JP7360091B2 - Solvent extraction method and method for producing cobalt aqueous solution - Google Patents

Solvent extraction method and method for producing cobalt aqueous solution Download PDF

Info

Publication number
JP7360091B2
JP7360091B2 JP2019237927A JP2019237927A JP7360091B2 JP 7360091 B2 JP7360091 B2 JP 7360091B2 JP 2019237927 A JP2019237927 A JP 2019237927A JP 2019237927 A JP2019237927 A JP 2019237927A JP 7360091 B2 JP7360091 B2 JP 7360091B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
aqueous solution
stage
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237927A
Other languages
Japanese (ja)
Other versions
JP2021105206A (en
Inventor
穂高 仲西
真 杉之原
友彦 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019237927A priority Critical patent/JP7360091B2/en
Publication of JP2021105206A publication Critical patent/JP2021105206A/en
Application granted granted Critical
Publication of JP7360091B2 publication Critical patent/JP7360091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、溶媒抽出方法およびコバルト水溶液の製造方法に関する。さらに詳しくは、本発明は、ニッケル水溶液などの浄液に用いられる溶媒抽出方法、およびコバルトを含む粗ニッケル水溶液からコバルト水溶液を得る方法に関する。 The present invention relates to a solvent extraction method and a method for producing a cobalt aqueous solution. More specifically, the present invention relates to a solvent extraction method used for purifying liquids such as a nickel aqueous solution, and a method for obtaining a cobalt aqueous solution from a crude nickel aqueous solution containing cobalt.

ニッケル水溶液、特に高純度ニッケル水溶液はニッケル化合物の原料として用いられる。例えば、硫酸ニッケル水溶液を晶析することで硫酸ニッケル結晶が得られる。塩化ニッケル水溶液を晶析することで塩化ニッケル結晶が得られる。硫酸ニッケルまたは塩化ニッケルを焙焼することで酸化ニッケルが得られる。ニッケル水溶液を炭酸化することで炭酸ニッケルが得られる。 Nickel aqueous solutions, particularly high-purity nickel aqueous solutions, are used as raw materials for nickel compounds. For example, nickel sulfate crystals can be obtained by crystallizing an aqueous nickel sulfate solution. Nickel chloride crystals are obtained by crystallizing an aqueous nickel chloride solution. Nickel oxide is obtained by roasting nickel sulfate or nickel chloride. Nickel carbonate can be obtained by carbonating a nickel aqueous solution.

ニッケル化合物は、一般的な電解めっき材料、装飾用途または電子部品用途の無電解めっき材料、触媒材料、コンデンサーおよびインダクターなどの電子部品用材料、電池用材料などとして用いられる。 Nickel compounds are used as general electrolytic plating materials, electroless plating materials for decoration or electronic parts, catalyst materials, materials for electronic parts such as capacitors and inductors, and materials for batteries.

ニッケル水溶液から不純物を除去する方法として溶媒抽出法が知られている(例えば、特許文献1)。具体的には、ニッケルを担持した酸性抽出剤と不純物を含む粗硫酸ニッケル水溶液とを接触させることにより、酸性抽出剤中のニッケルと粗硫酸ニッケル水溶液中の不純物とを置換して、高純度硫酸ニッケル水溶液を得る。 A solvent extraction method is known as a method for removing impurities from an aqueous nickel solution (for example, Patent Document 1). Specifically, by bringing an acidic extractant carrying nickel into contact with a crude nickel sulfate aqueous solution containing impurities, the nickel in the acidic extractant and the impurities in the crude nickel sulfate aqueous solution are replaced, and high-purity sulfuric acid is produced. Obtain a nickel aqueous solution.

置換反応後の酸性抽出剤にはニッケルが担持されている。そこで、酸性抽出剤に硫酸を添加してニッケルを逆抽出し、ニッケル回収液を得る。このニッケル回収段では、ニッケルのほかにも酸性抽出剤に担持されているコバルトの一部も逆抽出される。特許文献2には、ニッケル回収液に中和剤を添加して中和することで、ニッケルおよびコバルトの中和澱物を得るとともに、中和澱物が除去された濾液を排水として排出することが開示されている。 Nickel is supported on the acidic extractant after the substitution reaction. Therefore, nickel is back-extracted by adding sulfuric acid to the acidic extractant to obtain a nickel recovery liquid. In this nickel recovery stage, in addition to nickel, a portion of the cobalt supported on the acidic extractant is also back extracted. Patent Document 2 discloses that a neutralizing precipitate of nickel and cobalt is obtained by adding a neutralizing agent to a nickel recovery liquid to neutralize it, and the filtrate from which the neutralized precipitate has been removed is discharged as wastewater. is disclosed.

特開平10-310437号公報Japanese Patent Application Publication No. 10-310437 特開2017-025367号公報JP2017-025367A

中和澱物が除去された濾液は系外に排出されることから、濾液に残存するコバルトも系外に排出されることとなり、コバルトロスとなる。これに対して、ニッケル回収液のコバルト濃度を低くすれば、系外に排出される濾液のコバルト濃度も低くなり、コバルトロスを低減できる。 Since the filtrate from which the neutralized precipitate has been removed is discharged to the outside of the system, the cobalt remaining in the filtrate is also discharged to the outside of the system, resulting in cobalt loss. On the other hand, if the cobalt concentration of the nickel recovery liquid is lowered, the cobalt concentration of the filtrate discharged outside the system will also be lowered, and cobalt loss can be reduced.

ニッケル回収液のコバルト濃度を低くするには、ニッケル回収段において水相、すなわちニッケル回収液のpHを高くすればよい。そうすれば、酸性抽出剤に担持されているコバルトの逆抽出が抑制され、ニッケル回収液のコバルト濃度が低くなる。しかし、この場合、ニッケル回収後の酸性抽出剤に残留するニッケルが増加する。そのため、ニッケル回収後の酸性抽出剤からコバルトを逆抽出して得られるコバルト水溶液のニッケル濃度が高くなる。コバルト水溶液のニッケル濃度の上昇は、コバルト水溶液から製造されるコバルト含有製品の品質悪化に直結する。 In order to lower the cobalt concentration in the nickel recovery liquid, the pH of the aqueous phase, that is, the nickel recovery liquid, may be increased in the nickel recovery stage. By doing so, back extraction of cobalt supported by the acidic extractant is suppressed, and the cobalt concentration of the nickel recovery liquid is reduced. However, in this case, the amount of nickel remaining in the acidic extractant after nickel recovery increases. Therefore, the nickel concentration of the cobalt aqueous solution obtained by back-extracting cobalt from the acidic extractant after nickel recovery increases. An increase in the nickel concentration of a cobalt aqueous solution is directly linked to deterioration in the quality of cobalt-containing products manufactured from the cobalt aqueous solution.

ニッケル回収段おいて、水相流量に対する有機相流量の比率、いわゆるO/Aを高くすることによって、ニッケル回収液の量そのものを減少させる手段も考えられる。しかし、この場合も、酸性抽出剤に残留するニッケルが増加し、コバルト水溶液のニッケル濃度が高くなる。 In the nickel recovery stage, it is also possible to reduce the amount of nickel recovery liquid itself by increasing the ratio of the organic phase flow rate to the aqueous phase flow rate, so-called O/A. However, in this case as well, the amount of nickel remaining in the acidic extractant increases, and the nickel concentration of the cobalt aqueous solution increases.

ニッケル回収液を中和して中和澱物を得る際のpHを高くすれば、濾液のコバルト濃度が低くなり、コバルトロスを低減できる。しかし、この場合、中和澱物へのマグネシウム分配率が高くなり、濾液のマグネシウム濃度が低くなる。そのため、不純物であるマグネシウムの系外への払い出しが進みにくくなる。 If the pH is increased when neutralizing the nickel recovery liquid to obtain a neutralized precipitate, the cobalt concentration of the filtrate will be lowered and cobalt loss can be reduced. However, in this case, the magnesium distribution rate to the neutralized precipitate becomes high, and the magnesium concentration of the filtrate becomes low. Therefore, it becomes difficult for magnesium, which is an impurity, to be discharged out of the system.

ニッケル回収段におけるニッケルとコバルトの分離性を向上できれば、上記の問題を引き起こすことなく、ニッケル回収液のコバルト濃度が低くなり、系外に排出される濾液のコバルト濃度も低下する。 If the separability of nickel and cobalt in the nickel recovery stage can be improved, the cobalt concentration in the nickel recovery liquid will be reduced without causing the above problems, and the cobalt concentration in the filtrate discharged outside the system will also be reduced.

本発明は上記事情に鑑み、ニッケル回収段におけるニッケルとコバルトの分離性を向上することができる溶媒抽出方法を提供することを目的とする。
または、本発明は、コバルトロスを低減できるコバルト水溶液の製造方法を提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a solvent extraction method that can improve the separability of nickel and cobalt in a nickel recovery stage.
Another object of the present invention is to provide a method for producing a cobalt aqueous solution that can reduce cobalt loss.

第1発明の溶媒抽出方法は、ニッケルおよびコバルトを担持した酸性抽出剤と酸とを接触させて、ニッケルを逆抽出してニッケル回収液を得るニッケル回収段を備え、前記ニッケル回収段における抽出温度を47~60℃とし、前記ニッケル回収段における前記ニッケル回収液のpHを3~4とすることを特徴とする。
第2発明の溶媒抽出方法は、第1発明において、前記ニッケル回収段の前に、コバルトを含む粗ニッケル水溶液とニッケルを担持した前記酸性抽出剤とを接触させて、前記粗ニッケル水溶液中のコバルトと前記酸性抽出剤中のニッケルとを置換し、高純度ニッケル水溶液を得る交換段を備えることを特徴とする。
第3発明の溶媒抽出方法は、第2発明において、前記粗ニッケル水溶液は粗硫酸ニッケル水溶液であり、前記高純度ニッケル水溶液は高純度硫酸ニッケル水溶液であることを特徴とする。
第4発明の溶媒抽出方法は、第1~第3発明のいずれかにおいて、前記酸性抽出剤は燐酸エステル系酸性抽出剤であることを特徴とする。
第5発明のコバルト水溶液の製造方法は、不純物として少なくともコバルトおよび鉄を含む粗ニッケル水溶液に中和剤を添加して、酸化中和反応により前記不純物の一部を除去する脱鉄工程と、前記脱鉄工程後の前記粗ニッケル水溶液とニッケルを担持した酸性抽出剤とを接触させて、前記粗ニッケル水溶液中のコバルトと前記酸性抽出剤中のニッケルとを置換し、高純度ニッケル水溶液を得る交換段と、前記交換段から排出された酸性抽出剤と酸とを接触させて、ニッケルを逆抽出してニッケル回収液を得るニッケル回収段と、前記ニッケル回収段から排出された酸性抽出剤と酸とを接触させて、コバルトを逆抽出してコバルト水溶液を得るコバルト回収段と、前記ニッケル回収液を中和してニッケルおよびコバルトを含む中和澱物と中和濾液とを得る中和工程と、を備え、前記中和澱物は前記中和剤の一部として前記脱鉄工程に供給され、前記ニッケル回収段における抽出温度を47~60℃とし、前記ニッケル回収段における前記ニッケル回収液のpHを3~4とすることを特徴とする。
The solvent extraction method of the first invention includes a nickel recovery stage for back-extracting nickel by bringing an acidic extractant carrying nickel and cobalt into contact with an acid to obtain a nickel recovery liquid, and the extraction temperature in the nickel recovery stage is is set to 47 to 60°C , and the pH of the nickel recovery liquid in the nickel recovery stage is set to 3 to 4 .
In the solvent extraction method of the second invention, in the first invention, before the nickel recovery stage, a crude nickel aqueous solution containing cobalt is brought into contact with the acidic extractant carrying nickel, so that the cobalt in the crude nickel aqueous solution is The method is characterized by comprising an exchange stage for replacing nickel in the acidic extractant with nickel in the acidic extracting agent to obtain a high-purity nickel aqueous solution.
A third aspect of the solvent extraction method according to the second aspect is characterized in that the crude nickel aqueous solution is a crude nickel sulfate aqueous solution, and the high purity nickel aqueous solution is a high purity nickel sulfate aqueous solution.
A fourth aspect of the solvent extraction method according to any one of the first to third aspects is characterized in that the acidic extractant is a phosphate-based acidic extractant.
A method for producing a cobalt aqueous solution according to a fifth aspect of the invention includes a deiron removal step of adding a neutralizing agent to a crude nickel aqueous solution containing at least cobalt and iron as impurities and removing a part of the impurities by an oxidative neutralization reaction; Exchange to obtain a high-purity nickel aqueous solution by bringing the crude nickel aqueous solution after the iron removal step into contact with an acidic extractant carrying nickel to replace cobalt in the crude nickel aqueous solution with nickel in the acidic extractant. a nickel recovery stage for back-extracting nickel by contacting the acidic extractant discharged from the exchange stage with the acid to obtain a nickel recovery solution, and the acidic extractant discharged from the nickel recovery stage and the acid. a cobalt recovery stage for back-extracting cobalt to obtain a cobalt aqueous solution; and a neutralization step for neutralizing the nickel recovery liquid to obtain a neutralized precipitate and a neutralized filtrate containing nickel and cobalt. , the neutralized precipitate is supplied as a part of the neutralizing agent to the iron removal step, the extraction temperature in the nickel recovery stage is set to 47 to 60°C, and the nickel recovery liquid in the nickel recovery stage is It is characterized by having a pH of 3 to 4 .

第1~第4発明によれば、ニッケル回収段における抽出温度を47℃以上とすることで、ニッケルの有機溶媒への分配率を低い状態で維持しつつ、コバルトの有機溶媒への分配率を高くでき、ニッケルとコバルトの分離性を向上することができる。
第5発明によれば、ニッケル回収液のコバルト濃度が低くなり、中和濾液のコバルト濃度が低下する。そのため、コバルトロスを低減できる。
According to the first to fourth inventions, by setting the extraction temperature in the nickel recovery stage to 47°C or higher, the distribution rate of cobalt to the organic solvent can be increased while maintaining the distribution rate of nickel to the organic solvent at a low state. It is possible to improve the separation of nickel and cobalt.
According to the fifth invention, the cobalt concentration of the nickel recovery liquid is reduced, and the cobalt concentration of the neutralized filtrate is reduced. Therefore, cobalt loss can be reduced.

高純度硫酸ニッケル水溶液の製造プロセスの全体工程図である。1 is an overall process diagram of a manufacturing process of a high-purity nickel sulfate aqueous solution. 溶媒抽出工程の詳細工程図である。It is a detailed process diagram of a solvent extraction process. 中和工程および排水処理工程の工程図である。It is a process diagram of a neutralization process and a wastewater treatment process. 図(A)はニッケル回収段の抽出温度とニッケル回収液のコバルト濃度との関係を示すグラフである。図(B)はニッケル回収段の抽出温度と中和濾液のコバルト濃度との関係を示すグラフである。Figure (A) is a graph showing the relationship between the extraction temperature of the nickel recovery stage and the cobalt concentration of the nickel recovery liquid. Figure (B) is a graph showing the relationship between the extraction temperature of the nickel recovery stage and the cobalt concentration of the neutralized filtrate.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る溶媒抽出方法は、例えば、不純物として少なくともコバルトを含む粗ニッケル水溶液から不純物を除去して高純度ニッケル水溶液を得るのに用いられる。
Next, embodiments of the present invention will be described based on the drawings.
The solvent extraction method according to one embodiment of the present invention is used, for example, to remove impurities from a crude nickel aqueous solution containing at least cobalt as an impurity to obtain a high-purity nickel aqueous solution.

ニッケル水溶液として硫酸ニッケル水溶液などが挙げられる。粗ニッケル水溶液とはコバルトなどの不純物を含むニッケル水溶液である。高純度ニッケル水溶液とは溶媒抽出により不純物が除去された後のニッケル水溶液である。不純物を含む硫酸ニッケル水溶液を粗硫酸ニッケル水溶液という。溶媒抽出により不純物が除去された後の硫酸ニッケル水溶液を高純度硫酸ニッケル水溶液という。 Examples of the nickel aqueous solution include a nickel sulfate aqueous solution. The crude nickel aqueous solution is a nickel aqueous solution containing impurities such as cobalt. A high-purity nickel aqueous solution is a nickel aqueous solution from which impurities have been removed by solvent extraction. A nickel sulfate aqueous solution containing impurities is called a crude nickel sulfate aqueous solution. An aqueous nickel sulfate solution from which impurities have been removed by solvent extraction is referred to as a high-purity nickel sulfate aqueous solution.

(高純度硫酸ニッケル水溶液製造プロセス)
高純度硫酸ニッケル水溶液は、例えば、図1に示すプロセスで製造される。
原料としてニッケル・コバルト混合硫化物(MS:ミックスサルファイド)が用いられる。低品位ラテライト鉱などのニッケル酸化鉱石を加圧酸浸出(HPAL:High Pressure Acid Leaching)し、浸出液から鉄などの不純物を除去した後、硫化水素ガスを浸出液に吹き込むことで硫化反応を生じさせ、ニッケル・コバルト混合硫化物が得られる。
(High purity nickel sulfate aqueous solution production process)
A high-purity nickel sulfate aqueous solution is manufactured, for example, by the process shown in FIG.
Nickel-cobalt mixed sulfide (MS: mixed sulfide) is used as a raw material. Nickel oxide ore such as low-grade laterite ore is subjected to high pressure acid leaching (HPAL) to remove impurities such as iron from the leachate, and then hydrogen sulfide gas is blown into the leachate to cause a sulfidation reaction. A nickel-cobalt mixed sulfide is obtained.

ニッケル・コバルト混合硫化物の組成は、ニッケルが50~60重量%、コバルトが4~6重量%、硫黄が30~34重量%(いずれも乾燥量基準)である。ニッケル・コバルト混合硫化物には、マグネシウム、鉄、銅、亜鉛などの不純物が含まれている。 The composition of the nickel-cobalt mixed sulfide is 50 to 60% by weight of nickel, 4 to 6% by weight of cobalt, and 30 to 34% by weight of sulfur (all on a dry basis). Nickel-cobalt mixed sulfide contains impurities such as magnesium, iron, copper, and zinc.

(1)加圧浸出工程
加圧浸出工程では、ニッケル・コバルト混合硫化物を含むスラリーを、オートクレーブで加圧浸出する。浸出条件は、例えば圧力(ゲージ圧)1.8~2.0MPaG、温度140~180℃である。加圧浸出により、ニッケル・コバルト混合硫化物に含まれるニッケル、コバルト、その他の不純物が浸出され、粗硫酸ニッケル水溶液が得られる。
(1) Pressure leaching process In the pressure leaching process, a slurry containing a nickel-cobalt mixed sulfide is leached under pressure in an autoclave. The leaching conditions are, for example, a pressure (gauge pressure) of 1.8 to 2.0 MPaG and a temperature of 140 to 180°C. By pressure leaching, nickel, cobalt, and other impurities contained in the nickel-cobalt mixed sulfide are leached out, and a crude nickel sulfate aqueous solution is obtained.

(2)脱鉄工程
脱鉄工程では、酸化中和反応により粗硫酸ニッケル水溶液に含まれる不純物、主に鉄を中和澱物として除去する。酸化剤として空気を用いることができる。中和剤として、消石灰、水酸化ニッケル、水酸化ナトリウム、炭酸カルシウムなどが用いられる。
(2) Iron removal process In the iron removal process, impurities contained in the crude nickel sulfate aqueous solution, mainly iron, are removed as a neutralized precipitate by an oxidative neutralization reaction. Air can be used as an oxidizing agent. Slaked lime, nickel hydroxide, sodium hydroxide, calcium carbonate, etc. are used as neutralizing agents.

(3)溶媒抽出工程
溶媒抽出工程では、溶媒抽出により脱鉄工程後の粗硫酸ニッケル水溶液から不純物を除去して高純度硫酸ニッケル水溶液を得る。得られた高純度硫酸ニッケル水溶液は、その後、用途に応じた処理に付される。例えば、高純度硫酸ニッケル水溶液は、晶析装置を用いて濃縮、晶析され、硫酸ニッケル結晶となる。また、高純度硫酸ニッケル水溶液は、水溶液のままの状態で二次電池の正極材料の製造に用いられる。
(3) Solvent extraction step In the solvent extraction step, impurities are removed from the crude nickel sulfate aqueous solution after the iron removal step by solvent extraction to obtain a high purity nickel sulfate aqueous solution. The obtained high-purity nickel sulfate aqueous solution is then subjected to treatment depending on the intended use. For example, a high-purity nickel sulfate aqueous solution is concentrated and crystallized using a crystallizer to become nickel sulfate crystals. Further, the high-purity nickel sulfate aqueous solution is used in the production of a positive electrode material for a secondary battery in the form of an aqueous solution.

以下、図2に基づき、溶媒抽出工程の詳細を説明する。なお、図2において実線矢印は水または水溶液の流れを意味し、破線矢印は有機溶媒の流れを意味する。 Hereinafter, the details of the solvent extraction step will be explained based on FIG. 2. In addition, in FIG. 2, the solid line arrow means the flow of water or an aqueous solution, and the broken line arrow means the flow of the organic solvent.

溶媒抽出工程には酸性抽出剤が用いられる。酸性抽出剤としては、特に限定されないが、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、ジ-(2-エチルヘキシル)ホスホン酸(通称D2EHPA)などの燐酸エステル系酸性抽出剤が用いられる。 An acidic extractant is used in the solvent extraction step. The acidic extractant is not particularly limited, but phosphoric acid ester-based acidic extractants such as mono-2-ethylhexyl 2-ethylhexylphosphonate and di-(2-ethylhexyl)phosphonic acid (commonly known as D2EHPA) are used.

一般に、酸性抽出剤は希釈剤で希釈して用いられる。有機溶媒の酸性抽出剤濃度は10~40体積%に調整される。酸性抽出剤を希釈するのは、有機溶媒を適正な粘性に調整して、油水分離性、すなわち分相性を良くするためである。希釈剤としては、水への溶解度が低く、粘性が低く、酸性抽出剤と反応をしないものであれば特に限定されないが、例えば飽和炭化水素が用いられる。 Generally, acidic extractants are used after being diluted with a diluent. The acidic extractant concentration of the organic solvent is adjusted to 10 to 40% by volume. The purpose of diluting the acidic extractant is to adjust the viscosity of the organic solvent to an appropriate level and improve oil-water separation, that is, phase separation. The diluent is not particularly limited as long as it has low solubility in water, low viscosity, and does not react with the acidic extractant, but for example, saturated hydrocarbons are used.

溶媒抽出工程は、抽出段、洗浄段、交換段、ニッケル回収段、コバルト回収段、逆抽出段からなる。これらの工程には、向流多段方式の抽出装置、特にミキサーセトラーが用いられる。以下、順に説明する。 The solvent extraction step consists of an extraction stage, a washing stage, an exchange stage, a nickel recovery stage, a cobalt recovery stage, and a back extraction stage. For these steps, a countercurrent multi-stage extraction device, especially a mixer-settler, is used. Below, they will be explained in order.

(3-1)抽出段
抽出段には洗浄段から洗浄後液が供給される。洗浄後液は硫酸ニッケル水溶液である。抽出段では、洗浄後液中のニッケルを有機相に抽出し、酸性抽出剤にニッケルを担持させる。得られた有機相をニッケル保持有機相と称する。洗浄後液にはカルシウム、マグネシウムなどのニッケルよりも低いpHで有機相に抽出される不純物が含まれている。抽出段ではこれらの不純物も有機相に抽出される。そのため、ニッケル保持有機相にはこれらの不純物も含まれている。
(3-1) Extraction Stage The post-washing liquid is supplied to the extraction stage from the washing stage. The post-washing solution is an aqueous nickel sulfate solution. In the extraction stage, nickel in the washed solution is extracted into the organic phase, and the nickel is supported on the acidic extractant. The resulting organic phase is referred to as a nickel-retaining organic phase. The washed solution contains impurities such as calcium and magnesium that are extracted into the organic phase at a lower pH than nickel. In the extraction stage these impurities are also extracted into the organic phase. Therefore, the nickel-retaining organic phase also contains these impurities.

酸性抽出剤を用いた溶媒抽出では、抽出反応に水素イオンが関与するため、pHによって抽出率が変化する。抽出率は金属によって異なり、Fe>Zn>Cu>Mn>Co>Ca>Mg>Niの順に抽出されやすい。抽出段、洗浄段、交換段、ニッケル回収段、コバルト回収段、逆抽出段と、有機相の流れに従って順にpHを下げていくと、それぞれの段で各金属を分離回収できる。 In solvent extraction using an acidic extractant, hydrogen ions are involved in the extraction reaction, so the extraction rate changes depending on the pH. The extraction rate varies depending on the metal, and it is easy to extract in the order of Fe>Zn>Cu>Mn>Co>Ca>Mg>Ni. If the pH is lowered in order according to the flow of the organic phase through the extraction stage, washing stage, exchange stage, nickel recovery stage, cobalt recovery stage, and back extraction stage, each metal can be separated and recovered at each stage.

酸性抽出剤による抽出反応は、以下の式(1)で表される。ここで、式中のRは官能基を含む有機化合物全体を表す。式(1)に示した通り、金属イオンの抽出に伴い、水素イオンが放出される。
2R-H+Ni2+→R2-Ni+2H+ ・・・(1)
The extraction reaction using the acidic extractant is expressed by the following formula (1). Here, R in the formula represents the entire organic compound containing a functional group. As shown in equation (1), hydrogen ions are released as metal ions are extracted.
2R-H+Ni 2+ →R 2 -Ni+2H + ...(1)

水素イオンが放出されるとpHが下がる。不純物を除去するためには適正なpHを維持する必要があるため、抽出段では、苛性ソーダなどのアルカリを添加してpHを調整する。 When hydrogen ions are released, the pH decreases. In order to remove impurities, it is necessary to maintain an appropriate pH, so in the extraction stage, an alkali such as caustic soda is added to adjust the pH.

(3-2)洗浄段
抽出段で得られたニッケル保持有機相は洗浄段に送られる。洗浄段では、ニッケル保持有機相を、ニッケルを含有する洗浄液で洗浄する。洗浄液は交換段にて精製された高純度硫酸ニッケル水溶液の一部を水で希釈したものである。晶析装置を用いて高純度硫酸ニッケル水溶液から硫酸ニッケル結晶を製造する場合には、晶析工程から排出された母液を水で希釈したものを洗浄液の一部または全部として用いてもよい。洗浄後液は抽出段に供給される。
(3-2) Washing stage The nickel-retaining organic phase obtained in the extraction stage is sent to the washing stage. In the washing stage, the nickel-retaining organic phase is washed with a washing liquid containing nickel. The cleaning solution was a part of the high purity nickel sulfate aqueous solution purified in the exchange stage diluted with water. When producing nickel sulfate crystals from a high-purity nickel sulfate aqueous solution using a crystallizer, a mother liquor discharged from the crystallization process diluted with water may be used as part or all of the cleaning liquid. The washed liquid is supplied to the extraction stage.

抽出段では有機相に微細な液滴粒子が残留する場合がある。抽出段で苛性ソーダを添加した場合、有機相中の液滴粒子にナトリウムが含まれる。すなわち、ニッケル保持有機相にナトリウムが含まれる。洗浄段では、ニッケル保持有機相に含まれたナトリウムが除去される。 In the extraction stage, fine droplet particles may remain in the organic phase. When caustic soda is added in the extraction stage, sodium is included in the droplet particles in the organic phase. That is, sodium is included in the nickel-retaining organic phase. In the washing stage, sodium contained in the nickel-retaining organic phase is removed.

(3-3)交換段
交換段では、洗浄後のニッケル保持有機相(ニッケルを担持した酸性抽出剤)と脱鉄工程後の粗硫酸ニッケル水溶液とを接触させて、ニッケル保持有機相中のニッケルと粗硫酸ニッケル水溶液中の不純物(コバルトなど)とを置換し、高純度硫酸ニッケル水溶液を得る。
(3-3) Exchange stage In the exchange stage, the nickel-retaining organic phase (acidic extractant carrying nickel) after washing is brought into contact with the crude nickel sulfate aqueous solution after the iron removal process, and the nickel-retaining organic phase is and impurities (such as cobalt) in the crude nickel sulfate aqueous solution to obtain a high purity nickel sulfate aqueous solution.

ニッケル保持有機相中のニッケルと粗硫酸ニッケル水溶液中のコバルトとの置換反応は、以下の式(2)で表される。ここで、式中のRは官能基を含む有機化合物全体を表す。
2-Ni+Co2+→R2-Co+Ni2+ ・・・(2)
The substitution reaction between nickel in the nickel-retaining organic phase and cobalt in the crude nickel sulfate aqueous solution is expressed by the following formula (2). Here, R in the formula represents the entire organic compound containing a functional group.
R 2 -Ni+Co 2+ →R 2 -Co+Ni 2+ ...(2)

式(2)で表される反応は、コバルトイオンが酸性抽出剤に抽出される際に生成される水素イオンにより酸性抽出剤のニッケルが水溶液に逆抽出されるという反応である。ニッケルがコバルトよりも酸性抽出剤に抽出されにくい性質を利用した反応である。 The reaction represented by formula (2) is a reaction in which nickel in the acidic extractant is back-extracted into an aqueous solution by hydrogen ions generated when cobalt ions are extracted into the acidic extractant. This reaction takes advantage of the fact that nickel is less easily extracted by acidic extractants than cobalt.

交換段に供給される粗硫酸ニッケル水溶液の組成は、例えば、ニッケル濃度が110~140g/L、コバルト濃度が8~12g/L、マグネシウム濃度が19~31mg/L、カルシウム濃度が0.3~0.6g/L、鉄濃度が約0.01g/Lである。 The composition of the crude nickel sulfate aqueous solution supplied to the exchange stage is, for example, a nickel concentration of 110-140 g/L, a cobalt concentration of 8-12 g/L, a magnesium concentration of 19-31 mg/L, and a calcium concentration of 0.3-140 g/L. 0.6 g/L, and the iron concentration is approximately 0.01 g/L.

置換反応後の高純度硫酸ニッケル水溶液の組成は、例えば、ニッケル濃度が118~152g/L、コバルト濃度が1~60mg/L、マグネシウム濃度が1~20mg/L、カルシウム濃度が1~15mg/L、鉄濃度が1~5mg/Lである。 The composition of the high-purity nickel sulfate aqueous solution after the substitution reaction is, for example, a nickel concentration of 118 to 152 g/L, a cobalt concentration of 1 to 60 mg/L, a magnesium concentration of 1 to 20 mg/L, and a calcium concentration of 1 to 15 mg/L. , the iron concentration is 1-5 mg/L.

通常、ニッケル保持有機相のニッケル濃度は、置換反応後の有機相にある程度の量のニッケルが残留するような過剰量に調整されている。そのため、置換後有機相にはニッケルが担持されている。 Usually, the nickel concentration in the nickel-retaining organic phase is adjusted to an excessive amount such that a certain amount of nickel remains in the organic phase after the substitution reaction. Therefore, nickel is supported on the organic phase after substitution.

(3-4)ニッケル回収段
ニッケル回収段では、置換後有機相(ニッケルおよびコバルトを担持した酸性抽出剤)と酸とを接触させて、有機相に担持されたニッケルの大部分を逆抽出してニッケル回収液を得る。酸として硫酸、塩酸などが用いられる。逆抽出反応後のニッケル回収液のpHが3~4となるよう調整することが好ましい。ニッケル回収液にはコバルト、マグネシウムなどの不純物も含まれる。
(3-4) Nickel recovery stage In the nickel recovery stage, most of the nickel supported on the organic phase is back-extracted by bringing the substituted organic phase (acidic extractant supporting nickel and cobalt) into contact with acid. to obtain a nickel recovery solution. Sulfuric acid, hydrochloric acid, etc. are used as the acid. It is preferable to adjust the pH of the nickel recovery solution after the back extraction reaction to 3 to 4. The nickel recovery solution also contains impurities such as cobalt and magnesium.

(3-5)コバルト回収段
ニッケルを逆抽出した後のニッケル回収後有機相はコバルト回収段に送られる。コバルト回収段では、有機相と酸とを接触させて、有機相に担持されたコバルトを逆抽出してコバルト水溶液を得る。酸として硫酸、塩酸などが用いられる。逆抽出反応後のコバルト水溶液のpHが1.0程度となるよう調整することが好ましい。酸として塩酸を用いた場合、コバルト水溶液は塩化コバルト水溶液である。コバルト水溶液には、有機相に含まれるマグネシウム、カルシウム、銅、亜鉛などの不純物の一部、およびニッケルも同時に逆抽出されている。
(3-5) Cobalt recovery stage The organic phase after nickel recovery after back-extracting nickel is sent to the cobalt recovery stage. In the cobalt recovery stage, the organic phase is brought into contact with an acid, and the cobalt supported on the organic phase is back-extracted to obtain a cobalt aqueous solution. Sulfuric acid, hydrochloric acid, etc. are used as the acid. It is preferable to adjust the pH of the cobalt aqueous solution after the back extraction reaction to about 1.0. When hydrochloric acid is used as the acid, the cobalt aqueous solution is a cobalt chloride aqueous solution. Some of the impurities contained in the organic phase, such as magnesium, calcium, copper, and zinc, and nickel are also back-extracted into the cobalt aqueous solution.

(3-6)逆抽出段
コバルトを逆抽出した後のコバルト回収後有機相は逆抽出段に送られる。逆抽出段では、有機相に硫酸を添加して有機相に残存する不純物を除去する。逆抽出段で不純物が除去された有機相は、抽出段と交換段とに繰り返し供給される。
(3-6) Back extraction stage The organic phase after cobalt recovery after back extraction of cobalt is sent to the back extraction stage. In the back extraction stage, sulfuric acid is added to the organic phase to remove impurities remaining in the organic phase. The organic phase from which impurities have been removed in the back extraction stage is repeatedly supplied to the extraction stage and the exchange stage.

(4)中和工程
図3に示すように、溶媒抽出工程のニッケル回収段で得られたニッケル回収液は中和工程に送られる。中和工程ではニッケル回収液をアルカリで中和して、ニッケル回収液に含まれるニッケルおよびコバルトを水酸化物として回収する。固液分離により得られた中和澱物(ニッケルおよびコバルトの混合水酸化物)は、中和剤の一部として脱鉄工程に供給される(図1参照)。これにより、有価物であるニッケルおよびコバルトを回収する。
(4) Neutralization process As shown in Figure 3, the nickel recovery liquid obtained in the nickel recovery stage of the solvent extraction process is sent to the neutralization process. In the neutralization step, the nickel recovery liquid is neutralized with an alkali to recover nickel and cobalt contained in the nickel recovery liquid as hydroxides. The neutralized precipitate (mixed hydroxide of nickel and cobalt) obtained by solid-liquid separation is supplied to the iron removal process as part of the neutralizing agent (see FIG. 1). As a result, nickel and cobalt, which are valuable materials, are recovered.

(5)排水処理工程
中和工程から排出された中和濾液、および溶媒抽出工程の逆抽出段から排出された逆抽出液は排水処理工程で処理される。排水処理工程では中和濾液および逆抽出液に中和剤を添加して中和し、重金属イオンを水酸化物として固定する。水酸化物を除去した後の無害化された液は排水として系外に排出される。排水処理工程から排出される水酸化物、すなわち排水澱物は、有価物であるニッケルおよびコバルトの含有率が低く、もはや回収対象とはならない。排水澱物は、乾式製錬工程に送られた後、スラグの一部として安定化され、廃棄される。
(5) Wastewater treatment process The neutralized filtrate discharged from the neutralization process and the back extract liquid discharged from the back extraction stage of the solvent extraction process are treated in the wastewater treatment process. In the wastewater treatment process, a neutralizing agent is added to the neutralized filtrate and back-extracted liquid to neutralize it, and heavy metal ions are fixed as hydroxides. After removing the hydroxide, the detoxified liquid is discharged out of the system as wastewater. Hydroxide discharged from the wastewater treatment process, that is, wastewater sludge, has a low content of nickel and cobalt, which are valuable substances, and is no longer a target for recovery. After the wastewater sludge is sent to a pyrometallurgical process, it is stabilized as part of the slag and disposed of.

(ニッケル回収段の抽出温度)
溶媒抽出工程のニッケル回収段では、酸性抽出剤に担持されたニッケルおよびコバルトのうち、ニッケルを選択的に逆抽出することにより、ニッケルとコバルトとを分離する。本願発明者らは、ニッケルの有機溶媒への分配率は抽出温度にほとんど依存せず、コバルトは抽出温度が高くなるほど有機溶媒への分配率が高くなるとの知見を得た。これより、ニッケル回収段における抽出温度を高くすることで、ニッケルとコバルトの分離性が向上することを見出した。
(Extraction temperature of nickel recovery stage)
In the nickel recovery stage of the solvent extraction step, nickel and cobalt are separated from each other by selectively back-extracting nickel out of the nickel and cobalt supported on the acidic extractant. The inventors of the present invention have found that the distribution rate of nickel to the organic solvent is almost independent of the extraction temperature, and that the higher the extraction temperature is, the higher the distribution rate of cobalt to the organic solvent is. From this, it has been found that the separation of nickel and cobalt is improved by increasing the extraction temperature in the nickel recovery stage.

具体的には、ニッケル回収段における抽出温度を47℃以上とすることが好ましい。そうすれば、ニッケルの有機溶媒への分配率を低い状態で維持しつつ、コバルトの有機溶媒への分配率を高くでき、ニッケルとコバルトの分離性を向上させることができる。また、抽出温度を60℃以下に調整することが好ましい。そうすれば、希釈剤が揮発しにくい。中和工程から排出される中和濾液のTOC(全有機炭素)増加に伴う排水のCOD(化学的酸素要求量)負荷の上昇を抑えるためには、抽出温度は55℃以下に調整することが好ましい。 Specifically, the extraction temperature in the nickel recovery stage is preferably 47°C or higher. By doing so, the distribution rate of cobalt to the organic solvent can be increased while maintaining the distribution rate of nickel to the organic solvent in a low state, and the separability of nickel and cobalt can be improved. Further, it is preferable to adjust the extraction temperature to 60°C or lower. This will prevent the diluent from evaporating. In order to suppress the increase in the COD (chemical oxygen demand) load of the wastewater due to the increase in TOC (total organic carbon) of the neutralized filtrate discharged from the neutralization process, the extraction temperature should be adjusted to 55°C or less. preferable.

ニッケル回収段におけるニッケルとコバルトの分離性が向上することにより、ニッケル回収液のコバルト濃度が低下する。ニッケル回収液のコバルト濃度が低下すると、中和工程から排出される中和濾液のコバルト濃度も低くなる。そのため、中和濾液から生成された排水澱物を系外に排出することに起因するコバルトロスを低減できる。 By improving the separability of nickel and cobalt in the nickel recovery stage, the cobalt concentration of the nickel recovery liquid is reduced. When the cobalt concentration of the nickel recovery liquid decreases, the cobalt concentration of the neutralized filtrate discharged from the neutralization step also decreases. Therefore, cobalt loss caused by discharging wastewater sediment generated from the neutralized filtrate out of the system can be reduced.

つぎに、実施例を説明する。
溶媒抽出により粗硫酸ニッケル水溶液に含まれる不純物を除去して高純度硫酸ニッケル水溶液を得た。溶媒抽出工程のニッケル回収段を4基のミキサーセトラーを用いた向流多段抽出方式により行なった。酸性抽出剤として2-エチルヘキシルホスホン酸モノ-2-エチルヘキシルを用いた。
Next, an example will be explained.
Impurities contained in the crude nickel sulfate aqueous solution were removed by solvent extraction to obtain a high purity nickel sulfate aqueous solution. The nickel recovery stage of the solvent extraction step was performed by a countercurrent multistage extraction method using four mixer settlers. Mono-2-ethylhexyl 2-ethylhexylphosphonate was used as the acidic extractant.

ニッケル回収段へ供給する置換後有機と硫酸(15%希釈)との流量比(O/A)を22~25とした。逆抽出反応後のニッケル回収液のpHが平均3.7でほぼ一定となるように調整した。pHは変えずに、抽出温度(水相の液温)を変化させつつ操業を行なった。 The flow rate ratio (O/A) of the substituted organic material and sulfuric acid (15% dilution) supplied to the nickel recovery stage was set to 22 to 25. The pH of the nickel recovery solution after the back extraction reaction was adjusted to be approximately constant at an average of 3.7. The operation was carried out while changing the extraction temperature (temperature of the aqueous phase) without changing the pH.

表1に各抽出温度における操業の結果を示す。

Figure 0007360091000001
Table 1 shows the results of operation at each extraction temperature.
Figure 0007360091000001

表1において、ニッケルの分配率とは逆抽出反応後の有機溶媒およびニッケル回収液の合計ニッケル量に対する有機溶媒のニッケル量の割合である。コバルトの分配率とは逆抽出反応後の有機溶媒およびニッケル回収液の合計コバルト量に対する有機溶媒のコバルト量の割合である。分離性とはコバルト分配率をニッケル分配率で除した値である。 In Table 1, the nickel distribution ratio is the ratio of the amount of nickel in the organic solvent to the total amount of nickel in the organic solvent and nickel recovery solution after the back extraction reaction. The cobalt distribution ratio is the ratio of the amount of cobalt in the organic solvent to the total amount of cobalt in the organic solvent and nickel recovery solution after the back extraction reaction. Separability is the value obtained by dividing the cobalt distribution rate by the nickel distribution rate.

表1から分かるように、ニッケルの有機溶媒への分配率は常に0.004であり抽出温度に依存しない。一方、コバルトの有機溶媒への分配率は抽出温度が45℃の場合は0.95であり、抽出温度が52℃の場合は0.97である。コバルトは抽出温度が高くなるほど、有機溶媒への分配率が高くなるといえる。 As can be seen from Table 1, the distribution ratio of nickel to the organic solvent is always 0.004 and does not depend on the extraction temperature. On the other hand, the distribution ratio of cobalt to the organic solvent is 0.95 when the extraction temperature is 45°C, and 0.97 when the extraction temperature is 52°C. It can be said that the higher the extraction temperature, the higher the distribution rate of cobalt to the organic solvent.

これより、抽出温度を高くするほど、ニッケルとコバルトの分離性を向上できることが分かる。具体的には、抽出温度を47℃以上にすれば、ニッケルとコバルトの分離性を240以上にできる。また、抽出温度を51℃以上にすれば、ニッケルとコバルトの分離性を242以上にできる。 From this, it can be seen that the higher the extraction temperature is, the more the separability of nickel and cobalt can be improved. Specifically, if the extraction temperature is set to 47° C. or higher, the separation between nickel and cobalt can be increased to 240 or higher. Moreover, if the extraction temperature is set to 51° C. or higher, the separability of nickel and cobalt can be increased to 242 or higher.

図4(A)にニッケル回収段の抽出温度とニッケル回収液のコバルト濃度との関係を示す。図4(A)のグラフより、抽出温度を高くするほど、ニッケル回収液のコバルト濃度が低くなることが分かる。これは、抽出温度を高くするほどコバルトの有機溶媒への分配率が高くなることに起因する。 FIG. 4(A) shows the relationship between the extraction temperature of the nickel recovery stage and the cobalt concentration of the nickel recovery liquid. From the graph in FIG. 4(A), it can be seen that the higher the extraction temperature, the lower the cobalt concentration in the nickel recovery liquid. This is due to the fact that the higher the extraction temperature, the higher the distribution ratio of cobalt to the organic solvent.

ニッケル回収段から得られたニッケル回収液を中和処理した。中和条件は反応温度43℃、pH7.5とした。図4(B)にニッケル回収段の抽出温度と中和処理した後の中和濾液のコバルト濃度との関係を示す。図4(B)のグラフより、抽出温度を高くするほど、中和濾液のコバルト濃度が低くなることが分かる。 The nickel recovery liquid obtained from the nickel recovery stage was neutralized. The neutralization conditions were a reaction temperature of 43° C. and a pH of 7.5. FIG. 4(B) shows the relationship between the extraction temperature of the nickel recovery stage and the cobalt concentration of the neutralized filtrate after the neutralization treatment. From the graph in FIG. 4(B), it can be seen that the higher the extraction temperature, the lower the cobalt concentration in the neutralized filtrate.

ニッケル回収段の抽出温度を45℃から47℃に上昇させれば、中和濾液のコバルト濃度が0.23g/Lから0.19g/Lまで低下し、コバルトロスを17%低減できる。さらに抽出温度を52℃まで上昇させれば、中和濾液のコバルト濃度が0.08g/Lまで低下し、コバルトロスを65%低減できる。 If the extraction temperature of the nickel recovery stage is increased from 45° C. to 47° C., the cobalt concentration in the neutralized filtrate is reduced from 0.23 g/L to 0.19 g/L, and cobalt loss can be reduced by 17%. If the extraction temperature is further increased to 52° C., the cobalt concentration in the neutralized filtrate is reduced to 0.08 g/L, and cobalt loss can be reduced by 65%.

Claims (5)

ニッケルおよびコバルトを担持した酸性抽出剤と酸とを接触させて、ニッケルを逆抽出してニッケル回収液を得るニッケル回収段を備え、
前記ニッケル回収段における抽出温度を47~60℃とし、
前記ニッケル回収段における前記ニッケル回収液のpHを3~4とする
ことを特徴とする溶媒抽出方法。
Equipped with a nickel recovery stage that brings an acidic extractant carrying nickel and cobalt into contact with an acid to back-extract nickel and obtain a nickel recovery liquid,
The extraction temperature in the nickel recovery stage is 47 to 60°C,
The pH of the nickel recovery liquid in the nickel recovery stage is set to 3 to 4.
A solvent extraction method characterized by:
前記ニッケル回収段の前に、コバルトを含む粗ニッケル水溶液とニッケルを担持した前記酸性抽出剤とを接触させて、前記粗ニッケル水溶液中のコバルトと前記酸性抽出剤中のニッケルとを置換し、高純度ニッケル水溶液を得る交換段を備える
ことを特徴とする請求項記載の溶媒抽出方法。
Before the nickel recovery stage, a crude nickel aqueous solution containing cobalt and the acidic extractant supporting nickel are brought into contact to replace cobalt in the crude nickel aqueous solution and nickel in the acidic extractant, and to 2. The solvent extraction method according to claim 1 , further comprising an exchange stage for obtaining a pure nickel aqueous solution.
前記粗ニッケル水溶液は粗硫酸ニッケル水溶液であり、
前記高純度ニッケル水溶液は高純度硫酸ニッケル水溶液である
ことを特徴とする請求項記載の溶媒抽出方法。
The crude nickel aqueous solution is a crude nickel sulfate aqueous solution,
3. The solvent extraction method according to claim 2 , wherein the high-purity nickel aqueous solution is a high-purity nickel sulfate aqueous solution.
前記酸性抽出剤は燐酸エステル系酸性抽出剤である
ことを特徴とする請求項1~のいずれかに記載の溶媒抽出方法。
4. The solvent extraction method according to claim 1 , wherein the acidic extractant is a phosphoric acid ester extractant.
不純物として少なくともコバルトおよび鉄を含む粗ニッケル水溶液に中和剤を添加して、酸化中和反応により前記不純物の一部を除去する脱鉄工程と、
前記脱鉄工程後の前記粗ニッケル水溶液とニッケルを担持した酸性抽出剤とを接触させて、前記粗ニッケル水溶液中のコバルトと前記酸性抽出剤中のニッケルとを置換し、高純度ニッケル水溶液を得る交換段と、
前記交換段から排出された酸性抽出剤と酸とを接触させて、ニッケルを逆抽出してニッケル回収液を得るニッケル回収段と、
前記ニッケル回収段から排出された酸性抽出剤と酸とを接触させて、コバルトを逆抽出してコバルト水溶液を得るコバルト回収段と、
前記ニッケル回収液を中和してニッケルおよびコバルトを含む中和澱物と中和濾液とを得る中和工程と、を備え、
前記中和澱物は前記中和剤の一部として前記脱鉄工程に供給され、
前記ニッケル回収段における抽出温度を47~60℃とし、
前記ニッケル回収段における前記ニッケル回収液のpHを3~4とする
ことを特徴とするコバルト水溶液の製造方法。
a deiron removal step in which a neutralizing agent is added to a crude nickel aqueous solution containing at least cobalt and iron as impurities, and a part of the impurities are removed by an oxidative neutralization reaction;
The crude nickel aqueous solution after the iron removal step is brought into contact with an acidic extractant carrying nickel to replace cobalt in the crude nickel aqueous solution and nickel in the acidic extractant to obtain a high purity nickel aqueous solution. exchange stage and
a nickel recovery stage for back-extracting nickel by bringing the acidic extractant discharged from the exchange stage into contact with an acid to obtain a nickel recovery liquid;
a cobalt recovery stage for back-extracting cobalt by bringing the acidic extractant discharged from the nickel recovery stage into contact with an acid to obtain a cobalt aqueous solution;
a neutralization step of neutralizing the nickel recovery liquid to obtain a neutralized precipitate and a neutralized filtrate containing nickel and cobalt,
The neutralized precipitate is supplied to the iron removal step as part of the neutralizing agent,
The extraction temperature in the nickel recovery stage is 47 to 60°C,
The pH of the nickel recovery liquid in the nickel recovery stage is set to 3 to 4.
A method for producing a cobalt aqueous solution, characterized by:
JP2019237927A 2019-12-27 2019-12-27 Solvent extraction method and method for producing cobalt aqueous solution Active JP7360091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237927A JP7360091B2 (en) 2019-12-27 2019-12-27 Solvent extraction method and method for producing cobalt aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237927A JP7360091B2 (en) 2019-12-27 2019-12-27 Solvent extraction method and method for producing cobalt aqueous solution

Publications (2)

Publication Number Publication Date
JP2021105206A JP2021105206A (en) 2021-07-26
JP7360091B2 true JP7360091B2 (en) 2023-10-12

Family

ID=76918621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237927A Active JP7360091B2 (en) 2019-12-27 2019-12-27 Solvent extraction method and method for producing cobalt aqueous solution

Country Status (1)

Country Link
JP (1) JP7360091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023118037A1 (en) 2021-12-20 2023-06-29 Umicore Process for preparing a high-purity nickel sulphate solution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506880A (en) 2005-07-29 2009-02-19 シェブロン ユー.エス.エー. インコーポレイテッド Method for recovering metal from spent catalyst
US20110283838A1 (en) 2010-05-20 2011-11-24 Commonwealth Scientific and Industrial Research Organisation (ABN 41 687 119 230) Solvent extraction process for separating cobalt from nickel in aqueous solution
JP2017025367A (en) 2015-07-21 2017-02-02 住友金属鉱山株式会社 Method for producing high purity nickel sulfate aqueous solution
JP2017149609A (en) 2016-02-25 2017-08-31 住友金属鉱山株式会社 Method for producing aqueous nickel solution
JP2021031730A (en) 2019-08-26 2021-03-01 住友金属鉱山株式会社 Method for producing cobalt aqueous solution
JP2022502564A (en) 2018-09-27 2022-01-11 アイジーオー リミテッド Methods for Preparing High Purity Hydrated Nickel Sulfate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506880A (en) 2005-07-29 2009-02-19 シェブロン ユー.エス.エー. インコーポレイテッド Method for recovering metal from spent catalyst
US20110283838A1 (en) 2010-05-20 2011-11-24 Commonwealth Scientific and Industrial Research Organisation (ABN 41 687 119 230) Solvent extraction process for separating cobalt from nickel in aqueous solution
JP2017025367A (en) 2015-07-21 2017-02-02 住友金属鉱山株式会社 Method for producing high purity nickel sulfate aqueous solution
JP2017149609A (en) 2016-02-25 2017-08-31 住友金属鉱山株式会社 Method for producing aqueous nickel solution
JP2022502564A (en) 2018-09-27 2022-01-11 アイジーオー リミテッド Methods for Preparing High Purity Hydrated Nickel Sulfate
JP2021031730A (en) 2019-08-26 2021-03-01 住友金属鉱山株式会社 Method for producing cobalt aqueous solution

Also Published As

Publication number Publication date
JP2021105206A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US9963762B2 (en) Scandium recovery method
JP6004023B2 (en) Scandium recovery method
AU2013238535B2 (en) Method for producing high-purity nickel sulfate
JP5800254B2 (en) Method for producing cobalt sulfate
WO2014115686A1 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
JP6613954B2 (en) Method for producing nickel aqueous solution
KR101021180B1 (en) Method for producing high purity cobalt surfate
EA030289B1 (en) Method for recovering metals
JP6798078B2 (en) Ion exchange treatment method, scandium recovery method
JP7251406B2 (en) Method for producing cobalt aqueous solution
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP6090394B2 (en) Method for producing scandium oxide
KR102041294B1 (en) Method for recovering covalt from solution comprising covalt, nickel and iron
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP7251405B2 (en) Method for producing nickel aqueous solution
AU2014360655B2 (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
WO2022269962A1 (en) Method for producing cobalt sulfate
JP4259165B2 (en) Purification method of aqueous nickel sulfate solution containing cobalt and calcium
JP7389338B2 (en) Method for producing nickel aqueous solution
JP7156491B1 (en) Method for producing cobalt sulfate
WO2021059942A1 (en) Method for recovering scandium
JP2023076987A (en) Method for producing cobalt sulfate
JP2024056178A (en) Method for producing nickel sulfate aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7360091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150