JP2021067295A - Fluid-sealed type vibration isolation device - Google Patents

Fluid-sealed type vibration isolation device Download PDF

Info

Publication number
JP2021067295A
JP2021067295A JP2019191417A JP2019191417A JP2021067295A JP 2021067295 A JP2021067295 A JP 2021067295A JP 2019191417 A JP2019191417 A JP 2019191417A JP 2019191417 A JP2019191417 A JP 2019191417A JP 2021067295 A JP2021067295 A JP 2021067295A
Authority
JP
Japan
Prior art keywords
flow path
valve portion
fluid
contact
communication flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019191417A
Other languages
Japanese (ja)
Other versions
JP7269146B2 (en
Inventor
亮太 石川
Ryota Ishikawa
亮太 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2019191417A priority Critical patent/JP7269146B2/en
Publication of JP2021067295A publication Critical patent/JP2021067295A/en
Application granted granted Critical
Publication of JP7269146B2 publication Critical patent/JP7269146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

To provide a fluid-sealed type vibration isolation device of a novel configuration, in which the switching of characteristics can be performed at high reliability, and noise at the switching of the characteristics can be prevented.SOLUTION: In a fluid-sealed type vibration isolation device 10 in which a main liquid chamber 72 and a sub-liquid chamber 74 which are formed at both sides of a partitioning member 32 communicate with each other by a communication flow passage 78, an elastic movable body 60 provided at the partitioning member 32 comprises a support part 62 supported by the partitioning member 32, and a valve part 64 protruding from the support part 62 in a cross direction with respect to a flow passage length direction of the communication flow passage 78, and disposed above the communication flow passage 78. Abutment faces 42 and 50 abutting on the valve part 64 by the displacement of the valve part 64 to the flow passage length direction of the communication flow passage 78 are formed at both sides of the communication flow passage 78 in the flow passage length direction with respect to the valve part 64 at a wall inner face of the communication flow passage 78, the abutment faces 42 and 50 are formed while inclining to the flow passage length direction of the communication flow passage 78, and component forces of abutment reactions of the valve part 64 and the abutment faces 42 and 50 are made to act in a direction in which the valve part 64 is compressed to the support part 62 side.SELECTED DRAWING: Figure 1

Description

本発明は、自動車のエンジンマウントなどに用いられる流体封入式防振装置に関するものである。 The present invention relates to a fluid-filled anti-vibration device used for an automobile engine mount or the like.

従来から、自動車のエンジンマウントなどに用いられる流体封入式防振装置において、入力振動に応じて防振特性が自動的に切り替えられる自己切替型の流体封入式防振装置が知られている。自己切替型の流体封入式防振装置としては、例えば、特開2004−069005号公報(特許文献1)に開示されている。具体的には、受圧室と平衡室を仕切る隔壁がそれら受圧室と平衡室を相互に連通する透孔を備えており、透孔の流路上に可動板が配された構造を有している。低周波大振幅振動の入力時には、透孔が可動板によって閉塞されて、受圧室と平衡室の相対的な内圧変動が有効に生じると共に、中乃至高周波小振幅振動の入力時には、可動板の外周部分と隔壁の間の隙間によって受圧室と平衡室が連通されることで、高動ばね化が回避されるようになっている。 Conventionally, in a fluid-filled vibration isolator used for an automobile engine mount or the like, a self-switching fluid-filled vibration isolator whose vibration isolation characteristics are automatically switched according to input vibration has been known. A self-switching fluid-filled anti-vibration device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-609005 (Patent Document 1). Specifically, the partition wall that separates the pressure receiving chamber and the equilibrium chamber has a through hole that communicates the pressure receiving chamber and the equilibrium chamber with each other, and has a structure in which a movable plate is arranged on the flow path of the through hole. .. When low frequency large amplitude vibration is input, the through hole is closed by the movable plate, and the relative internal pressure fluctuation between the pressure receiving chamber and the equilibrium chamber is effectively generated. When inputting medium to high frequency small amplitude vibration, the outer circumference of the movable plate is effectively generated. The pressure receiving chamber and the equilibrium chamber are communicated with each other by the gap between the portion and the partition wall, so that the high-frequency spring is avoided.

ところで、特許文献1に記載された流体封入式防振装置のような可動板構造では、可動板の隔壁への打ち当たりによる打音が問題になる場合がある。そこで、本出願人は、特開2012−241842号公報(特許文献2)において、特性切替時の打音が低減される構造を提案している。即ち、受圧室と平衡室を仕切る仕切部材に第2のオリフィス通路が形成されており、第2のオリフィス通路上に配されて、受圧室と平衡室の相対的な圧力変動によって首振り状に傾動する弾性可動体の切替部が、第2のオリフィス通路の壁内面に当接することで、第2のオリフィス通路の連通と遮断が切り替えられるようになっている。これによれば、切替部と仕切部材の当接方向が液圧の作用方向とは異なることから、切替部の仕切部材への当接による衝撃力が低減されて、打音の発生が防止される。 By the way, in a movable plate structure such as the fluid-filled vibration isolator described in Patent Document 1, the hitting sound due to the hitting of the movable plate against the partition wall may become a problem. Therefore, the applicant has proposed a structure in which the tapping sound at the time of characteristic switching is reduced in Japanese Patent Application Laid-Open No. 2012-241842 (Patent Document 2). That is, a second orifice passage is formed in the partition member that separates the pressure receiving chamber and the equilibrium chamber, is arranged on the second orifice passage, and swings due to the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber. The switching portion of the tilting elastic movable body comes into contact with the inner surface of the wall of the second orifice passage, so that the communication and blocking of the second orifice passage can be switched. According to this, since the contact direction between the switching portion and the partition member is different from the action direction of the hydraulic pressure, the impact force due to the contact of the switching portion with the partition member is reduced, and the generation of tapping sound is prevented. To.

特開2004−069005号公報Japanese Unexamined Patent Publication No. 2004-069005 特開2012−241842号公報Japanese Unexamined Patent Publication No. 2012-241842

しかしながら、特許文献2に記載の流体封入式防振装置では、入力振動が大きい場合には、切替部の仕切部材への当接による流体の流動制限が不十分になることも想定される。即ち、切替部と仕切部材の当接面が切替部への液圧の作用方向と略平行であることから、切替部に対して大きな液圧が作用すると、切替部の仕切部材に対する当接部分が滑って、切替部が仕切部材から意図せずに離れてしまうことが考えられたからである。 However, in the fluid-filled vibration isolator described in Patent Document 2, when the input vibration is large, it is assumed that the fluid flow restriction due to the contact of the switching portion with the partition member becomes insufficient. That is, since the contact surface between the switching portion and the partition member is substantially parallel to the direction in which the hydraulic pressure acts on the switching portion, when a large hydraulic pressure acts on the switching portion, the contact portion of the switching portion with the partition member This is because it was considered that the switching portion slipped and unintentionally separated from the partition member.

本発明の解決課題は、特性の切替が高い信頼性で実現され、且つ特性切替時の異音が防止される、新規な構造の流体封入式防振装置を提供することにある。 An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure, in which characteristic switching is realized with high reliability and abnormal noise during characteristic switching is prevented.

以下、本発明を把握するための好ましい態様について記載するが、以下に記載の各態様は、例示的に記載したものであって、適宜に互いに組み合わせて採用され得るだけでなく、各態様に記載の複数の構成要素についても、可能な限り独立して認識及び採用することができ、適宜に別の態様に記載の何れかの構成要素と組み合わせて採用することもできる。それによって、本発明では、以下に記載の態様に限定されることなく、種々の別態様が実現され得る。 Hereinafter, preferred embodiments for grasping the present invention will be described, but each of the embodiments described below is described as an example, and not only can be appropriately combined with each other and adopted, but also described in each embodiment. The plurality of components of the above can also be recognized and adopted independently as much as possible, and can be appropriately adopted in combination with any of the components described in another embodiment. Thereby, in the present invention, various other aspects can be realized without being limited to the aspects described below.

第一の態様は、仕切部材の両側にそれぞれ非圧縮性流体が封入された主液室と副液室が形成されており、それら主液室と副液室を相互に連通する連通流路が形成されている流体封入式防振装置において、前記仕切部材に配される弾性可動体が、該仕切部材によって支持される支持部と、前記連通流路の流路長方向に対する交差方向で該支持部から突出して該連通流路上に配置される弁部とを備えていると共に、該連通流路の壁内面には、該連通流路の流路長方向への該弁部の変位によって該弁部と当接する当接面が、該弁部に対して該連通流路の流路長方向の両側に設けられており、該当接面が該連通流路の流路長方向に対して傾斜して設けられて、該弁部と該当接面の当接反力の分力が該弁部を該支持部側へ圧縮する方向に作用するようにしたものである。 In the first aspect, a main liquid chamber and a sub liquid chamber in which an incompressible fluid is sealed are formed on both sides of the partition member, and a communication flow path that communicates the main liquid chamber and the sub liquid chamber with each other is formed. In the formed fluid-filled anti-vibration device, the elastic movable body arranged on the partition member is supported by the support portion supported by the partition member in the intersecting direction with respect to the flow path length direction of the communication flow path. A valve portion that protrudes from the portion and is arranged on the communication flow path is provided, and the valve portion is provided on the inner surface of the wall of the communication flow path due to the displacement of the valve portion in the flow path length direction of the communication flow path. Contact surfaces that come into contact with the portions are provided on both sides of the communication flow path in the flow path length direction with respect to the valve portion, and the corresponding contact surfaces are inclined with respect to the flow path length direction of the communication flow path. The component force of the contact reaction force between the valve portion and the corresponding contact surface acts in the direction of compressing the valve portion toward the support portion.

本態様に従う構造とされた流体封入式防振装置によれば、例えば、小振幅振動の入力に対しては、弁部が内圧変動に応じて微小変形して、連通流路を通じた流体流動による防振効果が発揮される。また、大振幅振動の入力に対しては、弾性可動体の弁部が液圧の作用によって大きく弾性変形して仕切部材の当接面に当接することで、連通流路が遮断されて、主液室の内圧変動が効率的に惹起される。 According to the fluid-filled vibration isolator having a structure according to this aspect, for example, in response to an input of small-amplitude vibration, the valve portion is slightly deformed according to the internal pressure fluctuation, and the fluid flows through the communication flow path. The anti-vibration effect is exhibited. Further, in response to the input of large-amplitude vibration, the valve portion of the elastic movable body is greatly elastically deformed by the action of hydraulic pressure and comes into contact with the contact surface of the partition member, thereby blocking the communication flow path and mainly. Fluctuations in the internal pressure of the liquid chamber are efficiently induced.

弁部が当接面に当接すると、弁部が当接反力によって支持部側へ圧縮されることから、弁部の変位に対して弁部のばねが非線形的に硬くなって、弁部の変形を伴う変位が制限される。それ故、弁部が当接面への当接状態に安定して保持されて、弁部による連通流路の安定した遮断が実現される。特に、当接面が弁部に対する液圧の作用方向である連通流路の流路長方向に対して傾斜していることにより、連通流路の流路長方向における弁部の変位量が大きくなるに従って、弁部を当接面に押し付ける力が大きくなると共に、弁部の圧縮変形量が大きくなって弁部のばねが硬くなる。従って、入力振動の振幅が大きく弁部の変位量が大きい場合にも、弁部が当接面への当接状態に安定して保持されて、連通流路の意図しない連通が回避される。 When the valve portion comes into contact with the contact surface, the valve portion is compressed toward the support portion by the contact reaction force, so that the spring of the valve portion becomes non-linearly hard with respect to the displacement of the valve portion, and the valve portion Displacement with deformation is limited. Therefore, the valve portion is stably held in the contact state with the contact surface, and the valve portion realizes stable blocking of the communication flow path. In particular, since the contact surface is inclined with respect to the flow path length direction of the communication flow path, which is the direction in which the hydraulic pressure acts on the valve portion, the displacement amount of the valve portion in the flow path length direction of the communication flow path is large. As a result, the force for pressing the valve portion against the contact surface increases, the amount of compression deformation of the valve portion increases, and the spring of the valve portion becomes stiff. Therefore, even when the amplitude of the input vibration is large and the displacement amount of the valve portion is large, the valve portion is stably held in the contact state with the contact surface, and unintended communication of the communication flow path is avoided.

第二の態様は、第一の態様に記載された流体封入式防振装置において、前記当接面への当接部分を含む前記弁部の突出先端面が湾曲凸面とされていると共に、該当接面が湾曲凹面とされているものである。 The second aspect is the fluid-filled vibration isolator described in the first aspect, wherein the protruding tip surface of the valve portion including the contact portion with the contact surface is a curved convex surface. The contact surface is a curved concave surface.

本態様に従う構造とされた流体封入式防振装置によれば、仕切部材の当接面が湾曲凹面とされていることによって、液圧の作用による弁部の変位量が大きくなるに従って、液圧の作用方向(連通流路の流路長方向)に対する当接面の傾斜角度が大きくなる。それ故、弁部の変位量が大きくなるに従って、弁部を当接面に押し付ける力が大きくなって、弁部と当接面の当接状態が解除され難くなる。 According to the fluid-filled vibration isolator having a structure according to this embodiment, the contact surface of the partition member is a curved concave surface, so that the hydraulic pressure increases as the displacement amount of the valve portion due to the action of the hydraulic pressure increases. The inclination angle of the contact surface with respect to the action direction (the flow path length direction of the communication flow path) becomes large. Therefore, as the displacement amount of the valve portion increases, the force for pressing the valve portion against the contact surface increases, and it becomes difficult to release the contact state between the valve portion and the contact surface.

当接面への当接部分を含む弁部の突出先端面が湾曲凸面とされていることにより、弁部において意図しないスティックスリップ等の変形が生じ難く、弁部の変形態様が安定することで、弁部の安定した作動が実現される。 Since the protruding tip surface of the valve portion including the contact portion with the contact surface is a curved convex surface, unintended deformation such as stick slip is unlikely to occur in the valve portion, and the deformation mode of the valve portion is stabilized. , Stable operation of the valve part is realized.

第三の態様は、第二の態様に記載された流体封入式防振装置において、前記弁部の前記突出先端面における前記仕切部材の前記当接面に当接する部分の曲率が、該当接面の曲率よりも大きくされているものである。 In the third aspect, in the fluid-filled vibration isolator described in the second aspect, the curvature of the portion of the valve portion that abuts on the abutting surface of the partition member on the protruding tip surface is the contact surface. It is made larger than the curvature of.

本態様に従う構造とされた流体封入式防振装置によれば、例えば、液圧の作用によって弁部が当接面に沿って摺動することで、弁部が支持部側へ圧縮されることから、弁部の当接面に対する当接状態が維持され易くなる。また、当接面の曲率が小さくされることによって、弁部と当接面の当接に際して当接面と直交する方向に作用する分力が小さくなって、当接時の打音が防止される。 According to the fluid-filled vibration isolator having a structure according to this aspect, for example, the valve portion slides along the contact surface due to the action of hydraulic pressure, so that the valve portion is compressed toward the support portion side. Therefore, the contact state of the valve portion with respect to the contact surface can be easily maintained. Further, by reducing the curvature of the contact surface, the component force acting in the direction orthogonal to the contact surface at the time of contact between the valve portion and the contact surface is reduced, and the tapping sound at the time of contact is prevented. Orthogonal.

第四の態様は、第一〜第三の何れか1つの態様に記載された流体封入式防振装置において、前記弁部と前記連通流路の壁内面が相互に離れており、それら弁部と連通流路の壁内面との間に連通領域が設けられているものである。 A fourth aspect is the fluid-filled anti-vibration device according to any one of the first to third aspects, wherein the valve portion and the inner surface of the wall of the communication flow path are separated from each other. A communication region is provided between the communication flow path and the inner surface of the wall of the communication flow path.

本態様に従う構造とされた流体封入式防振装置によれば、例えば小振幅振動の入力時に、主液室と副液室の間で連通領域を通じた流体流動が生じることによって、流体封入式防振装置の低動ばね化による防振効果が発揮される。しかも、初期状態において弁部が連通流路の壁内面から離れていることにより、液圧の作用に対する弁部の応答性の向上が図られ得る。 According to the fluid-filled vibration isolator having a structure according to this embodiment, for example, when a small-amplitude vibration is input, a fluid flow is generated between the main liquid chamber and the sub-liquid chamber through the communication region, so that the fluid-filled vibration isolator is prevented. The vibration isolation effect is exhibited by lowering the dynamic spring of the vibration device. Moreover, since the valve portion is separated from the inner surface of the wall of the communication flow path in the initial state, the responsiveness of the valve portion to the action of hydraulic pressure can be improved.

第五の態様は、第一〜第四の何れか1つの態様に記載された流体封入式防振装置において、前記支持部とつながる前記弁部の基端部分が、該弁部の先端部分及び該支持部よりも前記連通流路の流路長方向において薄肉とされた変形許容部とされているものである。 In the fifth aspect, in the fluid-filled vibration isolator according to any one of the first to fourth aspects, the base end portion of the valve portion connected to the support portion is the tip portion of the valve portion and the tip portion of the valve portion. It is a deformation-allowable portion that is thinner than the support portion in the flow path length direction of the communication flow path.

本態様に従う構造とされた流体封入式防振装置によれば、弁部の基端部分が薄肉の変形許容部とされていることにより、液圧の作用による弁部の先端部分の変位が変形許容部の弾性変形によって許容される。しかも、弁部の先端部分が当接面に当接して支持部側へ移動し、変形許容部が弁部の先端部分と支持部との間で圧縮されて、変形許容部が変形し難くなることにより、弁部の先端部分の過剰な変位による当接面からの離隔が防止されて、弁部による連通流路の遮断状態が安定して維持される。 According to the fluid-filled vibration isolator having a structure according to this aspect, the displacement of the tip portion of the valve portion due to the action of hydraulic pressure is deformed because the base end portion of the valve portion is a thin-walled deformation allowable portion. Allowed by elastic deformation of the permissible part. Moreover, the tip portion of the valve portion abuts on the contact surface and moves toward the support portion side, and the deformation allowable portion is compressed between the tip portion and the support portion of the valve portion, so that the deformation allowable portion is less likely to be deformed. As a result, separation from the contact surface due to excessive displacement of the tip portion of the valve portion is prevented, and the cutoff state of the communication flow path by the valve portion is stably maintained.

第六の態様は、第一〜第五の何れか1つの態様に記載された流体封入式防振装置において、前記弾性可動体が環状とされており、前記支持部と前記弁部が何れも全周に亘って連続的に設けられているものである。 A sixth aspect is the fluid-filled anti-vibration device according to any one of the first to fifth aspects, wherein the elastic movable body is annular, and both the support portion and the valve portion are in an annular shape. It is continuously provided over the entire circumference.

本態様に従う構造とされた流体封入式防振装置によれば、支持部が全周に亘って連続的に設けられていることによって、弾性可動体の仕切部材による安定した支持が実現される。また、弁部が全周に亘って連続的に設けられていることにより、例えば弁部の作動特性を調節し易くなる。 According to the fluid-filled vibration isolator having a structure according to this aspect, stable support by the partition member of the elastic movable body is realized by continuously providing the support portion over the entire circumference. Further, since the valve portion is continuously provided over the entire circumference, for example, it becomes easy to adjust the operating characteristics of the valve portion.

第七の態様は、第一〜第六の何れか1つの態様に記載された流体封入式防振装置において、前記弾性可動体が周方向に延びており、前記弁部が前記支持部から前記仕切部材の外周側に向かって突出して設けられているものである。 A seventh aspect is the fluid-filled anti-vibration device according to any one of the first to sixth aspects, wherein the elastic movable body extends in the circumferential direction, and the valve portion extends from the support portion. It is provided so as to project toward the outer peripheral side of the partition member.

本態様に従う構造とされた流体封入式防振装置によれば、弁部が配される連通流路をより外周側に設けることができて、連通流路を通じて流動する流体の共振周波数、換言すれば連通流路のチューニング周波数を、より大きな自由度で設定可能となる。 According to the fluid-filled vibration isolator having a structure according to this embodiment, the communication flow path in which the valve portion is arranged can be provided on the outer peripheral side, and the resonance frequency of the fluid flowing through the communication flow path, in other words, For example, the tuning frequency of the communication flow path can be set with a greater degree of freedom.

本発明によれば、流体封入式防振装置において、特性の切替が高い信頼性で実現され、且つ特性切替時の異音が防止される。 According to the present invention, in a fluid-filled vibration isolator, characteristic switching is realized with high reliability, and abnormal noise during characteristic switching is prevented.

本発明の第一の実施形態としてのエンジンマウントを示す縦断面図Longitudinal section showing an engine mount as the first embodiment of the present invention. 図1に示すエンジンマウントを構成する弾性可動体付きの仕切部材の斜視図A perspective view of a partition member with an elastic movable body constituting the engine mount shown in FIG. 図2に示す弾性可動体付きの仕切部材の縦断面図Longitudinal sectional view of the partition member with the elastic movable body shown in FIG. 図2に示す弾性可動体付きの仕切部材の斜視図A perspective view of a partition member with an elastic movable body shown in FIG. 図2に示すエンジンマウントを構成する弾性可動体の縦断面図Longitudinal cross-sectional view of the elastic movable body constituting the engine mount shown in FIG. 図1に示すエンジンマウントの要部を拡大して示す縦断面図であって、振動が入力されていない初期状態を示す図It is a vertical cross-sectional view which shows the main part of the engine mount shown in FIG. 1 in an enlarged manner, and shows the initial state in which vibration is not input. 図1に示すエンジンマウントの要部を拡大して示す縦断面図であって、振動入力によって変形した弁部が第二の当接面に当接した状態を示す図It is a vertical cross-sectional view which shows the main part of the engine mount shown in FIG. 図1に示すエンジンマウントの要部を拡大して示す縦断面図であって、第二の当接面に当接した弁部が支持部側へ圧縮された状態を示す図FIG. 5 is an enlarged vertical cross-sectional view showing a main part of the engine mount shown in FIG. 1, showing a state in which a valve portion abutting on a second contact surface is compressed toward a support portion side. 本発明の第二の実施形態としてのエンジンマウントの要部を示す縦断面図A vertical sectional view showing a main part of an engine mount as a second embodiment of the present invention. 本発明の第三の実施形態としてのエンジンマウントの要部を示す縦断面図A vertical sectional view showing a main part of an engine mount as a third embodiment of the present invention.

以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本発明に従う構造とされた流体封入式防振装置の第一の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、第一の取付部材12と第二の取付部材14が本体ゴム弾性体16によって弾性連結された構造を有している。以下の説明において、上下方向とは、原則として、マウント中心軸が延びる方向である図1中の上下方向を言う。 FIG. 1 shows an engine mount 10 for an automobile as a first embodiment of a fluid-filled vibration isolator having a structure according to the present invention. The engine mount 10 has a structure in which the first mounting member 12 and the second mounting member 14 are elastically connected by a main body rubber elastic body 16. In the following description, the vertical direction means, in principle, the vertical direction in FIG. 1, which is the direction in which the central axis of the mount extends.

第一の取付部材12は、金属などで形成された部材とされている。第一の取付部材12は、全体として略円柱形状とされていると共に、上端部には外周へ向けて突出するフランジ状部18が設けられている。第一の取付部材12は、中心軸上を軸方向に直線的に延びて、上面に開口するねじ穴20を備えている。 The first mounting member 12 is a member made of metal or the like. The first mounting member 12 has a substantially cylindrical shape as a whole, and a flange-shaped portion 18 projecting toward the outer periphery is provided at the upper end portion. The first mounting member 12 includes a screw hole 20 that extends linearly in the axial direction on the central axis and opens on the upper surface.

第二の取付部材14は、第一の取付部材12と同様に金属などで形成された部材であって、薄肉大径の略円筒形状を有している。第二の取付部材14の軸方向の中間部分に段差が設けられており、第二の取付部材14は段差よりも上側が下側よりも大径とされた段付き円筒形状とされている。 The second mounting member 14 is a member made of metal or the like like the first mounting member 12, and has a thin-walled large-diameter substantially cylindrical shape. A step is provided at an intermediate portion in the axial direction of the second mounting member 14, and the second mounting member 14 has a stepped cylindrical shape in which the upper side of the step has a larger diameter than the lower side.

第一の取付部材12と第二の取付部材14は、略同一中心軸上で軸方向にずれた位置に配されて、本体ゴム弾性体16によって相互に弾性連結されている。本体ゴム弾性体16は、全体として略円錐台形状を有しており、小径側の端部に第一の取付部材12が固着されていると共に、大径側の端部の外周面に第二の取付部材14の上部が固着されている。本体ゴム弾性体16は、例えば、第一の取付部材12と第二の取付部材14を備える一体加硫成形品として形成される。 The first mounting member 12 and the second mounting member 14 are arranged at positions displaced in the axial direction on substantially the same central axis, and are elastically connected to each other by the main body rubber elastic body 16. The main body rubber elastic body 16 has a substantially truncated cone shape as a whole, the first mounting member 12 is fixed to the end portion on the small diameter side, and the second attachment member 12 is fixed to the outer peripheral surface of the end portion on the large diameter side. The upper part of the mounting member 14 of the above is fixed. The main body rubber elastic body 16 is formed as, for example, an integrally vulcanized molded product including a first mounting member 12 and a second mounting member 14.

本体ゴム弾性体16は、大径側の軸方向端面に開口する凹所22を備えている。凹所22は、上底壁部が上下逆向きのすり鉢形状とされており、上方に向かって次第に小径となっている。また、本体ゴム弾性体16は、凹所22の外周側から下向きに延びるシールゴム層24を備えている。シールゴム層24は、本体ゴム弾性体16に一体形成されており、第二の取付部材14の下部の内周面に固着されている。なお、シールゴム層24は、本体ゴム弾性体16における凹所22の開口部分の周壁よりも薄肉とされている。これにより、凹所22の開口がシールゴム層24の内周面よりも内周側に位置しており、シールゴム層24の基端において本体ゴム弾性体16に段差が形成されている。 The main body rubber elastic body 16 includes a recess 22 that opens on the axial end surface on the large diameter side. The recess 22 has a mortar shape in which the upper bottom wall portion is turned upside down, and the diameter gradually decreases upward. Further, the main body rubber elastic body 16 includes a seal rubber layer 24 extending downward from the outer peripheral side of the recess 22. The seal rubber layer 24 is integrally formed with the main body rubber elastic body 16 and is fixed to the inner peripheral surface of the lower portion of the second mounting member 14. The seal rubber layer 24 is thinner than the peripheral wall of the opening portion of the recess 22 in the main body rubber elastic body 16. As a result, the opening of the recess 22 is located on the inner peripheral side of the inner peripheral surface of the seal rubber layer 24, and a step is formed in the main body rubber elastic body 16 at the base end of the seal rubber layer 24.

第二の取付部材14の下部には、可撓性膜26が取り付けられている。可撓性膜26は、薄肉のゴム膜であって、外周端部に環状の固定部材28が固着されている。そして、例えば固定部材28が第二の取付部材14の内周へ挿入された状態で、第二の取付部材14に縮径加工が施されることにより、固定部材28が第二の取付部材14に取り付けられる。第二の取付部材14と固定部材28の間には、シールゴム層24が介在しており、固定部材28の外周面がシールゴム層24を介して第二の取付部材14の内周面に押し付けられることで、第二の取付部材14と固定部材28の間が流体密に封止されている。 A flexible film 26 is attached to the lower portion of the second attachment member 14. The flexible film 26 is a thin rubber film, and an annular fixing member 28 is fixed to the outer peripheral end portion. Then, for example, in a state where the fixing member 28 is inserted into the inner circumference of the second mounting member 14, the second mounting member 14 is subjected to diameter reduction processing, so that the fixing member 28 becomes the second mounting member 14. Attached to. A seal rubber layer 24 is interposed between the second mounting member 14 and the fixing member 28, and the outer peripheral surface of the fixing member 28 is pressed against the inner peripheral surface of the second mounting member 14 via the seal rubber layer 24. As a result, the space between the second mounting member 14 and the fixing member 28 is fluid-tightly sealed.

可撓性膜26が第二の取付部材14に取り付けられることによって、本体ゴム弾性体16と可撓性膜26の間には、外部から流体密に隔てられた流体室30が画成される。流体室30には、水、エチレングリコール、シリコーン油などの非圧縮性流体が封入されている。流体室30に封入される流体は、例示のものに限定されないが、例えば0.1Pa・s以下の低粘性流体であることが望ましい。 By attaching the flexible film 26 to the second attachment member 14, a fluid chamber 30 is defined between the main body rubber elastic body 16 and the flexible film 26 so as to be fluid-tightly separated from the outside. .. The fluid chamber 30 is filled with an incompressible fluid such as water, ethylene glycol, or silicone oil. The fluid enclosed in the fluid chamber 30 is not limited to the examples, but is preferably a low-viscosity fluid of, for example, 0.1 Pa · s or less.

流体室30には、仕切部材32が配されている。仕切部材32は、図2,3に示すように、全体として略円板形状とされており、第一の仕切板34と第二の仕切板36を有している。 A partition member 32 is arranged in the fluid chamber 30. As shown in FIGS. 2 and 3, the partition member 32 has a substantially disk shape as a whole, and has a first partition plate 34 and a second partition plate 36.

第一の仕切板34は、金属や合成樹脂などで形成された硬質の部材であって、図3,4に示すように、全体として略円環板形状とされている。第一の仕切板34は、外周部分が周方向の一部において切り欠かれており、この切欠きによって後述する第一のオリフィス通路76の端部を構成する第一の連通口38が形成されている。第一の仕切板34の外周部分は、第一の連通口38の周方向一方側が他方側よりも厚肉とされており、周方向の中間に設けられたスロープ状の部分において厚さ寸法が周方向で滑らかに変化している。 The first partition plate 34 is a hard member made of metal, synthetic resin, or the like, and as shown in FIGS. 3 and 4, has a substantially annular plate shape as a whole. The outer peripheral portion of the first partition plate 34 is cut out in a part in the circumferential direction, and the cutout forms a first communication port 38 forming an end portion of the first orifice passage 76 described later. ing. The outer peripheral portion of the first partition plate 34 is thicker on one side in the circumferential direction of the first communication port 38 than on the other side, and the thickness dimension is large in the slope-shaped portion provided in the middle of the circumferential direction. It changes smoothly in the circumferential direction.

第一の仕切板34の径方向の中間部分には、図3に示すように、下面に開口しながら周方向に連続して延びる第一の凹溝40が形成されている。第一の凹溝40は、内周側の壁内面が略軸方向に広がっていると共に、外周側の壁内面が軸方向に対して傾斜して広がる第一の当接面42とされている。第一の当接面42は、第一の凹溝40の開口側に向かって外周へ傾斜している。第一の当接面42は、平面でも良いが、本実施形態では湾曲面とされており、軸方向に対する傾斜角度が第一の凹溝40の開口側に向かって小さくなっている。 As shown in FIG. 3, a first concave groove 40 extending continuously in the circumferential direction while opening on the lower surface is formed in the intermediate portion in the radial direction of the first partition plate 34. The first concave groove 40 is a first contact surface 42 in which the inner surface of the wall on the inner peripheral side extends in the substantially axial direction and the inner surface of the wall on the outer peripheral side extends in an inclined direction with respect to the axial direction. .. The first contact surface 42 is inclined toward the outer periphery toward the opening side of the first concave groove 40. The first contact surface 42 may be a flat surface, but in the present embodiment, it is a curved surface, and the inclination angle with respect to the axial direction becomes smaller toward the opening side of the first concave groove 40.

第一の凹溝40の上底壁部には、複数の第一の透孔44が形成されている。第一の透孔44は、本実施形態では周方向に延びるスリット状の長穴とされており、周方向で3つが略均等に配置されている。 A plurality of first through holes 44 are formed in the upper bottom wall portion of the first concave groove 40. In the present embodiment, the first through hole 44 is a slit-shaped elongated hole extending in the circumferential direction, and three of the first through holes 44 are arranged substantially evenly in the circumferential direction.

第二の仕切板36は、第一の仕切板34と同様に硬質の部材であって、全体として略円板形状とされている。第二の仕切板36の外周部分は、螺旋状に延びており、周方向一方の端部には下方へ開口する切欠きによって後述する第一のオリフィス通路76の端部を構成する第二の連通口46が形成されている。 The second partition plate 36 is a hard member like the first partition plate 34, and has a substantially disk shape as a whole. The outer peripheral portion of the second partition plate 36 extends in a spiral shape, and a notch that opens downward at one end in the circumferential direction constitutes the end of the first orifice passage 76, which will be described later. A communication port 46 is formed.

第二の仕切板36の内周部分には、上面に開口しながら周方向に連続して延びる第二の凹溝48が形成されている。第二の凹溝48は、内周側の壁内面が略軸方向に広がっていると共に、外周側の壁内面が軸方向に対して傾斜して広がる第二の当接面50とされている。第二の当接面50は、第二の凹溝48の開口側に向かって外周へ傾斜している。第二の当接面50は、平面でも良いが、本実施形態では湾曲面とされており、軸方向に対する傾斜角度が第二の凹溝48の開口側に向かって小さくなっている。 A second concave groove 48 that extends continuously in the circumferential direction while opening on the upper surface is formed in the inner peripheral portion of the second partition plate 36. The second concave groove 48 is a second contact surface 50 in which the inner surface of the wall on the inner peripheral side extends in the substantially axial direction and the inner surface of the wall on the outer peripheral side extends in an inclined direction with respect to the axial direction. .. The second contact surface 50 is inclined toward the outer periphery toward the opening side of the second concave groove 48. The second contact surface 50 may be a flat surface, but in the present embodiment, it is a curved surface, and the inclination angle with respect to the axial direction becomes smaller toward the opening side of the second concave groove 48.

第二の凹溝48の底壁部には、複数の第二の透孔52が形成されている。第二の透孔52は、本実施形態では、第一の透孔44に対応するスリット状とされており、仕切部材32において第一の透孔44と軸方向で対応する位置に3つが設けられている。 A plurality of second through holes 52 are formed in the bottom wall portion of the second concave groove 48. In the present embodiment, the second through hole 52 has a slit shape corresponding to the first through hole 44, and the partition member 32 is provided with three at positions corresponding to the first through hole 44 in the axial direction. Has been done.

第一の仕切板34と第二の仕切板36が、略同一中心軸上で相互に重ね合わされて、複数のねじ54で固定されることにより、図2,3に示す仕切部材32が構成される。仕切部材32の外周部分には、外周面に開口しながら周方向へ螺旋状に延びる周溝56が形成されている。 The partition member 32 shown in FIGS. 2 and 3 is formed by superimposing the first partition plate 34 and the second partition plate 36 on each other on substantially the same central axis and fixing them with a plurality of screws 54. To. A peripheral groove 56 is formed on the outer peripheral portion of the partition member 32 so as to spirally extend in the circumferential direction while opening on the outer peripheral surface.

仕切部材32における第一の仕切板34と第二の仕切板36の間には、周方向に延びる環状の収容領域58が形成されている。収容領域58は、第一の凹溝40と第二の凹溝48の軸方向の各開口部分が軸方向で相互に突き合わされることによって構成されている。収容領域58の外周側の壁内面は、第一の当接面42と第二の当接面50とによって構成されており、軸方向の外側に向かって内周へ傾斜する湾曲凹面とされている。なお、第一の仕切板34と第二の仕切板36は、収容領域58の外周側で相互に当接していると共に、収容領域58の内周側では軸方向で相互に離隔している。 An annular accommodating area 58 extending in the circumferential direction is formed between the first partition plate 34 and the second partition plate 36 in the partition member 32. The accommodating area 58 is formed by abutting each other in the axial direction of each opening portion in the axial direction of the first concave groove 40 and the second concave groove 48. The inner surface of the wall on the outer peripheral side of the accommodating area 58 is composed of a first contact surface 42 and a second contact surface 50, and is a curved concave surface that inclines inward toward the outside in the axial direction. There is. The first partition plate 34 and the second partition plate 36 are in contact with each other on the outer peripheral side of the accommodating area 58, and are separated from each other in the axial direction on the inner peripheral side of the accommodating area 58.

仕切部材32には、弾性可動体60が取り付けられている。弾性可動体60は、ゴムなどで形成されており、図4,5に示すように、周方向に連続する環状とされている。弾性可動体60は、略一定の断面形状で周方向に延びており、本実施形態では全体として略瓢箪形の断面形状を有している。 An elastic movable body 60 is attached to the partition member 32. The elastic movable body 60 is made of rubber or the like, and as shown in FIGS. 4 and 5, it has an annular shape continuous in the circumferential direction. The elastic movable body 60 has a substantially constant cross-sectional shape and extends in the circumferential direction, and in the present embodiment, the elastic movable body 60 has a substantially gourd-shaped cross-sectional shape as a whole.

より詳細には、弾性可動体60は、内周部分を構成する環状の支持部62と、外周部分を構成する環状の弁部64とを、備えている。支持部62は、略円形断面を有している。支持部62は、上下両側に突出して全周に亘って連続する環状のシールリップ65を備えている。 More specifically, the elastic movable body 60 includes an annular support portion 62 forming an inner peripheral portion and an annular valve portion 64 forming an outer peripheral portion. The support portion 62 has a substantially circular cross section. The support portion 62 includes an annular seal lip 65 that projects on both the upper and lower sides and is continuous over the entire circumference.

弁部64は、支持部62から軸直角方向で外周へ突出しており、先端部分(外周部分)が略円形断面の変位当接部66とされていると共に、基端部分(内周部分)が変位当接部66よりも軸方向で薄肉とされた変形許容部68とされている。 The valve portion 64 projects from the support portion 62 to the outer periphery in the direction perpendicular to the axis, and the tip portion (outer peripheral portion) is a displacement contact portion 66 having a substantially circular cross section, and the base end portion (inner peripheral portion) is formed. The deformation allowable portion 68 is thinner in the axial direction than the displacement contact portion 66.

変位当接部66は、図5に示す縦断面において略円形断面とされていることにより、第一,第二の当接面42,50への後述する当接部分を含む突出先端面69が、湾曲凸面とされている。また、少なくとも変位当接部66と収容領域58の外周側の壁内面(当接面42,50)の後述する当接部分において、湾曲凸面とされた変位当接部66の突出先端面69の曲率は、湾曲凹面とされた収容領域58の外周側の壁内面の曲率よりも大きくされている。なお、突出先端面69は、変位当接部66の外周側の面であって、例えば、略円形断面を有する変位当接部66における外周側半周の表面を言う。 Since the displacement contact portion 66 has a substantially circular cross section in the vertical cross section shown in FIG. 5, the protruding tip surface 69 including the contact portion described later with the first and second contact surfaces 42 and 50 is formed. , It is said to be a curved convex surface. Further, at least in the contact portion described later of the displacement contact portion 66 and the inner wall surface (contact surfaces 42, 50) on the outer peripheral side of the accommodation region 58, the protruding tip surface 69 of the displacement contact portion 66 having a curved convex surface. The curvature is made larger than the curvature of the inner surface of the wall on the outer peripheral side of the accommodating area 58 which is a curved concave surface. The protruding tip surface 69 is a surface on the outer peripheral side of the displacement contact portion 66, and is, for example, a surface on the outer peripheral side half circumference of the displacement contact portion 66 having a substantially circular cross section.

変形許容部68は、変位当接部66及び支持部62と一体形成されており、変位当接部66と支持部62が変形許容部68を介して相互につながっている。そして、変位当接部66の支持部62に対する相対変位が、変形許容部68の弾性変形によって許容されている。変形許容部68の厚さ方向両側の表面は、支持部62の表面及び変位当接部66の表面と滑らかに連続してつながっている。これにより、支持部62との接続部分の表面を含む弁部64の表面全体が、滑らかに連続する面で構成されており、弁部64の表面において応力集中が生じ難くなっている。 The deformation allowable portion 68 is integrally formed with the displacement contact portion 66 and the support portion 62, and the displacement contact portion 66 and the support portion 62 are connected to each other via the deformation allowable portion 68. Then, the relative displacement of the displacement contact portion 66 with respect to the support portion 62 is allowed by the elastic deformation of the deformation allowable portion 68. The surfaces of the deformation allowable portion 68 on both sides in the thickness direction are smoothly and continuously connected to the surface of the support portion 62 and the surface of the displacement contact portion 66. As a result, the entire surface of the valve portion 64 including the surface of the connecting portion with the support portion 62 is composed of smoothly continuous surfaces, and stress concentration is less likely to occur on the surface of the valve portion 64.

弾性可動体60は、支持部62が第一の仕切板34と第二の仕切板36との間で挟持されることにより、仕切部材32に取り付けられる。弾性可動体60が仕切部材32に取り付けられた状態において、弾性可動体60の弁部64は、仕切部材32の収容領域58内に配されている。弁部64は、収容領域58において変形及び変位を許容されている。特に本実施形態では、変位当接部66が収容領域58の外周側の壁内面(当接面42,50)に対して内周へ離れており、変位当接部66と収容領域58の外周側の壁内面との間に連通領域70が形成されている。これにより、弁部64の全体が仕切部材32によって拘束されない自由な状態で配されている。 The elastic movable body 60 is attached to the partition member 32 by sandwiching the support portion 62 between the first partition plate 34 and the second partition plate 36. In a state where the elastic movable body 60 is attached to the partition member 32, the valve portion 64 of the elastic movable body 60 is arranged in the accommodating area 58 of the partition member 32. The valve portion 64 is allowed to be deformed and displaced in the accommodating area 58. In particular, in the present embodiment, the displacement contact portion 66 is separated from the inner wall surface (contact surfaces 42, 50) on the outer peripheral side of the accommodation region 58 to the inner circumference, and the displacement contact portion 66 and the outer circumference of the accommodation region 58 are separated. A communication region 70 is formed between the inner surface of the wall on the side. As a result, the entire valve portion 64 is arranged in a free state without being restrained by the partition member 32.

弾性可動体60が、仕切部材32によって挟持される支持部62と、収容領域58に配される変位当接部66との間に、薄肉の変形許容部68を有している。これにより、支持部62が仕切部材32によって軸方向に圧縮されて変形しても、支持部62の変形が変形許容部68の変形によって変位当接部66までは伝達され難い。それ故、支持部62が挟持されることによる変位当接部66の形状変化が生じ難く、変位当接部66が初期形状に維持される。その結果、後述する変位当接部66と第一,第二の当接面42,50との当接に際して当接態様が安定して、弁部64による第二のオリフィス通路78の切替えが高精度に実現される。 The elastic movable body 60 has a thin-walled deformation allowable portion 68 between the support portion 62 sandwiched by the partition member 32 and the displacement contact portion 66 arranged in the accommodation region 58. As a result, even if the support portion 62 is compressed and deformed in the axial direction by the partition member 32, it is difficult for the deformation of the support portion 62 to be transmitted to the displacement contact portion 66 due to the deformation of the deformation allowable portion 68. Therefore, the shape of the displacement contact portion 66 is unlikely to change due to the support portion 62 being sandwiched, and the displacement contact portion 66 is maintained in the initial shape. As a result, the contact mode is stable when the displacement contact portion 66 described later and the first and second contact surfaces 42 and 50 are brought into contact with each other, and the switching of the second orifice passage 78 by the valve portion 64 is high. Realized with precision.

弾性可動体60を取り付けられた仕切部材32は、図1に示すように、流体室30に配されている。即ち、仕切部材32は、流体室30において軸直角方向で広がっており、仕切部材32の外周面がシールゴム層24を介して第二の取付部材14の内周面に押し付けられる。なお、仕切部材32は、例えば、シールゴム層24で覆われた第二の取付部材14の内周に挿入された状態で、第二の取付部材14に縮径加工が施されることによって、第二の取付部材14に取り付けられる。 The partition member 32 to which the elastic movable body 60 is attached is arranged in the fluid chamber 30 as shown in FIG. That is, the partition member 32 extends in the direction perpendicular to the axis in the fluid chamber 30, and the outer peripheral surface of the partition member 32 is pressed against the inner peripheral surface of the second mounting member 14 via the seal rubber layer 24. The partition member 32 is, for example, inserted into the inner circumference of the second mounting member 14 covered with the seal rubber layer 24, and the second mounting member 14 is subjected to diameter reduction processing. It is attached to the second attachment member 14.

第二の取付部材14と仕切部材32の間にシールゴム層24が介在することによって、仕切部材32が第二の取付部材14に流体密に組み付けられており、流体室30が仕切部材32を挟んだ上下両側に二分されている。即ち、仕切部材32の上側には、壁部の一部が本体ゴム弾性体16によって構成されて、振動入力時に内圧変動が惹起される主液室としての受圧室72が設けられる。仕切部材32の下側には、壁部の一部が可撓性膜26によって構成されて、容積変化が許容される副液室としての平衡室74が設けられる。受圧室72と平衡室74は、何れも流体室30の一部であることから、それぞれ非圧縮性流体が封入されている。 By interposing the seal rubber layer 24 between the second mounting member 14 and the partition member 32, the partition member 32 is fluidly assembled to the second mounting member 14, and the fluid chamber 30 sandwiches the partition member 32. However, it is divided into upper and lower sides. That is, on the upper side of the partition member 32, a pressure receiving chamber 72 as a main liquid chamber in which a part of the wall portion is composed of the main body rubber elastic body 16 and an internal pressure fluctuation is caused at the time of vibration input is provided. On the lower side of the partition member 32, an equilibrium chamber 74 is provided as a secondary liquid chamber in which a part of the wall portion is formed of a flexible film 26 and a volume change is allowed. Since both the pressure receiving chamber 72 and the equilibrium chamber 74 are a part of the fluid chamber 30, incompressible fluid is sealed therein.

仕切部材32の外周面がシールゴム層24で覆われた第二の取付部材14によって流体密に覆われることにより、仕切部材32の周溝56の外周側の開口部が流体密に閉塞されている。また、周溝56の両端部は、第一の連通口38によって受圧室72に連通されていると共に、第二の連通口46によって平衡室74に連通されている。これにより、受圧室72と平衡室74を相互に連通する第一のオリフィス通路76が、周溝56と第一,第二の連通口38,46とを利用して設けられている。第一のオリフィス通路76は、通路断面積の通路長さに対する比によって、流動流体の共振周波数であるチューニング周波数が調節されている。第一のオリフィス通路76の具体的なチューニング周波数は、特に限定されるものではないが、例えば、エンジンシェイクに相当する数Hz程度の低周波に設定される。 The outer peripheral surface of the partition member 32 is fluid-tightly covered by the second mounting member 14 covered with the seal rubber layer 24, so that the opening on the outer peripheral side of the peripheral groove 56 of the partition member 32 is fluid-tightly closed. .. Further, both ends of the peripheral groove 56 are communicated with the pressure receiving chamber 72 by the first communication port 38 and with the equilibrium chamber 74 by the second communication port 46. As a result, the first orifice passage 76 that communicates the pressure receiving chamber 72 and the equilibrium chamber 74 with each other is provided by utilizing the peripheral groove 56 and the first and second communication ports 38 and 46. In the first orifice passage 76, the tuning frequency, which is the resonance frequency of the flowing fluid, is adjusted by the ratio of the passage cross-sectional area to the passage length. The specific tuning frequency of the first orifice passage 76 is not particularly limited, but is set to, for example, a low frequency of about several Hz corresponding to an engine shake.

仕切部材32の第一の透孔44が受圧室72に開口していると共に、第二の透孔52が平衡室74に開口しており、収容領域58が第一,第二の透孔44,52を通じて受圧室72と平衡室74に連通されている。これにより、第一,第二の透孔44,52と収容領域58によって、受圧室72と平衡室74を相互に連通する連通流路としての第二のオリフィス通路78が形成されている。第二のオリフィス通路78は、第一のオリフィス通路76と同様に、通路断面積の通路長さに対する比によって、チューニング周波数が設定されている。第二のオリフィス通路78の具体的なチューニング周波数は、第一のオリフィス通路76と同様に特に限定されないが、例えば、アイドリング振動に相当する十数Hz程度、或いは走行こもり音に相当する数十Hz程度の中乃至高周波に設定される。なお、第二のオリフィス通路78のチューニング周波数は、第一のオリフィス通路76よりも高周波に設定されている。それ故、第一のオリフィス通路76が***振によって実質的に遮断された状態において、第二のオリフィス通路78を通じた流体流動が生じ得る。 The first through hole 44 of the partition member 32 is open to the pressure receiving chamber 72, the second through hole 52 is open to the equilibrium chamber 74, and the accommodating area 58 is the first and second through holes 44. , 52 communicates with the pressure receiving chamber 72 and the equilibrium chamber 74. As a result, the first and second through holes 44 and 52 and the accommodating area 58 form a second orifice passage 78 as a communication flow path that communicates the pressure receiving chamber 72 and the equilibrium chamber 74 with each other. Similar to the first orifice passage 76, the tuning frequency of the second orifice passage 78 is set by the ratio of the passage cross-sectional area to the passage length. The specific tuning frequency of the second orifice passage 78 is not particularly limited as in the first orifice passage 76, but is, for example, about a dozen Hz corresponding to idling vibration or several tens Hz corresponding to a running muffled sound. It is set to medium to high frequency. The tuning frequency of the second orifice passage 78 is set to be higher than that of the first orifice passage 76. Therefore, fluid flow through the second orifice passage 78 can occur while the first orifice passage 76 is substantially blocked by antiresonance.

第二のオリフィス通路78の流路上には、図1,6に示すように、弾性可動体60の弁部64が配されている。従って、第二のオリフィス通路78のチューニング周波数は、弁部64による第二のオリフィス通路78の狭窄なども考慮して設定される。弁部64は、仕切部材32によって支持される支持部62に対して外周側に設けられており、弁部64が配される第二のオリフィス通路78が、仕切部材32においてより外周側に設けられている。それ故、第二のオリフィス通路78の通路断面積を大きく確保し易く、第二のオリフィス通路78をより高周波数にチューニングすることが可能とされている。 As shown in FIGS. 1 and 6, a valve portion 64 of the elastic movable body 60 is arranged on the flow path of the second orifice passage 78. Therefore, the tuning frequency of the second orifice passage 78 is set in consideration of the narrowing of the second orifice passage 78 by the valve portion 64 and the like. The valve portion 64 is provided on the outer peripheral side with respect to the support portion 62 supported by the partition member 32, and the second orifice passage 78 in which the valve portion 64 is arranged is provided on the outer peripheral side of the partition member 32. Has been done. Therefore, it is easy to secure a large passage cross-sectional area of the second orifice passage 78, and it is possible to tune the second orifice passage 78 to a higher frequency.

第二のオリフィス通路78の壁内面を構成する第一,第二の当接面42,50は、第二のオリフィス通路78の流路長方向である軸方向に対して傾斜しており、弁部64に対して軸方向の両側に配されている。これにより、弁部64の少なくとも突出先端部は、軸方向の投影において第一,第二の当接面42,50と重なり合う位置に配されている。 The first and second contact surfaces 42 and 50 constituting the inner wall surface of the second orifice passage 78 are inclined with respect to the axial direction which is the flow path length direction of the second orifice passage 78, and the valve. It is arranged on both sides in the axial direction with respect to the portion 64. As a result, at least the protruding tip of the valve portion 64 is arranged at a position where it overlaps with the first and second contact surfaces 42 and 50 in the axial projection.

このような構造とされたエンジンマウント10は、例えば、第一の取付部材12が図示しないインナブラケットを介してパワーユニットに取り付けられると共に、第二の取付部材14が図示しないアウタブラケットを介して車両ボデーに取り付けられる。これにより、パワーユニットが車両ボデーに対してエンジンマウント10を介して防振支持される。 In the engine mount 10 having such a structure, for example, the first mounting member 12 is mounted on the power unit via an inner bracket (not shown), and the second mounting member 14 is mounted on the vehicle body via an outer bracket (not shown). Attached to. As a result, the power unit is vibration-proof supported with respect to the vehicle body via the engine mount 10.

そして、エンジンマウント10の車両への装着状態において、軸方向の振動が第一の取付部材12と第二の取付部材14の間へ入力される。入力振動がエンジンシェイクに相当する低周波大振幅振動の場合には、受圧室72と平衡室74の間において、第一のオリフィス通路76を通じた流体流動が共振状態で積極的に生じる。その結果、流体の流動作用に基づいた防振効果が発揮されて、振動の減衰作用を有効に得ることができる。 Then, when the engine mount 10 is mounted on the vehicle, axial vibration is input between the first mounting member 12 and the second mounting member 14. When the input vibration is a low-frequency large-amplitude vibration corresponding to an engine shake, a fluid flow through the first orifice passage 76 is positively generated in a resonance state between the pressure receiving chamber 72 and the equilibrium chamber 74. As a result, the anti-vibration effect based on the flow action of the fluid is exhibited, and the damping action of the vibration can be effectively obtained.

第二のオリフィス通路78では、大きな入力が、弾性可動体60の弁部64に対して、第二のオリフィス通路78の流路長方向である軸方向で作用することから、弁部64の変位当接部66が軸方向に大きく変位する。これにより、図7に示すように、変位当接部66の突出先端面69が仕切部材32の第一,第二の当接面42,50に押し当てられて、第二のオリフィス通路78が弁部64によって遮断される。その結果、第二のオリフィス通路78を通じた流体流動が阻止されて、受圧室72の内圧変動が効率的に生じることから、第一のオリフィス通路76を通じた流体流動による防振効果が有利に発揮される。 In the second orifice passage 78, since a large input acts on the valve portion 64 of the elastic movable body 60 in the axial direction which is the flow path length direction of the second orifice passage 78, the displacement of the valve portion 64 The contact portion 66 is largely displaced in the axial direction. As a result, as shown in FIG. 7, the protruding tip surface 69 of the displacement contact portion 66 is pressed against the first and second contact surfaces 42 and 50 of the partition member 32, and the second orifice passage 78 is formed. It is shut off by the valve portion 64. As a result, the fluid flow through the second orifice passage 78 is blocked, and the internal pressure fluctuation of the pressure receiving chamber 72 is efficiently generated. Therefore, the vibration isolation effect due to the fluid flow through the first orifice passage 76 is advantageously exhibited. Will be done.

弁部64が、先端部分を構成する変位当接部66と、変位当接部66よりも軸方向で薄肉とされて基端部分を構成する変形許容部68とを備えていることから、変形許容部68の弾性変形によって変位当接部66の変位が生じ易くなっている。それ故、大振幅振動の入力時に、変位当接部66が第一,第二の当接面42,50に十分に押し当てられて、第二のオリフィス通路78が弁部64によって有効に遮断される。 Since the valve portion 64 includes a displacement contact portion 66 forming the tip portion and a deformation allowable portion 68 which is made thinner in the axial direction than the displacement contact portion 66 and forms the base end portion, the valve portion 64 is deformed. The displacement contact portion 66 is likely to be displaced due to the elastic deformation of the allowable portion 68. Therefore, when the large amplitude vibration is input, the displacement contact portion 66 is sufficiently pressed against the first and second contact surfaces 42 and 50, and the second orifice passage 78 is effectively blocked by the valve portion 64. Will be done.

変位当接部66よりも変形し易い変形許容部68が弁部64に設けられていることにより、弁部64の変形に際して変位当接部66の変形が抑えられて、変位当接部66の形状安定性が確保される。それ故、変位当接部66の変形による意図しない第二のオリフィス通路78の連通などが回避されて、弁部64による第二のオリフィス通路78の連通と遮断の切替えが高い信頼性をもって実現される。 Since the valve portion 64 is provided with a deformation allowable portion 68 that is more easily deformed than the displacement contact portion 66, the deformation of the displacement contact portion 66 is suppressed when the valve portion 64 is deformed, and the displacement contact portion 66 Shape stability is ensured. Therefore, unintended communication of the second orifice passage 78 due to deformation of the displacement contact portion 66 is avoided, and switching between communication and cutoff of the second orifice passage 78 by the valve portion 64 is realized with high reliability. To.

第一,第二の当接面42,50が変位当接部66への液圧の作用方向である軸方向に対して傾斜している。それ故、第一,第二の当接面42,50に押し当てられた変位当接部66は、第一,第二の当接面42,50との当接反力の分力によって支持部62側(内周側)へ押し込まれる。これにより、図8に示すように、比較的に薄肉とされた変形許容部68が変位当接部66と支持部62の間で圧縮されて、変形許容部68のばねが非線形的に硬くなる。その結果、変形許容部68の弾性変形による変位当接部66の変位がある程度までに規制されて、弁部64の過剰な変位及び変形による第二のオリフィス通路78の意図しない連通や弁部64の引っ掛かりなどが防止される。 The first and second contact surfaces 42 and 50 are inclined with respect to the axial direction, which is the direction in which the hydraulic pressure acts on the displacement contact portion 66. Therefore, the displacement contact portion 66 pressed against the first and second contact surfaces 42 and 50 is supported by the component force of the contact reaction force with the first and second contact surfaces 42 and 50. It is pushed toward the portion 62 side (inner circumference side). As a result, as shown in FIG. 8, the deformable allowable portion 68 having a relatively thin wall is compressed between the displacement contact portion 66 and the support portion 62, and the spring of the deformable allowable portion 68 becomes non-linearly hard. .. As a result, the displacement of the displacement contact portion 66 due to the elastic deformation of the deformation allowable portion 68 is regulated to some extent, and the valve portion 64 is unintentionally communicated with the second orifice passage 78 due to the excessive displacement and deformation of the valve portion 64 and the valve portion 64. Is prevented from getting caught.

なお、図7,8では、弁部64が平衡室74側へ変形及び変位して、弁部64が第二の当接面50に当接した状態が例示されているが、受圧室72の内圧が平衡室74に対して相対的に低下すると、弁部64が受圧室72側へ変形及び変位して、弁部64が第一の当接面42に当接する。 In FIGS. 7 and 8, a state in which the valve portion 64 is deformed and displaced toward the equilibrium chamber 74 and the valve portion 64 is in contact with the second contact surface 50 is illustrated. When the internal pressure drops relative to the equilibrium chamber 74, the valve portion 64 is deformed and displaced toward the pressure receiving chamber 72, and the valve portion 64 comes into contact with the first contact surface 42.

変位当接部66の突出先端面69が湾曲凸面とされていると共に、第一,第二の当接面42,50で構成された収容領域58の外周側の壁内面が湾曲凹面とされている。それ故、変位当接部66が収容領域58の外周側の壁内面に当接する際に、当接態様や変位当接部66の変形態様の安定化が図られる。更に、変位当接部66が収容領域58の外周側の壁内面に接しながら移動する際に、変形許容部68の過度の圧縮や変位当接部66の引っ掛かりなどが生じ難く、スムーズな移動が実現される。 The protruding tip surface 69 of the displacement contact portion 66 is a curved convex surface, and the inner surface of the wall on the outer peripheral side of the accommodating area 58 composed of the first and second contact surfaces 42 and 50 is a curved concave surface. There is. Therefore, when the displacement contact portion 66 comes into contact with the inner surface of the wall on the outer peripheral side of the accommodation region 58, the contact mode and the deformation mode of the displacement contact portion 66 are stabilized. Further, when the displacement contact portion 66 moves while being in contact with the inner surface of the wall on the outer peripheral side of the accommodation region 58, excessive compression of the deformation allowable portion 68 and catching of the displacement contact portion 66 are unlikely to occur, and smooth movement is possible. It will be realized.

突出先端面69の縦断面における曲率が、第一,第二の当接面42,50で構成された収容領域58の外周側の壁内面の縦断面における曲率よりも大きくされている。それ故、例えば、液圧の作用によって変位当接部66が第一,第二の当接面42,50に対して摺動することで、変位当接部66が当接反力の分力によって内周側へ案内される。その結果、変形許容部68が支持部62側へ圧縮されて、変位当接部66の第一,第二の当接面42,50に対する当接状態が、圧縮された変形許容部68のばねによって維持され易くなる。また、第一,第二の当接面42,50の曲率が比較的に小さくされることにより、弁部64と第一,第二の当接面42,50の当接に際して、第一,第二の当接面42,50に対して直交方向に作用する分力が小さくなって、当接時の打音が防止される。 The curvature of the protruding tip surface 69 in the vertical section is larger than the curvature of the inner surface of the wall on the outer peripheral side of the accommodating area 58 composed of the first and second contact surfaces 42 and 50. Therefore, for example, the displacement contact portion 66 slides with respect to the first and second contact surfaces 42 and 50 due to the action of hydraulic pressure, so that the displacement contact portion 66 is a component of the contact reaction force. Will guide you to the inner circumference side. As a result, the deformation allowable portion 68 is compressed toward the support portion 62, and the contact state of the displacement contact portion 66 with respect to the first and second contact surfaces 42 and 50 is changed to the compressed deformation allowable portion 68 spring. Makes it easier to maintain. Further, since the curvatures of the first and second contact surfaces 42 and 50 are relatively small, the first and second contact surfaces 42 and 50 are brought into contact with each other when the valve portion 64 and the first and second contact surfaces 42 and 50 are brought into contact with each other. The component force acting in the direction orthogonal to the second contact surfaces 42 and 50 is reduced, and the tapping sound at the time of contact is prevented.

入力振動が第二のオリフィス通路78のチューニング周波数に相当する中乃至高周波の小振幅振動である場合には、入力振動の周波数よりも低周波にチューニングされた第一のオリフィス通路76は、***振による実質的な遮断状態とされる。 When the input vibration is a medium to high frequency small amplitude vibration corresponding to the tuning frequency of the second orifice passage 78, the first orifice passage 76 tuned to a frequency lower than the frequency of the input vibration is antiresonant. It is considered to be in a substantially blocked state due to.

第二のオリフィス通路78は、共振状態で流体が積極的に流動するが、この際に、弾性可動体60の弁部64は、共振状態で微小な変形及び変位を生じることにより、第二のオリフィス通路78を通じた流体流動を阻害しない。それ故、第一のオリフィス通路76の実質的な遮断による受圧室72の密閉化が、第二のオリフィス通路78を通じた流体流動によって回避されて、エンジンマウント10の低動ばね化による防振効果(振動絶縁作用)が発揮される。 In the second orifice passage 78, the fluid actively flows in the resonance state, and at this time, the valve portion 64 of the elastic movable body 60 causes a slight deformation and displacement in the resonance state, so that the second orifice passage 78 is second. It does not impede fluid flow through the orifice passage 78. Therefore, the sealing of the pressure receiving chamber 72 by substantially shutting off the first orifice passage 76 is avoided by the fluid flow through the second orifice passage 78, and the vibration isolation effect due to the low dynamic spring of the engine mount 10 is avoided. (Vibration insulation action) is exhibited.

変位当接部66と収容領域58の外周側の壁内面との間に連通領域70が設けられており、振動が入力されない初期状態において変位当接部66が収容領域58の外周側の壁内面から離れていることから、弁部64の微小な変形及び変位が高感度で生じる。それ故、微小振幅で周波数の高い振動入力に対して、弁部64が追従して変形乃至は変位して、第二のオリフィス通路78の流体流動による防振効果が発揮される。 A communication region 70 is provided between the displacement contact portion 66 and the inner surface of the wall on the outer peripheral side of the accommodation region 58, and the displacement contact portion 66 is the inner surface of the wall on the outer peripheral side of the accommodation region 58 in the initial state where vibration is not input. Since it is separated from the valve portion 64, minute deformation and displacement of the valve portion 64 occur with high sensitivity. Therefore, the valve portion 64 is deformed or displaced following the vibration input having a small amplitude and a high frequency, and the vibration isolating effect due to the fluid flow of the second orifice passage 78 is exhibited.

図9には、本発明に従う構造とされた流体封入式防振装置の第二の実施形態としてのエンジンマウントの一部が示されている。以下の説明において、第一の実施形態と実質的に同一の部材及び部位については、図中に同一の符号を付すことにより説明を省略する。 FIG. 9 shows a part of an engine mount as a second embodiment of a fluid-filled vibration isolator having a structure according to the present invention. In the following description, the members and parts that are substantially the same as those in the first embodiment are designated by the same reference numerals in the drawings, and the description thereof will be omitted.

すなわち、図9では、仕切部材80に弾性可動体60が配されている。仕切部材80には収容領域58が設けられており、収容領域58が第一の透孔44を通じて受圧室72に連通されると共に、収容領域58が第二の透孔52を通じて平衡室74に連通されることで、第二のオリフィス通路78が形成されている。 That is, in FIG. 9, the elastic movable body 60 is arranged on the partition member 80. The partition member 80 is provided with an accommodating area 58, and the accommodating area 58 communicates with the pressure receiving chamber 72 through the first through hole 44, and the accommodating area 58 communicates with the equilibrium chamber 74 through the second through hole 52. As a result, the second orifice passage 78 is formed.

収容領域58の外周側の壁内面は、受圧室72側が第一の当接面82とされていると共に、平衡室74側が第二の当接面84とされている。第一の当接面82は、受圧室72側に向かって次第に内周へ傾斜する傾斜面とされており、本実施形態では軸方向(図9中の上下方向)に対する傾斜角度が略一定とされている。第二の当接面84は、平衡室74側に向かって次第に内周へ傾斜する傾斜面とされており、本実施形態では傾斜角度が略一定とされている。従って、図9に示す縦断面において、第一,第二の当接面82,84は、直線的な形状とされている。 As for the inner surface of the wall on the outer peripheral side of the accommodating area 58, the pressure receiving chamber 72 side is the first contact surface 82, and the equilibrium chamber 74 side is the second contact surface 84. The first contact surface 82 is an inclined surface that gradually inclines inward toward the pressure receiving chamber 72 side, and in the present embodiment, the inclination angle with respect to the axial direction (vertical direction in FIG. 9) is substantially constant. Has been done. The second contact surface 84 is an inclined surface that gradually inclines toward the equilibrium chamber 74 side toward the inner circumference, and the inclination angle is substantially constant in the present embodiment. Therefore, in the vertical cross section shown in FIG. 9, the first and second contact surfaces 82 and 84 have a linear shape.

このような本実施形態に従う構造を有するエンジンマウントにおいても、第一の実施形態のエンジンマウント10と同様に、低周波振動に対する防振性能と、中乃至高周波振動に対する防振性能とを、両立して高度に得ることができる。 Similar to the engine mount 10 of the first embodiment, the engine mount having a structure according to the present embodiment has both anti-vibration performance against low frequency vibration and anti-vibration performance against medium to high frequency vibration. Can be highly obtained.

図10には、本発明に従う構造とされた流体封入式防振装置の第三の実施形態としてのエンジンマウントの一部が示されている。即ち、図10に示すエンジンマウントは、仕切部材32に弾性可動体90が配された構造を有している。 FIG. 10 shows a part of an engine mount as a third embodiment of a fluid-filled vibration isolator having a structure according to the present invention. That is, the engine mount shown in FIG. 10 has a structure in which the elastic movable body 90 is arranged on the partition member 32.

弾性可動体90は、支持部62と弁部92を備えており、弁部92が略一定の厚さ寸法で軸直角方向に広がる円環板状とされている。本実施形態の弁部92は、厚さ方向(軸方向)の両面が何れも略平面とされていると共に、突出先端面(外周面)が軸方向に直線的に延びる円筒面とされており、突出先端における軸方向の両端縁にそれぞれ角部94が形成されている。 The elastic movable body 90 includes a support portion 62 and a valve portion 92, and the valve portion 92 has a ring plate shape in which the valve portion 92 extends in a direction perpendicular to the axis with a substantially constant thickness dimension. In the valve portion 92 of the present embodiment, both sides in the thickness direction (axial direction) are substantially flat, and the protruding tip surface (outer peripheral surface) is a cylindrical surface extending linearly in the axial direction. , Corner portions 94 are formed at both end edges in the axial direction at the protruding tip.

このような本実施形態に従う構造を有するエンジンマウントにおいても、第一の実施形態のエンジンマウント10と同様に、低周波振動に対する防振性能と、中乃至高周波振動に対する防振性能とを、両立して高度に得ることができる。 Similar to the engine mount 10 of the first embodiment, the engine mount having a structure according to the present embodiment has both anti-vibration performance against low frequency vibration and anti-vibration performance against medium to high frequency vibration. Can be highly obtained.

なお、本実施形態に従う構造の弾性可動体90を、第二の実施形態に従う構造の仕切部材80と組み合わせて採用することも可能である。この場合にも、第一〜第三の実施形態と同様に、低周波振動に対する防振性能と、中乃至高周波振動に対する防振性能とが、何れも発揮される。 It is also possible to adopt the elastic movable body 90 having the structure according to the present embodiment in combination with the partition member 80 having the structure according to the second embodiment. In this case as well, as in the first to third embodiments, both the vibration isolation performance against low frequency vibration and the vibration isolation performance against medium to high frequency vibration are exhibited.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、弾性可動体は、支持部と弁部がそれぞれ全周に亘って連続的に設けられた環状に限定されるものではない。即ち、弾性可動体は、例えば、直線的に延びていても良いし、湾曲して延びていても良いし、蛇行状や屈曲状に延びていても良い。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited by the specific description thereof. For example, the elastic movable body is not limited to an annular shape in which a support portion and a valve portion are continuously provided over the entire circumference. That is, the elastic movable body may, for example, extend linearly, may be curved, or may extend in a meandering or bent shape.

前記実施形態では1つの弾性可動体が設けられていたが、複数の弾性可動体を設けることもできる。複数の弾性可動体は、相互に同じ形状であっても良いし、少なくとも1つが他と異なる形状であっても良い。 In the above embodiment, one elastic movable body is provided, but a plurality of elastic movable bodies can also be provided. The plurality of elastic movable bodies may have the same shape as each other, or at least one of them may have a different shape from the others.

弾性可動体の具体的な形状は限定されず、支持部と弁部の具体的な形状もそれぞれ適宜に変更され得る。例えば、図10にも示すように、弁部において薄肉とされた変形許容部は必須ではない。また、弁部の変位当接部は、円形以外の断面形状であっても良く、例えば、長円形断面なども採用され得る。更に、支持部の断面形状は、例えば、四角形などの多角形や異形であっても良い。また、弾性可動体において、弁部は支持部の内周側に設けられていても良い。 The specific shape of the elastic movable body is not limited, and the specific shapes of the support portion and the valve portion can be changed as appropriate. For example, as shown in FIG. 10, a deformation-allowable portion having a thin wall in the valve portion is not essential. Further, the displacement contact portion of the valve portion may have a cross-sectional shape other than a circular shape, and for example, an oval cross-section or the like may be adopted. Further, the cross-sectional shape of the support portion may be a polygon such as a quadrangle or a deformed shape. Further, in the elastic movable body, the valve portion may be provided on the inner peripheral side of the support portion.

前記実施形態では、連通流路として、軸方向に直線的に延びる第二のオリフィス通路78を例示したが、連通流路の形状は特に限定されるものではなく、例えば、周方向や軸直角方向に延びる部分を備えていても良い。従って、連通流路の流路長方向は、必ずしも一定方向ではなく、連通流路の部位によって変化し得る。 In the above embodiment, the second orifice passage 78 extending linearly in the axial direction is illustrated as the communication flow path, but the shape of the communication flow path is not particularly limited, and for example, the circumferential direction or the axis perpendicular direction. It may have a portion extending to. Therefore, the flow path length direction of the communication flow path is not necessarily a constant direction, and may change depending on the portion of the communication flow path.

10 エンジンマウント(流体封入式防振装置)
12 第一の取付部材
14 第二の取付部材
16 本体ゴム弾性体
18 フランジ状部
20 ねじ穴
22 凹所
24 シールゴム層
26 可撓性膜
28 固定部材
30 流体室
32,80 仕切部材
34 第一の仕切板
36 第二の仕切板
38 第一の連通口
40 第一の凹溝
42,82 第一の当接面(当接面)
44 第一の透孔
46 第二の連通口
48 第二の凹溝
50,84 第二の当接面(当接面)
52 第二の透孔
54 ねじ
56 周溝
58 収容領域
60,90 弾性可動体
62 支持部
64,92 弁部
65 シールリップ
66 変位当接部
68 変形許容部
69 突出先端面
70 連通領域
72 受圧室(主液室)
74 平衡室(副液室)
76 第一のオリフィス通路
78 第二のオリフィス通路(連通流路)
94 角部
10 Engine mount (fluid-filled anti-vibration device)
12 First mounting member 14 Second mounting member 16 Main body rubber elastic body 18 Flange-shaped part 20 Screw hole 22 Recess 24 Seal rubber layer 26 Flexible membrane 28 Fixing member 30 Fluid chamber 32, 80 Partition member 34 First Partition plate 36 Second partition plate 38 First communication port 40 First concave groove 42, 82 First contact surface (contact surface)
44 First through hole 46 Second communication port 48 Second recessed groove 50, 84 Second contact surface (contact surface)
52 Second through hole 54 Screw 56 Circumferential groove 58 Storage area 60, 90 Elastic movable body 62 Support part 64, 92 Valve part 65 Seal lip 66 Displacement contact part 68 Deformation allowable part 69 Protruding tip surface 70 Communication area 72 Pressure receiving chamber (Main liquid chamber)
74 Equilibrium chamber (secondary liquid chamber)
76 First orifice passage 78 Second orifice passage (communication passage)
94 corners

Claims (7)

仕切部材の両側にそれぞれ非圧縮性流体が封入された主液室と副液室が形成されており、それら主液室と副液室を相互に連通する連通流路が形成されている流体封入式防振装置において、
前記仕切部材に配される弾性可動体が、該仕切部材によって支持される支持部と、前記連通流路の流路長方向に対する交差方向で該支持部から突出して該連通流路上に配置される弁部とを備えていると共に、
該連通流路の壁内面には、該連通流路の流路長方向への該弁部の変位によって該弁部と当接する当接面が、該弁部に対して該連通流路の流路長方向の両側に設けられており、
該当接面が該連通流路の流路長方向に対して傾斜して設けられて、該弁部と該当接面の当接反力の分力が該弁部を該支持部側へ圧縮する方向に作用するようにした流体封入式防振装置。
A main liquid chamber and a sub liquid chamber in which an incompressible fluid is sealed are formed on both sides of the partition member, and a communication flow path for communicating the main liquid chamber and the sub liquid chamber with each other is formed. In the type anti-vibration device
The elastic movable body arranged on the partition member projects from the support portion in the direction of intersection with the support portion supported by the partition member and the flow path length direction of the communication flow path, and is arranged on the communication flow path. As well as having a valve part
On the inner surface of the wall of the communication flow path, a contact surface that comes into contact with the valve portion due to the displacement of the valve portion in the flow path length direction of the communication flow path is provided with respect to the valve portion. It is provided on both sides in the road length direction,
The contact surface is provided so as to be inclined with respect to the flow path length direction of the communication flow path, and the component force of the contact reaction force between the valve portion and the contact surface compresses the valve portion toward the support portion. A fluid-filled anti-vibration device that acts in the direction.
前記当接面への当接部分を含む前記弁部の突出先端面が湾曲凸面とされていると共に、該当接面が湾曲凹面とされている請求項1に記載の流体封入式防振装置。 The fluid-filled anti-vibration device according to claim 1, wherein the protruding tip surface of the valve portion including the contact portion with the contact surface is a curved convex surface, and the corresponding contact surface is a curved concave surface. 前記弁部の前記突出先端面における前記仕切部材の前記当接面に当接する部分の曲率が、該当接面の曲率よりも大きくされている請求項2に記載の流体封入式防振装置。 The fluid-filled anti-vibration device according to claim 2, wherein the curvature of the portion of the valve portion that abuts on the contact surface of the partition member on the protruding tip surface is larger than the curvature of the contact surface. 前記弁部と前記連通流路の壁内面が相互に離れており、それら弁部と連通流路の壁内面との間に連通領域が設けられている請求項1〜3の何れか一項に記載の流体封入式防振装置。 According to any one of claims 1 to 3, the valve portion and the inner surface of the wall of the communication flow path are separated from each other, and a communication region is provided between the valve portion and the inner surface of the wall of the communication flow path. The fluid-filled anti-vibration device described. 前記支持部とつながる前記弁部の基端部分が、該弁部の先端部分及び該支持部よりも前記連通流路の流路長方向において薄肉とされた変形許容部とされている請求項1〜4の何れか一項に記載の流体封入式防振装置。 Claim 1 in which the base end portion of the valve portion connected to the support portion is a deformation allowable portion that is thinner in the flow path length direction of the communication flow path than the tip end portion of the valve portion and the support portion. The fluid-filled anti-vibration device according to any one of the items to 4. 前記弾性可動体が環状とされており、前記支持部と前記弁部が何れも全周に亘って連続的に設けられている請求項1〜5の何れか一項に記載の流体封入式防振装置。 The fluid-filled type protection according to any one of claims 1 to 5, wherein the elastic movable body is annular, and both the support portion and the valve portion are continuously provided over the entire circumference. Shaking device. 前記弾性可動体が周方向に延びており、前記弁部が前記支持部から前記仕切部材の外周側に向かって突出して設けられている請求項1〜6の何れか一項に記載の流体封入式防振装置。 The fluid encapsulation according to any one of claims 1 to 6, wherein the elastic movable body extends in the circumferential direction, and the valve portion projects from the support portion toward the outer peripheral side of the partition member. Type anti-vibration device.
JP2019191417A 2019-10-18 2019-10-18 Fluid-filled anti-vibration device Active JP7269146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191417A JP7269146B2 (en) 2019-10-18 2019-10-18 Fluid-filled anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191417A JP7269146B2 (en) 2019-10-18 2019-10-18 Fluid-filled anti-vibration device

Publications (2)

Publication Number Publication Date
JP2021067295A true JP2021067295A (en) 2021-04-30
JP7269146B2 JP7269146B2 (en) 2023-05-08

Family

ID=75636910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191417A Active JP7269146B2 (en) 2019-10-18 2019-10-18 Fluid-filled anti-vibration device

Country Status (1)

Country Link
JP (1) JP7269146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138029A1 (en) * 2020-12-21 2022-06-30 住友理工株式会社 Fluid-filled vibration damping device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069005A (en) * 2002-08-09 2004-03-04 Tokai Rubber Ind Ltd Fluid-sealed type vibration damper
JP2012172737A (en) * 2011-02-18 2012-09-10 Tokai Rubber Ind Ltd Fluid-sealed antivibration device
JP2012241842A (en) * 2011-05-23 2012-12-10 Tokai Rubber Ind Ltd Fluid-filled vibration-control device
JP2013217391A (en) * 2012-04-05 2013-10-24 Tokai Rubber Ind Ltd Fluid filled vibration absorbing device
JP2015102168A (en) * 2013-11-25 2015-06-04 住友理工株式会社 Fluid sealed vibration prevention device
JP2019158022A (en) * 2018-03-14 2019-09-19 住友理工株式会社 Fluid sealing type vibration isolation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069005A (en) * 2002-08-09 2004-03-04 Tokai Rubber Ind Ltd Fluid-sealed type vibration damper
JP2012172737A (en) * 2011-02-18 2012-09-10 Tokai Rubber Ind Ltd Fluid-sealed antivibration device
JP2012241842A (en) * 2011-05-23 2012-12-10 Tokai Rubber Ind Ltd Fluid-filled vibration-control device
JP2013217391A (en) * 2012-04-05 2013-10-24 Tokai Rubber Ind Ltd Fluid filled vibration absorbing device
JP2015102168A (en) * 2013-11-25 2015-06-04 住友理工株式会社 Fluid sealed vibration prevention device
JP2019158022A (en) * 2018-03-14 2019-09-19 住友理工株式会社 Fluid sealing type vibration isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138029A1 (en) * 2020-12-21 2022-06-30 住友理工株式会社 Fluid-filled vibration damping device

Also Published As

Publication number Publication date
JP7269146B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
JP5985979B2 (en) Liquid seal vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP5595369B2 (en) Fluid filled vibration isolator
JP6956658B2 (en) Fluid-filled anti-vibration device
JPWO2010126060A1 (en) Vibration isolator
JP2005273906A (en) Liquid filled vibration damper
JP5431982B2 (en) Liquid-filled vibration isolator
US11536347B2 (en) Fluid-filled vibration damping device
JP2021067295A (en) Fluid-sealed type vibration isolation device
WO2022113552A1 (en) Fluid-filled vibration damping device
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2022083392A (en) Fluid sealing-type vibration isolation device
JP2020051474A (en) Fluid-encapsulated vibration controller
JP4075066B2 (en) Fluid filled engine mount
JP2010031988A (en) Fluid-sealed vibration control device
JP5668231B2 (en) Liquid-filled vibration isolator
JP2009228688A (en) Fluid sealed type vibration damping device
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
WO2022138029A1 (en) Fluid-filled vibration damping device
JP5899039B2 (en) Fluid filled vibration isolator
JP7301713B2 (en) Fluid-filled anti-vibration device
JP6391162B2 (en) Vibration isolator
JP6966249B2 (en) Fluid-filled anti-vibration device
JP2010169121A (en) Fluid filled vibration control device
JP2012172737A (en) Fluid-sealed antivibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7269146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150