JP2021068423A - 将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラム - Google Patents

将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラム Download PDF

Info

Publication number
JP2021068423A
JP2021068423A JP2020141958A JP2020141958A JP2021068423A JP 2021068423 A JP2021068423 A JP 2021068423A JP 2020141958 A JP2020141958 A JP 2020141958A JP 2020141958 A JP2020141958 A JP 2020141958A JP 2021068423 A JP2021068423 A JP 2021068423A
Authority
JP
Japan
Prior art keywords
traffic participants
goal
force
traffic
future behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020141958A
Other languages
English (en)
Other versions
JP7466407B2 (ja
Inventor
ジョヴィン ディサ
Dsa Jovin
ジョヴィン ディサ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to US17/068,846 priority Critical patent/US11756418B2/en
Priority to CN202011099712.5A priority patent/CN112686421B/zh
Publication of JP2021068423A publication Critical patent/JP2021068423A/ja
Application granted granted Critical
Publication of JP7466407B2 publication Critical patent/JP7466407B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】実際の交通場面に即した予測を行うことが可能な将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラムを提供すること。【解決手段】複数の交通参加者の位置を認識する物***置認識部と、前記物***置認識部の認識結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定する仮ゴール決定部と、前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートするシミュレート部と、を備える将来行動推定装置。【選択図】図2

Description

本発明は、将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラムに関する。
従来、道路に存在する歩行者や自転車などの将来の行動(移動)を推定することについいて研究が進められている(例えば、非特許文献1〜5)。
D. Helbing and P. Molnar, "Social Force Model for Pedestrian Dynamics", 20 May 1998. G. Arechavaleta and J. Laumond, "The nonholonomic nature of human locomotion: a modeling study", February 2001. K. Mombaur and A. Truong, "From human to humanoid locomotion-An inverse optimal control approach From human to humanoid locomotion - an inverse optimal",31 December, 2009. M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, "People tracking with human motion predictions from social forces," Proc. - IEEE Int. Conf. Robot. Autom., pp. 464-469, 2010. F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo, "When Helbing Meets Laumond: The Headed Social Force Model." 12-14 December, 2016.
非特許文献1に記載の技術は、歩行者のゴール(目的地)などが既知の情報として与えられることを前提として推定を行うものであり、実際の交通場面に即した予測を行うことができない場合があった。
本発明は、このような事情を考慮してなされたものであり、実際の交通場面に即した予測を行うことが可能な将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラムを提供することを目的の一つとする。
この発明に係る将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラムは、以下の構成を採用した。
(1):この発明の一態様に係る将来行動推定装置は、複数の交通参加者の位置を認識する物***置認識部と、前記物***置認識部の認識結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定する仮ゴール決定部と、前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートするシミュレート部と、を備えるものである。
(2):上記(1)の態様において、前記仮ゴール決定部は、前記複数の交通参加者のそれぞれについて、前記物***置認識部により認識された前記複数の交通参加者の位置の履歴と、道路構造を示す情報とに基づいて、複数の仮ゴール候補を設定し、前記交通参加者が前記複数の仮ゴール候補のそれぞれに向かうシミュレーションを行った結果と、前記交通参加者の姿勢に基づく移動方向との乖離を求め、乖離が最も小さかった仮ゴール候補を、前記仮ゴールとして決定するものである。
(3):上記(1)または(2)の態様において、前記移動モデルは、前記複数の交通参加者のそれぞれに作用する仮想的な力を反映させて、将来の各ステップにおける前記交通参加者の移動過程をシミュレートするものであり、前記複数の交通参加者の周辺環境に基づいて前記仮想的な力を推定する力推定部を更に備えるものである。
(4):上記(3)の態様において、前記力推定部は、前記複数の交通参加者のそれぞれに前記仮想的な力を及ぼす影響因子は、それぞれの交通参加者の正面方向を中心とした扇形の範囲に存在する影響因子に限定され、範囲から外れる影響因子は力を及ぼさないものとして、前記仮想的な力を推定するものである。
(5):上記(3)または(4)の態様において、前記力推定部が推定する仮想的な力は、前記交通参加者自身が希望速度で移動しようとして加減速するための力を含み、前記交通参加者の過去の位置の履歴に基づいて前記希望速度を推定する希望速度推定部を更に備えるものである。
(6):上記(3)から(5)のうちいずれかの態様において、前記力推定部が推定する仮想的な力は、前記交通参加者の間で互いに反発し合う力を含み、前記力推定部は、前記複数の交通参加者のうちグループを形成している交通参加者を推定し、同じグループに属すると推定される交通参加者の間では、前記互いに反発し合う力を、同じグループに属すると推定されない交通参加者の間に比して小さくするものである。
(7):本発明の他の態様に係る車両制御装置は、上記(1)から(6)のうちいずれかの態様の将来行動推定装置と、前記将来行動推定装置により推定される前記複数の交通参加者のそれぞれの将来の行動に基づいて、車両の走行制御を行う運転制御部と、を備えるものである。
(8):本発明の他の態様に係る将来行動推定方法は、コンピュータを用いて実行される将来行動推定方法であって、複数の交通参加者の位置を認識することと、前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定することと、前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記決定された仮ゴールに向かう移動過程をシミュレートすることと、を備えるものである。
(9):本発明の他の態様に係るプログラムは、コンピュータに、複数の交通参加者の位置を認識することと、前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定することと、前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記決定された仮ゴールに向かう移動過程をシミュレートすることと、を実行させるものである。
(10):本発明の他の態様に係る記憶媒体は、コンピュータに、複数の交通参加者の位置を認識することと、前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定することと、前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートすることと、を実行させるプログラムを記憶した非一時的記憶媒体である。
上記(1)〜(10)の態様によれば、実際の交通場面に即した予測を行うことができる。
実施形態に係る将来行動推定装置および車両制御装置を利用した車両システム1の構成図である。 第1制御部120および第2制御部180の機能構成図である。 交通参加者監視部140が認識する自車両Mの周囲の状況を模式的に示す図である。 仮ゴール選択部142Bによる処理の内容について説明するための図である。 希望速度推定部144による処理について説明するための図である。 ローカルフレームの力を求める処理について説明するための図である。 自動運転制御装置100により実行される処理の流れの一例を示すフローチャートである。 実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。
以下、図面を参照し、本発明の将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラムの実施形態について説明する。
[全体構成]
図1は、実施形態に係る将来行動推定装置および車両制御装置を利用した車両システム1の構成図である。車両システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
車両システム1は、例えば、カメラ10と、レーダ装置12と、LIDAR(Light Detection and Ranging)14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Map Positioning Unit)60と、運転操作子80と、自動運転制御装置100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両システム1が搭載される車両(以下、自車両M)の任意の箇所に取り付けられる。前方を撮像する場合、カメラ10は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に取り付けられる。レーダ装置12は、FM−CW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
LIDAR14は、自車両Mの周辺に光(或いは光に近い波長の電磁波)を照射し、散乱光を測定する。LIDAR14は、発光から受光までの時間に基づいて、対象までの距離を検出する。照射される光は、例えば、パルス状のレーザー光である。LIDAR14は、自車両Mの任意の箇所に取り付けられる。
物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御装置100に出力する。物体認識装置16は、カメラ10、レーダ装置12、およびLIDAR14の検出結果をそのまま自動運転制御装置100に出力してよい。車両システム1から物体認識装置16が省略されてもよい。
通信装置20は、例えば、セルラー網やWi−Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、キーなどを含む。
車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。
ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備える。ナビゲーション装置50は、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、ナビHMI52を用いて乗員により入力された目的地までの経路(以下、地図上経路)を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。地図上経路は、MPU60に出力される。ナビゲーション装置50は、地図上経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。ナビゲーション装置50は、例えば、乗員の保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから地図上経路と同等の経路を取得してもよい。
MPU60は、例えば、推奨車線決定部61を含み、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された地図上経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。推奨車線決定部61は、左から何番目の車線を走行するといった決定を行う。推奨車線決定部61は、地図上経路に分岐箇所が存在する場合、自車両Mが、分岐先に進行するための合理的な経路を走行できるように、推奨車線を決定する。
第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。第2地図情報62は、通信装置20が他装置と通信することにより、随時、アップデートされてよい。
運転操作子80は、例えば、アクセルペダル、ブレーキペダル、シフトレバー、ステアリングホイール、異形ステア、ジョイスティックその他の操作子を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御装置100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一部または全部に出力される。
自動運転制御装置100は、例えば、第1制御部120と、第2制御部180とを備える。第1制御部120と第2制御部180は、それぞれ、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め自動運転制御装置100のHDDやフラッシュメモリなどの記憶装置(非一過性の記憶媒体を備える記憶装置)に格納されていてもよいし、DVDやCD−ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体(非一過性の記憶媒体)がドライブ装置に装置に装着されることで自動運転制御装置100のHDDやフラッシュメモリにインストールされてもよい。
図2は、第1制御部120および第2制御部180の機能構成図である。第1制御部120は、例えば、認識部130と、行動計画生成部160とを備える。第1制御部120は、例えば、AI(Artificial Intelligence;人工知能)による機能と、予め与えられたモデルによる機能とを並行して実現する。例えば、「交差点を認識する」機能は、ディープラーニング等による交差点の認識と、予め与えられた条件(パターンマッチング可能な信号、道路標示などがある)に基づく認識とが並行して実行され、双方に対してスコア付けして総合的に評価することで実現されてよい。これによって、自動運転の信頼性が担保される。行動計画生成部160と第2制御部180とを合わせたものが、「運転制御部」の一例である。
認識部130は、例えば、自車位置認識部132と、物***置認識部134と、交通参加者監視部140とを備える。物***置認識部134と交通参加者監視部140とを合わせたものが、「将来行動推定装置」の一例である。
自車位置認識部132は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、自車両Mが走行している車線(走行車線)と、走行車線に対する自車両Mの位置とを認識する。例えば、自車位置認識部132は、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。なお、自車位置認識部132は、道路区画線に限らず、道路区画線や路肩、縁石、中央分離帯、ガードレールなどを含む走路境界(道路境界)を認識することで、走行車線を認識してもよい。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
自車位置認識部132は、走行車線に対する自車両Mの位置や姿勢を認識する。自車位置認識部132は、例えば、自車両Mの基準点(例えば重心や後輪軸中心など)の走行車線の中央部からの乖離、および自車両Mの進行方向が、走行車線の中央部を連ねた線に対してなす角度を、走行車線に対する自車両Mの相対位置および姿勢として認識してもよい。これに代えて、自車位置認識部132は、走行車線のいずれかの側端部(道路区画線または道路境界)に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。
物***置認識部134は、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報に基づいて、カルマンフィルタなどの処理を行うことで、自車両Mの周辺にある物体の位置、種類、速度、加速度等を認識する。物体の位置は、例えば、自車両Mの代表点(重心や駆動軸中心など)を原点とした絶対座標上の位置として認識され、制御に使用される。物体の位置は、その物体の重心やコーナー等の代表点で表されてもよいし、表現された領域で表されてもよい。物体の「状態」とは、物体の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か)を含んでもよい。物体の種類とは、歩行者、自転車、車両、障害物といったものに分類される。物体のうち、歩行者、或いは歩行者と自転車を含めたものを「交通参加者」と称する。従って、物***置認識部134は、交通参加者を含む物体の位置などを認識するものである。
交通参加者監視部140は、物体認識部により認識された交通参加者の行動を監視する。交通参加者監視部140の構成および動作については後述する。
行動計画生成部160は、原則的には推奨車線決定部61により決定された推奨車線を走行し、更に、自車両Mの周辺状況に対応できるように、自車両Mが自動的に(運転者の操作に依らずに)将来走行する目標軌道を生成する。「自車両Mの周辺状況に対応できるように」とは、交通参加者の将来の位置に対してなるべく接近しないうように目標軌道を生成することを含む。目標軌道は、例えば、速度要素を含む。例えば、目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、道なり距離で所定の走行距離(例えば数[m]程度)ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
第2制御部180は、行動計画生成部160によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
第2制御部180は、例えば、取得部182と、速度制御部184と、操舵制御部186とを備える。取得部182は、行動計画生成部160により生成された目標軌道(軌道点)の情報を取得し、メモリ(不図示)に記憶させる。速度制御部184は、メモリに記憶された目標軌道に付随する速度要素に基づいて、走行駆動力出力装置200またはブレーキ装置210を制御する。操舵制御部186は、メモリに記憶された目標軌道の曲がり具合に応じて、ステアリング装置220を制御する。速度制御部184および操舵制御部186の処理は、例えば、フィードフォワード制御とフィードバック制御との組み合わせにより実現される。一例として、操舵制御部186は、自車両Mの前方の道路の曲率に応じたフィードフォワード制御と、目標軌道からの乖離に基づくフィードバック制御とを組み合わせて実行する。
走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECU(Electronic Control Unit)とを備える。ECUは、第2制御部180から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、第2制御部180から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、第2制御部180から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、第2制御部180から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
[将来行動の推定]
以下、交通参加者監視部140による処理の内容について説明する。図3は、交通参加者監視部140が認識する自車両Mの周囲の状況を模式的に示す図である。図示するように、交通参加者監視部140が認識する自車両Mの周囲の状況には、例えば、歩道SW、車道RW、横断歩道CR、建物FC(具体的にはその壁面、入口など)、障害物OBなどが存在する。交通参加者監視部140は、それらが地上座標系などの座標系に占める範囲を認識する。また、交通参加者監視部140は、物***置認識部134の認識結果に基づいて、複数の交通参加者TPの位置を時系列で認識する。交通参加者監視部140は、これらの認識の結果に基づいて以下に説明する処理を行う。
交通参加者監視部140は、例えば、仮ゴール決定部142と、希望速度推定部144と、力推定部146と、シミュレート部148とを備える。
仮ゴール決定部142は、複数の交通参加者TPのそれぞれが将来に到達しようとする目的地である仮ゴールを決定する。仮ゴールの設定は、時間の経過と共に繰り返し行われる。仮ゴールはやがて、本ゴールに近づいていくものである。仮ゴールは、第1期間T1(例えば4[sec])後に到達すると予測される地点である。仮ゴールは、各予測ステップにおいて更新される。
仮ゴール決定部142は、例えば、仮ゴール候補設定部142Aと、仮ゴール選択部142Bとを備える。
仮ゴール候補設定部142Aは、現在から第2期間T2(例えば2[sec])遡った時点からの交通参加者TPの位置の履歴と、カメラ10、レーダ装置12、およびLIDAR14から物体認識装置16を介して入力された情報や地図情報に基づいて認識される道路構造に関する情報とに基づいて、m−1個の仮ゴール候補Gpc(p)(p=1〜m−1)を設定する。例えば、仮ゴール候補設定部142Aは、(1)交通参加者TPが歩道SWを移動し続ける、(2)交通参加者TPが横断歩道CRを渡る、(3)交通参加者TPが最寄りの施設FCに向かう、といった予め想定されているシナリオに基づいて仮ゴール候補Gpc(k)を決定する。例えば、仮ゴール候補設定部142Aは、離散的選択モデル(各選択には一時的な目標の選択が含まれている)に基づいて仮ゴール候補Gpc(k)を決定する。この離散的選択モデルは、自車両Mが交差点にいる、横断歩道がある、商店街にいる、といった内容で分類される運転シーンに基づいて、あらかじめ決められた可能性のある選択のセット(一時的な目標の候補)を定義するものである。仮ゴール候補設定部142Aは、物***置認識部134により認識された歩道、横断歩道、交差点などの存在と、MPU60によって認識されるフリーウェイや商店街等の位置とに基づいて、どの離散集合(シナリオ)を選択するかを決定する。図の例では、仮ゴール候補設定部142Aは、(1)のシナリオに基づいて、交通参加者TPの現在の移動方向の先である歩道SWの一地点を仮ゴール候補Gpc(1)とし、(2)のシナリオに基づいて、交通参加者TPが存在する側と反対側の歩道SWと横断歩道CRの交点を仮ゴール候補Gpc(2)とし、(3)のシナリオに基づいて、施設FCの入口を仮ゴール候補Gpc(3)とする。なお、交通参加者TPが現に横断歩道CRを渡っている場合、シナリオとして上記(2)または(4)引き返す、の2つが選択されてよい。
更に、仮ゴール候補設定部142Aは、物***置認識部134におけるカルマンフィルタ処理の予測結果を外挿して、交通参加者が現在の移動方向を継続すると仮定して、他の仮ゴール候補Gpc(m)を設定する。これによって、仮ゴール候補設定部142Aは、計m個の仮ゴール候補Gpc(p)を設定する。
仮ゴール選択部142Bは、交通参加者TPの意図する移動方向θを計算し、移動方向θを用いて参照ゴール位置Grefを求める。移動方向θは、式(1)によって求められる。式中、w1、w2、w3、w4は係数である。これらの係数は固定値であってもよいし、随時、機械学習などによって更新されてもよい。例えば、仮ゴール選択部142Bは、カメラ10により撮像された画像を、上体の向きおよび顔向きを導出する学習済みモデルに入力することで、上体の向きおよび顔向きの情報を取得する。これに代えて、仮ゴール選択部142Bは、カメラ10により撮像された画像に対して何らかのルールベースの処理を行うことで、上体の向きおよび顔向きの情報を取得してもよい。例えば、仮ゴール選択部142Bは、鼻梁などの特徴箇所が顔領域に占める位置の偏りと、黒目の位置等に基づく視線の向きとを入力パラメータとする演算を行って、顔向きを計算してもよい。認識速度ベクトルは、物***置認識部134により認識される情報である。道路構造による影響は、例えば、上体の向き、顔向き、および認識速度ベクトルが横断歩道や歩道から逸脱する方向に向かっているような場合に、その成分を打ち消すための補正項である。
移動方向θ=w1×(上体の向き)+w2×(顔向き)+w3×(認識速度ベクトル)+w4×(道路構造による影響) …(1)
上記に代えて、仮ゴール選択部142Bは、上体の向き、顔向き、認識速度ベクトル、道路構造による影響などを入力すると、移動方向θを出力するモデルに対して、上体の向き、顔向き、認識速度ベクトル、道路構造による影響などを入力することで、移動方向θを取得してもよい。
仮ゴール選択部142Bは、移動方向θに向かって所定の速度で第1期間T1の間、交通参加者TPが移動すると仮定して参照ゴール位置Grefを求める。例えば、所定サイクル(例えば2サイクル)前に取得された交通参加者TPの速度が所定速度として使用される。そして、仮ゴール選択部142Bは、それぞれの仮ゴール候補Gpc(p)を移動シミュレーションモデルに入力し、将来の第1期間T1の間の複数時点における交通参加者TPの推定位置を求める。移動シミュレーションモデルとは、例えば、後述するシミュレート部148が実行するシミュレーションに使用されるモデルと同じものである。そして、仮ゴール選択部142Bは、交通参加者TPの現在の位置から参照ゴール位置Grefまでを直線あるいは道路構造に応じた曲線、折れ線などで結んだ基準線と、仮ゴール候補Gpc(p)ごとの複数時点における交通参加者TPの推定位置とを比較し、乖離が最も小さかった仮ゴール候補Gpc(p)を、仮ゴールGpに決定する。図4は、仮ゴール選択部142Bによる処理の内容について説明するための図である。例えば、仮ゴール選択部142Bは、基準線と、仮ゴール候補Gpc(p)ごとに計算した複数時点(例えば1〜u)における交通参加者TPの推定位置P〜Pとの距離を二乗した値の合計(二乗和)Σq=1 が最も小さかった仮ゴール候補Gpc(p)を、仮ゴールGpに決定する。
上記に代えて、仮ゴール決定部142は、自車両Mの周辺状況をコンテキスト情報として用い、SVM(Support Vector Machine)モデルや多変量回帰分析の手法によるモデルを用いて、交通参加者TPの仮ゴールGpを決定してもよい。このモデルは、実際の交通局面で収集された交通参加者TPの行動に基づいて学習される。コンテキスト情報とは、例えば、横断歩道と交通参加者TPとの距離、道路構造物の影響、車両との位置関係、交通参加者TPの頭部の動きなどである。
希望速度推定部144は、交通参加者TPの過去の位置の履歴を用いて、交通参加者TPiの希望速度ベクトル→vi0を推定する。以下、「→」はベクトルを示すものとする。また、物***置認識部134が認識しているi番目の交通参加者TPを交通参加者TPiと称する。iは交通参加者TPの識別情報である。希望速度の大きさvi0を求めるため、希望速度推定部144は、過去の第3期間T3(例えば2[sec])分の複数のステップにおける速度の重み付き移動平均を求める。図5は、希望速度推定部144による処理について説明するための図である。希望速度推定部144は、例えば、第3期間T3の終端に近い(現在に近い)第4期間T4(例えば0.5[sec])の重みを、それ以外の期間に比して大きくしてもよい。希望速度推定部144は、希望速度ベクトル→vi0の方向を、交通参加者TPiの現在の位置から仮ゴールGPiに向かう方向とする。
力推定部146は、複数の交通参加者TPのそれぞれに作用する仮想的な力を、複数の交通参加者TPの周辺環境に基づいて推定する。力推定部146は、例えば、交通参加者TPごとに、自身から受ける力、互いに作用を及ぼす力、および物体から及ぼされる力を推定する。なお、これらの力は推定対象となる仮想的な力である。力推定部146は、自発力F1i、社会力F2i、物理力F3iをそれぞれ推定し、それらを合計して交通参加者TPiに作用する力(以下、「仮想的な」を省略する)を求める。以下、数式を用いて力推定部146が行う演算、処理の内容を説明する。式(2)は、力推定部146が交通参加者TPについて計算する力を示すものである。式(2)において、ベクトルを示す「→」を省略している。式中、kは交通参加者TPi以外の交通参加者TPと、車両、障害物、壁、横断状態(車道を横断中であるという事実)、歩道境界を含むものであり(以下、これらを影響因子と称する)、n個存在するものとしている。力推定部146は、交通参加者TPiに力を及ぼす影響因子は交通参加者TPiの正面方向を中心とした扇形の範囲に存在する影響因子に限定され、範囲から外れる影響因子は力を及ぼさないものとして以下の計算を行う。式(2)におけるFmotivationは自発力であり、Fpedestrianは影響因子である歩行者から及ぼされる力であり、Fvehicleは影響因子である車両から及ぼされる力であり、Fobstacleは影響因子である障害物から及ぼされる力であり、Fwallは影響因子である壁から及ぼされる力であり、Fcrosswalkは影響因子である横断状態から及ぼされる力であり、Fsidewalkは影響因子である歩道境界から及ぼされる力である。
Figure 2021068423
自発力F1iは、交通参加者TPiが希望速度で移動するために交通参加者TPiが自分自身に対して作用させる力である。力推定部146は、希望速度ベクトル→vi0に基づいて自発力F1iを算出する。自発力F1iは、希望速度ベクトル→vi0で移動しようとする結果、交通参加者TPiが加減速することを力の次元で表したものである。自発力→F1iは、例えば式(3)で表される。式中、→viは、交通参加者TPiの現在の速度ベクトルであり、τは、速度ベクトル→viを希望速度ベクトル→vi0に合わせるのに要する時間である。
F1(Fmotivation)=(1/τ)・(→vi0−→vi) …(3)
社会力F2iと物理力F3iのそれぞれは、影響因子から及ぼされる反発力、圧迫力、摩擦力の3成分の和(あるいは加重和)を求めることで推定される。
式(2)のうちFk pedestrianは、k番目の影響因子である歩行者から及ぼされる力でありFk wallは、k番目の影響因子である壁から及ぼされる力であり、Fk obstacleはk番目の影響因子である障害物から及ぼされる力である。これらは、式(4)で表される。式中、repulsionが反発力、compressionが圧迫力、frictionが摩擦力をそれぞれ表している。
Figure 2021068423
k pedestrianの各項は、式(5)で表される。式中、Aped、Bped、Cped、Kpedは、実験等により得られた適合値である。rikは、交通参加者TPiと影響因子kとのそれぞれに対して予め設定される私的空間の半径の和である。私的空間とは、その中に他者が入り込むのを回避するように交通参加者TPが振る舞う空間である。影響因子が交通参加者でない場合、疑似的に私的空間が設定される。dikは、交通参加者TPiと影響因子kとの間のユークリッド距離である。nikは式(6)で表され、tikは式(7)で表される。式(7)における(1)はx要素を、(2)はy要素をそれぞれ示す。Φは、交通参加者TPiと影響因子kの移動方向(速度ベクトルの方向)の差分の角度である。また、dvikは交通参加者TPiの速度ベクトルと影響因子kの速度ベクトルとの差分ベクトルである。Fk pedestrianの各項は、マイナスになる場合はゼロに置換されてよい。Bpedは、Exp関数によって生成される力のマグニチュードの係数である。まず、各要素の社会力によって生成される力の最小値・最大値を定め、Bpedを調整することにより、rik−dikの変化に対する社会力の変化率をコントロールすることができる。なお式(8)、(9)においてもBpedは同様に作用する。
Figure 2021068423
式(5)におけるApedに関して、力推定部146は、交通参加者TPiと影響因子k(この場合は他の交通参加者)がグループを形成しているか否かを予め推定しておき、同じグループに属すると推定される交通参加者の間では、同じグループに属すると推定されない交通参加者の間に比して、値を小さくしてもよい(ゼロ近辺、或いはマイナスにしてもよい)。グループを形成している交通参加者同士は、距離が一定の距離以内である状態を維持して移動することが多いからである。力推定部146は、二人の交通参加者の過去の一定期間における位置が所定範囲内に収まり、且つ一定期間における移動方向(速度ベクトルの方向)の差が閾値未満である場合に、その二人の交通参加者はグループを形成していると推定する、三人以上の場合も同様に、波及的に推定を行ってよい。
自転車に関しては、歩行者として扱い、Fk pedestrianに含めてよい。但し、私的空間の半径を歩行者の1.5倍とする。
k obstacleの各項は、式(8)で表される。式中、Aobs、Cobs、Kobsは、実験等により得られた適合値である。Fk obstacleの各項は、マイナスになる場合はゼロに置換されてよい。
Figure 2021068423
k wallの各項は、式(9)で表される。式中、Awall、Cwall、Kwallは、実験等により得られた適合値である。Fk wallの各項は、マイナスになる場合はゼロに置換されてよい。壁についてのnikやtikを求める際に、力推定部146は、例えば、外挿によって求められる交通参加者TPiの移動先と交差する点を基準とすればよい。
Figure 2021068423
k sidewalkは、k番目の影響因子である壁から及ぼされる力である。Fk sidewalkは、式(10)で表される。式中、Ksideは、実験等により得られた適合値である。nskは、交通参加者TPiを歩道内に収めるために移動すべき方向の単位ベクトルである。dsafe_sは、歩道の境界が縁石やガードレールなどの物理的な境界で示されていない場合に設定されるクリアランス分の距離である。Fk crossswalkは、k番目の影響因子である横断状態から及ぼされる力である。Fk crossswalkは、式(11)で表される。式中、Kcrossは、実験等により得られた適合値である。nckは、交通参加者TPiの位置から近い方の歩道に向かう単位ベクトルである。dsafe_cは、横断歩道の境界が縁石やガードレールなどの物理的な境界で示されていない場合に設定されるクリアランス分の距離である。Fk vehicleは、k番目の影響因子である車両から及ぼされる力である。Fk vehicleは、式(12)で表される。但し、式(12)が適用されるのは移動している車両であり、駐車または停車している車両は障害物として扱われ、式(8)が適用される。式中、nkcarは、交通参加者TPiが車道に居る場合に、交通参加者の位置から近い方の歩道に向かう単位ベクトルである。TTCは、time to collsion すなわち交通参加者の位置を車道に射影した位置と車両の位置との間で計算した衝突時間である。hはTTCを正規化するためのパラメータであり、想定されるTTCの最大値に設定される。hはデータ解析とシミュレーションを繰り返すことによって実験的に求められるパラメータ(ユーザ設定パラメータ)である。
Figure 2021068423
このようにして仮ゴールGp、希望速度→vi0、および各種の力が求められると、シミュレート部148が、物***置認識部134が認識している全ての交通参加者および車両について、仮ゴールGp、希望速度→vi0、および各種の力を移動モデルに入力することで、将来の第1期間T1の間の複数ステップ(時点)における位置をシミュレーションによって求める。第2期間T2の間、仮ゴールGpおよび希望速度→vi0は固定される。第2期間T2が経過すると、シミュレート部148は、仮ゴール候補設定部142Aおよび仮ゴール選択部142Bと同様に仮ゴールGpを選択し、仮ゴールGpに向かって移動する前提で交通参加者の移動をシミュレートする。このシミュレーションにおいて交通参加者は、何ら力が作用しなければ最短経路で仮ゴールGpに向かって移動し、力が作用している場合は、例えば、仮ゴールGpに向かう方向と力の方向とを、力の大きさに応じた比率で合成した方向に向かって移動する。すなわち、シミュレート部148は、複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、複数の交通参加者のそれぞれが仮ゴール決定部142により決定された仮ゴールGpに向かう移動過程をシミュレートする。移動モデルは、例えば非特許文献2に記載のヒューマンロコモーションモデルである。これに限らず、移動モデルは、上記の入力情報に基づいて将来の複数時点における位置をシミュレーションによって推定するものであれば、任意のモデルであってよい。この際に、シミュレート部148は、他者の接近による力の作用する方向をそのまま交通参加者に作用させるのではなく、ローカルフレームの力に変換して演算を行ってもよい。図6は、ローカルフレームの力を求める処理について説明するための図である。図中、→viは交通参加者TPiの速度ベクトルであり、→vkは影響因子kの速度ベクトルであり、→Fは影響因子kが交通参加者TPiに及ぼす力である。この場合、→viと→Fが略反対方向を向いているため、シミュレート部148は、力→Fをそのまま交通参加者TPiに作用させるのではなく、力→Fに対して回り込む方向(例えば図中、→Fk*)に修正してもよい。こうすれば、交通参加者が不自然に行ったり来たりするようなシミュレーション結果が出るのを抑制することができる。
図7は、自動運転制御装置100により実行される処理の流れの一例を示すフローチャートである。本フローチャートでは、交通参加者の将来行動予測の部分に着目し、自車位置認識などの処理について説明を省略する。
まず、物***置認識部134が、交通参加者を含む物体の位置を認識する(ステップS100)。
次に、仮ゴール決定部142および希望速度推定部144が、ステップS102〜S108の処理を交通参加者ごとに実行する(ステップS102)。まず、仮ゴール候補設定部142Aが仮ゴール候補Gpc(p)を設定し、仮ゴール選択部142Bが仮ゴール候補Gpc(p)ごとにシミュレーションを実施する(ステップS104)。仮ゴール選択部142Bは、参照ゴール位置Grefまでの経路との乖離の最も小さかったGpc(p)を仮ゴールとして選択する(ステップS106)。また、希望速度推定部144が希望速度を推定する(ステップS108)。
次に、力推定部146が、ステップS100で認識された現在位置、または次のステップS112で求められた将来位置に基づいて、交通参加者ごとに作用する力を推定する(ステップS110)。シミュレート部148は、移動モデルを用いて仮ゴールGpおよび力に基づくシミュレートを行い、1サイクル後の交通参加者の将来位置を求める(ステップS112)。交通参加者監視部140は、ステップS110およびS112の処理を所定サイクル数、実行したか否かを判定する(ステップS114)。所定サイクル数、実行していないと判定された場合、ステップS110に処理が戻される。所定サイクル数、実行したと判定された場合、行動計画生成部160が、交通参加者等の現在位置および将来位置に基づいて車両制御を行う(ステップS116)。例えば、行動計画生成部160は、自車両Mの将来の行動を決定する際に、将来の時点における交通参加者等の位置を中心としたリスク領域を設定し、リスク領域への接近を抑制した目標軌道を生成する。
[ハードウェア構成]
図8は、実施形態の自動運転制御装置100のハードウェア構成の一例を示す図である。図示するように、自動運転制御装置100は、通信コントローラ100−1、CPU100−2、ワーキングメモリとして使用されるRAM(Random Access Memory)100−3、ブートプログラムなどを格納するROM(Read Only Memory)100−4、フラッシュメモリやHDD(Hard Disk Drive)などの記憶装置100−5、ドライブ装置100−6などが、内部バスあるいは専用通信線によって相互に接続された構成となっている。通信コントローラ100−1は、自動運転制御装置100以外の構成要素との通信を行う。記憶装置100−5には、CPU100−2が実行するプログラム100−5aが格納されている。このプログラムは、DMA(Direct Memory Access)コントローラ(不図示)などによってRAM100−3に展開されて、CPU100−2によって実行される。これによって、認識部130、行動計画生成部160、第2制御部180のうち一部または全部が実現される。
以上説明した実施形態によれば、複数の交通参加者の位置を認識する物***置認識部(134)と、物***置認識部の認識結果に基づいて、複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定する仮ゴール決定部(142)と、複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、複数の交通参加者のそれぞれが仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートするシミュレート部(148)と、を備えることにより、実際の交通場面に即した予測を行うことができる。
上記説明した実施形態は、以下のように表現することができる。
プログラムを記憶した記憶装置と、
ハードウェアプロセッサと、を備え、
前記ハードウェアプロセッサが前記記憶装置に記憶されたプログラムを実行することにより、
複数の交通参加者の位置を認識し、
前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定し、
前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートする、
ように構成されている、将来行動推定装置。
以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1 車両システム
10 カメラ
12 レーダ装置
14 LIDAR
16 物体認識装置
100 自動運転制御装置
120 第1制御部
130 認識部
132 自車位置認識部
134 物***置認識部
140 交通参加者監視部
142 仮ゴール決定部
142A 仮ゴール候補設定部
142B 仮ゴール選択部
144 希望速度推定部
146 力推定部
148 シミュレート部
160 行動計画生成部
180 第2制御部

Claims (9)

  1. 複数の交通参加者の位置を認識する物***置認識部と、
    前記物***置認識部の認識結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定する仮ゴール決定部と、
    前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記仮ゴール決定部により決定された仮ゴールに向かう移動過程をシミュレートするシミュレート部と、
    を備える将来行動推定装置。
  2. 前記仮ゴール決定部は、前記複数の交通参加者のそれぞれについて、
    前記物***置認識部により認識された前記複数の交通参加者の位置の履歴と、道路構造を示す情報とに基づいて、複数の仮ゴール候補を設定し、
    前記交通参加者が前記複数の仮ゴール候補のそれぞれに向かうシミュレーションを行った結果と、前記交通参加者の姿勢に基づく移動方向との乖離を求め、乖離が最も小さかった仮ゴール候補を、前記仮ゴールとして決定する、
    請求項1記載の将来行動推定装置。
  3. 前記移動モデルは、前記複数の交通参加者のそれぞれに作用する仮想的な力を反映させて、将来の各ステップにおける前記交通参加者の移動過程をシミュレートするものであり、
    前記複数の交通参加者の周辺環境に基づいて前記仮想的な力を推定する力推定部を更に備える、
    請求項1または2記載の将来行動推定装置。
  4. 前記力推定部は、前記複数の交通参加者のそれぞれに前記仮想的な力を及ぼす影響因子は、それぞれの交通参加者の正面方向を中心とした扇形の範囲に存在する影響因子に限定され、範囲から外れる影響因子は力を及ぼさないものとして、前記仮想的な力を推定する、
    請求項3記載の将来行動推定装置。
  5. 前記力推定部が推定する仮想的な力は、前記交通参加者自身が希望速度で移動しようとして加減速するための力を含み、
    前記交通参加者の過去の位置の履歴に基づいて前記希望速度を推定する希望速度推定部を更に備える、
    請求項3または4記載の将来行動推定装置。
  6. 前記力推定部が推定する仮想的な力は、前記交通参加者の間で互いに反発し合う力を含み、
    前記力推定部は、前記複数の交通参加者のうちグループを形成している交通参加者を推定し、同じグループに属すると推定される交通参加者の間では、前記互いに反発し合う力を、同じグループに属すると推定されない交通参加者の間に比して小さくする、
    請求項3から5のうちいずれか1項記載の将来行動推定装置。
  7. 請求項1から6のうちいずれか1項記載の将来行動推定装置と、
    前記将来行動推定装置により推定される前記複数の交通参加者のそれぞれの将来の行動に基づいて、車両の走行制御を行う運転制御部と、
    を備える車両制御装置。
  8. コンピュータを用いて実行される将来行動推定方法であって、
    複数の交通参加者の位置を認識することと、
    前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定することと、
    前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記決定された仮ゴールに向かう移動過程をシミュレートすることと、
    を備える将来行動推定方法。
  9. コンピュータに、
    複数の交通参加者の位置を認識することと、
    前記認識の結果に基づいて、前記複数の交通参加者のそれぞれが将来に到達しようとする仮ゴールを決定することと、
    前記複数の交通参加者のそれぞれの将来の行動を推定するために、移動モデルを用いて、前記複数の交通参加者のそれぞれが前記決定された仮ゴールに向かう移動過程をシミュレートすることと、
    を実行させるプログラム。
JP2020141958A 2019-10-18 2020-08-25 将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラム Active JP7466407B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/068,846 US11756418B2 (en) 2019-10-18 2020-10-13 Device, method, and storage medium
CN202011099712.5A CN112686421B (zh) 2019-10-18 2020-10-14 将来行动推定装置、将来行动推定方法及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019191026 2019-10-18
JP2019191026 2019-10-18

Publications (2)

Publication Number Publication Date
JP2021068423A true JP2021068423A (ja) 2021-04-30
JP7466407B2 JP7466407B2 (ja) 2024-04-12

Family

ID=75637386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141958A Active JP7466407B2 (ja) 2019-10-18 2020-08-25 将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP7466407B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113830103A (zh) * 2021-09-23 2021-12-24 岚图汽车科技有限公司 车辆横向控制方法、装置、存储介质及电子设备
WO2022264962A1 (ja) * 2021-06-16 2022-12-22 株式会社デンソー 挙動予測システム、挙動予測装置、挙動予測方法、挙動予測プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429368B2 (ja) 2013-08-02 2018-11-28 本田技研工業株式会社 歩車間通信システムおよび方法
JP2017165156A (ja) 2016-03-14 2017-09-21 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP2018124663A (ja) 2017-01-30 2018-08-09 日立オートモティブシステムズ株式会社 移動物体予測装置
JPWO2019106789A1 (ja) 2017-11-30 2019-12-12 三菱電機株式会社 処理装置及び処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264962A1 (ja) * 2021-06-16 2022-12-22 株式会社デンソー 挙動予測システム、挙動予測装置、挙動予測方法、挙動予測プログラム
CN113830103A (zh) * 2021-09-23 2021-12-24 岚图汽车科技有限公司 车辆横向控制方法、装置、存储介质及电子设备
CN113830103B (zh) * 2021-09-23 2023-06-13 岚图汽车科技有限公司 车辆横向控制方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
JP7466407B2 (ja) 2024-04-12

Similar Documents

Publication Publication Date Title
US11126186B2 (en) Systems and methods for predicting the trajectory of a road agent external to a vehicle
JP6793845B2 (ja) 車両制御装置、車両制御方法、及びプログラム
JP6823512B2 (ja) 経路決定装置、車両制御装置、経路決定方法、およびプログラム
JP6601696B2 (ja) 予測装置、予測方法、およびプログラム
JP6768974B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7048456B2 (ja) 学習装置、学習方法、およびプログラム
JP6859239B2 (ja) 車両制御装置、車両制御方法、およびプログラム
CN113460077B (zh) 移动体控制装置、移动体控制方法及存储介质
JP7100998B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7048455B2 (ja) 学習装置、シミュレーションシステム、学習方法、およびプログラム
CN111094096A (zh) 车辆控制装置、车辆控制方法及程序
JP2021068015A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2020147139A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021068016A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2020185946A (ja) 車両制御装置、車両制御方法、およびプログラム
JP7444680B2 (ja) 移動体制御装置、移動体制御方法、およびプログラム
JP7466407B2 (ja) 将来行動推定装置、車両制御装置、将来行動推定方法、およびプログラム
CN112686421B (zh) 将来行动推定装置、将来行动推定方法及存储介质
JP2021160531A (ja) 車両制御装置、車両制御方法、及びプログラム
JP2021068014A (ja) 車両制御装置、車両制御方法、およびプログラム
JP6921692B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7232166B2 (ja) 予測装置、車両システム、予測方法、およびプログラム
JP2021160533A (ja) 車両制御装置、車両制御方法、及びプログラム
JP2021003971A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021149464A (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240402

R150 Certificate of patent or registration of utility model

Ref document number: 7466407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150