JP2021110024A - Method for producing nickel sulfate aqueous solution - Google Patents

Method for producing nickel sulfate aqueous solution Download PDF

Info

Publication number
JP2021110024A
JP2021110024A JP2020004532A JP2020004532A JP2021110024A JP 2021110024 A JP2021110024 A JP 2021110024A JP 2020004532 A JP2020004532 A JP 2020004532A JP 2020004532 A JP2020004532 A JP 2020004532A JP 2021110024 A JP2021110024 A JP 2021110024A
Authority
JP
Japan
Prior art keywords
slurry
filtration
nickel sulfate
leaching
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020004532A
Other languages
Japanese (ja)
Other versions
JP7354845B2 (en
Inventor
友彦 横川
Tomohiko Yokogawa
友彦 横川
敬介 柴山
Keisuke Shibayama
敬介 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020004532A priority Critical patent/JP7354845B2/en
Publication of JP2021110024A publication Critical patent/JP2021110024A/en
Application granted granted Critical
Publication of JP7354845B2 publication Critical patent/JP7354845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a production method for nickel sulfate aqueous solution capable of inhibiting filtration leakage.SOLUTION: A production method for nickel sulfate aqueous solution comprises: a pressure exudation process of obtaining an exudation slurry including an exudation residue by pressure exudation of a raw material slurry; a neutralization process of obtaining a neutralization slurry including the exudation residue and a mixture of neutralization precipitates by generating a neutralization precipitate of iron included in the exudation slurry; a first filtration process of separating a nickel sulfate aqueous solution from a blended precipitate by filtrating the neutralization slurry; an acid cleaning process of obtaining an acid cleaning slurry by adding an acid aqueous solution to the blended precipitate obtained in the first filtration process to leach nickel; and a second filtration process of separating a nickel recovery liquid from an acid cleaning precipitate by filtrating the acid cleaning slurry. In the pressure exudation process, the liquid phase oxidation-reduction potential (silver/silver chloride electrode standard) of the exudation slurry is controlled in the range of 410-500 mV.SELECTED DRAWING: Figure 1

Description

本発明は、硫酸ニッケル水溶液の製造方法に関する。さらに詳しくは、本発明は、ニッケル硫化物から硫酸ニッケル水溶液を製造する方法に関する。 The present invention relates to a method for producing an aqueous nickel sulfate solution. More specifically, the present invention relates to a method for producing an aqueous nickel sulfate solution from nickel sulfide.

硫酸ニッケル水溶液、特に高純度硫酸ニッケル水溶液はニッケル化合物の原料として用いられる。例えば、硫酸ニッケル水溶液を晶析することで硫酸ニッケル結晶が得られる。ニッケル化合物は、一般的な電解めっき材料、装飾用途または電子部品用途の無電解めっき材料、触媒材料、コンデンサーおよびインダクターなどの電子部品用材料、電池用材料などとして用いられる。 A nickel sulfate aqueous solution, particularly a high-purity nickel sulfate aqueous solution, is used as a raw material for a nickel compound. For example, nickel sulfate crystals can be obtained by crystallizing an aqueous solution of nickel sulfate. Nickel compounds are used as general electroplating materials, electroless plating materials for decorative or electronic components, catalyst materials, materials for electronic components such as capacitors and inductors, materials for batteries, and the like.

純度の高いニッケル化合物を得るために、硫酸ニッケル水溶液から不純物を除去する処理が行なわれる。例えば、特許文献1には、粗硫酸ニッケル水溶液に空気を吹き込みながら中和して主に鉄を中和澱物として除去することが開示されている。中和澱物には鉄の水酸化物とともに回収目的金属であるニッケルの水酸化物が含まれる。そこで、中和澱物に硫酸を添加し、ニッケルを浸出して回収することが行なわれる。 In order to obtain a highly pure nickel compound, a treatment for removing impurities from the nickel sulfate aqueous solution is performed. For example, Patent Document 1 discloses that a crude nickel sulfate aqueous solution is neutralized while blowing air to remove mainly iron as a neutralized starch. The neutralized starch contains a hydroxide of nickel, which is a recovery target metal, as well as a hydroxide of iron. Therefore, sulfuric acid is added to the neutralized starch to leach and recover nickel.

特開2006−225217号公報Japanese Unexamined Patent Publication No. 2006-225217

澱物の除去はスラリーを濾過することにより行なわれる。澱物が微細な粒子からなる場合、濾過漏れ、すなわち濾液の濁りが発生する。濁りのない濾液を得るために、通液開始時にスラリーに含まれる澱物により濾布の表面にケーキ層を形成するための初期濾過を行なうことがある。濾過漏れが著しいときは、初期濾過に長時間を要し、それに伴い生産性が低下する。 Removal of the starch is carried out by filtering the slurry. If the precipitate consists of fine particles, filtration leaks, or turbidity of the filtrate, will occur. In order to obtain a clear filtrate, initial filtration may be performed to form a cake layer on the surface of the filter cloth with the starch contained in the slurry at the start of liquid passage. When the filtration leakage is significant, the initial filtration takes a long time, and the productivity is lowered accordingly.

本発明は上記事情に鑑み、濾過漏れを抑制できる硫酸ニッケル水溶液の製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method for producing an aqueous nickel sulfate solution capable of suppressing filtration leakage.

第1発明の硫酸ニッケル水溶液の製造方法は、ニッケル硫化物を含有する原料スラリーを加圧浸出して、浸出残渣を含む浸出スラリーを得る加圧浸出工程と、酸化中和反応により前記浸出スラリーの液相に含まれる鉄の中和澱物を生成して、前記浸出残渣および前記中和澱物の混合澱物を含む中和スラリーを得る酸化中和工程と、前記中和スラリーを濾過して前記混合澱物と硫酸ニッケル水溶液とを分離する第1濾過工程と、前記第1濾過工程で得られた前記混合澱物に酸水溶液を添加して前記混合澱物に含まれるニッケルを浸出して酸洗スラリーを得る酸洗工程と、前記酸洗スラリーを濾過して酸洗澱物とニッケル回収液とを分離する第2濾過工程と、を備え、前記加圧浸出工程において、前記浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を410mV以上、500mV以下に調整することを特徴とする。
第2発明の硫酸ニッケル水溶液の製造方法は、第1発明において、前記加圧浸出工程において、前記浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を480mV超、500mV以下に調整することを特徴とする。
第3発明の硫酸ニッケル水溶液の製造方法は、第1または第2発明において、前記第1濾過工程および前記第2濾過工程に用いられる濾布の通気性が0.1cm3/cm2・sec以上、0.7cm3/cm2・sec以下であることを特徴とする。
第4発明の硫酸ニッケル水溶液の製造方法は、第1〜第3発明のいずれかにおいて、前記第1濾過工程および前記第2濾過工程において、フィルタープレスを用いて濾過を行ない、通液開始時に前記中和スラリーまたは前記酸洗スラリーに含まれる固体分により濾布の表面にケーキ層を形成するための初期濾過を行なうことを特徴とする。
第5発明の硫酸ニッケル水溶液の製造方法は、第1〜第4発明のいずれかにおいて、前記酸化中和工程において前記浸出スラリーの液相のpHを4.0以上、5.5以下に調整することを特徴とする。
第6発明の硫酸ニッケル水溶液の製造方法は、第1〜第5発明のいずれかにおいて、前記酸洗工程において前記酸洗スラリーの液相のpHを3.0以上、4.0以下に調整することを特徴とする。
The method for producing an aqueous nickel sulfate solution of the first invention is a pressure leaching step of pressure leaching a raw material slurry containing nickel sulfide to obtain a leaching slurry containing a leaching residue, and a pressure leaching step of the leaching slurry by an oxidation neutralization reaction. An oxidation-neutralization step of producing an iron-neutralized starch contained in the liquid phase to obtain a neutralized slurry containing the leachate residue and a mixed starch of the neutralized starch, and filtering the neutralized slurry. An acid aqueous solution is added to the mixed starch obtained in the first filtration step of separating the mixed starch and the nickel sulfate aqueous solution, and nickel contained in the mixed starch is leached out. The pickling step of obtaining the pickling slurry and the second filtering step of filtering the pickling slurry to separate the pickled starch and the nickel recovery liquid are provided. It is characterized in that the oxidation-reduction potential (based on silver / silver chloride electrode) of the liquid phase is adjusted to 410 mV or more and 500 mV or less.
In the method for producing an aqueous nickel sulfate solution of the second invention, in the first invention, the oxidation-reduction potential (based on silver / silver chloride electrode) of the liquid phase of the leaching slurry is adjusted to more than 480 mV and 500 mV or less in the pressure leaching step. It is characterized by doing.
In the method for producing an aqueous nickel sulfate solution of the third invention, in the first or second invention, the air permeability of the filter cloth used in the first filtration step and the second filtration step is 0.1 cm 3 / cm 2 · sec or more. , 0.7 cm 3 / cm 2 · sec or less.
The method for producing an aqueous nickel sulfate solution of the fourth invention is the method for producing an aqueous nickel sulfate solution, wherein in any of the first to third inventions, filtration is performed using a filter press in the first filtration step and the second filtration step. It is characterized in that initial filtration for forming a cake layer on the surface of the filter cloth is performed by the neutralized slurry or the solid content contained in the pickled slurry.
In any of the first to fourth inventions, the method for producing an aqueous nickel sulfate solution of the fifth invention adjusts the pH of the liquid phase of the leachate slurry to 4.0 or more and 5.5 or less in the oxidation neutralization step. It is characterized by that.
In any one of the first to fifth inventions, the method for producing an aqueous nickel sulfate solution of the sixth invention adjusts the pH of the liquid phase of the pickling slurry to 3.0 or more and 4.0 or less in the pickling step. It is characterized by that.

本発明によれば、加圧浸出工程において酸化還元電位を500mV以下に調整することでヘマタイトの析出を低減できる。混合澱物に含まれる粒子のうち微細なヘマタイトの割合が低くなるので、濾過漏れを抑制できる。 According to the present invention, hematite precipitation can be reduced by adjusting the redox potential to 500 mV or less in the pressure leaching step. Since the proportion of fine hematite in the particles contained in the mixed starch is low, filtration leakage can be suppressed.

硫酸ニッケル水溶液の製造プロセスの全体工程図である。It is the whole process drawing of the manufacturing process of the nickel sulfate aqueous solution.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る硫酸ニッケル水溶液の製造方法は、例えば、図1に示すプロセスを有する。
Next, an embodiment of the present invention will be described with reference to the drawings.
The method for producing an aqueous nickel sulfate solution according to an embodiment of the present invention includes, for example, the process shown in FIG.

ニッケル硫化物を含有する原料が用いられる。この種の原料としてニッケル・コバルト混合硫化物(MS:ミックスサルファイド)がある。低品位ラテライト鉱などのニッケル酸化鉱石を加圧酸浸出(HPAL:High Pressure Acid Leaching)し、浸出液から鉄などの不純物を除去した後、硫化水素ガスを浸出液に吹き込むことで硫化反応を生じさせ、ニッケル・コバルト混合硫化物が得られる。 A raw material containing nickel sulfide is used. Nickel-cobalt mixed sulfide (MS: mixed sulfide) is a raw material of this kind. High Pressure Acid Leaching (HPAL) is performed on nickel oxide ore such as low-grade laterite ore to remove impurities such as iron from the leachate, and then hydrogen sulfide gas is blown into the leachate to cause a sulfurization reaction. A nickel-cobalt mixed sulfide is obtained.

ニッケル・コバルト混合硫化物の組成は、ニッケルが50〜60重量%、コバルトが4〜6重量%、硫黄が30〜34重量%(いずれも乾燥量基準)である。ニッケル・コバルト混合硫化物には、マグネシウム、鉄、銅、亜鉛などの不純物が含まれている。ニッケル・コバルト混合硫化物は鉄を0.1〜1重量%含む。 The composition of the nickel-cobalt mixed sulfide is 50 to 60% by weight of nickel, 4 to 6% by weight of cobalt, and 30 to 34% by weight of sulfur (all based on the dry amount). Nickel-cobalt mixed sulfide contains impurities such as magnesium, iron, copper and zinc. The nickel-cobalt mixed sulfide contains 0.1 to 1% by weight of iron.

(1)加圧浸出工程
加圧浸出工程では、原料をレパルプして得た原料スラリーを、オートクレーブで加圧浸出して浸出スラリーを得る。浸出条件は、例えば圧力(ゲージ圧)1.8〜2.0MPaG、温度140〜180℃である。加圧浸出により、ニッケル・コバルト混合硫化物に含まれるニッケル、コバルト、その他の不純物が浸出される。浸出スラリーは粗硫酸ニッケル水溶液(不純物を含む硫酸ニッケル水溶液)と浸出残渣とからなるスラリーである。
(1) Pressurized leaching step In the pressurized leaching step, the raw material slurry obtained by repulping the raw material is leached under pressure by an autoclave to obtain a leaching slurry. The leaching conditions are, for example, a pressure (gauge pressure) of 1.8 to 2.0 MPaG and a temperature of 140 to 180 ° C. The pressure leaching leaches nickel, cobalt and other impurities contained in the nickel-cobalt mixed sulfide. The leaching slurry is a slurry composed of a crude nickel sulfate aqueous solution (an aqueous solution of nickel sulfate containing impurities) and a leaching residue.

(2)酸化中和工程
酸化中和工程では、酸化中和反応により浸出スラリーの液相(粗硫酸ニッケル水溶液)に含まれる不純物、主に鉄の中和澱物を生成する。酸化剤として空気を用いることができる。中和剤として、消石灰、水酸化ニッケル、水酸化ナトリウムなどが用いられる。このうち、消石灰は石膏を生成し澱物の濾過性を改善するため好ましい。
(2) Oxidation Neutralization Step In the oxidative neutralization step, impurities contained in the liquid phase (crude nickel sulfate aqueous solution) of the leaching slurry, mainly iron-neutralized starch, are produced by the oxidative neutralization reaction. Air can be used as the oxidant. As the neutralizing agent, slaked lime, nickel hydroxide, sodium hydroxide and the like are used. Of these, slaked lime is preferable because it produces gypsum and improves the filterability of the starch.

酸化中和反応は、以下の式(1)で表される。粗硫酸ニッケル水溶液に含まれるFe2+をFe3+に酸化し、中和反応によってFe(OH)3を生成して中和澱物とする。
4FeSO4+4Ca(OH)2+O2+2H2O→4Fe(OH)3+4CaSO4・・・(1)
The oxidation-neutralization reaction is represented by the following formula (1). Fe 2+ contained in the crude nickel sulfate aqueous solution is oxidized to Fe 3+ , and Fe (OH) 3 is produced by a neutralization reaction to obtain a neutralized starch.
4FeSO 4 + 4Ca (OH) 2 + O 2 + 2H 2 O → 4Fe (OH) 3 + 4CaSO 4 ... (1)

酸化中和工程では、鉄の水酸化物が生成されるとともに、回収目的金属であるニッケルの水酸化物も極僅かに生成される。この反応は、以下の式(2)で表される。
NiSO4+Ca(OH)2→Ni(OH)2+CaSO4・・・(2)
In the oxidation neutralization step, an iron hydroxide is produced, and a very small amount of nickel hydroxide, which is a recovery target metal, is also produced. This reaction is represented by the following formula (2).
NiSO 4 + Ca (OH) 2 → Ni (OH) 2 + CaSO 4 ... (2)

酸化中和反応のpHが低すぎると、鉄の水酸化物があまり生成されず、液相である硫酸ニッケル水溶液中に鉄が残留してしまう。逆に、酸化中和反応のpHが高すぎると、ニッケルの水酸化物が増加し、硫酸ニッケル水溶液へのニッケル分配率が低下する。酸化中和工程において液相のpHを4.0〜5.5に調整することが好ましい。そうすれば、十分に鉄を除去しつつ、硫酸ニッケル水溶液へのニッケル分配率の低下を抑制できる。 If the pH of the oxidation-neutralization reaction is too low, a hydroxide of iron is not generated so much, and iron remains in the aqueous solution of nickel sulfate, which is a liquid phase. On the contrary, if the pH of the oxidation-neutralization reaction is too high, the hydroxide of nickel increases and the distribution rate of nickel to the nickel sulfate aqueous solution decreases. It is preferable to adjust the pH of the liquid phase to 4.0 to 5.5 in the oxidation neutralization step. By doing so, it is possible to suppress a decrease in the nickel distribution rate in the nickel sulfate aqueous solution while sufficiently removing iron.

酸化中和反応後のスラリーを中和スラリーと称する。中和スラリーは鉄除去後の硫酸ニッケル水溶液と浸出残渣および中和澱物とからなるスラリーである。浸出残渣と中和澱物との混合物を混合澱物と称する。 The slurry after the oxidation-neutralization reaction is called a neutralization slurry. The neutralized slurry is a slurry composed of an aqueous solution of nickel sulfate after iron removal, a leachate residue, and a neutralized starch. A mixture of the leachate residue and the neutralized starch is referred to as a mixed starch.

(3)第1濾過工程
第1濾過工程では、中和スラリーを濾過して混合澱物と硫酸ニッケル水溶液とを分離する。なお、混合澱物には加圧浸出後の残渣である浸出残渣が含まれる。浸出残渣は酸化中和工程を経て、第1濾過工程で中和澱物とともに固液分離される。
(3) First Filtration Step In the first filtration step, the neutralized slurry is filtered to separate the mixed starch and the nickel sulfate aqueous solution. The mixed starch contains a leaching residue which is a residue after pressure leaching. The leachate residue goes through an oxidation neutralization step and is solid-liquid separated together with the neutralized starch in the first filtration step.

(4)溶媒抽出工程
第1濾過工程で得られた硫酸ニッケル水溶液は、必要に応じてさらに不純物を除去する処理が行なわれる。例えば、硫酸ニッケル水溶液は溶媒抽出工程に付される。溶媒抽出工程では、溶媒抽出により硫酸ニッケル水溶液に含まれるコバルトなどの不純物を除去して高純度硫酸ニッケル水溶液を得る。
(4) Solvent Extraction Step The nickel sulfate aqueous solution obtained in the first filtration step is further subjected to a treatment for removing impurities as needed. For example, the nickel sulfate aqueous solution is subjected to a solvent extraction step. In the solvent extraction step, impurities such as cobalt contained in the nickel sulfate aqueous solution are removed by solvent extraction to obtain a high-purity nickel sulfate aqueous solution.

得られた高純度硫酸ニッケル水溶液は、その後、用途に応じた処理に付される。例えば、高純度硫酸ニッケル水溶液は、晶析装置を用いて濃縮、晶析され、硫酸ニッケル結晶となる。また、高純度硫酸ニッケル水溶液は、水溶液のままの状態で二次電池の正極材料の製造に用いられる。 The obtained high-purity nickel sulfate aqueous solution is then subjected to a treatment according to the intended use. For example, a high-purity nickel sulfate aqueous solution is concentrated and crystallized using a crystallization device to obtain nickel sulfate crystals. Further, the high-purity nickel sulfate aqueous solution is used as it is in the production of the positive electrode material of the secondary battery.

(5)酸洗工程
酸化中和工程で生成される中和澱物にはニッケルの水酸化物が含まれる。そこで、中和澱物に含まれるニッケルを回収する処理を行なう。酸洗工程では、第1濾過工程で得られた混合澱物をレパルプしてスラリーとした後、酸水溶液を添加して混合澱物に含まれるニッケルを浸出する。この酸洗後のスラリーを酸洗スラリーと称する。
(5) Pickling step The neutralized starch produced in the oxidative neutralization step contains nickel hydroxide. Therefore, a treatment for recovering nickel contained in the neutralized starch is performed. In the pickling step, the mixed starch obtained in the first filtration step is repulped to form a slurry, and then an acid aqueous solution is added to leach nickel contained in the mixed starch. The slurry after pickling is called a pickling slurry.

酸洗に用いられる酸として、例えば硫酸が用いられる。酸洗処理のpHが高すぎるとニッケルの回収が不十分になる。逆に、酸洗処理のpHが低すぎると鉄の水酸化物も溶解するため、澱物が小径化して濾過性が悪くなる。酸洗工程において液相のpHを3.0〜4.0に調整することが好ましい。そうすれば、ニッケルを十分に回収できるとともに、澱物の小径化を抑制できる。 As the acid used for pickling, for example, sulfuric acid is used. If the pH of the pickling treatment is too high, nickel recovery will be insufficient. On the contrary, if the pH of the pickling treatment is too low, the hydroxide of iron is also dissolved, so that the diameter of the starch is reduced and the filterability is deteriorated. It is preferable to adjust the pH of the liquid phase to 3.0 to 4.0 in the pickling step. By doing so, nickel can be sufficiently recovered and the diameter reduction of the starch can be suppressed.

(6)第2濾過工程
第2濾過工程では、酸洗スラリーを濾過して酸洗澱物とニッケル回収液とを分離する。これにより、中和澱物に含まれるニッケルがニッケル回収液として回収される。酸洗後に残存した酸洗澱物は系外に排出される。
(6) Second Filtration Step In the second filtration step, the pickled slurry is filtered to separate the pickled starch and the nickel recovery liquid. As a result, nickel contained in the neutralized starch is recovered as a nickel recovery liquid. The pickled starch remaining after pickling is discharged to the outside of the system.

第1濾過工程および第2濾過工程では濾過機を用いて濾過が行なわれる。濾過機として、例えば、フィルタープレスが用いられる。フィルタープレスなどの濾過機を用いる場合、通液開始時に原液(濾過対象の液)を循環濾過し、原液に含まれる固体分により濾布の表面にケーキ層を形成する初期濾過が行なわれる。 In the first filtration step and the second filtration step, filtration is performed using a filter. As the filter, for example, a filter press is used. When a filter such as a filter press is used, the undiluted solution (the solution to be filtered) is circulated and filtered at the start of passing the solution, and the solid content contained in the undiluted solution is used for initial filtration to form a cake layer on the surface of the filter cloth.

例えば、予め濾過助剤を分散させた原液を濾過機に通すボディフィードを行なって、濾布の表面に濾過助剤と固体分とからなるケーキ層を形成してもよい。ボディフィードに先立ち、濾過助剤を分散させた清澄液を濾過機に通して、濾布の表面に濾過助剤の層を形成するプリコートを行なってもよい。なお、濾過助剤として、特に限定されないが、珪藻土、パーライトなどが用いられる。 For example, a cake layer composed of the filter aid and the solid component may be formed on the surface of the filter cloth by performing a body feed in which the undiluted solution in which the filter aid is dispersed in advance is passed through a filter. Prior to the body feed, a clear solution in which the filter aid is dispersed may be passed through a filter to precoat the surface of the filter cloth to form a layer of the filter aid. The filtration aid is not particularly limited, but diatomaceous earth, pearlite, or the like is used.

フィルタープレスは密閉された濾過一次側にポンプで加圧された原液を供給することで濾過圧力を高くすることができる。そのため、フィルタープレスを用いれば濾過速度を速くできる。しかし、加圧濾過を行なうと、通液初期に濾布を通過する微細粒子が多くなる。フィルタープレスにおいて、微細粒子は濾布のみよりに捕集されるのではなく、濾布の表面に形成されたケーキ層によって絡め取られる。そのため、初期濾過によるケーキ層の形成が重要になる。 The filter press can increase the filtration pressure by supplying the undiluted solution pressurized by the pump to the closed primary side of the filtration. Therefore, if a filter press is used, the filtration rate can be increased. However, when pressure filtration is performed, the number of fine particles that pass through the filter cloth at the initial stage of liquid passage increases. In the filter press, the fine particles are not collected only by the filter cloth, but are entangled by the cake layer formed on the surface of the filter cloth. Therefore, the formation of a cake layer by initial filtration is important.

初期濾過においては、濾液を通常の清澄濾液側に送らずに、元の一次側に戻す循環濾過を行なう。循環濾過を継続するに従って、濾液の濁りが消えていく。濾液の濁りを監視しながら、濾液が清澄になった時点で、濾過を補助するための澱物層(ケーキ層)が濾布の表面に形成されたと判断し、濾液の送り先を通常の清澄濾液側に切り替える。本明細書では、この一連の操作を初期濾過と称する。 In the initial filtration, circulation filtration is performed in which the filtrate is returned to the original primary side without being sent to the normal clarified filtrate side. As the circulation filtration is continued, the turbidity of the filtrate disappears. While monitoring the turbidity of the filtrate, when the filtrate becomes clarified, it is judged that a starch layer (cake layer) for assisting filtration is formed on the surface of the filter cloth, and the destination of the filtrate is a normal clarified filtrate. Switch to the side. In the present specification, this series of operations is referred to as initial filtration.

濾布の表面にケーキ層を形成した後、原液を通液して濾過を行なう。この際、原液に含まれる微細粒子はケーキ層に捕捉される。これにより原液から固体分が除去された清澄液が得られる。 After forming a cake layer on the surface of the filter cloth, the undiluted solution is passed through the filter cloth for filtration. At this time, the fine particles contained in the undiluted solution are captured in the cake layer. As a result, a clarified solution from which the solid content has been removed from the undiluted solution can be obtained.

通液開始時の初期濾過は、十分なケーキ層が形成され、濾液が清澄液になるまで行なわれる。この初期濾過に要する時間を初期濾過時間と称する。初期濾過時間の間は実質的に濾過処理が進行しないため、初期濾過時間が長いほど生産性が低下する。 Initial filtration at the start of fluid flow is carried out until a sufficient cake layer is formed and the filtrate becomes a clarified solution. The time required for this initial filtration is referred to as the initial filtration time. Since the filtration process does not substantially proceed during the initial filtration time, the longer the initial filtration time, the lower the productivity.

第1濾過工程および第2濾過工程の濾過処理において、初期濾過時間が長くなることがある。特に、酸洗後の澱物は鉄の水酸化物の一部溶解により小径化しやすいことから、第2濾過工程の初期濾過時間は長くなりやすい。 In the filtration process of the first filtration step and the second filtration step, the initial filtration time may be long. In particular, since the diameter of the starch after pickling tends to be reduced by partially dissolving the hydroxide of iron, the initial filtration time in the second filtration step tends to be long.

この点について、本願発明者は、加圧浸出の条件を調整することにより初期濾過時間を短くできることを見出した。具体的には、加圧浸出工程における酸化還元電位を比較的低く抑えることで、濾過工程における初期濾過時間を短くできる。その理由は以下のとおりである。 In this regard, the inventor of the present application has found that the initial filtration time can be shortened by adjusting the conditions of pressure leaching. Specifically, by keeping the redox potential in the pressure leaching step relatively low, the initial filtration time in the filtration step can be shortened. The reason is as follows.

加圧浸出工程において酸化反応が促進されると、金属の浸出反応に加えて、浸出した鉄が3価に酸化されやすくなる。そうすると、式(3)で表される加水分解反応が生じ、ヘマタイト(Fe23)の生成量が増加する
2Fe3++3H2O→Fe23+6H+・・・(3)
When the oxidation reaction is promoted in the pressure leaching step, the leached iron is easily oxidized to trivalent in addition to the metal leaching reaction. Then, the hydrolysis reaction represented by the formula (3) occurs, and the amount of hematite (Fe 2 O 3 ) produced increases. 2Fe 3+ + 3H 2 O → Fe 2 O 3 + 6H + ... (3)

原料に含まれる鉄の大部分は加圧浸出工程においてヘマタイトとして析出するか、酸化中和工程において水酸化鉄となる。したがって、混合澱物に含まれるヘマタイトと水酸化鉄は一方が増加すると他方が減少する関係にある。加圧浸出工程において酸化反応が促進され、ヘマタイトの生成量が増加すると、酸化中和工程における水酸化鉄の生成量が減少する。これにより、混合澱物に含まれるヘマタイトの割合が高くなり、水酸化鉄の割合が低くなる。 Most of the iron contained in the raw material is precipitated as hematite in the pressure leaching step or becomes iron hydroxide in the oxidation neutralization step. Therefore, hematite and iron hydroxide contained in the mixed starch have a relationship in which one increases and the other decreases. When the oxidation reaction is promoted in the pressure leaching step and the amount of hematite produced increases, the amount of iron hydroxide produced in the oxidation neutralization step decreases. This increases the proportion of hematite contained in the mixed starch and decreases the proportion of iron hydroxide.

一般に、高温高圧下で生成されるヘマタイトは、50℃程度で生成される水酸化鉄に比べて微細である。加圧浸出工程において酸化反応が促進され、混合澱物に含まれるヘマタイトの割合が高くなれば、微細粒子の存在割合が高くなる。そのため、濾過工程における初期濾過時間が長くなる。 Generally, hematite produced under high temperature and high pressure is finer than iron hydroxide produced at about 50 ° C. The oxidation reaction is promoted in the pressure leaching step, and the higher the proportion of hematite contained in the mixed starch, the higher the abundance of fine particles. Therefore, the initial filtration time in the filtration step becomes long.

そこで、加圧浸出工程における酸化還元電位を比較的低く抑える。具体的には、加圧浸出工程において、浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を500mV以下に調整する。これにより加圧浸出工程における酸化反応の過度な進行を抑えることができ、ヘマタイトの析出を低減できる。混合澱物に含まれる粒子のうち微細なヘマタイトの割合が低くなるので、濾過漏れを抑制でき、初期濾過時間を短くできる。 Therefore, the redox potential in the pressure leaching step is kept relatively low. Specifically, in the pressure leaching step, the redox potential (based on the silver / silver chloride electrode) of the liquid phase of the leaching slurry is adjusted to 500 mV or less. As a result, excessive progress of the oxidation reaction in the pressure leaching step can be suppressed, and hematite precipitation can be reduced. Since the proportion of fine hematite in the particles contained in the mixed starch is low, filtration leakage can be suppressed and the initial filtration time can be shortened.

なお、加圧浸出工程における酸化還元電位が低すぎると、金属の浸出反応が不十分になる。そのため、浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を410mV以上に調整する。 If the redox potential in the pressure leaching step is too low, the metal leaching reaction becomes insufficient. Therefore, the redox potential (based on the silver / silver chloride electrode) of the liquid phase of the leachate slurry is adjusted to 410 mV or more.

また、加圧浸出工程における酸化還元電位が低すぎると、硫黄の酸化が不十分となりチオ硫酸イオン(S23 2-)が生成する。チオ硫酸イオンは溶媒抽出によっても除去されず、硫酸ニッケル水溶液に不純物として残留する。そこで、浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を、480mVを超える値に調整することが好ましい。そうすれば、チオ硫酸イオンの生成が抑制されるとともに、生成されたチオ硫酸イオンが分解する。 Further, if the redox potential in the pressure leaching step is too low, the oxidation of sulfur becomes insufficient and thiosulfate ion (S 2 O 3 2- ) is generated. Thiosulfate ions are not removed by solvent extraction and remain as impurities in the nickel sulfate aqueous solution. Therefore, it is preferable to adjust the redox potential (based on the silver / silver chloride electrode) of the liquid phase of the leachate slurry to a value exceeding 480 mV. Then, the production of thiosulfate ions is suppressed, and the produced thiosulfate ions are decomposed.

第1濾過工程および第2濾過工程の濾過処理において、初期濾過時間を短くするためには、濾過機に用いられる濾布として、通気性が0.1〜0.7cm3/cm2・secのものを用いることが好ましい。なお、ここでいう通気性はJIS L 1096:2010で規定されたA法(フラジール形法)で測定された値である。 In order to shorten the initial filtration time in the filtration treatment of the first filtration step and the second filtration step, the filter cloth used for the filter has an air permeability of 0.1 to 0.7 cm 3 / cm 2 · sec. It is preferable to use one. The air permeability referred to here is a value measured by the A method (Frazier type method) specified in JIS L 1096: 2010.

つぎに、実施例を説明する。
図1に示すフローで硫酸ニッケル水溶液の製造を行なった。原料として鉄を0.5重量%含むニッケル・コバルト混合硫化物を用いた。加圧浸出における酸化還元電位を変更しつつ操業を行ない、第2濾過工程における初期濾過時間を測定した。その結果、表1に示すとおりとなった。なお、比較例1では、初期濾過を60分で打ち切り、酸洗スラリーの入れ替えを行なった。そのため、表1では初期濾過時間を60分を超える(>60)と表記している。比較例2、3では、初期濾過を70分で打ち切り、酸洗スラリーの入れ替えを行なった。そのため、表1では初期濾過時間を70分を超える(>70)と表記している。
Next, an embodiment will be described.
An aqueous nickel sulfate solution was produced according to the flow shown in FIG. A nickel-cobalt mixed sulfide containing 0.5% by weight of iron was used as a raw material. The operation was carried out while changing the redox potential in the pressure leaching, and the initial filtration time in the second filtration step was measured. As a result, it is as shown in Table 1. In Comparative Example 1, the initial filtration was terminated in 60 minutes, and the pickling slurry was replaced. Therefore, in Table 1, the initial filtration time is described as exceeding 60 minutes (> 60). In Comparative Examples 2 and 3, the initial filtration was terminated in 70 minutes, and the pickling slurry was replaced. Therefore, in Table 1, the initial filtration time is described as exceeding 70 minutes (> 70).

Figure 2021110024
Figure 2021110024

実施例1〜5は加圧浸出における酸化還元電位(銀/塩化銀電極基準)が500mV以下であり、第2濾過の初期濾過時間が30分程度である。これに対し、比較例1〜3は加圧浸出における酸化還元電位(銀/塩化銀電極基準)が500mVを超えている。第2濾過の初期濾過に60分以上を要している。このように、加圧浸出における酸化還元電位(銀/塩化銀電極基準)が500mVを超えると、初期濾過時間が急激に長くなる。逆に、加圧浸出における酸化還元電位(銀/塩化銀電極基準)を500mV以下とすれば、濾過漏れを抑制でき、初期濾過時間を短くできることが分かる。 In Examples 1 to 5, the redox potential (silver / silver chloride electrode reference) in pressure leaching is 500 mV or less, and the initial filtration time of the second filtration is about 30 minutes. On the other hand, in Comparative Examples 1 to 3, the redox potential (based on the silver / silver chloride electrode) in the pressure leaching exceeds 500 mV. It takes 60 minutes or more for the initial filtration of the second filtration. As described above, when the redox potential (based on the silver / silver chloride electrode) in the pressure leaching exceeds 500 mV, the initial filtration time sharply increases. On the contrary, it can be seen that if the redox potential (based on the silver / silver chloride electrode) in the pressure leaching is set to 500 mV or less, filtration leakage can be suppressed and the initial filtration time can be shortened.

Claims (6)

ニッケル硫化物を含有する原料スラリーを加圧浸出して、浸出残渣を含む浸出スラリーを得る加圧浸出工程と、
酸化中和反応により前記浸出スラリーの液相に含まれる鉄の中和澱物を生成して、前記浸出残渣および前記中和澱物の混合澱物を含む中和スラリーを得る酸化中和工程と、
前記中和スラリーを濾過して前記混合澱物と硫酸ニッケル水溶液とを分離する第1濾過工程と、
前記第1濾過工程で得られた前記混合澱物に酸水溶液を添加して前記混合澱物に含まれるニッケルを浸出して酸洗スラリーを得る酸洗工程と、
前記酸洗スラリーを濾過して酸洗澱物とニッケル回収液とを分離する第2濾過工程と、を備え、
前記加圧浸出工程において、前記浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を410mV以上、500mV以下に調整する
ことを特徴とする硫酸ニッケル水溶液の製造方法。
A pressure leaching step in which a raw material slurry containing nickel sulfide is leached under pressure to obtain a leaching slurry containing a leaching residue.
An oxidation-neutralization step of producing an iron-neutralized starch contained in the liquid phase of the leachate slurry by an oxidation-neutralization reaction to obtain a neutralized slurry containing the leachate residue and the mixed starch of the neutralized starch. ,
The first filtration step of filtering the neutralized slurry to separate the mixed starch and the nickel sulfate aqueous solution, and
A pickling step of adding an acid aqueous solution to the mixed starch obtained in the first filtration step and leaching nickel contained in the mixed starch to obtain a pickling slurry.
A second filtration step of filtering the pickling slurry to separate the pickling starch and the nickel recovery liquid is provided.
A method for producing an aqueous nickel sulfate solution, which comprises adjusting the oxidation-reduction potential (based on a silver / silver chloride electrode) of the liquid phase of the leaching slurry to 410 mV or more and 500 mV or less in the pressure leaching step.
前記加圧浸出工程において、前記浸出スラリーの液相の酸化還元電位(銀/塩化銀電極基準)を480mV超、500mV以下に調整する
ことを特徴とする請求項1記載の硫酸ニッケル水溶液の製造方法。
The method for producing an aqueous nickel sulfate solution according to claim 1, wherein in the pressure leaching step, the redox potential (based on a silver / silver chloride electrode) of the liquid phase of the leaching slurry is adjusted to more than 480 mV and 500 mV or less. ..
前記第1濾過工程および前記第2濾過工程に用いられる濾布の通気性が0.1cm3/cm2・sec以上、0.7cm3/cm2・sec以下である
ことを特徴とする請求項1または2記載の硫酸ニッケル水溶液の製造方法。
The claim is characterized in that the air permeability of the filter cloth used in the first filtration step and the second filtration step is 0.1 cm 3 / cm 2 · sec or more and 0.7 cm 3 / cm 2 · sec or less. The method for producing an aqueous nickel sulfate solution according to 1 or 2.
前記第1濾過工程および前記第2濾過工程において、フィルタープレスを用いて濾過を行ない、通液開始時に前記中和スラリーまたは前記酸洗スラリーに含まれる固体分により濾布の表面にケーキ層を形成するための初期濾過を行なう
ことを特徴とする請求項1〜3のいずれかに記載の硫酸ニッケル水溶液の製造方法。
In the first filtration step and the second filtration step, filtration is performed using a filter press, and a cake layer is formed on the surface of the filter cloth by the solid content contained in the neutralized slurry or the pickled slurry at the start of liquid passing. The method for producing an aqueous nickel sulfate solution according to any one of claims 1 to 3, wherein the initial filtration is performed.
前記酸化中和工程において前記浸出スラリーの液相のpHを4.0以上、5.5以下に調整する
ことを特徴とする請求項1〜4のいずれかに記載の硫酸ニッケル水溶液の製造方法。
The method for producing an aqueous nickel sulfate solution according to any one of claims 1 to 4, wherein the pH of the liquid phase of the leachate slurry is adjusted to 4.0 or more and 5.5 or less in the oxidation neutralization step.
前記酸洗工程において前記酸洗スラリーの液相のpHを3.0以上、4.0以下に調整する
ことを特徴とする請求項1〜5のいずれかに記載の硫酸ニッケル水溶液の製造方法。
The method for producing an aqueous nickel sulfate solution according to any one of claims 1 to 5, wherein the pH of the liquid phase of the pickling slurry is adjusted to 3.0 or more and 4.0 or less in the pickling step.
JP2020004532A 2020-01-15 2020-01-15 Method for producing nickel sulfate aqueous solution Active JP7354845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004532A JP7354845B2 (en) 2020-01-15 2020-01-15 Method for producing nickel sulfate aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004532A JP7354845B2 (en) 2020-01-15 2020-01-15 Method for producing nickel sulfate aqueous solution

Publications (2)

Publication Number Publication Date
JP2021110024A true JP2021110024A (en) 2021-08-02
JP7354845B2 JP7354845B2 (en) 2023-10-03

Family

ID=77059216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004532A Active JP7354845B2 (en) 2020-01-15 2020-01-15 Method for producing nickel sulfate aqueous solution

Country Status (1)

Country Link
JP (1) JP7354845B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108109A (en) * 1993-10-08 1995-04-25 Nippon Steel Corp Solid-liquid separation for filter press
JPH07207355A (en) * 1994-01-17 1995-08-08 Kobe Steel Ltd Filtration method of al or al alloy molten metal
JP2004160319A (en) * 2002-11-12 2004-06-10 Isao Matsushita Concentrator for slurry and concentration/filtration apparatus
JP2005255893A (en) * 2004-03-12 2005-09-22 Kaneka Corp Method for manufacturing polymer by filtering off and removing solids
JP2005281733A (en) * 2004-03-29 2005-10-13 Sumitomo Metal Mining Co Ltd Nickel smelting process
JP2006225217A (en) * 2005-02-21 2006-08-31 Sumitomo Metal Mining Co Ltd Method for refining nickel sulfate aqueous solution
JP2006283163A (en) * 2005-04-04 2006-10-19 Sumitomo Metal Mining Co Ltd Method for leaching nickel from iron removal precipitate
JP2007075679A (en) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd Solid-liquid separation method and production method of toner for electrostatic latent image development
JP2009197298A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Wet-smelting method for nickel-oxide ore
JP2013253273A (en) * 2012-06-05 2013-12-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel
JP2016210648A (en) * 2015-05-08 2016-12-15 住友金属鉱山株式会社 Method of producing nickel sulfate
JP2018192411A (en) * 2017-05-16 2018-12-06 王子ホールディングス株式会社 Water treatment method, water treatment equipment and method for control of addition of cake layer formation substance to raw water
JP2018204088A (en) * 2017-06-08 2018-12-27 住友金属鉱山株式会社 Recovery method of scandium
JP2019178013A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Pressure oxidation leaching method and method for producing nickel sulfate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108109A (en) * 1993-10-08 1995-04-25 Nippon Steel Corp Solid-liquid separation for filter press
JPH07207355A (en) * 1994-01-17 1995-08-08 Kobe Steel Ltd Filtration method of al or al alloy molten metal
JP2004160319A (en) * 2002-11-12 2004-06-10 Isao Matsushita Concentrator for slurry and concentration/filtration apparatus
JP2005255893A (en) * 2004-03-12 2005-09-22 Kaneka Corp Method for manufacturing polymer by filtering off and removing solids
JP2005281733A (en) * 2004-03-29 2005-10-13 Sumitomo Metal Mining Co Ltd Nickel smelting process
JP2006225217A (en) * 2005-02-21 2006-08-31 Sumitomo Metal Mining Co Ltd Method for refining nickel sulfate aqueous solution
JP2006283163A (en) * 2005-04-04 2006-10-19 Sumitomo Metal Mining Co Ltd Method for leaching nickel from iron removal precipitate
JP2007075679A (en) * 2005-09-12 2007-03-29 Fuji Xerox Co Ltd Solid-liquid separation method and production method of toner for electrostatic latent image development
JP2009197298A (en) * 2008-02-25 2009-09-03 Sumitomo Metal Mining Co Ltd Wet-smelting method for nickel-oxide ore
JP2013253273A (en) * 2012-06-05 2013-12-19 Sumitomo Metal Mining Co Ltd Method for recovering nickel
JP2016210648A (en) * 2015-05-08 2016-12-15 住友金属鉱山株式会社 Method of producing nickel sulfate
JP2018192411A (en) * 2017-05-16 2018-12-06 王子ホールディングス株式会社 Water treatment method, water treatment equipment and method for control of addition of cake layer formation substance to raw water
JP2018204088A (en) * 2017-06-08 2018-12-27 住友金属鉱山株式会社 Recovery method of scandium
JP2019178013A (en) * 2018-03-30 2019-10-17 住友金属鉱山株式会社 Pressure oxidation leaching method and method for producing nickel sulfate

Also Published As

Publication number Publication date
JP7354845B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
JP5954350B2 (en) Scandium recovery method
JP5245768B2 (en) Method for producing sulfide containing nickel and cobalt
JP6004023B2 (en) Scandium recovery method
JP6213586B2 (en) Sulfidation treatment method, sulfide production method, and nickel oxide ore hydrometallurgy method
AU2017222881B2 (en) Method for recovering scandium
JP7016463B2 (en) How to collect tellurium
JP6319362B2 (en) Scandium recovery method
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP7251406B2 (en) Method for producing cobalt aqueous solution
JP4079018B2 (en) Method for purifying cobalt aqueous solution
WO2018066638A1 (en) Hydrometallurgical method for refining nickel oxide ore
JP5904100B2 (en) Method for settling and separating neutralized slurry and method for hydrometallizing nickel oxide ore
JP7251405B2 (en) Method for producing nickel aqueous solution
JP2018193588A (en) Method for leaching sulfide
JP7354845B2 (en) Method for producing nickel sulfate aqueous solution
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
WO2021059940A1 (en) Method for recovering scandium, and ion exchange method
JP5673471B2 (en) Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel
JP6634870B2 (en) Deironing method of nickel chloride aqueous solution
JP7389338B2 (en) Method for producing nickel aqueous solution
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP2020180314A (en) Method for producing sodium hydrogen sulfide solution, sulfidation treatment method, method for producing nickel sulfide, and wet smelting method for nickel oxide ore
JP7347085B2 (en) Manufacturing method of high purity scandium oxide
WO2021059941A1 (en) Method for recovering scandium and ion-exchange treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7354845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150