JP7215476B2 - optical filter - Google Patents

optical filter Download PDF

Info

Publication number
JP7215476B2
JP7215476B2 JP2020510830A JP2020510830A JP7215476B2 JP 7215476 B2 JP7215476 B2 JP 7215476B2 JP 2020510830 A JP2020510830 A JP 2020510830A JP 2020510830 A JP2020510830 A JP 2020510830A JP 7215476 B2 JP7215476 B2 JP 7215476B2
Authority
JP
Japan
Prior art keywords
thin film
wavelength
optical filter
light
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510830A
Other languages
Japanese (ja)
Other versions
JPWO2019189039A1 (en
Inventor
満幸 舘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2019189039A1 publication Critical patent/JPWO2019189039A1/en
Application granted granted Critical
Publication of JP7215476B2 publication Critical patent/JP7215476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Centrifugal Separators (AREA)

Description

本発明は、光学フィルタに関する。詳しくは、近赤外領域の波長の光の透過を制限する光学フィルタに関する。 The present invention relates to optical filters. More particularly, it relates to an optical filter that restricts the transmission of light with wavelengths in the near-infrared region.

近年、スマートフォン、ゲーム機本体やゲーム機のコントローラ等の機器に、環境光センサが用いられている(例えば、特許文献1参照。)。環境光センサは、機器内部に設けられ、上記機器の筐体の窓部を通して取り入れられた、機器周囲の環境光を検出し、その検出結果によりディスプレイの輝度を制御する。 In recent years, ambient light sensors have been used in devices such as smartphones, game machine main bodies, and game machine controllers (see, for example, Patent Document 1). The ambient light sensor is provided inside the device, detects the ambient light around the device that is taken in through the window of the housing of the device, and controls the luminance of the display based on the detection result.

環境光センサは、検出した環境光における可視光の強度を測定する。そのため、環境光センサには、近赤外領域の光など、余計な波長成分をカットする近赤外線カットフィルタ等の光学フィルタが用いられている。 Ambient light sensors measure the intensity of visible light in the detected ambient light. Therefore, an ambient light sensor uses an optical filter such as a near-infrared cut filter that cuts unnecessary wavelength components such as light in the near-infrared region.

近赤外線カットフィルタは、固体撮像装置で用いられることが多く、例えば、基板上に、高屈折率膜と低屈折率膜とを所定の膜厚及び層数で積層した光学多層膜を形成して構成される。近赤外線カットフィルタに入射した光は、基板上の光学多層膜によって近赤外領域の波長の光がカットされ、可視光のみが透過される(例えば、特許文献2参照。)。 Near-infrared cut filters are often used in solid-state imaging devices. Configured. Light having a wavelength in the near-infrared region is cut from the light incident on the near-infrared cut filter by the optical multilayer film on the substrate, and only visible light is transmitted (see, for example, Patent Document 2).

スマートフォンやゲーム機の薄型化の進展に伴い、環境光センサが設けられる機器筐体の厚さが非常に薄くなっている。そのため、筐体の窓部(開口部)から環境光センサまでの距離が短くなることで、環境光センサに対して、より広角度(高入射角)から光が入射されるようになった。 As smartphones and game consoles become thinner, the thickness of the device housing in which the ambient light sensor is installed is becoming extremely thin. Therefore, by shortening the distance from the window (opening) of the housing to the ambient light sensor, light is incident on the ambient light sensor from a wider angle (higher incident angle).

前述の光学多層膜は、入射角依存性がある。具体的には、光の入射角度が大きくなる(光学多層膜表面の法線方向に対する、入射する光の角度が大きくなる)と、光の透過特性が短波長側にシフトすることが知られている。また、光学多層膜を透過した光では、高入射角の光の可視光領域の透過率が部分的に下がるという現象も観測されていた。通常、固体撮像装置では、光の入射角度は0°から35°程度までを配慮すればよい。しかしながら、前述のとおり環境光センサでは、高入射角の光に対して、所望の光学特性を備える必要があり、従来固体撮像装置で用いられる近赤外線カットフィルタと比較して、より高入射角においても所望の光学特性が得られる光学フィルタが求められており、種々の手法で光学特性の向上が図られている(例えば、特許文献3、4参照。)。 The aforementioned optical multilayer film has an incident angle dependency. Specifically, it is known that as the incident angle of light increases (the angle of incident light with respect to the direction normal to the surface of the optical multilayer film increases), the light transmission characteristics shift to the shorter wavelength side. there is In addition, it has been observed that the light transmitted through the optical multilayer film has a partial decrease in the transmittance in the visible light region of light at a high incident angle. Generally, in a solid-state imaging device, the incident angle of light should be considered from 0° to 35°. However, as mentioned above, ambient light sensors need to have the desired optical characteristics for light at high incident angles. There is also a demand for an optical filter capable of obtaining desired optical characteristics, and various techniques have been used to improve the optical characteristics (see, for example, Patent Documents 3 and 4).

日本国特開2017-86922号公報Japanese Patent Application Laid-Open No. 2017-86922 日本国特開2006-60014号公報Japanese Patent Application Laid-Open No. 2006-60014 日本国特許第6119747号Japanese Patent No. 6119747 日本国特許第6206410号Japanese Patent No. 6206410

本発明は、広角度で入射した光に対しても、可視光透過率が高く、入射角依存性の低い光学フィルタの提供を目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical filter that has high visible light transmittance and low incidence angle dependency even for light incident at a wide angle.

本発明に係る光学フィルタは、透明基板と、それぞれ近赤外波長領域内の所定の波長範囲の光の透過を制限する、3つ以上の、薄膜積層構造体を備えた光学フィルタであって、各々の前記薄膜積層構造体は前記透明基板のいずれか一方の表面上に積層され、前記3つ以上の薄膜積層構造体のうち少なくとも2つの薄膜積層構造体は、透過を制限する波長範囲がそれぞれ異なっており、前記3つ以上の薄膜積層構造体によって透過が制限される波長範囲が連続しており、前記透明基板の少なくとも一方の同一の表面側に配置される前記薄膜積層構造体が透過を制限する波長領域が不連続である。前記光学フィルタは、光の入射角が40°及び50°のいずれでも、850nm~990nmの透過率が0.1%以下である。
An optical filter according to the present invention is an optical filter comprising a transparent substrate and three or more thin film laminate structures each of which limits transmission of light in a predetermined wavelength range within the near-infrared wavelength region, Each of the thin film stack structures is stacked on one surface of the transparent substrate, and at least two thin film stack structures among the three or more thin film stack structures each have a wavelength range that limits transmission. different wavelength ranges whose transmission is restricted by the three or more thin film lamination structures are continuous, and the thin film lamination structures arranged on the same surface side of at least one of the transparent substrates do not transmit. The restricted wavelength range is discontinuous. The optical filter has a transmittance of 0.1% or less in the range of 850 nm to 990 nm regardless of whether the incident angle of light is 40° or 50°.

本発明の光学フィルタによれば、広角度で入射した光に対しても、可視光透過率が高く、入射角依存性を低くすることができる。そのため、環境用センサだけでなく、固体撮像装置用の光学フィルタとしても好適に用いることができる。 According to the optical filter of the present invention, visible light transmittance is high even for light incident at a wide angle, and the incident angle dependency can be reduced. Therefore, it can be suitably used not only as an environmental sensor but also as an optical filter for a solid-state imaging device.

図1は、第1の実施形態に係る光学フィルタを表す断面図である。FIG. 1 is a cross-sectional view showing an optical filter according to the first embodiment. 図2は、実施例1に係る光学フィルタの光学特性を示す図である。FIG. 2 is a diagram showing optical characteristics of the optical filter according to Example 1. FIG. 図3は、実施例1に係る光学フィルタの光学特性(波長850~1050nm)を示す図である。FIG. 3 is a diagram showing optical characteristics (wavelength 850 to 1050 nm) of the optical filter according to Example 1. FIG. 図4は、実施例1に係る光学フィルタの一方の面の薄膜積層構造体による光学特性を示す図である。FIG. 4 is a diagram showing optical characteristics of the thin film laminated structure on one surface of the optical filter according to Example 1. FIG. 図5は、実施例1に係る光学フィルタの他方の面の薄膜積層構造体による光学特性を示す図である。FIG. 5 is a diagram showing optical characteristics of the thin film laminated structure on the other side of the optical filter according to Example 1. FIG. 図6は、実施例2に係る光学フィルタの光学特性を示す図である。FIG. 6 is a diagram showing optical characteristics of an optical filter according to Example 2. FIG. 図7は、実施例2に係る光学フィルタの光学特性(波長850~1050nm)を示す図である。FIG. 7 is a diagram showing the optical characteristics (wavelength 850 to 1050 nm) of the optical filter according to Example 2. FIG. 図8は、実施例2に係る光学フィルタの一方の面の薄膜積層構造体による光学特性を示す図である。FIG. 8 is a diagram showing optical characteristics of the thin film laminated structure on one surface of the optical filter according to Example 2. FIG. 図9は、実施例2に係る光学フィルタの他方の面の薄膜積層構造体による光学特性を示す図である。FIG. 9 is a diagram showing the optical characteristics of the thin film laminated structure on the other surface of the optical filter according to Example 2. FIG. 図10は、実施例3に係る光学フィルタの光学特性を示す図である。FIG. 10 is a diagram showing optical characteristics of an optical filter according to Example 3. FIG. 図11は、実施例3に係る光学フィルタの光学特性(波長850~1050nm)を示す図である。FIG. 11 is a diagram showing the optical characteristics (wavelength 850 to 1050 nm) of the optical filter according to Example 3. FIG. 図12は、実施例3に係る光学フィルタの一方の面の薄膜積層構造体による光学特性を示す図である。FIG. 12 is a diagram showing optical characteristics of the thin film laminated structure on one surface of the optical filter according to Example 3. FIG. 図13は、実施例3に係る光学フィルタの他方の面の薄膜積層構造体による光学特性を示す図である。FIG. 13 is a diagram showing optical characteristics of the thin film laminated structure on the other surface of the optical filter according to Example 3. FIG. 図14は、比較例1に係る光学フィルタの光学特性を示す図である。14 is a diagram showing optical characteristics of an optical filter according to Comparative Example 1. FIG. 図15は、比較例1に係る光学フィルタの光学特性(波長850~1050nm)を示す図である。15 is a diagram showing the optical characteristics (wavelength 850 to 1050 nm) of the optical filter according to Comparative Example 1. FIG. 図16は、比較例1に係る光学フィルタの一方の面の薄膜積層構造体による光学特性を示す図である。FIG. 16 is a diagram showing optical characteristics of the thin film laminated structure on one surface of the optical filter according to Comparative Example 1. FIG. 図17は、比較例1に係る光学フィルタの他方の面の薄膜積層構造体による光学特性を示す図である。FIG. 17 is a diagram showing optical characteristics of the thin film laminated structure on the other surface of the optical filter according to Comparative Example 1. FIG. 図18は、比較例2に係る光学フィルタの光学特性を示す図である。18 is a diagram showing optical characteristics of an optical filter according to Comparative Example 2. FIG. 図19は、比較例2に係る光学フィルタの光学特性(波長850~1050nm)を示す図である。FIG. 19 is a diagram showing optical characteristics (wavelength 850 to 1050 nm) of an optical filter according to Comparative Example 2. FIG. 図20は、比較例2に係る光学フィルタの一方の面の薄膜積層構造体による光学特性を示す図である。FIG. 20 is a diagram showing optical characteristics of the thin film laminated structure on one surface of the optical filter according to Comparative Example 2. FIG.

本発明の光学フィルタは、透明基板と、それぞれ近赤外波長領域内の所定の波長範囲の光の透過を制限する、3つ以上の、薄膜積層構造体を備え、各々の前記薄膜積層構造体は透明基板のいずれか一方の表面上に積層される。そして、3つ以上の薄膜積層構造体のうちの少なくとも2つの薄膜積層構造体は透過を制限する波長範囲がそれぞれ異なっており、かつ、3つ以上の薄膜積層構造体によって透過が制限される波長範囲が連続している。そして、透明基板の少なくとも一方の同一の表面側に配置される薄膜積層構造体による透過制限波長範囲が不連続である。 An optical filter of the present invention comprises a transparent substrate and three or more thin film lamination structures each of which limits transmission of light in a predetermined wavelength range within the near-infrared wavelength region, each of the thin film lamination structures is laminated on either surface of the transparent substrate. At least two of the three or more thin film laminated structures have different wavelength ranges for limiting transmission, and the wavelengths at which transmission is limited by the three or more thin film laminated structures. Contiguous range. In addition, the transmission limited wavelength range by the thin film laminated structure arranged on the same surface side of at least one of the transparent substrates is discontinuous.

従来一般的な、透過を制限する光の波長範囲(以下「透過制限波長範囲」ともいう。)の広い薄膜積層構造体のみを使用した光学フィルタでは光の入射角が大きくなると、可視波長領域の所定の波長範囲において透過率が部分的に低下する現象(以下「反射リップル」という。)が起こり易くなる。他方、反射リップルを抑える一般的な手法は、透過制限波長範囲の狭い薄膜積層構造体を使用することであるが、これを適用すると近赤外波長領域の所定の波長範囲において透過率が部分的に上昇する現象(以下「透過リップル」という。)が発生するおそれがある。そのため、従来技術を用いた光学フィルタにおいては、可視波長帯域における反射リップルの抑制と近赤外波長領域の透過リップルの抑制とを両立させることは非常に難しい。 In conventional optical filters using only thin-film lamination structures with a wide wavelength range of light that limits transmission (hereinafter also referred to as "transmission limited wavelength range"), when the incident angle of light increases, the visible wavelength region becomes A phenomenon in which the transmittance is partially reduced in a predetermined wavelength range (hereinafter referred to as “reflection ripple”) tends to occur. On the other hand, a general technique for suppressing reflection ripple is to use a thin film laminated structure with a narrow transmission limit wavelength range. a phenomenon (hereinafter referred to as “transmission ripple”) may occur. Therefore, in an optical filter using conventional technology, it is very difficult to achieve both suppression of reflection ripples in the visible wavelength band and suppression of transmission ripples in the near-infrared wavelength region.

通常、光学フィルタの赤色領域の透過率の低下の原因としては、ガラスの吸収もしくは、入射角度変化による近赤外領域の透過制限波長範囲の短波長側へのシフトがほとんどである。その変化量は光学系のデザインに大きく影響されるため、予期しうる。これに対し、青色、緑色領域の透過率低下の原因は、近赤外波長領域の阻止帯を形成するショートパスフィルタの設計バランスのずれから生じる巨大な反射リップル発生が主原因であり、透過率変化量の予期が難しい。そして、緑色領域は画像処理上で多用される重要な領域であり、青色領域は元々の感受率が低い等の問題から、より高い光量が必要な領域である。そのため、青色、緑色領域のおける反射リップルの抑制(透過率の低下の抑制)された光学フィルタは、CCDやCMOS等の撮像素子、その他光センサ用途の光学フィルタとして好適に利用することができる。 Generally, most of the causes of the decrease in the transmittance of the optical filter in the red region are the absorption of the glass or the shift of the limited transmission wavelength range of the near-infrared region to the short wavelength side due to the change in the incident angle. Since the amount of change is greatly influenced by the design of the optical system, it is predictable. On the other hand, the main cause of the decrease in transmittance in the blue and green regions is the generation of huge reflection ripples caused by the design imbalance of the short-pass filter that forms the stopband in the near-infrared wavelength region. It is difficult to predict the amount of change. The green region is an important region that is frequently used in image processing, and the blue region requires a higher amount of light due to problems such as its inherently low sensitivity. Therefore, an optical filter that suppresses reflection ripples (suppresses decrease in transmittance) in the blue and green regions can be suitably used as an optical filter for imaging devices such as CCDs and CMOSs, and other optical sensors.

本発明の光学フィルタにおいては、近赤外領域の波長の光の透過を、3つ以上の薄膜積層構造体によって制限するため、各々の透過制限波長範囲が狭い薄膜積層構造体を用いたとしても、近赤外波長領域の透過リップル及び可視波長領域の反射リップルが生じにくく、広角度の光の入射に対しても高い透過制限性能を維持することができる。 In the optical filter of the present invention, since the transmission of light with wavelengths in the near-infrared region is restricted by three or more thin film laminate structures, even if each thin film laminate structure with a narrow transmission limited wavelength range is used, , transmission ripples in the near-infrared wavelength region and reflection ripples in the visible wavelength region are less likely to occur, and high transmission limiting performance can be maintained even when light is incident at a wide angle.

以下、図面を参照して、本発明の実施形態を詳細に説明する。図1に示すように、第1の実施形態に係る光学フィルタ1は、透明基板10と、3つの薄膜積層構造体11、12、13を備えている。薄膜積層構造体11、12、13は、各々、透明基板10のいずれか一方の表面上に積層される。図1においては、透明基板10の一方の表面10a上に薄膜積層構造体12が、他方の表面10b上に、薄膜積層構造体11及び薄膜積層構造体13が積層されている。なお、薄膜積層構造体12は、透明基板10のいずれの表面上に設けられてもよく、この場合、薄膜積層構造体11及び薄膜積層構造体13は、透明基板10の薄膜積層構造体12の設けられた面と反対側の面に設けられる。例えば、薄膜積層構造体12が表面10b上に、薄膜積層構造体11及び薄膜積層構造体13が表面10a上に積層されてもよい。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, an optical filter 1 according to the first embodiment includes a transparent substrate 10 and three thin film lamination structures 11, 12, and 13. As shown in FIG. Each of thin film laminated structures 11 , 12 and 13 is laminated on one surface of transparent substrate 10 . In FIG. 1, a thin film lamination structure 12 is laminated on one surface 10a of a transparent substrate 10, and a thin film lamination structure 11 and a thin film lamination structure 13 are laminated on the other surface 10b. In addition, the thin film laminated structure 12 may be provided on any surface of the transparent substrate 10. In this case, the thin film laminated structure 11 and the thin film laminated structure 13 are the thin film laminated structures 12 of the transparent substrate 10. It is provided on the surface opposite to the surface on which it is provided. For example, the thin film laminated structure 12 may be laminated on the surface 10b, and the thin film laminated structure 11 and the thin film laminated structure 13 may be laminated on the surface 10a.

この薄膜積層構造体11、12、13は、それぞれ、近赤外波長領域内の所定の波長範囲の光の透過を制限する。具体的には、薄膜積層構造体11は、例えば、近赤外波長領域に含まれる第1の波長範囲の光の透過を制限する。同様に、薄膜積層構造体12は、近赤外波長領域に含まれる第2の波長範囲を、薄膜積層構造体13は、近赤外波長領域に含まれる第3の波長範囲の光の透過を、それぞれ制限する。なお、本発明で用いられる各薄膜積層構造体は、近赤外波長領域内の光の透過が制限される波長範囲が連続していることが好ましい。言い換えると、各薄膜積層構造体は、近赤外波長領域内において、一つの光透過制限波長範囲を有する(光透過制限波長範囲が二つ以上に分かれていない)ことが好ましい。 Each of the thin film laminate structures 11, 12, 13 restricts transmission of light in a predetermined wavelength range within the near-infrared wavelength region. Specifically, the thin film laminated structure 11 restricts transmission of light in a first wavelength range included in the near-infrared wavelength region, for example. Similarly, the thin film lamination structure 12 transmits light in the second wavelength range included in the near-infrared wavelength region, and the thin film lamination structure 13 transmits light in the third wavelength range included in the near-infrared wavelength region. , respectively. In each thin film laminated structure used in the present invention, it is preferable that the wavelength range in which the transmission of light in the near-infrared wavelength region is restricted is continuous. In other words, each thin film laminated structure preferably has one light transmission limited wavelength range (the light transmission limited wavelength range is not divided into two or more) in the near-infrared wavelength region.

薄膜積層構造体11、12、13が透過を制限する波長範囲は互いに異なっている。例えば、第1の波長範囲は、近赤外線波長領域を3つの範囲に分けたときの、最も短波長側の範囲を含む波長範囲であり、第3の波長範囲は、最も長波長側の範囲を含む波長範囲である。第2の波長範囲は、第1の波長範囲と、第3の波長範囲の中間の範囲を含む波長範囲である。この場合、第1の波長範囲、第2の波長範囲、第3の波長範囲の中心波長は、短波長側から長波長側に、第1の波長範囲の中心波長、第2の波長範囲の中心波長、第3の波長範囲の中心波長の順、もしくは、長波長側から短波長側に、第1の波長範囲の中心波長、第2の波長範囲の中心波長、第3の波長範囲の中心波長の順に位置することが好ましい。 The wavelength ranges over which the thin film stacks 11, 12 and 13 limit transmission are different from each other. For example, the first wavelength range is a wavelength range that includes the shortest wavelength range when the near-infrared wavelength region is divided into three ranges, and the third wavelength range is the longest wavelength range. It is a wavelength range that includes The second wavelength range is a wavelength range that includes an intermediate range between the first wavelength range and the third wavelength range. In this case, the center wavelengths of the first wavelength range, the second wavelength range, and the third wavelength range are arranged from the short wavelength side to the long wavelength side, from the center wavelength of the first wavelength range to the center wavelength of the second wavelength range. wavelength, the order of the center wavelength of the third wavelength range, or from the long wavelength side to the short wavelength side, the center wavelength of the first wavelength range, the center wavelength of the second wavelength range, and the center wavelength of the third wavelength range are preferably positioned in the order of

また、図1において、薄膜積層構造体11、13は、ガラス基板側から薄膜積層構造体11、薄膜積層構造体13の順で配置されるが、薄膜積層構造体13、薄膜積層構造体11の順で配置されてもよい。また、薄膜積層構造体12の主要部分は薄膜積層構造体11、薄膜積層構造体13が配置される面とは異なる面に配置されることが必要である。つまり、光学フィルタ1が透過を制限する光の阻止量のほとんどは薄膜積層構造体11、薄膜積層構造体13が配置される面とは反対側の薄膜積層構造体12が作り出すことが好ましい。なお、上記各薄膜積層構造体とは別に、例えば紫外波長領域の光の透過を制限する薄膜積層構造体を設けてもよい。紫外波長領域の光の透過を制限るための薄膜積層構造体は、薄膜積層構造体11、12、13と透過制限波長範囲が連続していないため、透過制限波長範囲同士が重なりあう部分に発生しやすい透過リップルの影響がないからである。 In FIG. 1, the thin film laminated structures 11 and 13 are arranged in the order of the thin film laminated structure 11 and the thin film laminated structure 13 from the glass substrate side. They may be arranged in order. In addition, the main portion of thin film laminated structure 12 needs to be arranged on a surface different from the surface on which thin film laminated structure 11 and thin film laminated structure 13 are arranged. In other words, it is preferable that most of the amount of light blocked by the optical filter 1 is produced by the thin film lamination structure 12 on the side opposite to the surface on which the thin film lamination structures 11 and 13 are arranged. In addition to the above-mentioned thin film lamination structures, for example, a thin film lamination structure that restricts the transmission of light in the ultraviolet wavelength region may be provided. Since the thin film laminated structure for limiting the transmission of light in the ultraviolet wavelength region does not have a continuous transmission limiting wavelength range with the thin film laminated structures 11, 12, and 13, the transmission limiting wavelength ranges overlap each other. This is because there is no influence of transmission ripples that are likely to occur.

なお、本実施形態の光学フィルタにおいて、「光の透過を制限する」とは、所定の波長の光に関し、入射角0度(垂直入射)で入射した場合の光の透過率が5%未満であることをいう。また、「透過制限波長範囲が不連続」とは、透過リップルによって透過制限波長範囲が分断されることを言い、この透過リップルの程度が透過率5%以上の大きさとなった状態をいう。 In the optical filter of the present embodiment, "to limit the transmission of light" means that the transmittance of light of a predetermined wavelength is less than 5% when incident at an incident angle of 0 degrees (vertical incidence). Say something. Further, "the limited transmission wavelength range is discontinuous" means that the transmission limited wavelength range is divided by the transmission ripples, and the degree of the transmission ripples is the transmittance of 5% or more.

薄膜積層構造体11、12、13によって透過を制限する波長範囲は、連続している。すなわち、第1の波長範囲、第2の波長範囲、第3の波長範囲を重ね合わせた範囲は、近赤外線波長領域の所定領域のすべてを含む。 The wavelength range whose transmission is limited by the thin film stacks 11, 12, 13 is continuous. That is, the overlapping range of the first wavelength range, the second wavelength range, and the third wavelength range includes the entire predetermined region of the near-infrared wavelength region.

薄膜積層構造体12と、薄膜積層構造体13は、後述する斜入射の反射リップルが小さい特徴を持つ薄膜積層構造体とすることが好ましく、特に薄膜積層構造体12は薄膜積層構造体13よりも全ての薄膜の平均屈折率が高く、入射光の斜入射依存による波長シフト量が小さいものであることが好ましい。 The thin-film laminated structure 12 and the thin-film laminated structure 13 are preferably thin-film laminated structures characterized by a small oblique-incidence reflection ripple, which will be described later. It is preferable that all the thin films have a high average refractive index and a small amount of wavelength shift due to oblique incidence dependence of incident light.

これらの特徴を持つ薄膜積層構造体は、透過制限波長範囲の幅が通常のものより狭いことが多いが、斜入射の反射リップルが根本的に小さいことにより、薄膜積層構造体の層数を増やした場合の斜入射の反射リップル増大の問題が少なく、透過制限波長範囲を形成しやすい。さらに、薄膜積層構造体12がその他とは別の面に配置されるため、薄膜積層構造体同士の重ね合わせによって発生する透過リップルの問題が起きにくい。 Thin film stacks with these characteristics often have a narrower transmission limiting wavelength range than normal, but the fundamentally small reflection ripple at oblique incidence makes it possible to increase the number of layers in the thin film stack. There is little problem of an increase in reflection ripples due to oblique incidence in the case of 1, and it is easy to form a transmission limited wavelength range. Furthermore, since the thin film lamination structure 12 is arranged on a different surface from the other surfaces, the problem of transmission ripple caused by lamination of the thin film lamination structures is less likely to occur.

また、薄膜積層構造体12は、斜入射時の波長シフト量が非常に小さいものとすることで、広角において安定して特定波長域における透過制限性能を維持できる。そして、薄膜積層構造体13の斜入射時の波長シフト量が薄膜積層構造体12の斜入射時の波長シフト量よりも十分に大きい場合、入射角度が大きいと薄膜積層構造体13における透過制限波長範囲が、薄膜積層構造体12が受け持っていた波長帯に移動してくる。それによりそれぞれの薄膜積層構造体が形成する透過制限波長範囲が常に重複することとなり、波長800~1000nmにおける光の阻止性能を維持しやすく好ましい。また、薄膜積層構造体12が受け持つ入射角度0度の波長範囲内のもっとも透過率が低い波長において、本発明が構成する光学フィルタの透過率が0.05%以下であることが好ましい。 In addition, the thin film laminated structure 12 has a very small amount of wavelength shift at oblique incidence, so that it is possible to stably maintain transmission limiting performance in a specific wavelength range over a wide angle. When the wavelength shift amount of the thin film laminated structure 13 at oblique incidence is sufficiently larger than the wavelength shift amount of the thin film laminated structure 12 at oblique incidence, if the incident angle is large, the transmission limiting wavelength in the thin film laminated structure 13 is The range shifts to the wavelength band covered by the thin film laminated structure 12 . As a result, the transmission limiting wavelength ranges formed by the respective thin film laminated structures always overlap, which is preferable because the light blocking performance at a wavelength of 800 to 1000 nm can be easily maintained. Further, it is preferable that the transmittance of the optical filter according to the present invention is 0.05% or less at the wavelength with the lowest transmittance within the wavelength range of the incident angle of 0 degrees covered by the thin film laminated structure 12 .

本発明において、光の透過率は、分光光度計、例えば、日立ハイテクサイエンス製分光光度計U4100を用いて測定できる。また、特に指定しない場合、光の透過率とは、入射角が0°における透過率をいうものである。 In the present invention, the light transmittance can be measured using a spectrophotometer, for example, a spectrophotometer U4100 manufactured by Hitachi High-Tech Science. Unless otherwise specified, the light transmittance means the transmittance at an incident angle of 0°.

なお、上記では、3つの薄膜積層構造体11、12、13を有する光学フィルタ1について説明したが、薄膜積層構造体の数は4つ以上であってもよい。薄膜積層構造体が4つ以上の場合、透過を制限する波長範囲の中心波長が、薄膜積層構造体11、12、13の中心波長よりも長波長側にある薄膜積層構造体を付加的に設けることができる。すなわち、薄膜積層構造体が4つ以上の場合、前述の3つの薄膜積層構造体11、12、13は、透過を制限する波長範囲の中心波長が最も短波長側にある薄膜積層構造体、2番目に短波長側にある薄膜積層構造、及び3番目に短波長側にある薄膜積層構造体である。薄膜積層構造体の数は3つ以上7つ以下が好ましく、4つ以上6つ以下であることが特に好ましい。実施形態の光学フィルタが4つ以上の薄膜積層構造体を有する場合にも、透明基板の同一の表面上に積層される薄膜積層構造体の透過制限波長は連続しないように、薄膜積層構造体が配置される。例えば、透過制限波長範囲の中心波長が短いものから順に4つの薄膜積層構造体について、透明基板10の両表面に交互に積層することができる。或いは、近赤外領域の波長の光の透過を制限する波長範囲の中心波長が2番目に短波長側にある薄膜積層構造体がそれ以外の薄膜積層構造体とは異なる表面に積層されてもよい。このようにすることで、可視波長帯域の反射リップルを抑制することができる。 Although the optical filter 1 having the three thin film laminated structures 11, 12, and 13 has been described above, the number of thin film laminated structures may be four or more. When there are four or more thin film lamination structures, an additional thin film lamination structure is provided in which the central wavelength of the wavelength range for limiting transmission is on the longer wavelength side than the central wavelengths of the thin film lamination structures 11, 12, and 13. be able to. That is, when there are four or more thin film laminated structures, the three thin film laminated structures 11, 12, and 13 are the thin film laminated structures whose center wavelengths in the wavelength range for limiting transmission are on the shortest wavelength side. The thin film lamination structure on the short wavelength side is the third, and the thin film lamination structure is the third on the short wavelength side. The number of thin film laminated structures is preferably 3 or more and 7 or less, and particularly preferably 4 or more and 6 or less. Even when the optical filter of the embodiment has four or more thin film lamination structures, the thin film lamination structures are arranged such that the transmission limiting wavelengths of the thin film lamination structures laminated on the same surface of the transparent substrate are not continuous. placed. For example, four thin film laminate structures can be alternately laminated on both surfaces of the transparent substrate 10 in ascending order of the center wavelength of the transmission limiting wavelength range. Alternatively, the thin film lamination structure having the center wavelength of the wavelength range that limits the transmission of light with a wavelength in the near-infrared region on the second shorter wavelength side may be laminated on a different surface from the other thin film lamination structures. good. By doing so, reflection ripples in the visible wavelength band can be suppressed.

次に、本実施形態の光学フィルタ1が有する各構成について説明する。 Next, each configuration of the optical filter 1 of this embodiment will be described.

薄膜積層構造体11、12、13は、例えば、誘電体多層膜によって、所望の波長範囲の透過を制限するように構成される。誘電体多層膜は、低屈折率の誘電体膜(低屈折率膜)、中屈折率の誘電体膜(中屈折率膜)及び高屈折率の誘電体膜(高屈折率膜)から選択して交互に積層することで得られる光学的機能を有する膜である。設計により、光の干渉を利用して特定の波長領域の光の透過や、光の透過制限を制御する機能を発現させることができる。なお、低屈折率、高屈折率、中屈折率とは、隣接する層の屈折率に対して高い屈折率と低い屈折率、またその中間の屈折率を有することを意味する。 The thin film stacks 11, 12, 13 are configured, for example by dielectric multilayers, to limit transmission in the desired wavelength range. The dielectric multilayer film is selected from a dielectric film with a low refractive index (low refractive index film), a dielectric film with a medium refractive index (middle refractive index film), and a dielectric film with a high refractive index (high refractive index film). It is a film having an optical function obtained by alternately laminating the films. Depending on the design, the interference of light can be used to express the function of controlling the transmission of light in a specific wavelength range or the restriction of the transmission of light. The terms "low refractive index", "high refractive index", and "medium refractive index" mean that the layer has a higher refractive index, a lower refractive index, or an intermediate refractive index with respect to the refractive index of the adjacent layer.

本発明の光学フィルタにおいて、斜入射の反射リップルを低減できる薄膜積層構造体としては、以下の構成の光学多層膜(近赤外線カットフィルタ)を好適に用いることができる。 In the optical filter of the present invention, an optical multilayer film (near-infrared cut filter) having the following configuration can be suitably used as the thin film laminated structure capable of reducing reflected ripples of oblique incidence.

波長500nmにおける屈折率が2.0以上である高屈折率膜と、波長500nmにおける屈折率が1.6以上で前記高屈折率膜の屈折率未満である中屈折率膜と、波長500nmにおける屈折率が1.6未満である低屈折率膜とを備え、前記高屈折率膜をH、前記中屈折率膜をM、前記低屈折率膜をLとしたとき、(LMHML)^n(nは1以上の自然数)の繰り返しで表される繰り返し積層構造を有し、400~700nmの波長範囲に平均透過率が85%以上となる透過帯と、750~1100nmの波長範囲において平均透過率が5%未満の領域の幅が100~280nmである阻止帯とを有し、前記光学多層膜の前記高屈折率膜のQWOT(Quater-wave Optical Thickness)をT、前記中屈折率膜のQWOTをT、前記低屈折率膜のQWOTをTとした場合、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合、前記光学多層膜は、垂直入射条件での分光特性で400~700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%~70%の範囲内であり、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、前記光学多層膜は、垂直入射条件での分光特性で400~700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%~70%の範囲内となるように、前記高屈折率膜、前記中屈折率膜及び前記低屈折率膜を積層した近赤外線カットフィルタである。これについては、特許文献3に詳細に記載されている。A high refractive index film having a refractive index of 2.0 or more at a wavelength of 500 nm, a medium refractive index film having a refractive index of 1.6 or more at a wavelength of 500 nm and less than the refractive index of the high refractive index film, and a refractive index at a wavelength of 500 nm and a low refractive index film whose index is less than 1.6, where H is the high refractive index film, M is the medium refractive index film, and L is the low refractive index film, (LMHML)^n(n is a natural number of 1 or more), and has a transmission band with an average transmittance of 85% or more in the wavelength range of 400 to 700 nm, and an average transmittance in the wavelength range of 750 to 1100 nm. and a stopband in which the width of the region of less than 5% is 100 to 280 nm. is T M and QWOT of the low refractive index film is T L , the refractive index of the medium refractive index film is equal to or higher than the intermediate value between the refractive index of the high refractive index film and the refractive index of the low refractive index film. In this case, the optical multilayer film has a maximum of 2T L /(T H +2T M ) where there is no place where the transmittance locally decreases by 5% or more within the wavelength range of 400 to 700 nm in terms of spectral characteristics under normal incidence conditions. When the value is set to 100% and the minimum value is set to 0%, 2T L /(T H +2T M ) is in the range of 100% to 70%, and the refractive index of the medium refractive index film is the high refractive index film and the refractive index of the low refractive index film, the optical multilayer film has a local transmittance of 5% in the wavelength range of 400 to 700 nm in terms of spectral characteristics under normal incidence conditions. When the maximum value of (2T L +2T M )/T H is set to 100% and the minimum value is set to 0%, (2T L +2T M )/T H is in the range of 100% to 70%. A near-infrared cut filter in which the high refractive index film, the medium refractive index film, and the low refractive index film are laminated so as to be inside. This is described in detail in Patent Document 3.

また、光学多層膜は、波長500nmにおける屈折率が1.8以上2.23以下の中屈折率膜と、波長500nmにおける屈折率が1.45以上1.49以下の低屈折率膜とが交互に積層されてなり、前記中屈折率膜と前記低屈折率膜の組み合わせ単位を5以上35以下の数で有し、前記光学多層膜に0°で入射した光が透過の制限される波長範囲の幅を100nm以上300nm以下とした近赤外線カットフィルタである。これについては、本出願人が特願2017-253468号に詳細に記載した。ただし、光学多層膜に0°で入射した光が透過の制限される波長範囲は、これに記載された範囲に限らない。 In addition, the optical multilayer film alternates between a medium refractive index film having a refractive index of 1.8 or more and 2.23 or less at a wavelength of 500 nm and a low refractive index film having a refractive index of 1.45 or more and 1.49 or less at a wavelength of 500 nm. and has a combination unit of the medium refractive index film and the low refractive index film in a number of 5 or more and 35 or less, and the wavelength range in which the transmission of light incident on the optical multilayer film at 0° is limited. is a near-infrared cut filter with a width of 100 nm or more and 300 nm or less. This was described in detail in Japanese Patent Application No. 2017-253468 by the present applicant. However, the wavelength range in which transmission of light incident on the optical multilayer film at 0° is restricted is not limited to the range described herein.

また、光学多層膜は、波長500nmにおける屈折率が2.0以上の高屈折率膜と、1.6以下の低屈折率膜とから構成され、前記光学多層膜は、高屈折率膜の波長500nmにおけるQWOTをQ、低屈折率膜の波長500nmにおけるQWOTをQとしたときに、(a、b、c、d)の基本単位がn個積層された繰り返し構造(ここで、a、b、c、dは、各基本単位における膜の物理膜厚がQWOTの何倍であるかを示す係数であり、またnは1以上の自然数を表す。)を有する近赤外線カットフィルタである。これについて、特許文献4に詳細に記載されている。ただし、紫外線カットの特性は必須構成ではないので、前記係数は限定されない。Further, the optical multilayer film is composed of a high refractive index film having a refractive index of 2.0 or more and a low refractive index film having a refractive index of 1.6 or less at a wavelength of 500 nm, and the optical multilayer film has a refractive index of 1.6 or less. When QWOT at 500 nm is QH and QWOT at a wavelength of 500 nm of the low refractive index film is QL, the basic unit of ( an QH, bn QL , cnQH , dnQL ) is n Stacked repeating structures ( where an, bn, cn, and dn are coefficients indicating how many times the physical thickness of the film in each basic unit is QWOT , and n is 1 represents the above natural numbers). This is described in detail in Patent Document 4. However, the above coefficient is not limited because the UV cut property is not an essential component.

また、他の態様として、高屈折率膜の構成材料は、屈折率が2以上である材料が好ましく、2.2~2.7がより好ましい。このような構成材料としては、例えば、TiO、Nb(屈折率:2.38)、Ta、又はこれらの複合酸化物等が挙げられる。As another aspect, the constituent material of the high refractive index film is preferably a material having a refractive index of 2 or more, more preferably 2.2 to 2.7. Examples of such constituent materials include TiO 2 , Nb 2 O 5 (refractive index: 2.38), Ta 2 O 5 , or composite oxides thereof.

このとき、中屈折率膜の構成材料は、例えば屈折率が1.6を超え、2未満であることが好ましく、1.62~1.92がより好ましい。このような構成材料としては、例えば、Al、Y(屈折率:1.81)、又はこれらの複合酸化物、AlとZrOの混合物膜(屈折率:1.67)等が挙げられる。また、中屈折率膜は、高屈折率膜と低屈折率膜とを組み合わせた等価膜で代用してもよい。At this time, the constituent material of the medium refractive index film preferably has a refractive index of more than 1.6 and less than 2, more preferably 1.62 to 1.92. Such constituent materials include, for example, Al 2 O 3 and Y 2 O 3 (refractive index: 1.81), composite oxides thereof, and mixture films of Al 2 O 3 and ZrO 2 (refractive index: 1.81). .67) and the like. Also, the medium refractive index film may be replaced by an equivalent film in which a high refractive index film and a low refractive index film are combined.

低屈折率膜の構成材料は、例えば屈折率が1.3以上1.6以下であることが好ましい。このような構成材料としては、例えば、SiO、SiO、MgFなどが挙げられるThe constituent material of the low refractive index film preferably has a refractive index of, for example, 1.3 or more and 1.6 or less. Examples of such constituent materials include SiO 2 , SiO x N y , MgF 2 and the like.

誘電体多層膜(薄膜積層構造体)は、異なる屈折率の薄膜を交互に積層して構成される場合、その層数は、誘電体多層膜の有する光学特性によるが、薄膜の合計積層数として50~150層が好ましい。合計積層数が50層未満であると、波長800nm~1000nmの阻止性能が十分とならないおそれがある。また、合計積層数が150層を超えると、光学フィルタの製作時のタクトタイムが長くなり、誘電体多層膜に起因する光学フィルタの反りなどが発生するため好ましくない。 When a dielectric multilayer film (thin film laminated structure) is composed of alternately laminated thin films with different refractive indices, the number of layers depends on the optical properties of the dielectric multilayer film, but the total number of laminated thin films is 50 to 150 layers are preferred. If the total number of laminated layers is less than 50, there is a risk that the blocking performance at wavelengths of 800 nm to 1000 nm will not be sufficient. Further, if the total number of laminated layers exceeds 150, the tact time for manufacturing the optical filter becomes long, and warping of the optical filter due to the dielectric multilayer film occurs, which is not preferable.

誘電体多層膜(薄膜積層構造体)の膜厚としては、上記好ましい積層数を満たした上で、光学フィルタ1の薄型化の観点からは、薄い方が好ましい。しかしながら、所望の光学特性を得るには、5μm以上であることが好ましい。また、誘電体多層膜に起因する光学フィルタの反りなどを考慮し、15μm以下であることが好ましい。 As for the film thickness of the dielectric multilayer film (thin film laminated structure), a thinner one is preferable from the viewpoint of thinning the optical filter 1 while satisfying the preferable number of laminated layers. However, in order to obtain desired optical properties, it is preferably 5 μm or more. Also, considering the warping of the optical filter due to the dielectric multilayer film, the thickness is preferably 15 μm or less.

また、3つの薄膜積層構造体を備える光学フィルタ1においては、透明基板10の両表面に配置される薄膜積層構造体の合計膜厚が互いにできるだけ近いほうが好ましい。環境光センサに用いられる光学フィルタ1では、光学フィルタ1が極めて薄く形成されるため、透明基板10も極めて薄い。そのため、透明基板10の両表面の薄膜積層構造体の物理膜厚が大きく異なると、光学フィルタ1において、物理膜厚の小さい薄膜積層構造側に凸状の反りが生じることがあるためである。 In the optical filter 1 having three thin film laminated structures, it is preferable that the total film thickness of the thin film laminated structures arranged on both surfaces of the transparent substrate 10 is as close as possible. Since the optical filter 1 used for the ambient light sensor is formed to be extremely thin, the transparent substrate 10 is also extremely thin. Therefore, if the physical film thicknesses of the thin film laminate structures on both surfaces of the transparent substrate 10 are significantly different, the optical filter 1 may warp convexly on the side of the thin film laminate structure having the smaller physical thickness.

したがって、3つの薄膜積層構造体を備える光学フィルタ1においては、3つの薄膜積層構造体のうち、透過制限波長範囲が2番目に短波長側に位置し、透明基板10の表面に単独で積層される薄膜積層構造体12の物理膜厚を、その他の2つの薄膜積層構造体11、13よりも大きくすることが好ましい。すなわち、3つの薄膜積層構造体11、12、13の透過制限波長範囲の中心波長のうち2番目に短波長側に位置する中心波長を有する薄膜積層構造体12の物理膜厚が、それ以外の2つの薄膜積層構造体11及び薄膜積層構造体13の物理膜厚よりも厚いことが好ましい。これにより、透明基板10に積層された際の、透明基板10の両表面での薄膜積層構造体全体の厚さの差を小さくして、光学フィルタ1の反りを抑制することができる。 Therefore, in the optical filter 1 including the three thin film laminated structures, the transmission limited wavelength range is located second on the short wavelength side among the three thin film laminated structures, and the single laminated structure on the surface of the transparent substrate 10 It is preferable to make the physical film thickness of the thin film laminated structure 12 larger than that of the other two thin film laminated structures 11 and 13 . That is, the physical film thickness of the thin film laminated structure 12 having the second shortest central wavelength among the central wavelengths of the transmission limiting wavelength ranges of the three thin film laminated structures 11, 12, and 13 is It is preferably thicker than the physical film thickness of the two thin film laminated structures 11 and 13 . As a result, the difference in thickness of the entire thin film lamination structure between both surfaces of the transparent substrate 10 when laminated on the transparent substrate 10 can be reduced, and the optical filter 1 can be prevented from warping.

誘電体多層膜(薄膜積層構造体)は、その形成にあたっては、例えば、IAD(Ion Assisted Deposition)蒸着法、CVD法、スパッタ法、真空蒸着法等の乾式成膜プロセスや、スプレー法、ディップ法等の湿式成膜プロセス等を使用できる。 The dielectric multilayer film (thin film laminated structure) is formed by, for example, an IAD (Ion Assisted Deposition) deposition method, a CVD method, a sputtering method, a dry film deposition process such as a vacuum deposition method, a spray method, a dip method. A wet film-forming process such as

透明基板10は、可視光を透過する材料である。例えば、ガラス、ガラスセラミックス、水晶、サファイア等の結晶、樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等)等が挙げられる。 The transparent substrate 10 is a material that transmits visible light. Examples include crystals such as glass, glass ceramics, crystal, and sapphire, resins (polyethylene terephthalate (PET), polybutylene terephthalate (PBT) and other polyester resins, polyethylene, polypropylene, ethylene-vinyl acetate copolymer and other polyolefin resins, norbornene resins). , acrylic resins such as polyacrylate and polymethyl methacrylate, urethane resins, vinyl chloride resins, fluorine resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl alcohol resins, etc.).

透明基板10は、近赤外領域の波長の光を吸収する性質を有することが好ましい。例えば、本発明の光学フィルタ1を固体撮像装置用の近赤外線カットフィルタとして用いる場合、透明基板10が近赤外波長域の光を吸収する性質を有することで、人の視感度特性に近い色補正が可能となる。薄膜積層構造体11、12、13により、入射角依存性の低い分光特性が得られるため、近赤外領域の波長の光を吸収する性質を有する透明基板10に上記薄膜積層構造体を設けることで、近赤外領域の波長の光の透過を制限する優れた分光特性が得られる。そのため、固体撮像装置用の近赤外線カットフィルタとして良好な特性を有する光学フィルタ1を得ることが可能となる。 The transparent substrate 10 preferably has a property of absorbing light with wavelengths in the near-infrared region. For example, when the optical filter 1 of the present invention is used as a near-infrared cut filter for a solid-state imaging device, the transparent substrate 10 has the property of absorbing light in the near-infrared wavelength region, so that color close to human visibility characteristics is obtained. Correction is possible. Since the thin film laminated structures 11, 12, and 13 provide spectral characteristics with low incident angle dependence, the thin film laminated structures are provided on the transparent substrate 10 having the property of absorbing light of wavelengths in the near-infrared region. , excellent spectral properties are obtained that limit the transmission of light with wavelengths in the near-infrared region. Therefore, it is possible to obtain the optical filter 1 having excellent characteristics as a near-infrared cut filter for a solid-state imaging device.

近赤外領域の波長の光を吸収する性質を有する透明基板10は、可視光領域の光を透過し、近赤外領域の光を吸収する能力を有するガラス、例えば、CuO含有フツリン酸塩ガラス又はCuO含有リン酸塩ガラス(以下、これらをまとめて「CuO含有ガラス」ともいう。)で構成されることが好ましい。 The transparent substrate 10 having the property of absorbing light of wavelengths in the near-infrared region is made of glass capable of transmitting light in the visible region and absorbing light in the near-infrared region, such as CuO-containing fluorophosphate glass. Alternatively, it is preferably composed of CuO-containing phosphate glass (hereinafter collectively referred to as "CuO-containing glass").

透明基板10は、CuO含有ガラスで構成されることで、可視光に対し高い透過率を有するとともに、近赤外領域の波長の光に対して高い透過制限性を有する。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含まれる。Since the transparent substrate 10 is made of CuO-containing glass, it has a high transmittance for visible light and a high transmission limiting property for light with a wavelength in the near-infrared region. The term “phosphate glass” also includes silicate phosphate glass in which a part of the skeleton of the glass is composed of SiO 2 .

CuO含有ガラス基板は、波長400~450nmの光の吸収は僅かで、波長775~900nmの光に対する波長400~450nmの光の吸収率比が低い特徴がある。その結果、CuO含有ガラス基板は、波長775~900nmの光の透過を、吸収により十分制限するようにCuO含有量を増やして吸収率を高くしても、可視光の顕著な透過率低下とならないため有用である。 A CuO-containing glass substrate is characterized by a low absorption rate of light with a wavelength of 400 to 450 nm and a low absorptance ratio of light with a wavelength of 400 to 450 nm to light with a wavelength of 775 to 900 nm. As a result, even if the CuO-containing glass substrate increases the absorption rate by increasing the CuO content so as to sufficiently limit the transmission of light with a wavelength of 775 to 900 nm by absorption, the transmittance of visible light does not decrease significantly. useful because

近赤外領域の波長の光を吸収する性質を有する透明基板10としては、CuO含有ガラス以外の材料として、透明樹脂中に、近赤外領域のうち特定の範囲の波長の光を吸収する近赤外線吸収色素を含有した近赤外線吸収基板も挙げられる。 As the transparent substrate 10 having the property of absorbing light in the near infrared region, a material other than the CuO-containing glass, which absorbs light in a specific range of wavelengths in the near infrared region, is added in the transparent resin. A near-infrared absorbing substrate containing an infrared absorbing dye is also included.

また、光学フィルタの近赤外光の吸収性能を高めるために、透明基板10の表面に、上記近赤外線吸収基板と同様の材料を用いて、近赤外線吸収色素及び透明樹脂を含む近赤外線吸収層を形成してもよい。この場合、近赤外線吸収層は、透明基板10と、薄膜積層構造体11又は薄膜積層構造体12の間に形成される。また、近赤外線吸収層は透明基板10の少なくとも一方の表面に形成されればよい。 In order to improve the near-infrared light absorption performance of the optical filter, a near-infrared absorbing layer containing a near-infrared absorbing dye and a transparent resin is formed on the surface of the transparent substrate 10 using the same material as the near-infrared absorbing substrate. may be formed. In this case, the near-infrared absorption layer is formed between the transparent substrate 10 and the thin film laminated structure 11 or thin film laminated structure 12 . Also, the near-infrared absorbing layer may be formed on at least one surface of the transparent substrate 10 .

近赤外線吸収色素としては、可視光領域の光を透過し、近赤外領域の光を吸収する能力を有する近赤外線吸収色素であれば特に制限されない。なお、本発明における色素は顔料、すなわち分子が凝集した状態でもよい。 The near-infrared absorbing dye is not particularly limited as long as it is capable of transmitting light in the visible region and absorbing light in the near-infrared region. Incidentally, the dye in the present invention may be a pigment, that is, a state in which molecules are aggregated.

近赤外線吸収色素としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、スクアリリウム系化合物等が挙げられる。 Examples of near-infrared absorbing dyes include cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, dithiol metal complex compounds, diimmonium compounds, polymethine compounds, phthalide compounds, naphthoquinone compounds, anthraquinone compounds, indophenol compounds, squarylium-based compounds, and the like.

これらの中ではスクアリリウム系化合物、シアニン系化合物及びフタロシアニン系化合物がより好ましく、スクアリリウム系化合物が特に好ましい。スクアリリウム系化合物からなる近赤外線吸収色素は、その吸収スペクトルにおいて、可視光の吸収が少なく、保存安定性及び光に対する安定性が高いため好ましい。シアニン系化合物からなる近赤外線吸収色素は、その吸収スペクトルにおいて、可視光の吸収が少なく、近赤外線領域のうち、長波長側で光の吸収率が高いため好ましい。また、シアニン系化合物は低コストであって、塩形成することにより長期の安定性も確保できることが知られている。フタロシアニン系化合物からなる近赤外線吸収色素は、耐熱性や耐候性に優れるため好ましい。 Among these, squarylium-based compounds, cyanine-based compounds and phthalocyanine-based compounds are more preferable, and squarylium-based compounds are particularly preferable. A near-infrared absorbing dye composed of a squarylium-based compound is preferable because its absorption spectrum shows little absorption of visible light and high storage stability and light stability. A near-infrared absorbing dye composed of a cyanine-based compound is preferable because it absorbs little visible light in its absorption spectrum and has a high light absorption rate on the long wavelength side in the near-infrared region. In addition, cyanine compounds are known to be inexpensive and to ensure long-term stability by forming salts. Near-infrared absorbing dyes composed of phthalocyanine compounds are preferable because they are excellent in heat resistance and weather resistance.

近赤外線吸収色素としては、上記した化合物のうち1種を単独で用いてもよく2種以上を併用してもよい。 As the near-infrared absorbing dye, one of the above compounds may be used alone, or two or more thereof may be used in combination.

透明樹脂としては、屈折率が、1.45以上の透明樹脂が好ましい。屈折率は1.5以上がより好ましく、1.6以上が特に好ましい。透明樹脂の屈折率の上限は特にないが、入手のしやすさ等から1.72程度が好ましい。なお、本明細書において屈折率とは、特に断りのない限り、波長500nmでの屈折率をいう。 As the transparent resin, a transparent resin having a refractive index of 1.45 or more is preferable. The refractive index is more preferably 1.5 or higher, particularly preferably 1.6 or higher. Although there is no particular upper limit for the refractive index of the transparent resin, about 1.72 is preferable from the standpoint of availability. In this specification, the refractive index means the refractive index at a wavelength of 500 nm unless otherwise specified.

透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、及びポリエステル樹脂が挙げられる。透明樹脂としては、これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。 Examples of transparent resins include acrylic resins, epoxy resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, polyarylene ether phosphine oxide resins, and polyimides. Resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, and polyester resins can be mentioned. As the transparent resin, one of these resins may be used alone, or two or more of them may be used in combination.

上記の中でも、近赤外線吸収色素の透明樹脂に対する溶解性の観点から、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、エン・チオール樹脂、エポキシ樹脂、及び環状オレフィン樹脂から選ばれる1種以上が好ましい。さらに、透明樹脂は、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、及び環状オレフィン樹脂から選ばれる1種以上がより好ましい。ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等が好ましい。 Among the above, the transparent resin is one or more selected from acrylic resins, polyester resins, polycarbonate resins, ene-thiol resins, epoxy resins, and cyclic olefin resins, from the viewpoint of the solubility of the near-infrared absorbing dye in the transparent resin. preferable. Furthermore, the transparent resin is more preferably one or more selected from acrylic resins, polyester resins, polycarbonate resins, and cyclic olefin resins. As the polyester resin, polyethylene terephthalate resin, polyethylene naphthalate resin, and the like are preferable.

近赤外線吸収層は、例えば、近赤外線吸収色素及び、透明樹脂又は透明樹脂の原料成分、さらに任意に紫外線吸収体を溶媒又は分散媒に、溶解させ又は分散させて調製した塗工液を、透明基板10上に塗工し、乾燥させ、さらに必要に応じて硬化させて製造できる。 The near-infrared absorbing layer is, for example, a coating liquid prepared by dissolving or dispersing a near-infrared absorbing dye, a transparent resin or a raw material component of a transparent resin, and optionally an ultraviolet absorber in a solvent or a dispersion medium. It can be manufactured by applying it on the substrate 10, drying it, and further curing it if necessary.

近赤外線吸収層は、近赤外線吸収色素及び透明樹脂、任意成分の紫外線吸収体以外に、本発明の効果を阻害しない範囲で、必要に応じてその他の任意成分を含有してもよい。その他の任意成分として、具体的には、近赤外線ないし赤外線吸収剤、色調補正色素、紫外線吸収剤、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等が挙げられる。また、後述する近赤外線吸収層を形成する際に用いる塗工液に添加する成分、例えば、シランカップリング剤、熱もしくは光重合開始剤、重合触媒に由来する成分等が挙げられる。 The near-infrared absorption layer may contain, if necessary, other optional components in addition to the near-infrared absorbing dye, transparent resin, and optional ultraviolet absorber within a range that does not impair the effects of the present invention. Other optional components include near-infrared or infrared absorbers, color tone correction dyes, ultraviolet absorbers, leveling agents, antistatic agents, heat stabilizers, light stabilizers, antioxidants, dispersants, and flame retardants. , lubricants, plasticizers, and the like. Also included are components added to the coating solution used when forming the near-infrared absorption layer described later, such as components derived from silane coupling agents, thermal or photopolymerization initiators, and polymerization catalysts.

近赤外線吸収層の膜厚は、使用する装置内の配置スペースや要求される吸収特性等に応じて適宜定められる。上記膜厚は、0.1~100μmが好ましい。膜厚が0.1μm未満では、近赤外線吸収能を十分に発現できないおそれがある。また、膜厚が100μm超では膜の平坦性が低下し、吸収率のバラツキが生じるおそれがある。膜厚は、0.5~50μmがより好ましい。この範囲にあれば、十分な近赤外線吸収能と膜厚の平坦性を両立できる。 The film thickness of the near-infrared absorption layer is appropriately determined according to the arrangement space in the device to be used, the required absorption characteristics, and the like. The film thickness is preferably 0.1 to 100 μm. If the film thickness is less than 0.1 μm, there is a possibility that the near-infrared absorptivity cannot sufficiently be exhibited. In addition, if the film thickness exceeds 100 μm, the flatness of the film is lowered, and there is a possibility that the absorptivity may vary. The film thickness is more preferably 0.5 to 50 μm. Within this range, both sufficient near-infrared absorbing power and film thickness flatness can be achieved.

以上説明した本発明の光学フィルタによれば、透明基板の表面に、透過制限波長範囲の異なる3つ以上の薄膜積層構造体が、同一の表面上における透過制限波長範囲が連続しないように積層されることで、広角度で入射した光に対しても、可視光透過率が高く、近赤外域の阻止性能も高い分光特性を得ることができる。 According to the optical filter of the present invention described above, three or more thin film laminated structures having different transmission limiting wavelength ranges are laminated on the surface of the transparent substrate so that the transmission limiting wavelength ranges on the same surface are not continuous. As a result, it is possible to obtain spectral characteristics with high visible light transmittance and high blocking performance in the near-infrared region even for light incident at a wide angle.

本発明の光学フィルタは、近赤外波長領域、例えば、波長800nm~1000nmの光に対する透過率が1%以下であることが好ましい。また、波長800nm~1000nmにおいて光の透過率が0.05%未満である波長範囲を100nm以上とする阻止性能を持つことが好ましい。また、本発明の光学フィルタによれば、入射角が0~50°の光を透過する波長範囲の光学多層膜に起因する透過率の低下を大幅に低減することができる。この特徴により、近赤外線照射光が多用されるような環境下においてもフレアやゴーストなどが少ない画像を提供可能な、CCDやCMOS等の撮像素子、その他の光センサ用途の光学フィルタとして好適に利用することができる。 The optical filter of the present invention preferably has a transmittance of 1% or less for light in the near-infrared wavelength region, for example, wavelengths of 800 nm to 1000 nm. In addition, it is preferable to have a blocking performance in which the wavelength range in which the light transmittance is less than 0.05% is 100 nm or more in the wavelength range of 800 nm to 1000 nm. Further, according to the optical filter of the present invention, it is possible to greatly reduce the decrease in transmittance due to the optical multilayer film in the wavelength range that transmits light with an incident angle of 0 to 50°. Due to this feature, it is suitable for use as an optical filter for image sensors such as CCDs and CMOSs and other optical sensors that can provide images with less flare and ghosts even in environments where near-infrared light is frequently used. can do.

本発明の光学フィルタは、可視光領域内、特に波長430nm~560nmの青色、緑色の領域における透過率の低下を、光の入射角が0~50°の広角の範囲内で効果的に抑制できる。そのため、光の入射角の広い範囲で、前記波長範囲における平均透過率を85%以上とすることができる。 The optical filter of the present invention can effectively suppress the decrease in transmittance in the visible light region, particularly in the blue and green regions with wavelengths of 430 nm to 560 nm, within a wide range of light incidence angles of 0 to 50°. . Therefore, the average transmittance in the wavelength range can be 85% or more over a wide range of incident angles of light.

また、本発明の光学フィルタにおいて、近赤外線吸収性を有する透明基板を用いるか、透明基板の表面に近赤外線吸収層を設けることで、近赤外波長範囲の光の透過を確実に制限することができ、人の視感度特性に近い色補正が可能となる、より優れた光学特性を有する光学フィルタを得ることができる。 In the optical filter of the present invention, the transmission of light in the near-infrared wavelength range can be reliably restricted by using a transparent substrate having near-infrared absorption or by providing a near-infrared absorption layer on the surface of the transparent substrate. It is possible to obtain an optical filter having superior optical characteristics that enable color correction close to human visibility characteristics.

(実施例1)
本実施例に係る光学フィルタ(近赤外線カットフィルタ)は、透明基板(近赤外線吸収ガラス、板厚0.3mm、商品名:NF-50T、AGCテクノグラス社製)と、透明基板の一方の面及び他方の面に設けられた合計5つの薄膜積層構造体とを備える。この薄膜積層構造体は、それぞれ、上記透明基板表面側から、高屈折率膜と低屈折率膜とを順に積層した構造である。
(Example 1)
The optical filter (near-infrared cut filter) according to this example includes a transparent substrate (near-infrared absorbing glass, plate thickness 0.3 mm, trade name: NF-50T, manufactured by AGC Techno Glass Co., Ltd.) and one surface of the transparent substrate. and a total of five thin film lamination structures provided on the other surface. This thin film laminate structure has a structure in which a high refractive index film and a low refractive index film are laminated in order from the transparent substrate surface side.

透明基板の一方の面には4つの薄膜積層構造体が配置される。4つの薄膜積層構造体は、4つの合計で32層、物理膜厚3796.98nmの、高屈折率膜(酸化チタン(TiO))と低屈折率膜(酸化珪素(SiO))の繰り返し積層構造(第1-1の薄膜積層構造体)である。すなわち、透明基板の一方の面には4つの薄膜積層構造体からなる第1-1の薄膜積層構造体を有している。Four thin film laminate structures are arranged on one side of the transparent substrate. The four thin film laminate structures consisted of a total of 32 layers, with a physical thickness of 3796.98 nm, and a repetition of a high refractive index film (titanium oxide (TiO 2 )) and a low refractive index film (silicon oxide (SiO 2 )). This is a laminated structure (1-1 thin film laminated structure). That is, one surface of the transparent substrate has a 1-1 thin film lamination structure composed of four thin film lamination structures.

透明基板の他方の面には、1つの薄膜積層構造体が配置される。この薄膜積層構造体は、高屈折率膜(酸化チタン(TiO))と、低屈折率膜(酸化珪素(SiO))の合計52層、物理膜厚3093.23nmの繰り返し積層構造である(第1-2の薄膜積層構造体)。One thin film lamination structure is arranged on the other side of the transparent substrate. This thin film laminated structure has a repeated laminated structure with a total of 52 layers of a high refractive index film (titanium oxide (TiO 2 )) and a low refractive index film (silicon oxide (SiO 2 )), and a physical film thickness of 3093.23 nm. (1-2 thin film lamination structure).

上記の光学フィルタの透明基板の一方の面に設けられた薄膜積層構造体(第1-1の薄膜積層構造体)の構成を表1に示す。また、光学フィルタの透明基板の他方の面に設けられた薄膜積層構造体(第1-2の薄膜積層構造体)の構成を表2に示す。表1及び表2において、膜層数は透明基板側からの層の序数であり、膜厚は物理膜厚を示す。 Table 1 shows the configuration of the thin film laminated structure (1-1 thin film laminated structure) provided on one surface of the transparent substrate of the above optical filter. Table 2 shows the configuration of the thin film laminated structure (1-2 thin film laminated structure) provided on the other surface of the transparent substrate of the optical filter. In Tables 1 and 2, the film layer number is the ordinal number of the layer from the transparent substrate side, and the film thickness indicates the physical film thickness.

この光学フィルタについて、入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。結果を図2、図3(波長850nm~1050nmの領域における拡大図)に示す。 The optical characteristics of this optical filter at incident angles of 0°, 40° and 50° were verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). The results are shown in FIGS. 2 and 3 (enlarged views in the wavelength region of 850 nm to 1050 nm).

また、透明基板の一方の面に設けられた薄膜積層構造体(第1-1の薄膜積層構造体)のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図4に示す。また、透明基板の他方の面に設けられた薄膜積層構造体(第1-2の薄膜積層構造体)のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図5に示す。 In addition, only the thin film laminated structure (1-1 thin film laminated structure) provided on one surface of the transparent substrate (excluding the influence of light absorption by the transparent substrate) has an incident angle of 0°, 40°, and 50°. ° was verified using the above optical thin film simulation software. The results are shown in FIG. In addition, only the thin film laminated structure (1-2 thin film laminated structure) provided on the other surface of the transparent substrate (excluding the influence of light absorption by the transparent substrate) has an incident angle of 0°, 40°, and 50°. ° was verified using the above optical thin film simulation software. The results are shown in FIG.

図4に示されるように、本発明の実施例1の光学フィルタでは、透明基板の同一の表面側に配置される薄膜積層構造体の光学特性において、0°入射において波長970nm、1070nm、1190nm付近に透過率が5%以上の部分を有しており、当該薄膜積層構造体が透過を制限する波長領域が不連続である。そして、特定の近赤外領域の透過を制限する薄膜積層構造体のみを他方の面に形成しているため、当該他方の面の薄膜積層構造体の透過制限波長範囲の幅は狭いものの、光の入射角が大きくなったとしても可視領域に反射リップルが発生しがたい薄膜積層構造体を設けることができる。 As shown in FIG. 4, in the optical filter of Example 1 of the present invention, the optical characteristics of the thin film laminated structure arranged on the same surface side of the transparent substrate were as follows: has a portion with a transmittance of 5% or more, and the wavelength region in which the thin film laminated structure limits transmission is discontinuous. Then, since only the thin film laminated structure that limits the transmission of a specific near-infrared region is formed on the other surface, although the width of the transmission limited wavelength range of the thin film laminated structure on the other surface is narrow, the light It is possible to provide a thin film lamination structure in which reflection ripples are less likely to occur in the visible region even if the incident angle of the light is increased.

Figure 0007215476000001
Figure 0007215476000001

Figure 0007215476000002
Figure 0007215476000002

(実施例2)
本実施例に係る光学フィルタ(近赤外線カットフィルタ)は、実施例1にて用いたものと同様の透明基板と、透明基板の一方の面及び他方の面に設けられた薄膜積層構造体とを備える。この薄膜積層構造体は、それぞれ、上記透明基板表面側から、異なる屈折率の膜を順に積層した構造である。
(Example 2)
The optical filter (near-infrared cut filter) according to this example includes a transparent substrate similar to that used in Example 1, and a thin film laminated structure provided on one surface and the other surface of the transparent substrate. Prepare. This thin film laminate structure has a structure in which films with different refractive indices are laminated in order from the transparent substrate surface side.

透明基板の一方の面には2つの薄膜積層構造体が配置される。2つの薄膜積層構造体は、合計50層、物理膜厚5930.11nmである。2つの薄膜積層構造体は、透明基板側の上に設けられた、高屈折率膜(酸化ジルコニウム(ZrO))と低屈折率膜(酸化珪素(SiO))との合計30層の繰り返し積層構造(第2-1の薄膜積層構造体)及び第2-1の薄膜積層構造体の上(空気側)に設けられた、高屈折率膜(酸化チタン(TiO))と中屈折率膜(酸化アルミニウム(Al))との合計20層の繰り返し積層構造(第2-2の薄膜積層構造体)とからなる。Two thin film laminate structures are arranged on one side of the transparent substrate. The two thin film stacks have a total of 50 layers and a physical thickness of 5930.11 nm. The two thin film lamination structures consisted of a total of 30 repeated layers of a high refractive index film (zirconium oxide (ZrO 2 )) and a low refractive index film (silicon oxide (SiO 2 )) provided on the transparent substrate side. Laminated structure (2-1 thin film laminated structure) and high refractive index film (titanium oxide (TiO 2 )) and medium refractive index provided on the 2-1 thin film laminated structure (air side) It consists of a repeated lamination structure (2-2 thin film lamination structure) with a total of 20 layers of films (aluminum oxide (Al 2 O 3 )).

透明基板の他方の面には、1つの薄膜積層構造体が配置される。この薄膜積層構造体は、高屈折率膜(酸化チタン(TiO))と、低屈折率膜(酸化珪素(SiO))の合計60層、物理膜厚3570.77nmの繰り返し積層構造である(第2-3の薄膜積層構造体)。One thin film lamination structure is arranged on the other side of the transparent substrate. This thin film laminated structure has a repeated laminated structure with a total of 60 layers of a high refractive index film (titanium oxide (TiO 2 )) and a low refractive index film (silicon oxide (SiO 2 )) and a physical thickness of 3570.77 nm. (Second-3 thin film laminated structure).

上記の光学フィルタの透明基板の一方の面に設けられた薄膜積層構造体(第2-1の薄膜積層構造体及び第2-2の薄膜積層構造体)の構成を表3に示す。また、光学フィルタの透明基板の他方の面に設けられた薄膜積層構造体(第2-3の薄膜積層構造体)の構成を表4に示す。表3及び表4において、膜層数は透明基板側からの層の序数であり、膜厚は物理膜厚を示す。 Table 3 shows the configurations of the thin film laminated structures (2-1 thin film laminated structure and 2-2 thin film laminated structure) provided on one surface of the transparent substrate of the above optical filter. Table 4 shows the configuration of the thin film laminated structure (2-3 thin film laminated structure) provided on the other surface of the transparent substrate of the optical filter. In Tables 3 and 4, the number of film layers is the ordinal number of layers from the transparent substrate side, and the film thickness indicates the physical film thickness.

この光学フィルタについて、入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。結果を図6、図7(波長850nm~1050nmの領域における拡大図)に示す。 The optical characteristics of this optical filter at incident angles of 0°, 40° and 50° were verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). The results are shown in FIGS. 6 and 7 (enlarged views in the wavelength range of 850 nm to 1050 nm).

また、透明基板の一方の面に設けられた薄膜積層構造体(第2-1の薄膜積層構造体及び第2-2の薄膜積層構造体))のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図8に示す。また、透明基板の他方の面に設けられた薄膜積層構造体(第2-3の薄膜積層構造体)のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図9に示す。 In addition, only the thin film laminated structure (2-1 thin film laminated structure and 2-2 thin film laminated structure) provided on one side of the transparent substrate (excluding the influence of light absorption by the transparent substrate) ) at incident angles of 0°, 40° and 50° were verified using the optical thin film simulation software. The results are shown in FIG. In addition, only the thin film laminated structure (2-3 thin film laminated structure) provided on the other surface of the transparent substrate (excluding the influence of light absorption by the transparent substrate) has an incident angle of 0°, 40°, and 50°. ° was verified using the above optical thin film simulation software. The results are shown in FIG.

Figure 0007215476000003
Figure 0007215476000003

Figure 0007215476000004
Figure 0007215476000004

(実施例3)
本実施例に係る光学フィルタ(近赤外線カットフィルタ)は、実施例1にて用いたものと同様の透明基板と、透明基板の一方の面及び他方の面に設けられた薄膜積層構造体とを備える。この薄膜積層構造体は、それぞれ、上記透明基板表面側から、異なる屈折率の膜を順に積層した構造である。
(Example 3)
The optical filter (near-infrared cut filter) according to this example includes a transparent substrate similar to that used in Example 1, and a thin film laminated structure provided on one surface and the other surface of the transparent substrate. Prepare. This thin film laminate structure has a structure in which films with different refractive indices are laminated in order from the transparent substrate surface side.

透明基板の一方の面には2つの薄膜積層構造体が配置される。2つの薄膜積層構造体は、合計44層、物理膜厚5738.57nmである。2つの薄膜積層構造体は、透明基板側の上に設けられた、高屈折率膜(酸化ジルコニウム(ZrO))と低屈折率膜(酸化珪素(SiO))との合計16層の繰り返し積層構造(第3-1の薄膜積層構造体)及び第3-1の薄膜積層構造体の上(空気側)に設けられた、高屈折率膜(酸化チタン(TiO))と中屈折率膜(酸化珪素(SiO))との合計28層の繰り返し積層構造(第3-2の薄膜積層構造体)とからなる。Two thin film laminate structures are arranged on one side of the transparent substrate. The two thin film stacks have a total of 44 layers and a physical thickness of 5738.57 nm. The two thin film lamination structures consisted of a total of 16 repeated layers of a high refractive index film (zirconium oxide (ZrO 2 )) and a low refractive index film (silicon oxide (SiO 2 )) provided on the transparent substrate side. Laminated structure (3-1 thin film laminated structure) and high refractive index film (titanium oxide (TiO 2 )) and medium refractive index provided on the 3-1 thin film laminated structure (air side) It consists of a repeated lamination structure (3-2 thin film lamination structure) with a total of 28 layers of films (silicon oxide (SiO 2 )).

透明基板の他方の面には、1つの薄膜積層構造体が配置される。この薄膜積層構造体は、高屈折率膜(酸化ジルコニウム(ZrO))と、低屈折率膜(酸化珪素(SiO))の合計30層、物理膜厚3656.75nmの繰り返し積層構造である(第3-3の薄膜積層構造体)。One thin film lamination structure is arranged on the other side of the transparent substrate. This thin film lamination structure is a repeated lamination structure with a total of 30 layers of a high refractive index film (zirconium oxide (ZrO 2 )) and a low refractive index film (silicon oxide (SiO 2 )) and a physical thickness of 3656.75 nm. (3-3 thin film laminated structure).

上記の光学フィルタの透明基板の一方の面に設けられた薄膜積層構造体(第3-1の薄膜積層構造体及び第3-2の薄膜積層構造体)の構成を表5に示す。また、光学フィルタの透明基板の他方の面に設けられた薄膜積層構造体(第3-3の薄膜積層構造体)の構成を表6に示す。表5及び表6において、膜層数は透明基板側からの層の序数であり、膜厚は物理膜厚を示す。 Table 5 shows the configurations of the thin film laminated structures (3-1 thin film laminated structure and 3-2 thin film laminated structure) provided on one surface of the transparent substrate of the above optical filter. Table 6 shows the configuration of the thin film laminated structure (3-3 thin film laminated structure) provided on the other surface of the transparent substrate of the optical filter. In Tables 5 and 6, the number of film layers is the ordinal number of layers from the transparent substrate side, and the film thickness indicates the physical film thickness.

この光学フィルタについて、入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。結果を図10、図11(波長850nm~1050nmの領域における拡大図)に示す。 The optical characteristics of this optical filter at incident angles of 0°, 40° and 50° were verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). The results are shown in FIGS. 10 and 11 (enlarged views in the wavelength region of 850 nm to 1050 nm).

また、透明基板の一方の面に設けられた薄膜積層構造体(第3-1の薄膜積層構造体及び第3-2の薄膜積層構造体)のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフトを用いて検証した。結果を図12に示す。また、透明基板の他方の面に設けられた薄膜積層構造体(第3-3の薄膜積層構造体)のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフトを用いて検証した。結果を図13に示す。 In addition, only the thin film laminated structure (3-1 thin film laminated structure and 3-2 thin film laminated structure) provided on one surface of the transparent substrate (excluding the influence of light absorption by the transparent substrate) were verified using optical thin film simulation software at incident angles of 0°, 40° and 50°. The results are shown in FIG. In addition, the incident angles of 0°, 40° and 50° for only the thin film laminated structure (3-3 thin film laminated structure) provided on the other surface of the transparent substrate (excluding the influence of light absorption by the transparent substrate) ° was verified using optical thin film simulation software. The results are shown in FIG.

Figure 0007215476000005
Figure 0007215476000005

Figure 0007215476000006
Figure 0007215476000006

(比較例1)
本比較例に係る光学フィルタ(近赤外線カットフィルタ)は、実施例1にて用いたものと同様の透明基板を備える。透明基板の一方の面のみに複数の薄膜積層構造体と備える。この薄膜積層構造体は、上記透明基板表面側から、高屈折率膜と低屈折率膜とを順に積層した構造である。
(Comparative example 1)
The optical filter (near-infrared cut filter) according to this comparative example includes a transparent substrate similar to that used in the first example. A plurality of thin film lamination structures are provided only on one side of the transparent substrate. This thin film laminate structure has a structure in which a high refractive index film and a low refractive index film are laminated in order from the transparent substrate surface side.

透明基板の一方の面には、5つの薄膜積層構造体が配置される。この薄膜積層構造体は、いずれも高屈折率膜(酸化チタン(TiO))と低屈折率膜(酸化珪素(SiO))の合計40層、物理膜厚5151.58nmの繰り返し積層構造である。すなわち、透明基板の一方の面には同様の構成の5つの薄膜積層構造体が積層されている。Five thin film lamination structures are arranged on one side of the transparent substrate. Each of these thin film laminated structures has a repeated lamination structure with a total of 40 layers of a high refractive index film (titanium oxide (TiO 2 )) and a low refractive index film (silicon oxide (SiO 2 )), and a physical film thickness of 5151.58 nm. be. That is, five thin film lamination structures having the same configuration are laminated on one surface of the transparent substrate.

透明基板の他方の面に設けられた光学多層膜は反射防止膜である。この光学多層膜は、それぞれ高屈折率膜が酸化チタン(TiO)、低屈折率膜が酸化珪素(SiO)であり、それらの合計6層、物理膜厚237.58nmの繰り返し積層構造である。The optical multilayer film provided on the other surface of the transparent substrate is an antireflection film. This optical multilayer film has a high refractive index film made of titanium oxide (TiO 2 ) and a low refractive index film made of silicon oxide (SiO 2 ). be.

上記の光学フィルタの透明基板の一方の面に設けられた薄膜積層構造体の構成を表3に示す。また、光学フィルタの透明基板の他方の面に設けられた光学多層膜の構成を表4に示す。表7及び表8において、膜層数は透明基板側からの層の序数であり、膜厚は物理膜厚を示す。 Table 3 shows the configuration of the thin film laminate structure provided on one side of the transparent substrate of the above optical filter. Table 4 shows the configuration of the optical multilayer film provided on the other surface of the transparent substrate of the optical filter. In Tables 7 and 8, the film layer number is the ordinal number of the layer from the transparent substrate side, and the film thickness indicates the physical film thickness.

この光学フィルタについて、入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。結果を図14、図15(波長850nm~1050nmの領域における拡大図)に示す。また、透明基板の一方の面に設けられた薄膜積層構造体のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図16に示す。また、透明基板の他方の面に設けられた光学多層膜のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図17に示す。 The optical characteristics of this optical filter at incident angles of 0°, 40° and 50° were verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). The results are shown in FIGS. 14 and 15 (enlarged views in the wavelength range of 850 nm to 1050 nm). In addition, the optical characteristics of the thin film laminated structure only provided on one side of the transparent substrate (excluding the influence of light absorption by the transparent substrate) at incident angles of 0°, 40° and 50° were measured using the above optical thin film simulation software. was verified using The results are shown in FIG. In addition, the optical characteristics of the optical multilayer film provided on the other side of the transparent substrate alone (excluding the influence of light absorption by the transparent substrate) at incident angles of 0°, 40° and 50° were measured using the above optical thin film simulation software. It was verified using The results are shown in FIG.

Figure 0007215476000007
Figure 0007215476000007

Figure 0007215476000008
Figure 0007215476000008

(比較例2)
本比較例に係る光学フィルタ(近赤外線カットフィルタ)は、実施例1にて用いたものと同様の透明基板を備え、透明基板の一方の面のみに薄膜積層構造体を備える。この薄膜積層構造体は、上記透明基板表面側から、高屈折率膜と低屈折率膜とを順に積層した構造である。
(Comparative example 2)
The optical filter (near-infrared cut filter) according to this comparative example includes a transparent substrate similar to that used in Example 1, and includes a thin film laminated structure only on one surface of the transparent substrate. This thin film laminate structure has a structure in which a high refractive index film and a low refractive index film are laminated in order from the transparent substrate surface side.

透明基板の一方の面には、5つの薄膜積層構造体が配置される。5つの薄膜積層構造体は、いずれも、中屈折率膜(酸化ジルコニウムチタン(ZrO))、低屈折率膜(酸化珪素(SiO))及び高屈折率膜(酸化チタン(TiO))で構成される合計56層、物理膜厚7647.11nmの繰り返し積層構造である(第3の薄膜積層構造体)。そしてこの第3の薄膜積層構造体において、第1層から第20層までは、透明基板側から上記中屈折率膜と低屈折率膜を交互に積層した繰り返し積層構造であり、第21層から第56層までは、高屈折率膜と低屈折率膜を交互に積層した繰り返し積層構造である。すなわちこの光学フィルタは、透明基板の一方の面に、5つの薄膜積層構造体を有する。Five thin film lamination structures are arranged on one side of the transparent substrate. Each of the five thin film laminated structures includes a medium refractive index film (zirconium titanium oxide (ZrO 2 )), a low refractive index film (silicon oxide (SiO 2 )) and a high refractive index film (titanium oxide (TiO 2 )). A total of 56 layers and a repeated lamination structure with a physical film thickness of 7647.11 nm (third thin film lamination structure). In this third thin film laminated structure, the first to twentieth layers are a repeated lamination structure in which the medium refractive index film and the low refractive index film are alternately laminated from the transparent substrate side, and from the twenty-first layer to the Up to the fifty-sixth layer, it has a repeated lamination structure in which a high refractive index film and a low refractive index film are alternately laminated. That is, this optical filter has five thin film lamination structures on one side of a transparent substrate.

透明基板の他方の面に設けられた光学多層膜は反射防止膜である。この光学多層膜は、比較例1にて用いたものと同様の光学多層膜である。そのため、膜構成、分光特性の説明は省略する。 The optical multilayer film provided on the other surface of the transparent substrate is an antireflection film. This optical multilayer film is the same optical multilayer film as that used in Comparative Example 1. Therefore, description of the film configuration and spectral characteristics is omitted.

上記の光学フィルタの透明基板の一方の面に設けられた薄膜積層構造体(第3の薄膜積層構造体)の構成を表9に示す。表9において、膜層数は透明基板側からの層の序数であり、膜厚は物理膜厚を示す。この光学フィルタについて、入射角0°、40°及び50°における光学特性を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。結果を図18、図19(波長850nm~1050nmの領域における拡大図)に示す。また、透明基板の一方の面に設けられた薄膜積層構造体のみ(透明基板による光の吸収の影響を除く)の入射角0°、40°及び50°における光学特性を、上記光学薄膜シミュレーションソフトを用いて検証した。結果を図20に示す。 Table 9 shows the configuration of the thin film laminated structure (third thin film laminated structure) provided on one surface of the transparent substrate of the above optical filter. In Table 9, the film layer number is the ordinal number of the layer from the transparent substrate side, and the film thickness indicates the physical film thickness. The optical characteristics of this optical filter at incident angles of 0°, 40° and 50° were verified using optical thin film simulation software (TFCalc, manufactured by Software Spectra). The results are shown in FIGS. 18 and 19 (enlarged views in the wavelength range of 850 nm to 1050 nm). In addition, the optical characteristics of the thin film laminated structure only provided on one side of the transparent substrate (excluding the influence of light absorption by the transparent substrate) at incident angles of 0°, 40° and 50° were measured using the above optical thin film simulation software. was verified using The results are shown in FIG.

Figure 0007215476000009
Figure 0007215476000009

以上より、例えば、実施例1の光学フィルタは、光の入射角が40°、50°であっても近赤外領域のうち850nm~990nmの透過率が0.1%以下であり、透過リップルが抑制されている。また、同様に光の入射角が40°であっても可視領域(450nm~550nm)の透過率が最小値で92%以上、光の入射角が50°であっても可視領域の透過率の最小値が81%以上であり、反射リップルが抑制されている。また、波長898nm~955nmにおいて透過率が0.0001%以下であり、高い近赤外線の吸収能を備える。 From the above, for example, the optical filter of Example 1 has a transmittance of 0.1% or less in the near-infrared region from 850 nm to 990 nm even when the light incident angle is 40° or 50°, and the transmission ripple is suppressed. Similarly, even if the incident angle of light is 40°, the minimum transmittance in the visible region (450 nm to 550 nm) is 92% or more. The minimum value is 81% or more, and the reflected ripple is suppressed. In addition, it has a transmittance of 0.0001% or less at a wavelength of 898 nm to 955 nm, and has a high ability to absorb near-infrared rays.

これに対し、比較例1の光学フィルタは、光の入射角が50°において可視領域(450nm~550nm)の透過率の最小値が80%以下であり、反射リップルが抑制できていない。また、比較例2の光学フィルタは、光の入射角が50°において可視領域(450nm~550nm)の透過率の最小値が80%以下であり、反射リップルが抑制できていない。さらに、光の入射角が0°、40°、50°であっても近赤外領域(850nm~990nm)の透過率が0.1%以上であり、透過リップルが抑制できていない。 In contrast, the optical filter of Comparative Example 1 has a minimum transmittance of 80% or less in the visible region (450 nm to 550 nm) at a light incident angle of 50°, and reflection ripples cannot be suppressed. Further, the optical filter of Comparative Example 2 has a minimum transmittance of 80% or less in the visible region (450 nm to 550 nm) at a light incident angle of 50°, and reflection ripples cannot be suppressed. Furthermore, even when the incident angles of light are 0°, 40°, and 50°, the transmittance in the near-infrared region (850 nm to 990 nm) is 0.1% or more, and transmission ripples cannot be suppressed.

比較例1、2の光の入射角が50°において可視領域の反射リップルが抑制できていないのは、近赤外領域の透過を制限する薄膜積層構造体が、一方の面のみに形成されていることに起因するものと考えられる。 The reason why the reflection ripple in the visible range cannot be suppressed in Comparative Examples 1 and 2 when the incident angle of light is 50° is that the thin film laminated structure that limits the transmission of the near-infrared range is formed only on one surface. This is thought to be due to the presence of

本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
本出願は、2018年3月30日出願の日本特許出願2018-067598に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application 2018-067598 filed on March 30, 2018, the contents of which are incorporated herein by reference.

1…光学フィルタ、2…透明基板、11,12,13…薄膜積層構造体、10a,10b…表面。 DESCRIPTION OF SYMBOLS 1... Optical filter, 2... Transparent substrate, 11, 12, 13... Thin film laminated structure, 10a, 10b... Surface.

Claims (6)

透明基板と、それぞれ近赤外波長領域内の所定の波長範囲の光の透過を制限する、3つ以上の、薄膜積層構造体を備えた光学フィルタであって、
各々の前記薄膜積層構造体は前記透明基板のいずれか一方の表面上に積層され、
前記3つ以上の薄膜積層構造体のうち少なくとも2つの薄膜積層構造体は、透過を制限する波長範囲がそれぞれ異なっており、
前記3つ以上の薄膜積層構造体によって透過が制限される波長範囲が連続しており、
前記透明基板の少なくとも一方の同一の表面側に配置される前記薄膜積層構造体が透過を制限する波長領域が不連続であり、
前記光学フィルタは、光の入射角が40°及び50°のいずれでも、850nm~990nmの透過率が0.1%以下である、光学フィルタ。
1. An optical filter comprising a transparent substrate and three or more thin film stacks each restricting transmission of light in a predetermined wavelength range within the near-infrared wavelength region,
each of the thin film laminate structures is laminated on one surface of the transparent substrate;
At least two of the three or more thin film laminated structures have different wavelength ranges for limiting transmission,
The wavelength ranges whose transmission is restricted by the three or more thin film laminated structures are continuous, and
the wavelength region in which the thin film laminated structure arranged on the same surface side of at least one of the transparent substrates restricts transmission is discontinuous ;
The optical filter has a transmittance of 0.1% or less in the range of 850 nm to 990 nm regardless of whether the incident angle of light is 40° or 50° .
前記3つ以上の薄膜積層構造体のうち、近赤外領域の波長の光の透過を制限する波長範囲の中心波長が2番目に短波長側にある薄膜積層構造体がそれ以外の薄膜積層構造体とは異なる表面に積層され、且つ、物理膜厚が、それ以外の前記薄膜積層構造体のそれぞれの物理膜厚よりも厚いことを特徴とする請求項1に記載の光学フィルタ。 Among the three or more thin film laminated structures, the thin film laminated structure having the center wavelength of the wavelength range for limiting the transmission of light having a wavelength in the near-infrared region that is second on the short wavelength side is the other thin film laminated structure. 2. The optical filter according to claim 1, wherein the optical filter is laminated on a surface different from the body, and the physical film thickness is thicker than each physical film thickness of the other thin film laminated structures. 近赤外領域の波長の光の透過を制限する波長範囲の中心波長が2番目に短波長側にある前記薄膜積層構造体の透過制限波長範囲では、前記波長範囲内の最も透過率が低い波長において、透過率が0.05%以下である、請求項2に記載の光学フィルタ。 In the transmission limiting wavelength range of the thin film laminated structure in which the center wavelength of the wavelength range limiting the transmission of light in the near-infrared region is the second shortest wavelength, the wavelength with the lowest transmittance in the wavelength range 3. The optical filter according to claim 2, wherein the transmittance is 0.05% or less. 前記透明基板は、ガラス、ガラスセラミックス、水晶、樹脂及びサファイアから選ばれるいずれか1つ以上からなる、請求項1~3のいずれか1項に記載の光学フィルタ。 4. The optical filter according to claim 1, wherein said transparent substrate is made of one or more selected from glass, glass ceramics, crystal, resin and sapphire. 前記透明基板は、近赤外領域の波長の光を吸収する性質を有する、請求項1~4のいずれか1項に記載の光学フィルタ。 The optical filter according to any one of claims 1 to 4, wherein the transparent substrate has a property of absorbing light with wavelengths in the near-infrared region. 前記透明基板の少なくとも一方の表面上に、近赤外領域の波長の光を吸収する成分を含む近赤外線吸収層を有する、請求項1~5のいずれか1項に記載の光学フィルタ。 6. The optical filter according to any one of claims 1 to 5, comprising a near-infrared absorption layer containing a component that absorbs light with a wavelength in the near-infrared region on at least one surface of said transparent substrate.
JP2020510830A 2018-03-30 2019-03-25 optical filter Active JP7215476B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018067598 2018-03-30
JP2018067598 2018-03-30
PCT/JP2019/012619 WO2019189039A1 (en) 2018-03-30 2019-03-25 Optical filter

Publications (2)

Publication Number Publication Date
JPWO2019189039A1 JPWO2019189039A1 (en) 2021-04-08
JP7215476B2 true JP7215476B2 (en) 2023-01-31

Family

ID=68058950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510830A Active JP7215476B2 (en) 2018-03-30 2019-03-25 optical filter

Country Status (4)

Country Link
JP (1) JP7215476B2 (en)
CN (1) CN111954833B (en)
TW (1) TWI798400B (en)
WO (1) WO2019189039A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116648644A (en) * 2020-12-25 2023-08-25 Agc株式会社 optical filter
WO2023282184A1 (en) * 2021-07-07 2023-01-12 Agc株式会社 Optical filter
CN117677872A (en) * 2021-07-07 2024-03-08 Agc株式会社 Optical filter
CN117677871A (en) * 2021-07-07 2024-03-08 Agc株式会社 Optical filter
WO2023167062A1 (en) * 2022-03-02 2023-09-07 Agc株式会社 Optical filter
WO2024048507A1 (en) * 2022-08-31 2024-03-07 Agc株式会社 Optical filter
WO2024143130A1 (en) * 2022-12-27 2024-07-04 Agc株式会社 Optical filter
WO2024143129A1 (en) * 2022-12-27 2024-07-04 Agc株式会社 Optical filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183525A (en) 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
JP2009217138A (en) 2008-03-12 2009-09-24 Canon Electronics Inc Optical filter
WO2013179902A1 (en) 2012-05-31 2013-12-05 コニカミノルタ株式会社 Infrared-shielding object
JP2015011319A (en) 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
JP2015111241A (en) 2013-10-30 2015-06-18 日本電波工業株式会社 Optical component
WO2016171219A1 (en) 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447441B (en) * 2010-11-08 2014-08-01 Ind Tech Res Inst Multilayered infrared light reflective structure
CN104204873B (en) * 2012-06-04 2016-08-24 旭硝子株式会社 Near infrared ray cut-off filter
JP2016071278A (en) * 2014-10-01 2016-05-09 キヤノン電子株式会社 Optical filter and light quantity adjusting device, and imaging apparatus
CN109073812A (en) * 2016-05-17 2018-12-21 日东电工株式会社 Polarizing coating and its manufacturing method, optical film, image display device and easy bonding processing polarizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183525A (en) 2005-12-07 2007-07-19 Murakami Corp Dielectric multilayer film filter
JP2009217138A (en) 2008-03-12 2009-09-24 Canon Electronics Inc Optical filter
WO2013179902A1 (en) 2012-05-31 2013-12-05 コニカミノルタ株式会社 Infrared-shielding object
JP2015011319A (en) 2013-07-02 2015-01-19 旭硝子株式会社 Near-infrared cut filter
JP2015111241A (en) 2013-10-30 2015-06-18 日本電波工業株式会社 Optical component
WO2016171219A1 (en) 2015-04-23 2016-10-27 旭硝子株式会社 Optical filter and imaging device

Also Published As

Publication number Publication date
WO2019189039A1 (en) 2019-10-03
CN111954833A (en) 2020-11-17
TWI798400B (en) 2023-04-11
TW201942602A (en) 2019-11-01
CN111954833B (en) 2022-07-12
JPWO2019189039A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7215476B2 (en) optical filter
KR101815823B1 (en) Optical filter and imaging device
KR101887846B1 (en) Optical Filters and Imaging Devices
JP6241419B2 (en) Near-infrared cut filter
US9201181B2 (en) Infrared cut filter and imaging apparatus
JP5849719B2 (en) Light absorber and imaging device using the same
JP2021140177A (en) Optical filter and imaging apparatus
WO2014103921A1 (en) Ir cut filter and image capture device including same
JP2022512737A (en) Transparent cover with anti-reflective coating
KR19980025055A (en) Light absorber and optical device using the same
CN113050213B (en) Ultraviolet transmission filter
JP2017167557A (en) Light absorber and image capturing device using the same
JPH10153704A (en) Optical absorbing body, and optical equipment using the same
TWI788014B (en) Optical filter
JP7347145B2 (en) Optical element and fingerprint detection device
JP6156468B2 (en) Light absorber and imaging device using the same
WO2022052268A1 (en) Lens and lens assembly
KR20220096836A (en) Imaging Device
JP7326738B2 (en) Near-infrared cut filter
KR20240048493A (en) Optical Filter
KR20240011618A (en) Material Layer for Optical Filter
CN118409380A (en) Optical filter
JP2024055846A (en) Optical filter and image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150