JP2021080131A - Single crystal growth apparatus, method for using the same and single crystal growth method - Google Patents

Single crystal growth apparatus, method for using the same and single crystal growth method Download PDF

Info

Publication number
JP2021080131A
JP2021080131A JP2019208719A JP2019208719A JP2021080131A JP 2021080131 A JP2021080131 A JP 2021080131A JP 2019208719 A JP2019208719 A JP 2019208719A JP 2019208719 A JP2019208719 A JP 2019208719A JP 2021080131 A JP2021080131 A JP 2021080131A
Authority
JP
Japan
Prior art keywords
single crystal
crystal growth
silicon
crucible
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019208719A
Other languages
Japanese (ja)
Other versions
JP6777908B1 (en
Inventor
佑吉 堀岡
Yukichi Horioka
佑吉 堀岡
健二 平栗
Kenji Hirakuri
健二 平栗
春 初
Chun Chu
春 初
龍之介 岩崎
Ryunosuke Iwasaki
龍之介 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FTB Research Institute Co Ltd
Original Assignee
FTB Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FTB Research Institute Co Ltd filed Critical FTB Research Institute Co Ltd
Priority to JP2019208719A priority Critical patent/JP6777908B1/en
Application granted granted Critical
Publication of JP6777908B1 publication Critical patent/JP6777908B1/en
Priority to CN202011304275.6A priority patent/CN112899772B/en
Publication of JP2021080131A publication Critical patent/JP2021080131A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a single crystal growth apparatus capable of achieving the growth of a large diameter single crystal having low carbon concentration.SOLUTION: A gas flow tube 7 for rectifying a gas flow in a single crystal growth furnace for growing a silicon single crystal is arranged; carbon concentration included in the crystal is reduced without causing a reduction reaction with silicon oxide by forming the material of at least a surface layer of the gas flow tube 7 into silicon carbide (SiC); radiant heat radiated to the crystal during growth from the outside is blocked to extend the life of a furnace material; and the carbon concentration in the crystal is reduced.SELECTED DRAWING: Figure 1

Description

本発明は、単結晶成長装置、該単結晶成長装置の使用方法および単結晶に関するものである。 The present invention relates to a single crystal growth device, a method of using the single crystal growth device, and a single crystal.

単結晶の成長装置および単結晶成長方法において、半導体シリコンウエーハの材料や、シリコン単結晶型太陽電池の材料ウエーハとなる材料単結晶の製造には、一般的にCZ法(チョクラルスキー法)や磁場を印加したMCZ法が用いられてきた。 In the single crystal growth apparatus and single crystal growth method, the CZ method (Czochralski method) is generally used for the production of materials for semiconductor silicon wafers and material single crystals that serve as material wafers for silicon single crystal solar cells. The MCZ method in which a magnetic field is applied has been used.

CZ法、MCZ法は、ともにシリコンの多結晶原料をルツボ内に充填し、不活性ガスとしてアルゴンガス雰囲気且つ減圧雰囲気中でヒータに電力を供給し、保護用のカーボンルツボの中に石英ルツボをセットし、これらのルツボの外側からカーボンヒータを用いて加熱溶融し、原料多結晶を完全に融液にした後、引き上げ軸に吊るした種結晶をこの融液表面に浸し、温度調整しながら種結晶を回転させつつ上方に引き上げる結晶成長方法である。 In both the CZ method and the MCZ method, a polycrystalline raw material of silicon is filled in a rut, power is supplied to the heater as an inert gas in an argon gas atmosphere and a reduced pressure atmosphere, and a quartz rut is placed in the protective carbon rut. After setting and heating and melting from the outside of these rutsubo using a carbon heater to completely melt the raw material polycrystalline, the seed crystal hung on the pulling shaft is immersed in the melt surface and the seed is adjusted while adjusting the temperature. This is a crystal growth method in which a crystal is rotated and pulled upward.

CZ法に用いるCZ炉は、アルゴン雰囲気中で減圧状態10〜400Torr(1,333〜53,329Pa)として、石英ルツボに原料多結晶シリコンなどを入れ、これをカーボンヒータに電流を通電することにより加熱溶融して融液とし、上方から種結晶を垂下し、適正温度で融液に漬けた後、一定の長さずつ種結晶を引き上げることにより、種結晶内に有する転移欠陥を無転移化した後、徐々に単結晶の直径を太く成長させ、製品となる直胴部を成長させ、規定の長さに達すると再び直径を細くすることで無転移結晶を完成させるためテイル部を形成し、直径を徐々に絞り、最後に融液から切り離すことで単結晶シリコンを製造している。
CZ法により得られる単結晶は、種結晶側からみて順に肩部と直胴部とテイル部とで構成される。
The CZ furnace used in the CZ method is set to a reduced pressure state of 10 to 400 Torr (1,333 to 53,329 Pa) in an argon atmosphere, a raw material polycrystalline silicon or the like is put in a quartz pot, and a current is applied to a carbon heater. The seed crystal was melted by heating to form a melt, the seed crystal was dripped from above, soaked in the melt at an appropriate temperature, and then the seed crystal was pulled up by a certain length to eliminate transition defects in the seed crystal. After that, the diameter of the single crystal is gradually increased, the straight body portion to be the product is grown, and when the specified length is reached, the diameter is reduced again to form the tail portion to complete the transition-free crystal. Single crystal silicon is manufactured by gradually reducing the diameter and finally separating it from the melt.
The single crystal obtained by the CZ method is composed of a shoulder portion, a straight body portion, and a tail portion in this order when viewed from the seed crystal side.

単結晶成長中、前記炉の上部から下方に向かってアルゴンガスが流され、チャンバの炉底部から真空ポンプで排気されるが、ルツボ表面から蒸発するシリコン酸化物(SiO)が炉の上方に移動することを防止するために、成長中の結晶周辺のアルゴンガス流を整流するフロー管が一般的に使われている。 During single crystal growth, argon gas flows downward from the top of the furnace and is exhausted by a vacuum pump from the bottom of the chamber, but silicon oxide (SiO) that evaporates from the surface of the rutsubo moves above the furnace. A flow tube that rectifies the argon gas flow around the growing crystal is commonly used to prevent this from happening.

しかしながら、このフロー管は、従来、高純度カーボン材料や、外側カーボン材料と内側カーボン材料の間に空間を作り、カーボン繊維を挟み込む形状にするなどして成長中の単結晶への断熱を図っていた。ヒータからの輻射熱から成長中の単結晶への輻射量を減らすためにこのフロー管の厚みを増加させると、ルツボ内径方向において設計の自由度が大きく損なわれるため、大型の結晶を成長させるためにはルツボ直径を大きくする、ひいては炉全体を大きくする必要があり、設備費がかさむことになり、結晶原価の上昇にも繋がっていた。 However, conventionally, this flow tube has been designed to insulate a growing single crystal by creating a space between a high-purity carbon material or an outer carbon material and an inner carbon material and forming a shape in which carbon fibers are sandwiched. It was. If the thickness of this flow tube is increased in order to reduce the amount of radiation from the radiant heat from the heater to the growing single crystal, the degree of freedom in design is greatly impaired in the inner diameter direction of the crucible. It was necessary to increase the diameter of the crucible, and eventually the entire furnace, which increased the equipment cost and led to an increase in the crystal cost.

また、フロー管の厚みの増大は成長中の単結晶を観察する場合の視野を妨げることにも繋がり、単結晶の成長制御のためのカメラの視野も制限される不具合が生じていた。 In addition, the increase in the thickness of the flow tube also hinders the field of view when observing the growing single crystal, and there is a problem that the field of view of the camera for controlling the growth of the single crystal is also limited.

例えば、特許文献1には、結晶中の炭素濃度は、炉内のヒータ、黒鉛ルツボ等の高温炭素部材から原料融液中に混入する一酸化炭素(CO)の汚染速度と、原料融液からの一酸化炭素(CO)の蒸発速度を制御することによって低減できることが示されている。 For example, in Patent Document 1, the carbon concentration in the crystal is determined by the contamination rate of carbon monoxide (CO) mixed in the raw material melt from the high temperature carbon member such as the heater in the furnace and the graphite crucible, and the raw material melt. It has been shown that it can be reduced by controlling the evaporation rate of carbon monoxide (CO).

そして、実験計画法に基づいて要因分析を行い、シリコン融液面と、シリコン融液面上に配置される熱遮蔽体との距離を制御することにより、確実にシリコン単結晶中の炭素濃度を低減することができるとしている。 Then, by performing factor analysis based on the design of experiments and controlling the distance between the silicon melt surface and the heat shield arranged on the silicon melt surface, the carbon concentration in the silicon single crystal can be reliably determined. It is said that it can be reduced.

しかしながら、特許文献1に開示の発明ではそもそも問題となる炭酸ガスの発生元である熱遮蔽体が高純度炭素材であり、炭酸ガスの発生元を他の素材に代えることは検討されていない。 However, in the invention disclosed in Patent Document 1, the heat shield which is the source of carbon dioxide gas, which is a problem in the first place, is a high-purity carbon material, and it has not been studied to replace the source of carbon dioxide gas with another material.

また、特許文献2では、炭素部材の炭素によってシリコンの酸化物(SiO)に還元反応が生じ、シリコン(Si)として炉内部品に不着し、炉内部品の寿命を早めてしまうため、該シリコンを高温にして昇華または融液滴下させることで炉内部品の再生をすることが示されている。これは、炉内部品の寿命を延ばし、コスト低減を図る上で重要な作業であるといえる。しかし、この方法では、炉の稼働時間長くし下げ、この点で稼働率を低下させることによるコスト増に繋がってしまう。 Further, in Patent Document 2, the carbon of the carbon member causes a reduction reaction in the oxide (SiO) of silicon, which does not adhere to the parts in the furnace as silicon (Si), which shortens the life of the parts in the furnace. It has been shown that the parts in the furnace are regenerated by sublimating or melting the droplets at a high temperature. It can be said that this is an important work for extending the life of the parts in the furnace and reducing the cost. However, in this method, the operating time of the furnace is lengthened and shortened, and in this respect, the operating rate is lowered, which leads to an increase in cost.

しかしながら、このような工程を設けなくてもそもそも炭素による還元反応を必要としない炉材を用いれば炉の稼働率を下げることもなく、炉内部材の長寿命化も図れることになる。 However, even if such a process is not provided, if a furnace material that does not require a reduction reaction by carbon is used, the operating rate of the furnace will not be lowered, and the life of the members in the furnace can be extended.

また、特許文献3では、チャンバ内での筒状ヒータの配置に着目し、ヒータの素材であるカーボンとの反応により発生する炭酸(CO)ガスがシリコン融液に取り込まれないように、筒状ヒータの配置を従来よりも低い位置、即ちヒータの上端がルツボ のそこよりも低くなる位置にすることで、融液へのCOガスが取り込まれないようにしたと記載されている。しかし、不活性ガスを整流し、成長中の結晶への熱輻射を防ぐ熱遮蔽体の材質については言及されていない。確かにカーボン部材で最も高温になり、SiOを還元するものは一部はヒータであるが、実際には、カーボン製熱遮蔽体の液面に近い部分では、還元されたシリコン(Si)が析出することが確認できており、融液の直近でのSiOの還元は生じているため、これよりもガス流の下流に位置するヒータでの還元よりは、フロー管での還元によるCOガス発生の影響の方が単結晶中の炭素には影響が大きい。 Further, in Patent Document 3, paying attention to the arrangement of the tubular heater in the chamber, the tubular shape is prevented so that the carbonic acid (CO) gas generated by the reaction with carbon, which is the material of the heater, is not taken into the silicon melt. It is stated that the heater is placed at a lower position than before, that is, at a position where the upper end of the heater is lower than that of the crucible so that CO gas is not taken into the melt. However, no mention is made of the material of the heat shield that rectifies the inert gas and prevents heat radiation to the growing crystals. It is true that some of the carbon members that reach the highest temperature and reduce SiO are heaters, but in reality, reduced silicon (Si) is deposited near the liquid surface of the carbon heat shield. Since it has been confirmed that the SiO is reduced in the immediate vicinity of the melt, the CO gas is generated by the reduction in the flow pipe rather than the reduction in the heater located downstream of the gas flow. The effect is greater on carbon in a single crystal.

また、特許文献4では、一個のルツボ から複数の単結晶を成長させるマルチプリング結晶成長法において、第一の単結晶を引き上げる前の原料融解時の炉内圧、アルゴン流量を第二の原料融解時に変更して溶融シリコン中に溶け込む量を低減し、第二の単結晶中のカーボン濃度の上昇を抑える方法が示されている。しかしながら、この特許文献でもCOガスを発生させる要因となるカーボン製フロー管については何も言及されていない。 Further, in Patent Document 4, in the multiplexing crystal growth method in which a plurality of single crystals are grown from one rut, the furnace pressure and argon flow rate at the time of melting the raw material before pulling up the first single crystal are set at the time of melting the second raw material. A method of modifying the amount to be dissolved in the molten silicon to suppress an increase in the carbon concentration in the second single crystal is shown. However, even in this patent document, nothing is mentioned about the carbon flow pipe which is a factor of generating CO gas.

更に、特許文献5では、輻射シールドの下端面の寸法を変更し、不活性ガスの流れを適正化し、成長する単結晶に取り込まれるカーボン濃度の低減することが記載されている。しかしながらここでも単結晶に取り込まれるカーボンの部材の内、最もシリコン溶融に近くに位置するカーボン製の輻射シールドを他の材料に変更することは言及されていない。 Further, Patent Document 5 describes that the dimensions of the lower end surface of the radiation shield are changed to optimize the flow of the inert gas and reduce the concentration of carbon incorporated into the growing single crystal. However, again, there is no mention of changing the carbon radiation shield, which is located closest to the silicon melt, to another material among the carbon members incorporated into the single crystal.

従来から、炭素部材は高温でも高純度を維持する素材として長く使われてきたが、成長中の単結晶内に混入する炭素濃度を上げる問題があった。また、単結晶内に混入した炭素は、単結晶シリコン内で酸素の析出核となって、酸素析出を加速し、その酸素析出物がデバイス製作上電気的なリークの元となるなどの障害となることが広く知られている。そこでシリコン単結晶内に炭素が取り込まれないようにする技術が色々工夫されてきた。例えば、特許文献1では、800℃以上1700℃近傍までの温度域で使用され、かつ、高純度の素材として、高純度カーボンが一般的に採用されてきた。 Conventionally, carbon members have long been used as a material for maintaining high purity even at high temperatures, but there is a problem of increasing the concentration of carbon mixed in a growing single crystal. In addition, the carbon mixed in the single crystal becomes oxygen precipitation nuclei in the single crystal silicon, accelerates oxygen precipitation, and the oxygen precipitates cause electrical leaks in device manufacturing. It is widely known to be. Therefore, various techniques have been devised to prevent carbon from being incorporated into the silicon single crystal. For example, in Patent Document 1, high-purity carbon has been generally adopted as a high-purity material that is used in a temperature range of 800 ° C. or higher and around 1700 ° C.

しかしながら、高温のカーボン部材は、シリコン融液から蒸発するシリコン酸化物(SiO)の還元反応をもたらし、炭酸ガス(CO,CO)を発生させ、これが、溶融シリコン内に取り込まれ、結果として、成長した単結晶の炭素濃度レベルを上げてしまっていた。また、炉内部品であるカーボン部材もシリコンの還元反応によって炭酸ガスとして消耗し炉内部材の寿命を早めるなどの不具合があり、また一方で単結晶シリコンのカーボン濃度を高め、品質を低下させてしまう不具合があった。さらに、前記シリコン酸化物(SiO)が還元されて残ったシリコン(Si)は、炉内部品に蒸着するため、これが又炉内部品の寿命を下げることに繋がっていたため、特許文献2で
対策しているように、還元されて残ったシリコン(Si)が付着した炉内部品を高温加熱し、シリコン(Si)を昇華させるなどの手間がかかっていた。
However, the high temperature carbon member causes a reduction reaction of silicon oxide (SiO) that evaporates from the silicon melt to generate carbon dioxide gas (CO, CO 2 ), which is incorporated into the molten silicon, resulting in It had raised the carbon concentration level of the grown single crystal. In addition, the carbon member, which is a component inside the furnace, is also consumed as carbon dioxide by the reduction reaction of silicon, which has problems such as shortening the life of the member inside the furnace. On the other hand, it increases the carbon concentration of single crystal silicon and lowers the quality. There was a problem that it would end up. Further, since the silicon (Si) remaining after the silicon oxide (SiO) is reduced is vapor-deposited on the in-core parts, this also leads to shortening the life of the in-core parts. As shown above, it took time and effort to heat the parts in the furnace to which the silicon (Si) remaining after being reduced was attached at a high temperature to sublimate the silicon (Si).

特開2019−31415JP-A-2019-31415 特開2017−14072JP 2017-14072 特開2019−14637JP-A-2019-14637 特開2017−39629JP-A-2017-39629 特開2009−173503JP-A-2009-173503

本発明の目的は、炭素濃度が低い高品質の大口径単結晶の成長を実現し、コスト改善に寄与し得る単結晶成長装置および高品質の単結晶を提供すると同時に高価な炉内部品の長寿命化することにある。 An object of the present invention is to provide a single crystal growth apparatus and a high quality single crystal that can realize the growth of a high quality large diameter single crystal having a low carbon concentration and contribute to cost improvement, and at the same time provide a length of expensive in-core parts. It is to extend the life.

本発明の第1の側面によれば、
種結晶を取り付け可能で該種結晶をシリコン(ケイ素)の融液に浸して引き上げるためのシードチャックと、
熱線を放射するヒータを含み、前記融液を収容するルツボの設置と前記融液の加熱が可能な単結晶成長炉と、
前記単結晶成長炉内に設けられ、単結晶の外周を流れるガス流を整流し、かつ成長中の単結晶への熱の輻射を抑制するガスフロー管と、を備え、
前記ガスフロー管の少なくとも表面は、シリコン酸化物(SiO)との間で還元反応を生じない部材の層で覆われる、
単結晶成長装置が提供される。
また、本発明の第2の側面によれば、
上述した単結晶成長装置を用いて得られた低炭素濃度のシリコン単結晶が提供される。
また、本発明の第3の側面によれば、炭素濃度が1X1015atoms/CC以下であることを特徴とするシリコン単結晶が提供される。
According to the first aspect of the present invention
A seed chuck to which a seed crystal can be attached and for immersing the seed crystal in a silicon melt and pulling it up,
A single crystal growth furnace that includes a heater that radiates heat rays and is capable of installing a crucible that houses the melt and heating the melt.
A gas flow tube provided in the single crystal growth furnace, which rectifies the gas flow flowing around the outer periphery of the single crystal and suppresses the radiation of heat to the growing single crystal, is provided.
At least the surface of the gas flow tube is covered with a layer of a member that does not undergo a reduction reaction with a silicon oxide (SiO).
A single crystal growth apparatus is provided.
Further, according to the second aspect of the present invention,
A low carbon concentration silicon single crystal obtained by using the above-mentioned single crystal growth apparatus is provided.
Further, according to the third aspect of the present invention, there is provided a silicon single crystal characterized by having a carbon concentration of 1X10 15 atoms / CC or less.

さらに、本発明の第4の側面によれば、上述した結晶成長装置を用いて、単結晶成長を行った後、残液に原料結晶を補充し、同一のルツボから複数の単結晶を成長させることを特徴とする単結晶成長装置の使用方法が提供される。 Further, according to the fourth aspect of the present invention, after single crystal growth is performed using the above-mentioned crystal growth apparatus, a raw material crystal is replenished in the residual liquid to grow a plurality of single crystals from the same rut. A method of using the single crystal growth apparatus is provided.

本発明によれば、炭素濃度レベルが低減された単結晶を得ることができる。
また、フロー管の肉厚を薄くできるため、炉の大型化による製造コスト増を回避できる上、同一炉でより大口径の単結晶の成長が行える。
According to the present invention, a single crystal having a reduced carbon concentration level can be obtained.
Further, since the wall thickness of the flow pipe can be reduced, it is possible to avoid an increase in manufacturing cost due to an increase in the size of the furnace, and it is possible to grow a single crystal having a larger diameter in the same furnace.

さらに、高温によりシリコン酸化物が還元されることもなく、従って還元されたシリコンが炉内部品に付着することによって炉内部品の寿命が短縮することがないので、炉内部材の長寿化により更なるコスト改善ができる。 Further, since the silicon oxide is not reduced due to the high temperature, and therefore the reduced silicon does not adhere to the internal parts of the furnace, the life of the internal parts is not shortened. The cost can be improved.

更に、成長中の単結晶への赤外線領域以外の輻射熱を効率的に低減し、シリコン単結晶には吸収されない、赤外線領域の熱線を透過させるフロー管を用いることで単結晶への遮熱を効果的に行うことができる。 Furthermore, by efficiently reducing the radiant heat to the growing single crystal other than the infrared region and using a flow tube that allows heat rays in the infrared region to pass through, which is not absorbed by the silicon single crystal, the heat shield to the single crystal is effective. Can be done

本発明の実施の一形態による単結晶成長装置の概略構成を示す模式図の一例である。This is an example of a schematic diagram showing a schematic configuration of a single crystal growth apparatus according to an embodiment of the present invention. 従来のフロー管を用いた単結晶成長装置の一例を示す。An example of a single crystal growth apparatus using a conventional flow tube is shown. 本発明の輻射熱に関する基礎データ計測のため、赤外線画像装置を使い計測を行った一実施形態の模式図の一例である。This is an example of a schematic diagram of an embodiment in which measurement is performed using an infrared image device for measuring basic data relating to radiant heat of the present invention. 本発明の輻射熱に関する被測定物の表面温度を計測のため、熱電対を用いて計測を行った一実施形態の模式図の一例である。This is an example of a schematic diagram of an embodiment in which a thermocouple is used to measure the surface temperature of an object to be measured with respect to the radiant heat of the present invention. 図3の計測方法を用いて昇温後の炭素素材と炭化ケイ素(SiC)素材を比較測定したモニター画面データの一例である。This is an example of monitor screen data obtained by comparing and measuring a carbon material and a silicon carbide (SiC) material after temperature rise using the measurement method of FIG. 図4の計測方法を用いて、被測定物を炭素部材、炭化ケイ素(SiC)部材、炭素部材とシリコン単結晶片の間に一定空間を設けまた、炭化ケイ素(SiC)部材とシリコン単結晶片の間に一定空間を設けた時のそれぞれの被測定物の昇温を一定時間毎に測定した結果を示すグラフの一例である。Using the measurement method of FIG. 4, the object to be measured is provided with a constant space between the carbon member, the silicon carbide (SiC) member, the carbon member and the silicon single crystal piece, and the silicon carbide (SiC) member and the silicon single crystal piece. This is an example of a graph showing the results of measuring the temperature rise of each object to be measured at regular time intervals when a constant space is provided between the two.

以下、本発明の実施の形態のいくつかについて図面を参照しながら説明する。図面においてその重複説明は適宜省略する。また、図中の各部材の形状・サイズは、説明を容易にするために適宜拡大・縮小・省略されているために現実の縮尺・比率とは合致していない場合がある。また、図面の説明においても、紙面の上下方向に即してそれぞれ「上」「下」の用語を便宜的に用いるために、重力加速度の方向と一致しない場合がある点に留意されたい。また、「実質的に」の用語は、測定誤差をも含む趣旨で使用される。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. The duplicate description will be omitted as appropriate in the drawings. In addition, the shape and size of each member in the drawing may not match the actual scale and ratio because they are appropriately enlarged, reduced, or omitted for ease of explanation. Also, in the explanation of the drawings, it should be noted that the terms "upper" and "lower" may not match the direction of gravitational acceleration because the terms "upper" and "lower" are used for convenience in the vertical direction of the paper. In addition, the term "substantially" is used to the effect that measurement error is also included.

本発明の実施の一形態による単結晶成長装置によれば、ガスフロー管の熱反射率を上げる一方で、シリコン単結晶が吸収しない赤外領域の熱線は積極的に透過させることで、ガスフロー管自身の発熱を抑え、ガスフロー管の直径方向の厚さを薄くし、尚且つ成長中の単結晶への輻射熱を遮ると共に、フロー管を従来のカーボン材料を使用せず、より反射率の優れた材料を少なくともその表面層に使用する。これにより、従来の、高熱に熱せられたカーボンが周辺雰囲気中にあるシリコン酸化物(SiO)の還元を行いCOガスとなってSi融液内に混入し単結晶内の炭素濃度を増やすという不具合を無くし、また還元されたSiが炭素部材で作られたフロー管やヒータなどに付着してフロー管やヒータなど炭素部材で作られた炉内部品の劣化を早めるという現象を防止する。
図1は、本発明の実施の一形態による単結晶成長装置の結晶成長を行う炉室の断面概略構成を示す模式図の一例である。
According to the single crystal growth apparatus according to the embodiment of the present invention, the gas flow is increased by increasing the heat reflectance of the gas flow tube while actively transmitting the heat rays in the infrared region that the silicon single crystal does not absorb. The heat generation of the tube itself is suppressed, the thickness of the gas flow tube in the radial direction is reduced, the radiant heat to the growing single crystal is blocked, and the flow tube does not use a conventional carbon material, so that the reflectance is higher. Use a good material, at least for its surface layer. As a result, the conventional problem is that the carbon heated to high heat reduces the silicon oxide (SiO) in the surrounding atmosphere and becomes CO gas, which is mixed in the Si melt and increases the carbon concentration in the single crystal. It also prevents the phenomenon that the reduced Si adheres to the flow pipes and heaters made of carbon members and accelerates the deterioration of the in-core parts made of carbon members such as flow pipes and heaters.
FIG. 1 is an example of a schematic view showing a schematic cross-sectional configuration of a furnace chamber for crystal growth of a single crystal growth apparatus according to an embodiment of the present invention.

図1に示す単結晶成長装置1は、水冷ジャケット構造を持つチャンバ42と、ヒータ10と、保温筒11と、シリコン原料を収容する石英ルツボ8と、この石英ルツボ8を支持するカーボンルツボ9と、ガスフロー管7とを備える。 The single crystal growth apparatus 1 shown in FIG. 1 includes a chamber 42 having a water-cooled jacket structure, a heater 10, a heat insulating tube 11, a quartz crucible 8 for accommodating a silicon raw material, and a carbon crucible 9 for supporting the quartz crucible 8. , A gas flow pipe 7 is provided.

ガスフロー管7は、少なくともその表面がシリコン酸化物(SiO)との間で還元反応を生じない部材の層で覆われる。この部材は、赤外領域での熱線の透過率または反射率が炭素(C)よりも高く、赤外光の照射により発熱しない素材を含むことが好ましい。該素材は、金属不純物が実質的に5ppm以下となる程度に高純度を維持できる素材であることが望ましい。本実施形態において、ガスフロー管7の厚さは18mm以下であり、これは後に詳述するように従来技術と比較して非常に薄い肉厚が実現されたものである。 At least the surface of the gas flow tube 7 is covered with a layer of a member that does not undergo a reduction reaction with the silicon oxide (SiO). This member preferably contains a material that has a higher heat ray transmittance or reflectance than carbon (C) in the infrared region and does not generate heat when irradiated with infrared light. It is desirable that the material is a material capable of maintaining high purity to such an extent that metal impurities are substantially 5 ppm or less. In the present embodiment, the thickness of the gas flow pipe 7 is 18 mm or less, which is a very thin wall thickness as compared with the prior art as will be described in detail later.

チャンバ42は、単結晶シリコンの昇降経路に沿って単結晶シリコンを覆うようにガスフロー管7の頂面から上方に延在するように水冷管31が設けられている。水冷管31は、ガスフロー管7の表面から単結晶シリコンへ向けて放射される輻射熱を吸収する。水冷管31により吸収される輻射熱線の波長は0.4μm以上である。 The chamber 42 is provided with a water cooling pipe 31 extending upward from the top surface of the gas flow pipe 7 so as to cover the single crystal silicon along the elevating path of the single crystal silicon. The water cooling pipe 31 absorbs radiant heat radiated from the surface of the gas flow pipe 7 toward the single crystal silicon. The wavelength of the radiant heat ray absorbed by the water cooling pipe 31 is 0.4 μm or more.

カーボンルツボ9は、高温下での変形から石英ルツボ8を保護する。ヒータ10は、加熱によりカーボンルツボ9の外側からシリコン原料を溶解させ、一定温度に降温した後に結晶成長を行なっている間石英ルツボ8内の融液を加熱し続ける。 The carbon crucible 9 protects the quartz crucible 8 from deformation at high temperatures. The heater 10 melts the silicon raw material from the outside of the carbon crucible 9 by heating, lowers the temperature to a constant temperature, and then continues to heat the melt in the quartz crucible 8 while performing crystal growth.

単結晶成長装置1の頂部からは図示しないシードチャックが吊下され、その先端に種結晶が取り付けられ、図示しない昇降機構により石英ルツボ8内の融液に浸(ディッピング)される。シードチャックは図示しない回転機構に連結されて、所定方向に種結晶を回転させながら成長させる。次いで、種結晶の直径を太らせる工程に移行する。より具体的には、肩(ショルダー部)と呼ばれる、シード部分の小さな直径から単結晶製品となる大きな直径(直胴部)に至るまで直径を太らせる工程の実施により図1に示す単結晶3となり、図示しないシードチャックにより引き上げる。 A seed chuck (not shown) is suspended from the top of the single crystal growth apparatus 1, a seed crystal is attached to the tip thereof, and the seed crystal is immersed (dipping) in the melt in the quartz crucible 8 by an elevating mechanism (not shown). The seed chuck is connected to a rotation mechanism (not shown) to grow the seed crystal while rotating it in a predetermined direction. Next, the process shifts to the step of increasing the diameter of the seed crystal. More specifically, the single crystal 3 shown in FIG. 1 is formed by carrying out a process of increasing the diameter from a small diameter of the seed portion to a large diameter (straight body portion) of a single crystal product, which is called a shoulder (shoulder portion). It is pulled up by a seed chuck (not shown).

ヒータ10とチャンバ42との間には炉内温度を保温するための保温筒11が設けられ、石英ルツボ8内の融液から蒸発するシリコン酸化物(SiO)が保温筒11内から効率的に外部に排気される。チャンバ42の壁面のうち、石英ルツボ8のほぼ上方に位置する部分には、成長中の単結晶3を外部から観察するための観察窓4と、結晶成長中の直径監視制御を行うセンサのためのセンサ窓5とが設けられている。 A heat insulating cylinder 11 for keeping the temperature inside the furnace is provided between the heater 10 and the chamber 42, and the silicon oxide (SiO) that evaporates from the melt in the quartz crucible 8 is efficiently discharged from the inside of the heat insulating cylinder 11. It is exhausted to the outside. On the wall surface of the chamber 42, which is located substantially above the quartz crucible 8, there is an observation window 4 for observing the growing single crystal 3 from the outside, and a sensor for monitoring and controlling the diameter during crystal growth. The sensor window 5 of the above is provided.

通常、高純度のアルゴンガスを炉内に流しながら、炉底部から真空ポンプ(図示せず)によって排気を行うため、炉内は減圧雰囲気となっている。従来の装置では、石英ルツボ8の内壁からシリコン酸化物(SiO)がシリコン融液内に溶け出し、これは蒸発しやすいため、炉壁や炉内部品に付着してしまう。この堆積物が単結晶成長中に融液面に落下するようなことがあると、そこから単結晶が多結晶化し、製品にならなくなる。そこで、アルゴンガスを炉内に供給して単結晶の外周を通過させ、スムーズに炉底の排気口から排気すれば、炉内にシリコン酸化物(SiO)が堆積することを防ぐことができる。 Normally, while flowing high-purity argon gas into the furnace, exhaust is performed from the bottom of the furnace by a vacuum pump (not shown), so that the inside of the furnace has a reduced pressure atmosphere. In the conventional apparatus, silicon oxide (SiO) dissolves into the silicon melt from the inner wall of the quartz crucible 8, and since it easily evaporates, it adheres to the furnace wall and the parts inside the furnace. If this deposit may fall on the melt surface during single crystal growth, the single crystal will be polycrystallized from there and will not be a product. Therefore, if argon gas is supplied into the furnace, passes through the outer periphery of the single crystal, and is smoothly exhausted from the exhaust port at the bottom of the furnace, it is possible to prevent silicon oxide (SiO) from accumulating in the furnace.

図2は、従来技術による単結晶成長装置の一例を示す参考図である。図2に示す単結晶成長装置101の主な構成は、一般的なフロー管107以外は、図1に示す単結晶成長装置1と実質的に同じである。図2から解るように、従来は熱の吸収が良い高純度カーボン製のフロー管を用いていたため、断熱性能を上げるためフロー管の下部の構造を中空にし、カーボン繊維を入れるための空間を確保したため、直径方向の厚みを取る必要があった。 FIG. 2 is a reference diagram showing an example of a single crystal growth apparatus according to the prior art. The main configuration of the single crystal growth apparatus 101 shown in FIG. 2 is substantially the same as that of the single crystal growth apparatus 1 shown in FIG. 1, except for the general flow tube 107. As can be seen from Fig. 2, since a high-purity carbon flow tube with good heat absorption has been used in the past, the structure under the flow tube is made hollow to improve heat insulation performance, and a space for carbon fiber is secured. Therefore, it was necessary to take the thickness in the radial direction.

その結果、石英ルツボ8の内壁と 単結晶3の外周との間にフロー管下部の厚い部材が介在する態様となり、その分だけ大口径結晶の成長を行うことが難しかった。従って、このフロー管の加熱源方向である外周への熱反射率を上げ、熱の吸収を抑えることができれば、フロー管の厚みを薄くすることが可能となり、同一の直径のルツボから単結晶の直径対ルツボ内径の比が80%以上の大型結晶成長が行える。これによって大型結晶を成長するために炉を大型化し、炉内部品類も大型にするなどの必要もなく大口径結晶が比較的容易に成長することができる。これにより、設備コストを低減し、単結晶コストを低減することができる。 As a result, a thick member at the lower part of the flow tube is interposed between the inner wall of the quartz crucible 8 and the outer circumference of the single crystal 3, and it is difficult to grow a large-diameter crystal by that amount. Therefore, if the heat reflectance to the outer periphery of the flow tube, which is the direction of the heating source, can be increased and the heat absorption can be suppressed, the thickness of the flow tube can be reduced, and the crucible of the same diameter can be used as a single crystal. Large-scale crystal growth with a diameter-to-crucible inner diameter ratio of 80% or more can be performed. As a result, it is not necessary to increase the size of the furnace in order to grow large crystals and to increase the size of the parts in the furnace, and the large-diameter crystals can be grown relatively easily. As a result, the equipment cost can be reduced and the single crystal cost can be reduced.

例えば、従来の内径600mm(24インチ石英ルツボ)の石英ルツボから成長できる単結晶の直径は200mm程度までであるという一般的概念(1/3ルール)が常識的に使われてきた。これに対し、ガスのフロー管の厚さを5mmとすれば、直径で10mmとなりルツボとガスのフロー管との間隔を55mmにし、かつ、ガスのフロー管の内径から結晶の外径との間隔として55mm取ると、480mmの大口径結晶の成長が可能となる。本願発明者らは、この石英ルツボの内径80%の結晶成長の実験を行い、ルツボ内径の80%までは、単結晶成長ができるという実績を得ている。 For example, the general concept (1/3 rule) that the diameter of a single crystal that can grow from a conventional quartz crucible having an inner diameter of 600 mm (24-inch quartz crucible) is up to about 200 mm has been commonly used. On the other hand, if the thickness of the gas flow pipe is 5 mm, the diameter is 10 mm, the distance between the rut and the gas flow pipe is 55 mm, and the distance from the inner diameter of the gas flow pipe to the outer diameter of the crystal. If 55 mm is taken, a large-diameter crystal of 480 mm can be grown. The inventors of the present application have conducted experiments on crystal growth of this quartz crucible with an inner diameter of 80%, and have obtained a track record of being able to grow a single crystal up to 80% of the inner diameter of the crucible.

図3は、本発明の輻射熱に関する基礎データ計測のため、赤外線画像装置を使い計測を行った例の模式図の一例である。ハロゲンランプ12から被測定物13に輻射光を当てて昇温した被測定物13の裏面を赤外線画像装置によって温度計測したものである。当該赤外線画像装置の検知波長は8〜14μmの範囲の赤外領域である。赤外線画像装置として、日本アビオニクス(株)製の型式TVS―620を用いた。図3の計測装置は、検出波長は8μmから14μmの完全赤外領域での測定を行うものである。 FIG. 3 is an example of a schematic diagram of an example in which measurement is performed using an infrared image device for measuring basic data relating to radiant heat of the present invention. The temperature of the back surface of the object to be measured 13 heated by radiating light from the halogen lamp 12 to the object 13 to be measured is measured by an infrared image device. The detection wavelength of the infrared imaging device is in the infrared region in the range of 8 to 14 μm. As an infrared image device, a model TVS-620 manufactured by Nippon Avionics Co., Ltd. was used. The measuring device of FIG. 3 measures in the complete infrared region with a detection wavelength of 8 μm to 14 μm.

図4は、本発明の輻射熱に関する被測定物の表面温度を計測するため、熱電対を用いて計測を行った一実施形態の模式図の一例である。ハロゲンランプ12から被測定物13に輻射光が当たりこれにより昇温した被測定物13の裏面に熱電対を接触させ、被測定物13の温度測定を行ったものである。熱電対は白金-白金ロジウム、ロジウム13%を用い、表示器としてEUROTHERM社のループ温度制御装置の表示部を用いた。 FIG. 4 is an example of a schematic diagram of an embodiment in which measurement is performed using a thermocouple in order to measure the surface temperature of the object to be measured with respect to the radiant heat of the present invention. The temperature of the object to be measured 13 was measured by bringing a thermocouple into contact with the back surface of the object to be measured 13 which was heated by radiant light from the halogen lamp 12 to the object 13 to be measured. Platinum-platinum rhodium and 13% rhodium were used as the thermocouple, and the display unit of the loop temperature control device of EUROTHER was used as the display.

図5は、図3の計測方法で昇温後の炭素素材と炭化ケイ素SiC素材とを比較測定した赤外線画像装置によるモニターデータ17であって隣接して置かれた炭素C部材18と炭化ケイ素SiC部材19とを赤外線画像装置14で温度測定を行った時の赤外線画像装置のモニター画面のデータである。ここで、炭素C部材18と炭化ケイ素SiC部材19の各外側から漏れる赤外線を遮断するため、熱遮蔽体20に対し、炭素C部材18と炭化ケイ素SiC部材19の縦横寸法よりも縦横それぞれ5mm小さい窓を切り抜き、炭素C部材18と炭化ケイ素SiC部材19を熱遮蔽体20でこれらの上に覆う形態とした。この実験例では、炭素C部材18は445℃となり、炭化ケイ素SiC部材19は505℃となった。つまり赤外線画像装置14においてハロゲンランプで加熱された炭化ケイ素SiC部材19の方が60℃程度温度が高いという結果であった。 FIG. 5 shows monitor data 17 by an infrared imaging device in which the carbon material and the silicon carbide SiC material after the temperature rise are compared and measured by the measurement method of FIG. 3, and the carbon C member 18 and the silicon carbide SiC placed adjacent to each other are shown. This is the data on the monitor screen of the infrared imaging device when the temperature of the member 19 and the member 19 is measured by the infrared imaging device 14. Here, in order to block infrared rays leaking from the outside of the carbon C member 18 and the silicon carbide SiC member 19, the heat shield 20 is 5 mm smaller in length and width than the vertical and horizontal dimensions of the carbon C member 18 and the silicon carbide SiC member 19. The window was cut out so that the carbon C member 18 and the silicon carbide SiC member 19 were covered with the heat shield 20. In this experimental example, the carbon C member 18 had a temperature of 445 ° C, and the silicon carbide SiC member 19 had a temperature of 505 ° C. That is, the result was that the temperature of the silicon carbide SiC member 19 heated by the halogen lamp in the infrared image apparatus 14 was about 60 ° C. higher.

測定に用いた炭素C部材18と炭化ケイ素SiC部材19の形状は、それぞれ縦60mm、横90mm、厚さ5mmの同一直方体形状である。また、第三部材として縦30mm、横40mm、厚さ2mmのシリコン単結晶片を用いた。 The shapes of the carbon C member 18 and the silicon carbide SiC member 19 used in the measurement are the same rectangular parallelepiped shape having a length of 60 mm, a width of 90 mm, and a thickness of 5 mm, respectively. Further, as the third member, a silicon single crystal piece having a length of 30 mm, a width of 40 mm, and a thickness of 2 mm was used.

次に、ハロゲンランプの位置依存性による温度変化がないか、炭素C部材18と炭化ケイ素SiC部材19を入れ替えて同一測定を行ったが、前述の結果と同一であり、ハロゲンランプの位置依存性はないことを確認した。 Next, the same measurement was performed by exchanging the carbon C member 18 and the silicon carbide SiC member 19 to see if there was a temperature change due to the position dependence of the halogen lamp. I confirmed that there was no such thing.

図6は、図4の計測方法を用いて、被測定物を第一部材炭素C部材(●C)、第二部材炭化ケイ素SiC部材(□SiC)、炭素C部材とシリコン単結晶片の間に一定空間を設け(▲C-Si)、また、炭化ケイ素SiC部材と第三部材であるシリコン単結晶片の間に一定空間を設けた時(△SiC-Si)のそれぞれの第一から第三部材の被測定物の昇温を一定時間毎に直接熱電対により部材に接触させることにより温度測定したものである。ここで、図示しないが、一定の空間とは、5mm厚さの熱遮蔽体で被測定物端部を浮かせて空間を設けたものである。 In FIG. 6, using the measurement method of FIG. 4, the object to be measured is placed between the first member carbon C member (● C), the second member silicon carbide SiC member (□ SiC), the carbon C member and the silicon single crystal piece. When a constant space is provided in (▲ C-Si) and a constant space is provided between the silicon carbide SiC member and the silicon single crystal piece which is the third member (ΔSiC-Si), the first to the first of each. The temperature of the object to be measured of the three members is measured by directly contacting the members with a thermocouple at regular intervals. Here, although not shown, the constant space is a space provided by floating the end portion of the object to be measured with a heat shield having a thickness of 5 mm.

ここで赤外線画像装置によるモニターデータ17が熱電対のデータと比較して、赤外線量としては炭素C部材18に対して炭化ケイ素SiC部材19の方が多かったのに対して、被測定物を熱電対によって計った温度は、炭素C部材18の方が炭化ケイ素SiC部材19よりも500℃領域で約100℃高い逆転現象の結果を得た。これは、炭化ケイ素SiC部材19の赤外領域の透過率が炭素C部材18よりも高いことを示している。 Here, the monitor data 17 by the infrared imager has more silicon carbide SiC member 19 than the carbon C member 18 in terms of the amount of infrared rays as compared with the thermocouple data, whereas the object to be measured is thermocoupled. The temperature measured by the pair was found to be about 100 ° C. higher in the carbon C member 18 than in the silicon carbide SiC member 19 in the 500 ° C. region. This indicates that the transmittance of the silicon carbide SiC member 19 in the infrared region is higher than that of the carbon C member 18.

従って、炭素C部材18は赤外線も吸収して温度が上昇したのに対し、炭化ケイ素SiC部材19は赤外領域の輻射線がある程度透過してしまい、炭化ケイ素SiC部材19が100℃程度温度が低く測定された。そこで、この結果から、熱遮蔽効果としての結晶炉内ガスフロー管としては、炭素部材Cよりも炭化ケイ素SiC部材の方がはるかに優位であることが示された。すなわち、炭化ケイ素SiC部材19は赤外光を吸収せず、その分発熱せず、透過した赤外光は、シリコンSiをも透過し、発熱しないため、熱遮蔽部材としては最適である。 Therefore, while the carbon C member 18 also absorbs infrared rays and the temperature rises, the silicon carbide SiC member 19 transmits radiation in the infrared region to some extent, and the silicon carbide SiC member 19 has a temperature of about 100 ° C. It was measured low. Therefore, from this result, it was shown that the silicon carbide SiC member is far superior to the carbon member C as the gas flow tube in the crystal furnace as a heat shielding effect. That is, the silicon carbide SiC member 19 does not absorb infrared light and does not generate heat by that amount, and the transmitted infrared light also transmits silicon Si and does not generate heat, so that it is most suitable as a heat shielding member.

次に、炭素C部材18と炭化ケイ素SiC部材19を熱遮蔽物として通過あるいは輻射によって第三部材であるシリコン単結晶(Si)に赤外線を照射した場合のシリコン単結晶(Si)の昇温を測定した結果からは、図6の▲と△のプロットで示されるように、炭素C部材18が単独で約600℃となった領域において、約50℃近い差が見られる。これは、先に炭化ケイ素SiC部材19がそうであったように、シリコンは赤外線を殆ど吸収せず、温度上昇しにくいことを示している。 Next, the temperature rise of the silicon single crystal (Si) when the silicon single crystal (Si), which is the third member, is irradiated with infrared rays by passing through the carbon C member 18 and the silicon carbide SiC member 19 as a heat shield or by radiation. From the measurement results, as shown by the plots of ▲ and Δ in FIG. 6, a difference of about 50 ° C. can be seen in the region where the carbon C member 18 alone is about 600 ° C. This indicates that silicon hardly absorbs infrared rays and the temperature does not easily rise, as was the case with the silicon carbide SiC member 19 earlier.

つまり、ガスフロー管としてのガス整流機能は、図1のような形状を呈していればよく、熱遮蔽効果は、シリコンを昇温させない赤外領域を通過させたとしても昇温が少なく、従って輻射も少ないSiC部材を用いる方が、効果が高いことを示している。また、炭素C部材のように遮熱構造を二重化し(図2参照)、遮熱構造を厚くする必要がなくなる。
That is, the gas rectifying function as a gas flow tube may have a shape as shown in FIG. 1, and the heat shielding effect has a small temperature rise even if the silicon is passed through the infrared region where the temperature is not raised. It is shown that the effect is higher when the SiC member having less radiation is used. Further, unlike the carbon C member, the heat shield structure is duplicated (see FIG. 2), and it is not necessary to thicken the heat shield structure.

本実施形態において、少なくともその内壁に溌液加工がなされることにより溌液性を有するルツボを用いる方が、ルツボ側からの結晶成長が抑えられて有利である。 In the present embodiment, it is advantageous to use a crucible that has a repellent property by at least the inner wall thereof being subjected to a repellent treatment, because crystal growth from the crucible side is suppressed.

即ち、炭素C部材がシリコン酸化物(SiO)を還元して炭酸ガスCOを発生させ、シリコンの溶融内に混入することで成長中のシリコン単結晶内に取り込まれる不具合以外に、ルツボ の内面が溶け落ちることでルツボ からの不純物の混入を溌液効果で抑えられるからである。 That is, in addition to the problem that the carbon C member reduces silicon oxide (SiO) to generate carbon dioxide CO and mixes it in the melt of silicon, it is taken into the growing silicon single crystal, and the inner surface of the crucible is This is because the mixing of impurities from the crucible can be suppressed by the liquid solution effect by melting off.

従来装置のガスフロー管、例えば図2のフロー管107には、高純度のカーボン部材が使われてきた。これは、カーボン部材が高純度でかつ高温での使用が可能であるために、便利に使われてきた。しかしながら、問題は、シリコン融液面から蒸発するシリコン酸化物(SiO)が高温のカーボン近傍に来るとカーボンがシリコン酸化物(SiO)と還元反応を起こし、これによって、炭酸ガス(CO)が発生し、その炭酸ガス(CO)ガスが溶融シリコン内に混入し、成長中の単結晶内部に取り込まれる不具合があることである。 A high-purity carbon member has been used for the gas flow pipe of the conventional device, for example, the flow pipe 107 of FIG. This has been conveniently used because the carbon member is of high purity and can be used at high temperatures. However, the problem is that when the silicon oxide (SiO) that evaporates from the silicon melt surface comes near the high-temperature carbon, the carbon undergoes a reduction reaction with the silicon oxide (SiO), which generates carbon dioxide (CO). However, there is a problem that the carbon dioxide (CO) gas is mixed in the molten silicon and taken into the inside of the growing single crystal.

シリコン単結晶中のカーボンは酸素析出欠陥の形成を助長し、のちのデバイス工程で、リーク電流が流れたりする不具合をはじめ、様々な欠陥の形成核になることが知られており、単結晶の品質を著しく低下させることになり、特に結晶のバルク特性が影響するパワーデバイスでは深刻な不良原因となる。このため、極力低カーボン濃度の単結晶が望まれ、これを実現するために各種の対策が行われてきた。 It is known that carbon in a silicon single crystal promotes the formation of oxygen precipitation defects and becomes the formation core of various defects including the problem that leak current flows in the device process later. It will significantly reduce the quality and cause serious defects, especially in power devices where the bulk properties of the crystal affect. Therefore, a single crystal having a carbon concentration as low as possible is desired, and various measures have been taken to realize this.

そこで本願発明者らは、融液の直近に配置されて単結晶の外周を流れるガス流を整流し、かつ成長中の単結晶への熱の輻射を抑制するガスフロー管の材質に着目し、その表面で還元反応が起きていることから、ガスフロー管の材質としてシリコン酸化物(SiO)との間で還元反応を生じない材料、例えば炭化ケイ素(SiC)を採用することで、前述したカーボンによる還元反応から生じる炭酸ガスの発生とシリコン酸化物(SiO)の還元を抑えることができた。 Therefore, the inventors of the present application focused on the material of the gas flow tube, which is arranged in the immediate vicinity of the melt, rectifies the gas flow flowing around the outer periphery of the single crystal, and suppresses the radiation of heat to the growing single crystal. Since the reduction reaction occurs on the surface, by adopting a material that does not cause a reduction reaction with silicon oxide (SiO) as the material of the gas flow tube, for example, silicon carbide (SiC), the above-mentioned carbon It was possible to suppress the generation of carbon dioxide gas generated from the reduction reaction and the reduction of silicon oxide (SiO).

シリコン融液の直上にあるカーボン部材であるガスフロー管を炭化ケイ素(SiC)で構成することで、次の反応式で生じる還元によってできたシリコンがガスフロー管やその他の炉内部品に析出し、炉内部品の寿命を低下させることも低減された。
SiO + C → Si + CO
さらに、前述した通り、COガス自体がシリコン融液内に混入することによる不具合も低減することができた。
By constructing the gas flow pipe, which is a carbon member directly above the silicon melt, with silicon carbide (SiC), silicon formed by the reduction generated by the following reaction formula is deposited on the gas flow pipe and other in-core parts. It was also reduced that the life of the parts in the furnace was shortened.
SiO + C → Si + CO
Further, as described above, it was possible to reduce the problems caused by the CO gas itself being mixed into the silicon melt.

このように、COガス自体がシリコン融液内に混入することがなくなるため、単結晶を行った後に、ルツボに残ったシリコン融液(残液)を再利用することが可能となる。残液に原料結晶を補充しさえすれば、同一のルツボから複数の単結晶を成長させることができ、単結晶成長装置の新たな使用方法も提供される。 In this way, since the CO gas itself is not mixed in the silicon melt, it is possible to reuse the silicon melt (residual liquid) remaining in the crucible after performing the single crystal. A plurality of single crystals can be grown from the same crucible as long as the residual liquid is supplemented with the raw material crystals, and a new method of using the single crystal growth apparatus is also provided.

また、ガスフロー管7を炭化ケイ素(SiC)で形成することで単結晶の内部の炭素濃度を低減することができるが、その表面光沢をさらに向上させることで熱の遮蔽に良い構造とするため、炭化ケイ素(SiC)製のガスフロー管をシリコン含浸型のガスフロー管とすることや、その表面にシリコンを蒸着させることで、熱の反射を改善し、成長中の単結晶へのヒータからの輻射を抑えることができ、単結晶の成長の成長速度改善にも寄与することができた。 Further, by forming the gas flow tube 7 with silicon carbide (SiC), the carbon concentration inside the single crystal can be reduced, but the surface gloss thereof is further improved to make the structure good for heat shielding. By using a silicon carbide (SiC) gas flow tube as a silicon-impregnated gas flow tube and depositing silicon on the surface, heat reflection is improved and a heater to a growing single crystal can be used. It was possible to suppress the radiation of silicon and contribute to the improvement of the growth rate of single crystal growth.

ただし、ガスフロー管の全てについて材質を炭化ケイ素(SiC)にするまでの必要はなく、種結晶または成長中の単結晶3に対向する面を含みガスフロー管を覆うようにその表面だけに炭化ケイ素(SiC)の層を形成することとしてもよい。 However, it is not necessary to use silicon carbide (SiC) as the material for all of the gas flow tubes, and only the surface of the gas flow tubes is carbonized so as to cover the gas flow tubes, including the surface facing the seed crystal or the growing single crystal 3. A layer of silicon (SiC) may be formed.

ここで、炭化ケイ素(SiC)製のガスフロー管は、型によって自在に整形できるため、傾斜形状やラウンド形状を容易に作成することができる。また、厚さも5mm程度と薄いものが整形できることから、炉内の視野を妨げる部分などを回避する複雑な構造の整形が容易であり、例えば観察窓4やセンサ窓5からの視野を広げるなどの構造とすることが容易であるため、小型炉で大型の単結晶を成長させることに適している。 Here, since the gas flow tube made of silicon carbide (SiC) can be freely shaped by a mold, an inclined shape or a round shape can be easily created. Further, since a thin object having a thickness of about 5 mm can be shaped, it is easy to shape a complicated structure that avoids a part that obstructs the field of view in the furnace. For example, the field of view from the observation window 4 or the sensor window 5 can be widened. Since it is easy to structure, it is suitable for growing a large single crystal in a small furnace.

例えば、一般的に24インチ炉(石英ルツボの内径が約600mm)の結晶成長炉においては、従来は8インチ(203mm)程度の直径の単結晶成長が一般的であったが、上述した実施形態にように、炭化ケイ素(SiC)製のガスフロー管を採用することより、直径18インチ(450mm)単結晶の成長まで可能にした。 For example, in a crystal growth furnace generally in a 24-inch furnace (inner diameter of a quartz crucible is about 600 mm), single crystal growth having a diameter of about 8 inches (203 mm) has been generally used in the past, but the above-described embodiment As described above, by adopting a gas flow tube made of silicon carbide (SiC), it is possible to grow a single crystal having a diameter of 18 inches (450 mm).

このように本発明によれば、ガスフロー管の材料として、熱反射率が高くかつ高純度を維持できる素材を用いることにより、単結晶中の炭素濃度レベルを低減できるだけでなく、ガスフロー管の構造を薄くすることによって、成長単結晶の直径を大口径化することを可能とする単結晶成長装置を提供することができる。 As described above, according to the present invention, by using a material having high heat reflectance and maintaining high purity as the material of the gas flow tube, not only the carbon concentration level in the single crystal can be reduced, but also the gas flow tube can be used. By thinning the structure, it is possible to provide a single crystal growth apparatus capable of increasing the diameter of the growing single crystal.

従って、本発明は前述のように、単結晶の成長用の石英ルツボの内径に対し、少なくとも30%以上、好ましくは60%から80%の直径の単結晶成長を可能とすることを特徴とする単結晶成長を実現するものである。 Therefore, as described above, the present invention is characterized in that it enables single crystal growth having a diameter of at least 30% or more, preferably 60% to 80%, based on the inner diameter of the quartz crucible for growing a single crystal. It realizes single crystal growth.

本発明において、使用するルツボは、溌液性の内面加工を施した溌液ルツボであることが望ましい。すなわち、溶融シリコンと石英ルツボとの界面において、大口径結晶を成長させる場合、界面が濡れ性を持った通常の石英ルツボよりも溌液性を持った内面を持つルツボの方が接触核が大きくなり、これによって、ルツボ側からの結晶成長が抑えられる。このため、従来の単結晶成長においてルツボからの結晶成長が成長中の単結晶と繋がって単結晶が落下するという現象を回避することができる。
従って、本発明においては、単結晶成長装置として前述の単結晶成長に用いるルツボは、溌液性ルツボを用いることで一層の効果が得られる。
In the present invention, the crucible used is preferably a liquid-separated crucible with a liquid-soluble inner surface treatment. That is, when growing a large-diameter crystal at the interface between molten silicon and a quartz crucible, the contact nucleus of the crucible having a liquid-soluble inner surface is larger than that of a normal quartz crucible whose interface is wet. As a result, crystal growth from the crucible side is suppressed. Therefore, in the conventional single crystal growth, it is possible to avoid the phenomenon that the crystal growth from the crucible is connected to the growing single crystal and the single crystal falls.
Therefore, in the present invention, the crucible used for the above-mentioned single crystal growth as the single crystal growth apparatus can be further effective by using the liquid-soluble crucible.

本実施形態の単結晶成長装置の特徴点の一つは、前述のシリコン単結晶成長炉で使われる温度域、例えば600℃から1700℃の運転温度域において、工程中で発生するシリコン酸化物(SiO)と還元反応が生じない材質を用いることによって、炭酸ガス(CO)などの還元反応で生成されたガスが融液中に溶け込み、単結晶中の不純物濃度を高くすることがない部材を、少なくとも単結晶に対向する面の表面層に用いる点にある。 One of the features of the single crystal growth apparatus of this embodiment is the silicon oxide generated in the process in the temperature range used in the above-mentioned silicon single crystal growth furnace, for example, the operating temperature range of 600 ° C to 1700 ° C. By using a material that does not undergo a reduction reaction with SiO), a member that does not increase the impurity concentration in the single crystal by dissolving the gas generated by the reduction reaction such as carbon dioxide (CO) into the melt. At least, it is used for the surface layer of the surface facing the single crystal.

部材としては、上述のガスフロー管7が典型例であるが、これに限ることなく、従来シリコン酸化物(SiO)と還元反応を生じていた材料が少なくとも表面に使用されていた部材であれば、上述した材料の層または膜を少なくとも単結晶に対向する面に設ければ、上述した本願発明の効果を奏することができる。 The gas flow tube 7 described above is a typical example of the member, but the member is not limited to this, as long as the material that has conventionally undergone a reduction reaction with silicon oxide (SiO) is at least used for the surface. If the layer or film of the above-mentioned material is provided on at least the surface facing the single crystal, the above-mentioned effect of the present invention can be obtained.

シリコン酸化物(SiO)との間で、例えばカーボンによる還元反応が生じない材料としては、炭化ケイ素(SiC)に限るものではなく、例えば、炭化ケイ素(SiC)の表面をシリコン(Si)膜で覆ったもの、炭化ケイ素(SiC)にシリコン(Si)を含浸させたもの、表面に高純度の炭化ケイ素(SiC)を蒸着した炭化ケイ素(SiC)などを挙げることができ、このような材料の層を少なくとも表面に含む部材で構成された炉内部品を用いた単結晶成長炉を用いることで、低炭素濃度のシリコン単結晶を成長させることができる。また、石英ルツボの軟化時に形状保護を行う炭素部材ルツボ、加熱ヒータなども上記炭化ケイ素部材の層または膜が少なくともその表面の一部に設けられたものに変更すると更に効果的である。
各実施形態による効果
本発明の実施の一形態による単結晶成長装置によれば、
For example, the material that does not undergo a reduction reaction due to carbon with silicon oxide (SiO) is not limited to silicon carbide (SiC). For example, the surface of silicon carbide (SiC) is coated with a silicon (Si) film. Examples thereof include those covered, those in which silicon (SiC) is impregnated with silicon (Si), and those in which high-purity silicon carbide (SiC) is vapor-deposited on the surface of silicon carbide (SiC). A silicon single crystal having a low carbon concentration can be grown by using a single crystal growth furnace using in-core parts composed of members having at least a layer on the surface. Further, it is more effective to change the carbon member crucible, the heating heater, and the like that protect the shape of the quartz crucible when the quartz crucible is softened so that the layer or film of the silicon carbide member is provided at least on a part of the surface thereof.
Effect of each embodiment According to the single crystal growth apparatus according to the embodiment of the present invention.

シリコン酸化物(SiO)と還元反応が生じることがなく、これによって還元されたガス体、例えば炭酸ガス(CO)などのシリコン融液への混入がなく、酸素析出欠陥を生じる可能性が小さい低酸素濃度シリコン単結晶が得られる。
本実施形態の単結晶成長装置により得られた単結晶において、炭素濃度は、実験結果によれば1X1015atoms/CC以下のものが報告されている。
また、還元反応による炉内部品の減耗を減少できるため、炉内部品の延命効果が得られ、部材コストの低減が図れる。
There is no reduction reaction with silicon oxide (SiO), and there is no contamination of the reduced gas body, such as carbon dioxide (CO), in the silicon melt, and the possibility of oxygen precipitation defects is low. An oxygen concentration silicon single crystal can be obtained.
According to the experimental results, it has been reported that the carbon concentration of the single crystal obtained by the single crystal growth apparatus of the present embodiment is 1X10 15 atoms / CC or less.
Further, since the wear of the parts in the furnace due to the reduction reaction can be reduced, the effect of extending the life of the parts in the furnace can be obtained, and the cost of the members can be reduced.

また、シリコン酸化物(SiO)と還元反応が生じない材料を用いてフロー管などの炉内部品を構成することとにより、部品の厚さを薄くできる他、光路の遮蔽を回避して観察窓やセンサ窓からの視野を広げるための複雑な形状整形ができるため、炉内監視の妨げになる部分を改善でき、大口径単結晶の高精度での成長を行うことができる。 In addition, by constructing in-core parts such as a flow tube using a material that does not undergo a reduction reaction with silicon oxide (SiO), the thickness of the parts can be reduced, and the observation window avoids blocking the optical path. Since it is possible to perform complicated shape shaping to widen the field of view from the sensor window, it is possible to improve the part that hinders the monitoring inside the furnace, and it is possible to grow a large-diameter single crystal with high accuracy.

以上、本発明の実施の形態のいくつかについて説明したが、本発明は上記形態にかぎるものでは決してなく、その技術的範囲内で種々の変更を加えて実現することができ、例えば、一つの実施例の特徴を別の実施例に組み込むことで、もう一つの実施例を得ることができる。当業者は、特許請求の範囲を逸脱することなく本発明の趣旨に沿って様々な変更、同等な置換、又は改良などを行うことができる。 Although some of the embodiments of the present invention have been described above, the present invention is by no means limited to the above-described embodiments, and can be realized by making various changes within the technical scope thereof, for example, one. Another embodiment can be obtained by incorporating the characteristics of the embodiment into another embodiment. Those skilled in the art can make various changes, equivalent substitutions, improvements, etc. in accordance with the gist of the present invention without departing from the scope of claims.

1 単結晶成長装置
3 単結晶
4 観察窓
5 センサ窓
7 ガスフロー管
8 石英ルツボ
9 カーボンルツボ
10 ヒータ
11 保温筒
12 ハロゲンランプ
13 被測定物
14 赤外線画像装置
15 熱電対
16 温度表示器
17 モニターデータ
18 炭素C部材
19 炭化ケイ素SiC部材
20 熱遮蔽体
31 水冷管
42 チャンバ
1 Single crystal growth device 3 Single crystal 4 Observation window 5 Sensor window 7 Gas flow tube 8 Quartz crucible 9 Carbon crucible 10 Heater 11 Heat insulation tube 12 Halogen lamp 13 Object to be measured 14 Infrared imaging device 15 Thermocouple 16 Temperature indicator 17 Monitor data 18 Carbon C member 19 Silicon carbide SiC member 20 Heat shield 31 Water cooling pipe 42 Chamber

Claims (13)

種結晶を取り付け可能で該種結晶をシリコン(ケイ素)の融液に浸して引き上げるためのシードチャックと、
熱線を放射するヒータを含み、前記融液を収容するルツボの設置と前記融液の加熱が可能な単結晶成長炉と、
前記単結晶成長炉内に設けられ、単結晶の外周を流れるガス流を整流し、かつ成長中の単結晶への熱の輻射を抑制するガスフロー管と、を備え、
前記ガスフロー管の少なくとも表面は、シリコン酸化物(SiO)との間で還元反応を生じない部材の層で覆われる、
単結晶成長装置。
A seed chuck to which a seed crystal can be attached and for immersing the seed crystal in a silicon melt and pulling it up,
A single crystal growth furnace that includes a heater that radiates heat rays and is capable of installing a crucible that houses the melt and heating the melt.
A gas flow tube provided in the single crystal growth furnace, which rectifies the gas flow flowing around the outer periphery of the single crystal and suppresses the radiation of heat to the growing single crystal, is provided.
At least the surface of the gas flow tube is covered with a layer of a member that does not undergo a reduction reaction with a silicon oxide (SiO).
Single crystal growth device.
前記部材は、赤外領域での熱線の透過率または反射率が炭素(C)よりも高く、赤外光の照射により発熱しない素材を含むことを特徴とする請求項1に記載の単結晶成長装置。 The single crystal growth according to claim 1, wherein the member contains a material that has a higher heat ray transmittance or reflectance than carbon (C) in the infrared region and does not generate heat by irradiation with infrared light. apparatus. 前記素材は、金属不純物が実質的に5ppm以下となる程度に高純度を維持できる素材であることを特徴とする請求項2に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 2, wherein the material is a material capable of maintaining high purity to such an extent that metal impurities are substantially 5 ppm or less. 前記層から前記単結晶へ向けて放射される波長0.4μm以上の輻射熱線を吸収する水冷管をさらに備えることを特徴とする請求項1〜3のいずれか一項に記載の単結晶成長装置。 The single crystal growth apparatus according to any one of claims 1 to 3, further comprising a water cooling tube that absorbs radiant heat rays having a wavelength of 0.4 μm or more radiated from the layer toward the single crystal. .. 前記ガスフロー管の厚さは、18mm以下であることを特徴とする請求項1〜4のいずれか一項に記載の単結晶成長装置。 The single crystal growth apparatus according to any one of claims 1 to 4, wherein the thickness of the gas flow tube is 18 mm or less. 設置されるルツボの内径の30%以上の大口径直径を有する単結晶が取得されることを特徴とする請求項1〜5のいずれか一項に記載の単結晶成長装置。 The single crystal growth apparatus according to any one of claims 1 to 5, wherein a single crystal having a large diameter of 30% or more of the inner diameter of the crucible to be installed is obtained. 前記融液は第1ルツボに収容され、
前記単結晶成長炉は、前記第1ルツボを保持する第2ルツボを含み、
前記第2ルツボは、少なくともその表面における層または膜の態様で前記部材を含むことを特徴とする請求項1〜6のいずれか一項に記載の単結晶成長装置。
The melt is contained in the first crucible and
The single crystal growth furnace includes a second crucible that holds the first crucible.
The single crystal growth apparatus according to any one of claims 1 to 6, wherein the second crucible includes the member at least in the form of a layer or a film on the surface thereof.
前記第1ルツボは溌液性ルツボであることを特徴とする請求項7に記載の単結晶成長装置。 The single crystal growth apparatus according to claim 7, wherein the first crucible is a liquid-soluble crucible. 前記ヒータは、少なくともその表面における層または膜の態様で前記部材を含むことを特徴とする請求項1〜8のいずれか一項に記載の単結晶成長装置。 The single crystal growth apparatus according to any one of claims 1 to 8, wherein the heater includes the member at least in the form of a layer or a film on the surface thereof. 前記部材は、炭化ケイ素(SiC)、表面に高純度の炭化ケイ素(SiC)が蒸着された炭化ケイ素(SiC)、シリコン膜で覆われた炭化ケイ素(SiC)、シリコンが含浸された炭化ケイ素(SiC)、シリコンが含浸された炭化ケイ素(SiC)であってその表面に炭化ケイ素(SiC)の膜が成膜されたものの少なくともいずれかを含むことを特徴とする請求項1〜9のいずれか一項に記載の単結晶成長装置。 The members include silicon carbide (SiC), silicon carbide (SiC) on which high-purity silicon carbide (SiC) is deposited on the surface, silicon carbide (SiC) covered with a silicon film, and silicon carbide impregnated with silicon (SiC). SiC), any of claims 1 to 9, which comprises at least one of silicon carbide (SiC) impregnated with silicon and a silicon carbide (SiC) film formed on the surface thereof. The single crystal growth apparatus according to item 1. 請求項1〜10のいずれか一項に記載の単結晶成長装置を用いて得られた低炭素濃度のシリコン単結晶。 A silicon single crystal having a low carbon concentration obtained by using the single crystal growth apparatus according to any one of claims 1 to 10. 請求項1〜10のいずれか一項に記載の単結晶成長装置を用いて、単結晶成長を行った後、残液に原料結晶を補充し、同一のルツボ から複数の単結晶を成長させることを特徴とする単結晶成長装置の使用方法。 After growing a single crystal using the single crystal growth apparatus according to any one of claims 1 to 10, the residual liquid is replenished with a raw material crystal to grow a plurality of single crystals from the same rutsubo. How to use the single crystal growth apparatus. 炭素濃度が1X1015atoms/CC以下であることを特徴とするシリコン単結晶。 A silicon single crystal having a carbon concentration of 1 x 10 15 atoms / CC or less.
JP2019208719A 2019-11-19 2019-11-19 Single crystal growth device, how to use the single crystal growth device, and single crystal growth method Active JP6777908B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019208719A JP6777908B1 (en) 2019-11-19 2019-11-19 Single crystal growth device, how to use the single crystal growth device, and single crystal growth method
CN202011304275.6A CN112899772B (en) 2019-11-19 2020-11-19 Single crystal growth apparatus, method for using the same, and single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208719A JP6777908B1 (en) 2019-11-19 2019-11-19 Single crystal growth device, how to use the single crystal growth device, and single crystal growth method

Publications (2)

Publication Number Publication Date
JP6777908B1 JP6777908B1 (en) 2020-10-28
JP2021080131A true JP2021080131A (en) 2021-05-27

Family

ID=72938141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208719A Active JP6777908B1 (en) 2019-11-19 2019-11-19 Single crystal growth device, how to use the single crystal growth device, and single crystal growth method

Country Status (2)

Country Link
JP (1) JP6777908B1 (en)
CN (1) CN112899772B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679449B (en) * 2022-12-30 2023-04-07 浙江晶越半导体有限公司 Composite crucible for growing silicon carbide crystals by sublimation method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004519A (en) * 1986-12-12 1991-04-02 Texas Instruments Incorporated Radiation heat shield for silicon melt-in manufacturing of single crystal silicon
US5139750A (en) * 1989-10-16 1992-08-18 Nkk Corporation Silicon single crystal manufacturing apparatus
JPH07277864A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp High-temperature heat resistant member
EP0933450B1 (en) * 1998-01-19 2002-04-17 Sumitomo Electric Industries, Ltd. Method of making SiC single crystal and apparatus for making SiC single crystal
JP3640940B2 (en) * 2002-07-19 2005-04-20 コマツ電子金属株式会社 Semiconductor single crystal manufacturing equipment
JP2004256322A (en) * 2003-02-24 2004-09-16 Komatsu Electronic Metals Co Ltd Method for manufacturing silicon single crystal, silicon single crystal, and apparatus for pulling silicon single crystal
US7635414B2 (en) * 2003-11-03 2009-12-22 Solaicx, Inc. System for continuous growing of monocrystalline silicon
WO2010024390A1 (en) * 2008-08-29 2010-03-04 住友金属工業株式会社 METHOD AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL FILM
KR101150848B1 (en) * 2009-12-03 2012-06-13 주식회사 엘지실트론 Single crystal growing apparatus having cylindrical heat-reflection means
KR101111681B1 (en) * 2010-10-05 2012-02-14 (주)기술과가치 Apparatus to produce hyper-pure single crystal silicon ingot
CN202595341U (en) * 2012-04-11 2012-12-12 常州天合光能有限公司 Crucible heat shield used for reducing carbon content of cast ingot polycrystal
KR101425933B1 (en) * 2012-04-16 2014-08-05 주식회사 실리콘밸류 Apparatus of continuous czochralski single crystal silicon ingot grower
CN202755095U (en) * 2012-06-30 2013-02-27 上海合晶硅材料有限公司 Novel single crystal furnace thermal field and novel single crystal furnace thermal field of drawing slight-mixing silicon single crystal bar
JP5904079B2 (en) * 2012-10-03 2016-04-13 信越半導体株式会社 Silicon single crystal growing apparatus and silicon single crystal growing method
JP6118425B2 (en) * 2013-01-23 2017-04-19 エルジー・シルトロン・インコーポレーテッド Single crystal ingot manufacturing apparatus and method
JP6029492B2 (en) * 2013-02-26 2016-11-24 信越半導体株式会社 Method for producing silicon carbide
JP5921498B2 (en) * 2013-07-12 2016-05-24 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon single crystal
JP6287991B2 (en) * 2015-07-29 2018-03-07 信越半導体株式会社 Silicon single crystal growth equipment
JP6090391B2 (en) * 2015-08-21 2017-03-08 株式会社Sumco Method for producing silicon single crystal
DE112016005199B4 (en) * 2015-11-13 2021-01-14 Sumco Corporation Process for producing a silicon single crystal
CN105603520B (en) * 2016-01-20 2018-10-30 西安交通大学 A kind of high speed single-crystal growing apparatus and method
JP6202119B2 (en) * 2016-03-14 2017-09-27 株式会社Sumco Method for producing silicon single crystal
CN107779946A (en) * 2016-08-25 2018-03-09 上海新昇半导体科技有限公司 Heat shielding component and single crystal pulling stove thermal field structure

Also Published As

Publication number Publication date
CN112899772B (en) 2024-04-05
CN112899772A (en) 2021-06-04
JP6777908B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US5264189A (en) Apparatus for growing silicon crystals
US6632280B2 (en) Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
US9217208B2 (en) Apparatus for producing single crystal
US9650725B2 (en) Method for manufacturing a defect-controlled low-oxygen concentration silicon single crystal wafer
US20080035050A1 (en) An Apparatus for Producing a Single Crystal
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
TWI835330B (en) A thermal field control device for crystal pulling furnace and crystal pulling furnace
JP6777908B1 (en) Single crystal growth device, how to use the single crystal growth device, and single crystal growth method
JP3838013B2 (en) Method for producing silicon single crystal
US8236104B2 (en) Single-crystal manufacturing apparatus and single-crystal manufacturing method
KR20110134827A (en) Method for producing semiconductor wafers composed of silicon
TWI568897B (en) Cultivation method of silicon single crystal
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2018043890A (en) Method for manufacturing silicon single crystal, graphite sheet and quartz crucible support vessel used therein
JP6107308B2 (en) Silicon single crystal manufacturing method
JP5181171B2 (en) Semiconductor single crystal manufacturing method
JP7059967B2 (en) Single crystal growth device and single crystal growth method
JP2009184863A (en) Apparatus and method for manufacturing single crystal
KR101467117B1 (en) Ingot growing apparatus
JPH06211589A (en) Semiconductor single crystal rod producing device
KR20040044365A (en) As-Grown Single Crystal of Alkaline Earth Metal Fluoride
JP3719332B2 (en) Silicon single crystal pulling device
JP6885286B2 (en) Method for manufacturing silicon single crystal
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
WO2022123957A1 (en) Monocrystal-manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6777908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250