理膜厚)は2.15であった。 Next, in order to reduce the ripple of visible light, the sum of the optical thicknesses (n H d H + n L d L ) of the unit refractive index layer composed of 16 pairs (32 layers) of adjacent TiO 2 and SiO 2 is calculated. and from lambda 0/2 and construction shifted substantially ± 10% (design C). Furthermore, the interface between the interface and the transparent substrate of the air and the 32-layer, two layers of TiO 2 and SiO 2, of TiO 2 and SiO 2 of 8 layers alternating in a substantially middle layer portion of the 32 layers, each additional The total number of layers was 44, and the thickness of each layer was optimized so as to obtain the desired spectral reflectance (Design D = Table 1). As a result, n H d H / n L d L is the 16 adjacent pairs of 3 or more n H d H / n L d L is distributed in 6.7 to 11.8 (mean = 9.4) .. The average refractive index (optical film thickness / physical film thickness of the entire multilayer film) of the first reflective layer (44 layers) was 2.15.

本例の第2の反射層12bは、(設計A’)〜(設計C’)の順に仕様を決定した。
まず、波長750〜1150nmにおいて反射帯が生じるよう、設計波長λ=950nmに対し、TiOとSiOを交互積層し、に光学膜厚nおよびnが略λ/4となる34層構成とした(設計A’)。
The specifications of the second reflective layer 12b of this example were determined in the order of (design A') to (design C').
First, TiO 2 and SiO 2 are alternately laminated at a design wavelength of λ 0 = 950 nm so that a reflection band is generated at a wavelength of 750 to 1150 nm, and the optical film thicknesses n H d H and n L d L are approximately λ 0 /. It has a 34-layer structure of 4 (design A').

次に、反射帯の拡張と可視光のリップル低減のため、TiOとSiOの34層各層の光学膜厚をλ/4からずらした構成とした(設計B’)。さらに、波長420〜740nmにおける可視光のリップル低減効果および反射防止効果を得るため、λ/4より薄い光学膜厚で、空気と該34層との界面にSiOを、透明基板と該34層との界面にSiOとTiOの2層を、該34層の略中間層部分にSiOを、それぞれ追加し、合計38層とした(設計C’=表2)。 Then, because of the ripple reduction expansion and visible light reflection band, the optical thickness of the TiO 2 and SiO 2 of 34 layers each layer has a structure which is shifted from λ 0/4 (design B '). Furthermore, in order to obtain a ripple reduction effect and the antireflection effect of the visible light at the wavelength 420~740nm, λ 0/4 thin in the optical thickness than the SiO 2 at the interface between air and the 34-layer, a transparent substrate and said 34 Two layers of SiO 2 and TiO 2 were added to the interface with the layers, and SiO 2 was added to the substantially intermediate layer portion of the 34 layers to make a total of 38 layers (design C'= Table 2).

次に、第1の反射層2a、第2の反射層2bを含む反射層の分光透過率の計算結果を示す。本フィルタの第1、第2の反射層は、本フィルタにおけるそれらの配置による、入射光の可干渉長や膜応力を考慮して仕様を決定する。 Next, the calculation result of the spectral transmittance of the reflective layer including the first reflective layer 2a and the second reflective layer 2b is shown. The specifications of the first and second reflective layers of this filter are determined in consideration of the coherent length of incident light and the film stress due to their arrangement in this filter.

図1Cの光学フィルタ30において吸収層11のない、透明基板13を挟むように第1の反射層12aと第2の反射層12bを配して含む反射層の分光透過率曲線(入射角0°、入射角30°)の計算結果を図3に示す。 The spectral transmittance curve (incident angle 0 °) of the reflective layer including the first reflective layer 12a and the second reflective layer 12b arranged so as to sandwich the transparent substrate 13 without the absorbing layer 11 in the optical filter 30 of FIG. 1C. , Incident angle 30 °) is shown in FIG.

該設計の反射層は、入射角0°〜30°における各透過率が、波長350〜399nmおよび波長710〜1200nmの光で50%以下、波長350〜396nmおよび波長717〜1168nmの光で15%以下、波長350〜396nmおよび波長719〜1164nmの光で10%以下、波長350〜395nmおよび波長724〜1158nmの光で5%以下、波長740〜1046nmの光で1%以下となる反射帯を有する。さらに、該反射層は、波長420〜670nmの光に対する平均透過率が98%以上、波長720〜1150nmの光に対する平均透過率が0.5%以下を示す。 The reflective layer of the design has a transmittance of 50% or less for light having a wavelength of 350 to 399 nm and a wavelength of 71 to 1200 nm, and 15% for light having a wavelength of 350 to 396 nm and a wavelength of 717 to 1168 nm at an incident angle of 0 ° to 30 °. Hereinafter, it has a reflection band of 10% or less for light having a wavelength of 350 to 396 nm and 719 to 1164 nm, 5% or less for light having a wavelength of 350 to 395 nm and 724 to 1158 nm, and 1% or less for light having a wavelength of 740 to 1046 nm. .. Further, the reflective layer has an average transmittance of 98% or more for light having a wavelength of 420 to 670 nm and an average transmittance of 0.5% or less for light having a wavelength of 720 to 1150 nm.

また、本設計例の反射層では、波長680〜750nmにおいて、入射角0°の光に対する透過率が50%となる波長はλ(0°_T50%)=710nmとなり、λSh(DA_T50%)=688nm、λLo(DA_T50%)=715nmであるため、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)を満たす。(ただし、λSh(DA_T50%)は、波長650nm〜λ(DA_Tmin)において吸収層の透過率が50%となる波長であり、λLo(DA_T50%)は、波長λ(DA_Tmin)〜1150nmにおいて吸収層の透過率が50%となる波長である。) Further, in the reflective layer of this design example, at a wavelength of 680 to 750 nm, the wavelength at which the transmittance for light at an incident angle of 0 ° is 50% is λ R (0 ° _T50%) = 710 nm, and λSh (DA_T50%) =. Since 688 nm and λLo (DA_T50%) = 715 nm, λSh (DA_T50%) + 20 nm ≦ λ R (0 ° _T50%) <λLo (DA_T50%) is satisfied. (However, λSh (DA_T50%) is the wavelength at which the transmittance of the absorption layer is 50% at a wavelength 650nm~λ (DA_T min), λLo ( DA_T50%) , the wavelength lambda (absorption at DA_T min) ~1150nm This is the wavelength at which the transmittance of the layer is 50%.)

ここで、本設計例の反射層において、近赤外反射帯の短波長側の光で透過率50%となるλ(0°_T50%)=710nmとλ(30°_T50%)≒690nmは第1の反射層の分光透過率により決定される。すなわち、図3に示すように、入射角0°と30°での透過率50%のシフト量は略20nmである。なお、第2の反射層の入射角0°と30°に対し透過率50%となるλ(0°_T50%)〜λ(30°_T50%)は、第1の反射層の反射帯にあるため、反射層の分光透過率曲線には殆ど影響しない。 Here, in the reflection layer of the present design example, λ R (0 ° _T50%) = 710 nm and λ R (30 ° _T50%) ≈690 nm, which have a transmittance of 50% for light on the short wavelength side of the near-infrared reflection band. Is determined by the spectral transmittance of the first reflective layer. That is, as shown in FIG. 3, the shift amount of the transmittance of 50% at the incident angles of 0 ° and 30 ° is approximately 20 nm. Λ R (0 ° _T50%) to λ R (30 ° _T50%), which have a transmittance of 50% with respect to the incident angles of 0 ° and 30 ° of the second reflective layer, are the reflection bands of the first reflective layer. Therefore, it has almost no effect on the spectral transmittance curve of the reflective layer.

このようにして作製された光学フィルタ30の入射角0°と30°における分光透過率曲線を図5Aに示す。実施例1で得られた光学フィルタ30においては、波長410〜665nmの光において80%以上の透過率を示し、透過率が50%以下の650〜720nm波長域で生じる分光透過率の入射角依存性は、最大30%未満に留まる。 The spectral transmittance curves of the optical filter 30 thus produced at incident angles of 0 ° and 30 ° are shown in FIG. 5A. The optical filter 30 obtained in Example 1 exhibits a transmittance of 80% or more in light having a wavelength of 410 to 665 nm, and depends on the incident angle of the spectral transmittance generated in the 650 to 720 nm wavelength region where the transmittance is 50% or less. Gender remains up to less than 30%.

実施例1で得られた光学フィルタ30においては、波長420〜600nmの光における入射角0°および入射角30°の平均透過率がいずれも略97%と90%以上である。そして、波長600nmにおける、入射角0°の光の透過率および入射角30°の光の透過率がいずれも略98%と80%以上であり、波長600nm以上において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、略3nmと5nm以下である。また、波長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは、略9%である。このように、本例は、上記(1)〜(4)を満たす。 In the optical filter 30 obtained in Example 1, the average transmittances of the incident angle of 0 ° and the incident angle of 30 ° in the light having a wavelength of 420 to 600 nm are both about 97% and 90% or more. The transmittance of light having an incident angle of 0 ° and the transmittance of light having an incident angle of 30 ° at a wavelength of 600 nm are both approximately 98% and 80% or more, and that of light having an incident angle of 0 ° at a wavelength of 600 nm or more. The absolute values of the difference between the wavelength at which the transmittance is 50% and the wavelength at which the transmittance of light at an incident angle of 30 ° is 50% are approximately 3 nm and 5 nm or less. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a wavelength of 650 to 720 nm is approximately 9%. As described above, this example satisfies the above (1) to (4).

[実施例2]
実施例2は、実施例1において、NIR吸収剤(DA)としてEpolin社のEpolightTM6084を用い、他の構成は同じとした図1Cに示す光学フィルタ30を製造する。ここで、波長λ(DA_Tmin)≒695nmの光の透過率は略23%で、波長域410〜610nmの光の透過率(空気界面の反射をゼロと仮定)が80%以上、波長域400〜670nmの光の透過率が50%以上、波長650nmの光の透過率は略64%と55%以上である。すなわち、吸収層11は、(i−1)〜(i−3)の要件を満たしている。
[Example 2]
In Example 2, the optical filter 30 shown in FIG. 1C is manufactured by using Epolight TM 6084 manufactured by Epolin as the NIR absorber (DA) in Example 1 and using the same other configurations. Here, the transmittance of light having a wavelength of λ (DA_T min ) ≈695 nm is approximately 23%, the transmittance of light having a wavelength range of 410 to 610 nm (assuming zero reflection at the air interface) is 80% or more, and the wavelength range is 400. The transmittance of light having a wavelength of about 670 nm is 50% or more, and the transmittance of light having a wavelength of 650 nm is approximately 64% and 55% or more. That is, the absorption layer 11 satisfies the requirements of (i-1) to (i-3).

次に、表1に示した第1の反射層12aと、表2に示した第2の反射層12bを、透明基板13および吸収層11の表面に形成する。 Next, the first reflective layer 12a shown in Table 1 and the second reflective layer 12b shown in Table 2 are formed on the surfaces of the transparent substrate 13 and the absorbing layer 11.

なお、本設計例の反射層では、波長680〜750nmにおいて、入射角0°の光に対する透過率が50%となる波長をλ(0°_T50%)とすると、λ(0°_T50%)が略10nm短波長側にシフトして700nmとなるように多層膜の膜厚を調整している。具体的には、誘電体多層膜の各層の光学膜厚に0.986(=700/710)を乗じた光学膜厚に調整した。 In the reflective layer of this design example, assuming that the wavelength at which the transmittance for light at an incident angle of 0 ° is 50% at a wavelength of 680 to 750 nm is λ R (0 ° _T50%), λ R (0 ° _T50%). ) Is shifted to the short wavelength side of about 10 nm to 700 nm, and the film thickness of the multilayer film is adjusted. Specifically, the optical film thickness was adjusted by multiplying the optical film thickness of each layer of the dielectric multilayer film by 0.986 (= 700/710).

ここで、λSh(DA_T50%)=670nm、λLo(DA_T50%)=717nmであるため、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)を満たす。 Here, since λSh (DA_T50%) = 670 nm and λLo (DA_T50%) = 717 nm, λSh (DA_T50%) + 20 nm ≦ λ R (0 ° _T50%) <λLo (DA_T50%) is satisfied.

このようにして作製された光学フィルタ30の入射角0°と30°における分光透過率曲線を図5Bに示す。図5Bより、波長410〜610nmの光で80%以上、波長域410〜670nmの光で50%以上の透過率を示し、透過率が50%以下の、波長670〜720nmの光で生じる分光透過率の入射角依存性は、最大22%未満に留まる。 The spectral transmittance curves of the optical filter 30 thus produced at incident angles of 0 ° and 30 ° are shown in FIG. 5B. From FIG. 5B, the spectral transmittance generated by light having a wavelength of 670 to 720 nm, showing a transmittance of 80% or more for light having a wavelength of 410 to 610 nm and 50% or more for light having a wavelength range of 410 to 670 nm and having a transmittance of 50% or less. The incident angle dependence of the rate remains up to less than 22%.

実施例2で得られた光学フィルタ30においては、波長420〜600nmの光における入射角0°および入射角30°の平均透過率がいずれも略96%と90%以上である。そして、波長600nmの光における、入射角0°の光の透過率および入射角30°の光の透過率がいずれも略86%と80%以上であり、波長600nm以上の光において、入射角0°の透過率が50%となる波長と、入射角30°の透過率が50%となる波長との差の絶対値が、略1nmと5nm以下である。また、波長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは、略6%である。このように、本例は、上記(1)〜(4)を満たす。 In the optical filter 30 obtained in Example 2, the average transmittances of the incident angle of 0 ° and the incident angle of 30 ° in the light having a wavelength of 420 to 600 nm are both about 96% and 90% or more. The transmittance of light having an incident angle of 0 ° and the transmittance of light having an incident angle of 30 ° in light having a wavelength of 600 nm are both approximately 86% and 80% or more, and in light having a wavelength of 600 nm or more, the incident angle is 0. The absolute values of the difference between the wavelength at which the transmittance of ° is 50% and the wavelength at which the transmittance at an incident angle of 30 ° is 50% are approximately 1 nm and 5 nm or less. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a wavelength of 650 to 720 nm is approximately 6%. As described above, this example satisfies the above (1) to (4).

[実施例3]
実施例3は、実施例1において、NIR吸収剤(DA)としてQCR社のNIR728Aを用い、他の構成は同じとした図1Cに示す光学フィルタ30を製造する。ここで、波長λ(DA_Tmin)≒730nmの光の透過率は略22%で、波長域410〜620nmの光の透過率(空気界面の反射をゼロと仮定)が80%以上、波長域400〜670nmの光の透過率が50%以上、波長650nmの光の透過率は略64%で55%以上である。すなわち、吸収層11は、(i−1)〜(i−3)の要件を満たしている。
[Example 3]
In Example 3, NIR728A manufactured by QCR is used as the NIR absorber (DA) in Example 1, and the optical filter 30 shown in FIG. 1C having the same other configurations is manufactured. Here, the transmittance of light having a wavelength of λ (DA_T min ) ≈730 nm is approximately 22%, the transmittance of light having a wavelength range of 410 to 620 nm (assuming zero reflection at the air interface) is 80% or more, and the wavelength range is 400. The transmittance of light having a wavelength of about 670 nm is 50% or more, and the transmittance of light having a wavelength of 650 nm is approximately 64%, which is 55% or more. That is, the absorption layer 11 satisfies the requirements of (i-1) to (i-3).

次に、表1に示した第1の反射層12aと、表2に示した第2の反射層12bを、透明基板13および吸収層11の表面に形成する。なお、実施例2と同様に、λ(0°_T50%)が略10nm短波長側にシフトして700nmとなるように多層膜の膜厚を調整している。 Next, the first reflective layer 12a shown in Table 1 and the second reflective layer 12b shown in Table 2 are formed on the surfaces of the transparent substrate 13 and the absorbing layer 11. Similar to Example 2, the film thickness of the multilayer film is adjusted so that λ R (0 ° _T50%) shifts to the short wavelength side of about 10 nm to 700 nm.

本設計例の反射層は、波長λ(0°_T50%)=700nmとなる。また、λSh(DA_T50%)=670nm、λLo(DA_T50%)=775nmであるため、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)を満たす。 The reflective layer of this design example has a wavelength of λ R (0 ° _T50%) = 700 nm. Further, since λSh (DA_T50%) = 670 nm and λLo (DA_T50%) = 775 nm, λSh (DA_T50%) + 20 nm ≦ λ R (0 ° _T50%) <λLo (DA_T50%) is satisfied.

このようにして作製された光学フィルタ30の入射角0°と30°における分光透過率曲線を図5Cに示す。図5Cより、波長410〜620nmの光の透過率が80%以上、波長域400〜670nmの光の透過率が50%以上を示し、透過率が50%以下の650〜720nmの光で生じる分光透過率の入射角依存性は、最大34%未満に留まる。 The spectral transmittance curves of the optical filter 30 thus produced at incident angles of 0 ° and 30 ° are shown in FIG. 5C. From FIG. 5C, the transmittance of light having a wavelength of 410 to 620 nm is 80% or more, the transmittance of light having a wavelength range of 400 to 670 nm is 50% or more, and the spectroscopy generated by light having a transmittance of 50% or less is 650 to 720 nm. The incident angle dependence of the transmittance remains less than 34% at maximum.

実施例3で得られた光学フィルタ30においては、波長420〜600nmの光における入射角0°および入射角30°の平均透過率がいずれも略94%と90%以上である。そして、波長600nmの光における、入射角0°の透過率および入射角30°の透過率がいずれも略88%と80%以上である。そして、波長600nm以上の光において、入射角0°の透過率が50%となる波長と、入射角30°の透過率が50%となる波長との差の絶対値が、略1nmと5nm以下である。また、波長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは、略9%である。このように、本例は、上記(1)〜(4)を満たす。 In the optical filter 30 obtained in Example 3, the average transmittances of the incident angle of 0 ° and the incident angle of 30 ° in the light having a wavelength of 420 to 600 nm are both about 94% and 90% or more. The transmittance at an incident angle of 0 ° and the transmittance at an incident angle of 30 ° in light having a wavelength of 600 nm are both approximately 88% and 80% or more. Then, in light having a wavelength of 600 nm or more, the absolute value of the difference between the wavelength at which the transmittance at the incident angle of 0 ° is 50% and the wavelength at which the transmittance at the incident angle of 30 ° is 50% is approximately 1 nm and 5 nm or less. Is. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a wavelength of 650 to 720 nm is approximately 9%. As described above, this example satisfies the above (1) to (4).

[比較例]
実施例1〜3の第1の反射層12aに代えて、入射角0°の波長718〜996nmの近赤外光に対して透過率5%以下の反射帯を有する(波長870nmで平均が1/4光学膜厚相当の誘電体多層膜からなる)第1の反射層12cとする。そして、第2の反射層12bに代えて、入射角0°の波長350〜388nmの紫外域および波長862nm〜1150nmの近赤外域に反射帯を有する(波長1014nmで平均が1/4光学膜厚相当の誘電体多層膜からなる)第2の反射層12dとする。
[Comparison example]
Instead of the first reflection layer 12a of Examples 1 to 3, it has a reflection band having a transmittance of 5% or less with respect to near-infrared light having a wavelength of 718 to 996 nm at an incident angle of 0 ° (average of 1 at a wavelength of 870 nm). The first reflective layer 12c (consisting of a dielectric multilayer film equivalent to a / 4 optical film thickness). Then, instead of the second reflective layer 12b, it has a reflection band in an ultraviolet region having a wavelength of 350 to 388 nm at an incident angle of 0 ° and a near infrared region having a wavelength of 862 nm to 1150 nm (an average of 1/4 optical film thickness at a wavelength of 1014 nm). The second reflective layer 12d (consisting of a corresponding dielectric multilayer film).

なお、第1の反射層12cおよび第2の反射層12dの設計手順は、従来の反射型フィルタ−の設計である実施例の第2の反射層12bと同様だが、実施例の第1の反射層12aとは異なる。図1Cの光学フィルタ30において吸収層11のない、透明基板13を挟むように第1の反射層12cと第2の反射層12dを配して含む反射層の分光透過率曲線(入射角0°、入射角30°)の計算結果を図4に示す。比較例では、実施例に用いた反射層では、可視域から近赤外域に遷移する遷移波長領域で入射角0°と入射角30°の波長シフト量、すなわち、近赤外反射帯の短波長側で透過率50%となるλ(0°_T50%)とλ(30°_Ts50%))の差は略20nmだが、比較例に用いる反射層では略28nmと拡大する。 The design procedure of the first reflective layer 12c and the second reflective layer 12d is the same as that of the second reflective layer 12b of the embodiment, which is the design of the conventional reflective filter, but the first reflection of the embodiment. Different from layer 12a. The spectral transmittance curve (incident angle 0 °) of the reflective layer including the first reflective layer 12c and the second reflective layer 12d arranged so as to sandwich the transparent substrate 13 without the absorbing layer 11 in the optical filter 30 of FIG. 1C. , Incident angle 30 °) is shown in FIG. In the comparative example, in the reflective layer used in the examples, the wavelength shift amount of the incident angle of 0 ° and the incident angle of 30 ° in the transition wavelength region transitioning from the visible region to the near-infrared region, that is, the short wavelength of the near-infrared reflection band. The difference between λ R (0 ° _T50%) and λ R (30 ° _Ts50%)), which has a transmittance of 50% on the side, is approximately 20 nm, but the reflective layer used in the comparative example expands to approximately 28 nm.

[比較例1]
反射層を第1の反射層12cおよび第2の反射層12dに変更した以外は実施例1と同じ構成の光学フィルタとする。そして、分光透過率曲線(入射角0°、入射角30°)の計算結果を図6Aに示す。波長650〜720nmの遷移波長領域で入射角0°と30°の光の透過率変化量(波長と透過率で囲まれた分光透過率曲線相違面積に相当)が拡大し、入射角依存性が劣る。
[Comparative Example 1]
An optical filter having the same configuration as that of the first embodiment is used except that the reflective layer is changed to the first reflective layer 12c and the second reflective layer 12d. Then, the calculation result of the spectral transmittance curve (incident angle 0 °, incident angle 30 °) is shown in FIG. 6A. In the transition wavelength region with a wavelength of 650 to 720 nm, the amount of change in the transmittance of light at incident angles of 0 ° and 30 ° (corresponding to the area of difference in the spectral transmittance curve surrounded by the wavelength and transmittance) is expanded, and the incident angle dependence is increased. Inferior.

比較例1で得られた光学フィルタ30においては、波長600nm以上の光において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、略13nmである。また、長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは略17%と実施例に比べ大きな変化量となる。このように、本例は、上記(3)、(4)を満たさない。 In the optical filter 30 obtained in Comparative Example 1, in light having a wavelength of 600 nm or more, the wavelength at which the transmittance of light at an incident angle of 0 ° is 50% and the transmittance of light at an incident angle of 30 ° are 50%. The absolute value of the difference from the wavelength is approximately 13 nm. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a length of 650 to 720 nm is approximately 17%, which is a large change as compared with the examples. It becomes the quantity. As described above, this example does not satisfy the above (3) and (4).

[比較例2]
比較例1に用いた第1の反射層12cおよび第2の反射層12dからなる反射層において、λ(0°_T50%)が略10nm短波長側にシフトして696nmとなるように多層膜の膜厚を調整する。具体的には、誘電体多層膜の各層の光学膜厚に0.986(=696/706)を乗じた光学膜厚に調整した。それ以外は実施例2と同じ構成の光学フィルタとする。そして、分光透過率曲線(入射角0°、入射角30°)の計算結果を図6Bに示す。波長650〜720nmの遷移波長領域で入射角0°と30°の光の透過率変化量(上記比較例1に記載の面積に相当)が拡大し、入射角依存性が劣る。
[Comparative Example 2]
In the reflective layer composed of the first reflective layer 12c and the second reflective layer 12d used in Comparative Example 1, a multilayer film so that λ R (0 ° _T50%) shifts to a short wavelength side of approximately 10 nm to become 696 nm. Adjust the film thickness of. Specifically, the optical film thickness was adjusted by multiplying the optical film thickness of each layer of the dielectric multilayer film by 0.986 (= 696/706). Other than that, an optical filter having the same configuration as that of the second embodiment is used. Then, the calculation result of the spectral transmittance curve (incident angle 0 °, incident angle 30 °) is shown in FIG. 6B. In the transition wavelength region having a wavelength of 650 to 720 nm, the amount of change in the transmittance of light at incident angles of 0 ° and 30 ° (corresponding to the area described in Comparative Example 1 above) increases, and the incident angle dependence is inferior.

比較例2で得られた光学フィルタ30においては、波長600nm以上の光において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、略13nmである。また、波長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは略13%となり、実施例に比べ大きな変化量である。このように、本例も、上記(3)、(4)を満たさない。 In the optical filter 30 obtained in Comparative Example 2, in light having a wavelength of 600 nm or more, the wavelength at which the transmittance of light at an incident angle of 0 ° is 50% and the transmittance of light at an incident angle of 30 ° are 50%. The absolute value of the difference from the wavelength is approximately 13 nm. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a wavelength of 650 to 720 nm is approximately 13%, which is larger than that of the examples. The amount of change. As described above, this example also does not satisfy the above (3) and (4).

[比較例3]
比較例2と同じ反射層を用いた以外は実施例3と同じ構成の光学フィルタとする。そして、分光透過率曲線(入射角0°、入射角30°)の計算結果を図6Cに示す。波長650〜720nmの遷移波長領域で入射角0°と30°の光の透過率変化量(上記比較例1に記載の面積に相当)が拡大し、入射角依存性が劣る。
[Comparative Example 3]
An optical filter having the same configuration as that of the third embodiment is used except that the same reflective layer as that of the second comparative example is used. Then, the calculation result of the spectral transmittance curve (incident angle 0 °, incident angle 30 °) is shown in FIG. 6C. In the transition wavelength region having a wavelength of 650 to 720 nm, the amount of change in the transmittance of light at incident angles of 0 ° and 30 ° (corresponding to the area described in Comparative Example 1 above) increases, and the incident angle dependence is inferior.

比較例3で得られた光学フィルタ30においては、波長600nm以上において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、14nmである。また、波長650〜720nmにおける10nm波長毎の入射角0°の光の透過率と入射角30°の光の透過率差の絶対値の平均値△Tは略16%となり、実施例に比べ大きな変化量である。このように、本例も、上記(3)、(4)を満たさない。 In the optical filter 30 obtained in Comparative Example 3, at a wavelength of 600 nm or more, a wavelength at which the transmittance of light at an incident angle of 0 ° is 50% and a wavelength at which the transmittance of light at an incident angle of 30 ° is 50%. The absolute value of the difference from is 14 nm. Further, the average value ΔT of the absolute value of the difference between the light transmittance at an incident angle of 0 ° and the light transmittance difference at an incident angle of 30 ° for each 10 nm wavelength at a wavelength of 650 to 720 nm is approximately 16%, which is larger than that of the examples. The amount of change. As described above, this example also does not satisfy the above (3) and (4).

本発明の光学フィルタは、固体撮像素子(CCD、CMOS等)を用いたデジタルスチルカメラ等の撮像装置に用いられる光学フィルタとして有用である。 The optical filter of the present invention is useful as an optical filter used in an image pickup device such as a digital still camera using a solid-state image sensor (CCD, CMOS, etc.).

10,20,30,40,50…光学フィルタ、11…吸収層、12a…第1の反射層、12b…第2の反射層、13…透明基板、14…反射防止層、21…固体撮像素子、22…レンズユニット、23…撮像レンズ、24…筐体、100…撮像装置。 10, 20, 30, 40, 50 ... Optical filter, 11 ... Absorption layer, 12a ... First reflective layer, 12b ... Second reflective layer, 13 ... Transparent substrate, 14 ... Antireflection layer, 21 ... Solid image sensor , 22 ... Lens unit, 23 ... Imaging lens, 24 ... Housing, 100 ... Image sensor.

Claims (16)

近赤外吸収剤を含み下記(i−1)〜(i−4)の要件を満たす吸収層と、下記(ii−1)〜(ii−3)の要件を満たす誘電体多層膜からなる反射層と、を有する光学フィルタであって、
前記近赤外吸収剤が下記式(A1)で示されるスクアリリウム系化合物を含む、光学フィルタ。
(i−1)波長420〜1150nmの分光透過率曲線において、波長660〜750nmに吸収極大波長λ(DA_Tmin)を有する。
(i−2)前記波長λ(DA_Tmin)の光の透過率が10〜40%の範囲内である。
(i−3)波長600nmの光の透過率が80%以上であり、波長650nmの光の透過率が55%以上である。
(ii−1)波長720〜1150nmにおいて、入射角0°の光に対する透過率が5%以下となる反射帯を有する。
(ii−2)波長680〜750nmにおいて、入射角0°の光に対する透過率が50%となる波長をλ(0°_T50%)とすると、λSh(DA_T50%)+20nm≦λ(0°_T50%)<λLo(DA_T50%)である。(ただし、λSh(DA_T50%)は、波長650nm〜λ(DA_Tmin)において吸収層の透過率が50%となる波長であり、λLo(DA_T50%)は、波長λ(DA_Tmin)〜1150nmにおいて吸収層の透過率が50%となる波長である。)
(ii−3)波長680〜750nmにおいて、入射角30°の光の透過率が50%となる波長をλ(30°_T50%)とすると、前記λ(0°_T50%)とλ(30°_T50%)との差δλSh(T50%)は、0nm<δλSh(T50%)≦25nmである。
(i−4)吸収極大波長λ(DA_Tmin)の光の透過率が10%のときの分光透過率曲線において、
λLo(DA_T50%)−λSh(DA_T50%)≦50nmである。
Figure 2021140177
〔式(A1)中の記号は以下のとおりである。
Xは、独立して1つ以上の水素原子が炭素数1〜12のアルキル基またはアルコキシ基で置換されていてもよい下記式(1)または式(2)で示される2価の有機基である。
−(CHn1− …(1)
式(1)中n1は、2または3である。
−(CHn2−O−(CHn3− …(2)
式(2)中、n2とn3はそれぞれ独立して0〜2の整数であり、n2+n3は1または2である。
は、独立して飽和環構造を含んでもよく、分岐を有してもよい炭素数1〜12の飽和もしくは不飽和炭化水素基、炭素数3〜12の飽和環状炭化水素基、炭素数6〜12のアリール基または炭素数7〜13のアルアリール基を示す。
およびRは、独立して水素原子、ハロゲン原子、または、炭素数1〜10のアルキル基もしくはアルコキシ基を示す。
は、独立して1つ以上の水素原子がハロゲン原子、水酸基、カルボキシ基、スルホ基、またはシアノ基で置換されていてもよく、炭素原子間に不飽和結合、酸素原子、飽和もしくは不飽和の環構造を含んでよい、少なくとも1以上の分岐を有する炭素数5〜25の炭化水素基である。〕
A reflection composed of an absorption layer containing a near-infrared absorber and satisfying the following requirements (i-1) to (i-4) and a dielectric multilayer film containing the following requirements (ii-1) to (ii-3). An optical filter having a layer and
An optical filter in which the near-infrared absorber contains a squarylium-based compound represented by the following formula (A1).
(I-1) In the spectral transmittance curve having a wavelength of 420 to 1150 nm, it has an absorption maximum wavelength λ (DA_T min ) at a wavelength of 660 to 750 nm.
(I-2) The light transmittance of the wavelength λ (DA_T min ) is in the range of 10 to 40%.
(I-3) The transmittance of light having a wavelength of 600 nm is 80% or more, and the transmittance of light having a wavelength of 650 nm is 55% or more.
(Ii-1) It has a reflection band having a transmittance of 5% or less for light having an incident angle of 0 ° at a wavelength of 720 to 1150 nm.
(Ii-2) If the wavelength at which the transmittance for light at an incident angle of 0 ° is 50% at a wavelength of 680 to 750 nm is λ R (0 ° _T50%), then λR (DA_T50%) + 20 nm ≦ λ R (0 °). _T50%) <λLo (DA_T50%). (However, λSh (DA_T50%) is the wavelength at which the transmittance of the absorption layer is 50% at a wavelength 650nm~λ (DA_T min), λLo ( DA_T50%) , the wavelength lambda (absorption at DA_T min) ~1150nm This is the wavelength at which the transmittance of the layer is 50%.)
(Ii-3) Assuming that the wavelength at which the incident angle of 30 ° has a light transmittance of 50% at a wavelength of 680 to 750 nm is λ R (30 ° _T50%), the above-mentioned λ R (0 ° _T50%) and λ R The difference δλ R Sh (T50%) from (30 ° _T50%) is 0 nm <δλ R Sh (T50%) ≦ 25 nm.
(I-4) In the spectral transmittance curve when the light transmittance of the absorption maximum wavelength λ (DA_T min) is 10%,
λLo (DA_T50%) −λSh (DA_T50%) ≦ 50 nm.
Figure 2021140177
[The symbols in the formula (A1) are as follows.
X is a divalent organic group represented by the following formula (1) or formula (2) in which one or more hydrogen atoms may be independently substituted with an alkyl group or an alkoxy group having 1 to 12 carbon atoms. be.
− (CH 2 ) n1 −… (1)
In formula (1), n1 is 2 or 3.
− (CH 2 ) n2 −O− (CH 2 ) n3 −… (2)
In the formula (2), n2 and n3 are independently integers of 0 to 2, and n2 + n3 is 1 or 2.
R 1 may independently contain a saturated ring structure and may have a branched saturated or unsaturated hydrocarbon group having 1 to 12 carbon atoms, a saturated cyclic hydrocarbon group having 3 to 12 carbon atoms, and a carbon number of carbon atoms. It shows an aryl group of 6 to 12 or an alaryl group of 7 to 13 carbon atoms.
R 2 and R 3 independently represent a hydrogen atom, a halogen atom, or an alkyl group or an alkoxy group having 1 to 10 carbon atoms.
In R 4 , one or more hydrogen atoms may be independently substituted with a halogen atom, a hydroxyl group, a carboxy group, a sulfo group, or a cyano group, and unsaturated bonds, oxygen atoms, saturated or unsaturated bonds between carbon atoms are used. A hydrocarbon group having at least one or more branches and having 5 to 25 carbon atoms, which may contain a saturated ring structure. ]
前記反射層は、下記(ii−4)の要件を満たす請求項1に記載の光学フィルタ。
(ii−4)波長680〜750nmにおいて、入射角0°の光の透過率が20%となる波長をλ(0°_T20%)とし、入射角30°の光の透過率が20%となる波長をλ(30°_T20%)とすると、前記λ(0°_T20%)と前記λ(30°_T20%)との差δλSh(T20%)は、0nm<δλSh(T20%)≦22nmである。
The optical filter according to claim 1, wherein the reflective layer satisfies the following requirement (ii-4).
(Ii-4) At a wavelength of 680 to 750 nm, the wavelength at which the transmittance of light at an incident angle of 0 ° is 20% is λ R (0 ° _T20%), and the transmittance of light at an incident angle of 30 ° is 20%. Assuming that the wavelength is λ R (30 ° _T20%), the difference δλ R Sh (T20%) between the λ R (0 ° _T20%) and the λ R (30 ° _T20%) is 0 nm <δλ R Sh. (T20%) ≦ 22 nm.
波長420〜600nmにおける入射角0°の光および入射角30°の光の平均透過率が90%以上である、請求項1または請求項2に記載の光学フィルタ。 The optical filter according to claim 1 or 2, wherein the light having an incident angle of 0 ° and the light having an incident angle of 30 ° at a wavelength of 420 to 600 nm have an average transmittance of 90% or more. 波長600nmにおける、入射角0°の光の透過率および入射角30°の光の透過率がいずれも80%以上である、請求項1〜3いずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 3, wherein the transmittance of light having an incident angle of 0 ° and the transmittance of light having an incident angle of 30 ° at a wavelength of 600 nm are both 80% or more. 波長600nm以上において、入射角0°の光の透過率が50%となる波長と、入射角30°の光の透過率が50%となる波長との差の絶対値が、5nm以下である、請求項1〜4いずれか1項に記載の光学フィルタ。 At a wavelength of 600 nm or more, the absolute value of the difference between the wavelength at which the transmittance of light at an incident angle of 0 ° is 50% and the wavelength at which the transmittance of light at an incident angle of 30 ° is 50% is 5 nm or less. The optical filter according to any one of claims 1 to 4. 波長650〜720nmにおける10nm毎の入射角0°の光の透過率と入射角30°の光の透過率の差の絶対値の平均値ΔTが10%以下である、請求項1〜5いずれか1項に記載の光学フィルタ。 Any of claims 1 to 5, wherein the average value ΔT of the absolute value of the difference between the transmittance of light at an incident angle of 0 ° and the transmittance of light at an incident angle of 30 ° at wavelengths of 650 to 720 nm at every 10 nm is 10% or less. The optical filter according to item 1. 波長350〜390nmにおける、入射角0°の光の平均透過率が5%以下である、請求項1〜6いずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 6, wherein the average transmittance of light having an incident angle of 0 ° at a wavelength of 350 to 390 nm is 5% or less. 入射角0°〜30°の分光透過率曲線において、波長720〜1150nmの光の平均透過率が5%以下である、請求項1〜7いずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 7, wherein the average transmittance of light having a wavelength of 720 to 1150 nm is 5% or less in a spectral transmittance curve having an incident angle of 0 ° to 30 °. 前記誘電体多層膜は、屈折率が2以上の高屈折率層と屈折率が1.6以下の低屈折率層とからなる単位屈折率層が複数積層された構成であり、前記単位屈折率層の全層数が15以上、かつ前記単位屈折率層における前記高屈折率層の光学膜厚をn、前記低屈折率層の光学膜厚をnとしたとき、前記誘電体多層膜におけるn/n≧3を満足する単位屈折率層の層数が10以上である請求項1〜8いずれか1項に記載の光学フィルタ。 The dielectric multilayer film has a configuration in which a plurality of unit refractive index layers composed of a high refractive index layer having a refractive index of 2 or more and a low refractive index layer having a refractive index of 1.6 or less are laminated. When the total number of layers is 15 or more, the optical film thickness of the high refraction layer in the unit refraction layer is n H d H , and the optical film thickness of the low refraction layer is n L d L , the above. The optical filter according to any one of claims 1 to 8, wherein the number of layers of the unit refractive index layer satisfying n H d H / n L d L ≧ 3 in the dielectric multilayer film is 10 or more. 前記吸収層はさらに、ジクロロメタンに溶解して測定される波長350〜600nmの分光透過率曲線において波長370〜405nmに吸収極大波長を有する近紫外吸収剤を含有する請求項1〜9のいずれか1項に記載の光学フィルタ。 Any 1 of claims 1 to 9, wherein the absorption layer further contains a near-ultraviolet absorber having an absorption maximum wavelength at a wavelength of 370 to 405 nm in a spectral transmittance curve having a wavelength of 350 to 600 nm measured by dissolving in dichloromethane. The optical filter described in the section. 前記吸収層は、樹脂基板である請求項1〜10のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 10, wherein the absorption layer is a resin substrate. さらに、透明基板を有する請求項1〜10のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 10, further comprising a transparent substrate. 前記透明基板は、透明樹脂材料からなる請求項12に記載の光学フィルタ。 The optical filter according to claim 12, wherein the transparent substrate is made of a transparent resin material. 前記透明基板は、ガラス材料からなる請求項12に記載の光学フィルタ。 The optical filter according to claim 12, wherein the transparent substrate is made of a glass material. 前記ガラス材料は、フツリン酸塩系ガラスまたはリン酸塩系ガラスにCuOを添加した吸収型ガラスである請求項14に記載の光学フィルタ。 The optical filter according to claim 14, wherein the glass material is a phosphate-based glass or an absorbent glass obtained by adding CuO to the phosphate-based glass. 請求項1〜15のいずれか1項に記載の光学フィルタを備えた撮像装置。 An imaging device including the optical filter according to any one of claims 1 to 15.
JP2021082503A 2017-06-29 2021-05-14 Optical filter and imaging apparatus Pending JP2021140177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021082503A JP2021140177A (en) 2017-06-29 2021-05-14 Optical filter and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127411A JP2019012121A (en) 2017-06-29 2017-06-29 Optical filter and imaging device
JP2021082503A JP2021140177A (en) 2017-06-29 2021-05-14 Optical filter and imaging apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017127411A Division JP2019012121A (en) 2017-06-29 2017-06-29 Optical filter and imaging device

Publications (1)

Publication Number Publication Date
JP2021140177A true JP2021140177A (en) 2021-09-16

Family

ID=65226363

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017127411A Pending JP2019012121A (en) 2017-06-29 2017-06-29 Optical filter and imaging device
JP2021082503A Pending JP2021140177A (en) 2017-06-29 2021-05-14 Optical filter and imaging apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017127411A Pending JP2019012121A (en) 2017-06-29 2017-06-29 Optical filter and imaging device

Country Status (1)

Country Link
JP (2) JP2019012121A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6232161B1 (en) 2017-07-27 2017-11-15 日本板硝子株式会社 Optical filter
JP6267823B1 (en) 2017-07-27 2018-01-24 日本板硝子株式会社 Optical filter, camera module, and information terminal
JP6778222B2 (en) * 2018-01-24 2020-10-28 日本板硝子株式会社 Optical filter and camera module
KR20210055704A (en) * 2018-09-12 2021-05-17 제이에스알 가부시끼가이샤 Optical filter and its use
KR20210023565A (en) * 2019-08-23 2021-03-04 현대자동차주식회사 Optic filter integrated with lidar window
CN114355494B (en) * 2020-08-25 2024-03-01 广州市佳禾光电科技有限公司 Dual-pass filter and preparation method thereof
JPWO2022065170A1 (en) * 2020-09-23 2022-03-31
CN114545592A (en) * 2020-11-25 2022-05-27 大立光电股份有限公司 Optical lens, image capturing device and electronic device
KR20240009425A (en) * 2021-05-17 2024-01-22 니혼 이타가라스 가부시키가이샤 Light absorbers, articles having light absorbers, and light absorbing compositions
CN114120832B (en) * 2021-11-23 2023-03-21 武汉华星光电技术有限公司 Display panel
WO2024089512A1 (en) * 2022-10-25 2024-05-02 3M Innovative Properties Company Optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015303A1 (en) * 2011-07-28 2013-01-31 旭硝子株式会社 Optical member
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter
WO2016114363A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and imaging device
WO2017094672A1 (en) * 2015-11-30 2017-06-08 Jsr株式会社 Optical filter, ambient light sensor and sensor module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608705B (en) * 2011-06-06 2016-10-12 旭硝子株式会社 Optical filter, solid-state imager, imaging device lens and camera head
WO2014103921A1 (en) * 2012-12-27 2014-07-03 コニカミノルタ株式会社 Ir cut filter and image capture device including same
JP6202229B2 (en) * 2015-04-23 2017-09-27 旭硝子株式会社 Optical filter and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015303A1 (en) * 2011-07-28 2013-01-31 旭硝子株式会社 Optical member
WO2015099060A1 (en) * 2013-12-26 2015-07-02 旭硝子株式会社 Optical filter
WO2016114363A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and imaging device
WO2017094672A1 (en) * 2015-11-30 2017-06-08 Jsr株式会社 Optical filter, ambient light sensor and sensor module

Also Published As

Publication number Publication date
JP2019012121A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP2021140177A (en) Optical filter and imaging apparatus
US10228500B2 (en) Optical filter and imaging device
US10746908B2 (en) Optical filter and imaging device
KR101913482B1 (en) Near-infrared cut filter and imaging device
JP7070555B2 (en) Optical filter and image pickup device
JP7215476B2 (en) optical filter
JP6119747B2 (en) Near-infrared cut filter
KR100275917B1 (en) Light absorber and optical device using the same
TW201415091A (en) Infrared light cut filter and photographing device
WO2020004641A1 (en) Optical filter and information acquisition device
WO2023008291A1 (en) Optical filter
JP3917261B2 (en) Optical absorber and optical apparatus using the same
WO2022024826A1 (en) Optical filter
JP4981456B2 (en) ND filter
JP7456525B2 (en) Optical filters and imaging devices
JP7342958B2 (en) Optical filters and imaging devices
WO2022065170A1 (en) Optical filter
JP2008180844A (en) Absorption type multilayer film one side nd filter
JP2022001928A (en) Optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220614