JP5668231B2 - Liquid-filled vibration isolator - Google Patents

Liquid-filled vibration isolator Download PDF

Info

Publication number
JP5668231B2
JP5668231B2 JP2011054469A JP2011054469A JP5668231B2 JP 5668231 B2 JP5668231 B2 JP 5668231B2 JP 2011054469 A JP2011054469 A JP 2011054469A JP 2011054469 A JP2011054469 A JP 2011054469A JP 5668231 B2 JP5668231 B2 JP 5668231B2
Authority
JP
Japan
Prior art keywords
liquid chamber
main liquid
orifice
liquid
chamber side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011054469A
Other languages
Japanese (ja)
Other versions
JP2012189167A (en
Inventor
山本 健太郎
健太郎 山本
辰典 増田
辰典 増田
勝弘 櫻井
勝弘 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2011054469A priority Critical patent/JP5668231B2/en
Publication of JP2012189167A publication Critical patent/JP2012189167A/en
Application granted granted Critical
Publication of JP5668231B2 publication Critical patent/JP5668231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、液封入式防振装置に関するものである。   The present invention relates to a liquid-filled vibration isolator.

自動車エンジン等の振動源の振動を車体側に伝達しないように支承するエンジンマウント等の防振装置として、振動源側に取り付けられる第1取付具と、支持側に取り付けられる第2取付具と、これら取付具の間に介設されたゴム状弾性体からなる防振基体と、防振基体が室壁の一部をなす主液室と、ダイヤフラムが室壁の一部をなす副液室と、これら液室間を連通させるオリフィス流路とを備えてなり、前記オリフィス流路による液流動効果や防振基体の制振効果により、振動減衰機能と振動絶縁機能を果たすように構成された液封入式防振装置が知られている。   As an anti-vibration device such as an engine mount that supports the vibration of a vibration source such as an automobile engine so as not to be transmitted to the vehicle body side, a first attachment attached to the vibration source side, a second attachment attached to the support side, An anti-vibration base made of a rubber-like elastic body interposed between the fixtures, a main liquid chamber in which the anti-vibration base forms part of the chamber wall, and a sub-liquid chamber in which the diaphragm forms part of the chamber wall; And an orifice channel that communicates between the liquid chambers, and is configured to perform a vibration damping function and a vibration insulation function by the liquid flow effect by the orifice channel and the vibration control effect of the vibration-proof substrate. An enclosed vibration isolator is known.

この種の液封入式防振装置においては、過大な振動が入力したときに、防振装置自体が異音発生源となってこれが車室内に伝達されてしまうことがある。このような異音や振動は、液室内でのキャビテーションにより発生するものである。キャビテーションは、防振装置に大きな振動が入力したときに、主液室内が過度な負圧状態(即ち、主液室の液圧が所定値よりも低下した状態)となって、封入された液体の飽和蒸気圧を下回ることで、多数の気泡が発生することにより生じる現象である。そして、このようにして発生した気泡が消滅するときの衝撃が異音や振動となって外部に伝達されるのである。   In this type of liquid-filled vibration isolator, when excessive vibration is input, the vibration isolator itself may become a source of abnormal noise, which may be transmitted to the vehicle interior. Such abnormal noise and vibration are generated by cavitation in the liquid chamber. Cavitation is a liquid in which the main liquid chamber becomes excessively negative pressure (that is, the liquid pressure in the main liquid chamber is lower than a predetermined value) when a large vibration is input to the vibration isolator, and the enclosed liquid This is a phenomenon caused by the generation of a large number of bubbles by lowering the saturated vapor pressure. And the impact when the bubble generated in this way disappears is transmitted to the outside as abnormal noise or vibration.

従来、キャビテーションによる異音や振動の発生を防止するために、例えば、下記特許文献1,2には、オリフィス流路の液流動を制限するための弁部材として板バネを設け、主液室の液圧が上昇する方向の荷重が入力された場合に、板バネを主液室の半径方向に移動させて主液室側開口を閉塞もしくは狭窄するようにした構成が開示されている。また、下記特許文献3の図5,6に示す第2の実施形態には、弁部材として主液室側開口を覆うように庇状の弁体を設けるとともに、該弁体と仕切り体との間に液体が流動する隙間を形成するための柱状の支持部を設け、主液室の液圧が上昇することで支持部が潰れて弁体が主液室側開口を塞ぐようにした構成が開示されている。これらの従来技術では、主液室と副液室との圧力差により弁部材が移動し、オリフィス流路での液流動を制限する。すなわち、これらの従来技術において、主液室側開口付近の液体の流れは弁部材を回避した流れであるため、弁部材の作動力は主液室と副液室の圧力差のみとなる。そのため、弁部材をより低振幅側から作動させる場合、弁部材の剛性を下げる必要があり、弁部材の信頼性を低下させるおそれがある。   Conventionally, in order to prevent the occurrence of abnormal noise and vibration due to cavitation, for example, in Patent Documents 1 and 2 below, a leaf spring is provided as a valve member for limiting the liquid flow in the orifice channel, A configuration is disclosed in which when a load in the direction in which the hydraulic pressure increases is input, the leaf spring is moved in the radial direction of the main liquid chamber to close or narrow the main liquid chamber side opening. In the second embodiment shown in FIGS. 5 and 6 of Patent Document 3 below, a valve-like valve body is provided as a valve member so as to cover the main liquid chamber side opening, and the valve body and the partition body A structure in which a columnar support part for forming a gap through which the liquid flows is provided, and the support part is crushed by increasing the liquid pressure in the main liquid chamber so that the valve body closes the main liquid chamber side opening. It is disclosed. In these prior arts, the valve member moves due to the pressure difference between the main liquid chamber and the sub liquid chamber, and restricts the liquid flow in the orifice channel. That is, in these prior arts, the liquid flow in the vicinity of the main liquid chamber side opening is a flow that avoids the valve member, so that the operating force of the valve member is only the pressure difference between the main liquid chamber and the sub liquid chamber. Therefore, when the valve member is operated from the lower amplitude side, it is necessary to reduce the rigidity of the valve member, which may reduce the reliability of the valve member.

一方、特許文献3の図3,4に示す第1の実施形態には、オリフィス流路の流れ方向と直交する弁体と、該弁体に対向する当接部を設けることにより、大振幅振動時にオリフィス流路を閉塞するようにした構成が開示されている。しかしながら、この従来技術では、オリフィス流路内に弁部材による縮流部を持つため、圧力損失の増大によりオリフィス流路本来の減衰性能の低下を招くおそれがある。   On the other hand, in the first embodiment shown in FIGS. 3 and 4 of Patent Document 3, a large-amplitude vibration is provided by providing a valve body orthogonal to the flow direction of the orifice channel and a contact portion facing the valve body. A configuration that sometimes closes the orifice channel is disclosed. However, in this conventional technique, the orifice channel has a constricted portion formed by a valve member, and therefore the inherent attenuation performance of the orifice channel may be reduced due to an increase in pressure loss.

特開2009−192000号公報JP 2009-192000 A 特開2009−192001号公報JP 2009-192001 A 特開2008−248967号公報JP 2008-248967 A

本発明は、上記の点に鑑み、キャビテーションの発生を抑制することができる液封入式防振装置を提供することを目的とする。   An object of this invention is to provide the liquid filled type vibration isolator which can suppress generation | occurrence | production of a cavitation in view of said point.

本発明の請求項1に係る液封入式防振装置は、振動源側と支持側の一方に取り付けられる第1取付具と、振動源側と支持側の他方に取り付けられる第2取付具と、前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、前記防振基体が室壁の一部をなす液体が封入された主液室と、ゴム状弾性膜からなるダイヤフラムが室壁の一部をなす液体が封入された副液室と、前記主液室と副液室とを連結するオリフィス流路と、前記主液室と副液室とを仕切るとともに前記オリフィス流路が形成された仕切り体と、前記オリフィス流路の主液室側開口の開口方向に対して直交するように当該主液室側開口の主液室側に対向して前記仕切り体に設けられたゴム状弾性体からなる弁部材と、を備えたものである。前記弁部材は、外周部が前記仕切り体に液密に保持されるとともに、前記外周部よりも内側の可撓性膜部において、前記主液室側開口に対して主液室側に対向配置されて前記可撓性膜部の撓み変形により前記オリフィス流路での液体の流れを制限する弁部と、前記主液室側開口に対して重ならない位置に設けられて前記オリフィス流路を前記主液室側に連通させる連通穴とを備える。そして、前記弁部は、前記可撓性膜部の主液室側への撓み変形時には前記オリフィス流路を制限せず、前記可撓性膜部の副液室側への撓み変形時に前記主液室側開口の周りに押し付けられて前記オリフィス流路での液体の流れを制限するとともに、当該押し付けられた状態でも前記仕切り体との間で液体の流れが確保されるよう形成されている。 A liquid-filled vibration isolator according to claim 1 of the present invention includes a first fixture attached to one of the vibration source side and the support side, a second fixture attached to the other of the vibration source side and the support side, An anti-vibration base made of a rubber-like elastic body interposed between the first attachment and the second attachment; a main liquid chamber in which a liquid forming a part of a chamber wall of the anti-vibration base is enclosed; A sub liquid chamber in which a liquid in which a diaphragm made of a rubber-like elastic membrane forms a part of a chamber wall is enclosed; an orifice channel connecting the main liquid chamber and the sub liquid chamber; the main liquid chamber and the sub liquid a partition member in which the orifice passage with separating the chambers are formed, facing to the main liquid chamber side of the main liquid chamber side opening so as to be orthogonal to the opening direction of the main liquid chamber side opening of the orifice passage a valve member made of a rubber-like elastic body provided in the partition member and those equipped with. The valve member has an outer peripheral portion that is liquid-tightly held by the partition body, and is disposed opposite to the main liquid chamber side opening on the main liquid chamber side opening in the flexible film portion inside the outer peripheral portion. A valve portion that restricts the flow of liquid in the orifice flow path due to bending deformation of the flexible membrane section, and a position that does not overlap the opening on the main liquid chamber side. A communication hole communicating with the main liquid chamber side. The valve portion does not restrict the orifice flow path when the flexible membrane portion is bent and deformed toward the main liquid chamber, and the valve portion is not bent when the flexible membrane portion is bent and deformed toward the sub liquid chamber. The liquid is pressed around the liquid chamber side opening to restrict the flow of the liquid in the orifice flow path, and the liquid flow is ensured between the partition and the pressed body.

本発明の好ましい態様において、前記弁部は、前記可撓性膜部の膜面から突出して前記主液室側開口を取り囲む筒状をなす筒状緩衝部を備え、前記筒状緩衝部は、前記可撓性膜部の撓み変形時に前記主液室側開口の周りに押し付けられて前記オリフィス流路での液体の流れを制限するとともに、当該押し付けられた状態でも前記仕切り体との間で液体の流れが確保されるように1又は複数の切欠部が設けられてもよい。この場合、 前記筒状緩衝部は、肉厚よりも突出高さが大きい筒状をなすことが好ましい。また、前記筒状緩衝部は、前記可撓性膜部からの突出高さが当該筒状緩衝部の外側における前記可撓性膜部の肉厚よりも大きく設定されてもよい。また、前記可撓性膜部には、前記筒状緩衝部の外側に当該筒状緩衝部よりも突出高さが高い突起が複数設けられてもよい。また、前記筒状緩衝部の内側の膜部分にリブが設けられてもよい。   In a preferred aspect of the present invention, the valve portion includes a cylindrical buffer portion that protrudes from the membrane surface of the flexible membrane portion and surrounds the main liquid chamber side opening, and the cylindrical buffer portion includes: The flexible membrane portion is pressed around the main liquid chamber side opening when the flexible membrane portion is deformed to restrict the flow of the liquid in the orifice channel, and even in the pressed state, the liquid is exchanged with the partition body. One or a plurality of notches may be provided so as to ensure the flow. In this case, it is preferable that the cylindrical buffer portion has a cylindrical shape with a protruding height larger than the wall thickness. Moreover, the said cylindrical buffer part may be set so that the protrusion height from the said flexible film part is larger than the thickness of the said flexible film part in the outer side of the said cylindrical buffer part. In addition, the flexible film part may be provided with a plurality of protrusions having a protrusion height higher than that of the cylindrical buffer part on the outside of the cylindrical buffer part. Moreover, a rib may be provided in the film part inside the cylindrical buffer part.

他の好ましい態様において、前記オリフィス流路が前記仕切り体の厚み方向に延びる流路部分を備え、該流路部分の一端が前記主液室に開口して前記主液室側開口となっていてもよい。また、他の好ましい態様において、前記弁部材の主液室側に前記可撓性膜部の主液室側への撓み変形を規制する規制部材が設けられ、前記規制部材は、前記弁部に対向する位置に貫通穴が設けられるともに、該貫通穴の周りに複数の連通穴が設けられており、前記弁部材には、前記規制部材の前記貫通穴に対して重ならない位置における主液室側の膜面に、前記可撓性膜部の主液室側への撓み変形時に前記規制部材に押し付けられる緩衝突起が設けられてもよい。また、この場合、前記緩衝突起が、前記弁部の主液室側の膜面から突出して前記規制部材の前記貫通穴を取り囲む筒状をなしてもよい。なお、以上の好ましい各態様は適宜に組み合わせることができる。   In another preferred embodiment, the orifice channel includes a channel part extending in the thickness direction of the partition, and one end of the channel part opens into the main liquid chamber and becomes the main liquid chamber side opening. Also good. In another preferred embodiment, a restriction member for restricting deformation of the flexible membrane part toward the main liquid chamber is provided on the main liquid chamber side of the valve member, and the restriction member is provided on the valve part. A through hole is provided at an opposing position, and a plurality of communication holes are provided around the through hole, and the valve member has a main liquid chamber at a position that does not overlap the through hole of the restriction member. A buffer protrusion that is pressed against the regulating member when the flexible film portion is bent and deformed toward the main liquid chamber may be provided on the side film surface. In this case, the buffer protrusion may protrude from the main liquid chamber side membrane surface of the valve portion to form a cylindrical shape surrounding the through hole of the restriction member. The preferred embodiments described above can be combined as appropriate.

本発明に係る液封入式防振装置であると、所定振幅未満の振動入力に対しては、可撓性膜部の撓み変形が小さく、弁部材によってオリフィス流路の流れが制限されないので、オリフィス流路内での液流動による本来の減衰性能を発揮することができる。その際、弁部材はオリフィス流路内に設けられるものではないので、圧力損失の増大を抑えることができ、減衰性能の低下を回避することができる。   In the liquid-filled vibration isolator according to the present invention, the flexural deformation of the flexible membrane portion is small for vibration input less than a predetermined amplitude, and the flow of the orifice channel is not restricted by the valve member. The original damping performance due to the liquid flow in the flow path can be exhibited. At this time, since the valve member is not provided in the orifice flow path, an increase in pressure loss can be suppressed, and a decrease in damping performance can be avoided.

一方、所定振幅以上の大振幅振動入力に対し、液体が主液室側から副液室側に流れる際には、オリフィス流路での液流動によって、可撓性膜部が撓み変形して、弁部が主液室側開口に押し付けられることにより流路が制限(即ち、狭窄)される。これにより、主液室内の正圧が大きくなる。その後、副液室側から主液室側に液体が流れる際には、可撓性膜部が主液室側に撓み変形しても流路は制限されず、オリフィス流路は開放状態に保持される。そのため、オリフィス流路を通って副液室側から主液室側への液体の供給が可能である。このように大振幅振動入力時にオリフィス流路の流れを制限することにより主液室内の正圧を高めることができるので、続けて主液室の液圧が下降する方向の荷重が入力されたときに主液室内の過度な負圧状態を抑制して、キャビテーションの発生を抑えることができる。また、その際、上記構成の弁部材であると、液室間の圧力差のみならず、オリフィス流路での液流動により弁部材を撓み変形させることができるので、圧力差のみで弁部材を作動させる場合に比べて、信頼性を損なうことなく、より低振幅側から作動させることができる。   On the other hand, when the liquid flows from the main liquid chamber side to the sub liquid chamber side with respect to a large amplitude vibration input having a predetermined amplitude or more, the flexible membrane portion is bent and deformed by the liquid flow in the orifice channel, The flow path is restricted (that is, narrowed) by the valve portion being pressed against the main liquid chamber side opening. This increases the positive pressure in the main liquid chamber. After that, when the liquid flows from the sub liquid chamber side to the main liquid chamber side, the flow path is not restricted even if the flexible membrane part is bent and deformed to the main liquid chamber side, and the orifice flow path is kept open. Is done. Therefore, the liquid can be supplied from the sub liquid chamber side to the main liquid chamber side through the orifice channel. In this way, the positive pressure in the main liquid chamber can be increased by restricting the flow of the orifice flow channel when large amplitude vibration is input, so that when a load in the direction in which the liquid pressure in the main liquid chamber decreases continues to be input In addition, it is possible to suppress the occurrence of cavitation by suppressing an excessive negative pressure state in the main liquid chamber. At that time, if the valve member is configured as described above, the valve member can be bent and deformed not only by the pressure difference between the liquid chambers but also by the liquid flow in the orifice flow path. Compared with the case where it operates, it can be operated from the lower amplitude side without impairing the reliability.

一実施形態に係る液封入式防振装置の縦断面図である。It is a longitudinal cross-sectional view of the liquid filled type vibration isolator which concerns on one Embodiment. 同実施形態の仕切り体の縦断面図である。It is a longitudinal cross-sectional view of the partition body of the embodiment. 同仕切り体の要部拡大断面図である。It is a principal part expanded sectional view of the partition. 同実施形態の弁部材の斜視図である。It is a perspective view of the valve member of the embodiment. (a)は同弁部材の平面図、(b)は側面図、(c)は底面図である。(A) is a top view of the valve member, (b) is a side view, and (c) is a bottom view. (a)は図5のA−A線断面図であり、(b)はB−B線断面図である。(A) is the sectional view on the AA line of FIG. 5, (b) is a sectional view on the BB line. 同弁部材の要部拡大断面図である。It is a principal part expanded sectional view of the valve member. (a)は同実施形態の規制部材の平面図であり、(b)はC−C線断面図である。(A) is a top view of the control member of the same embodiment, (b) is a CC line sectional view. 主液室の圧縮方向での入力時における仕切り体の要部拡大断面図である。It is a principal part expanded sectional view of the partition body at the time of the input in the compression direction of a main liquid chamber. 主液室の引張方向での入力時における仕切り体の要部拡大断面図である。It is a principal part expanded sectional view of the partition at the time of the input in the tension | pulling direction of a main liquid chamber.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示された本実施形態に係る液封入式防振装置10は、自動車のエンジンを支承するエンジンマウントであり、振動源であるエンジン側に取り付けられる上側の第1取付具12と、支持側の車体に取り付けられる筒状をなす下側の第2取付具14と、これら両取付具12,14の間に介設されて両者を連結するゴム弾性体からなる防振基体16とを備えてなる。なお、図1は無負荷状態を示している。   A liquid-filled vibration isolator 10 according to the present embodiment shown in FIG. 1 is an engine mount that supports an engine of an automobile, and an upper first fixture 12 that is attached to an engine side that is a vibration source, and a support. And a vibration-proof base 16 made of a rubber elastic body that is interposed between the two attachments 12 and 14 and connects them. It becomes. FIG. 1 shows a no-load state.

第1取付具12は、第2取付具14の軸芯部上方に配されたボス金具であり、径方向外方に向けてフランジ状に突出するストッパ部18が形成されている。また、上端部にはボルト穴20が設けられ、不図示のボルトを介してエンジン側に取り付けられるよう構成されている。   The 1st fixture 12 is the boss | hub metal fitting distribute | arranged above the axial center part of the 2nd fixture 14, and the stopper part 18 which protrudes in a flange shape toward radial direction outward is formed. Moreover, the bolt hole 20 is provided in the upper end part, and it is comprised so that it may attach to an engine side via a volt | bolt not shown.

第2取付具14は、防振基体16が加硫成形される円筒状の筒状金具22とカップ状の底金具24とからなり、底金具24の底面に下向きの取付ボルト26が突設され、このボルト26を介して車体側に取り付けられるように構成されている。筒状金具22は、その下端部が底金具24の上端開口部に対し、かしめ部28によりかしめ固定されている。符号30は、筒状金具22の上端部にかしめ固定されたストッパ金具であり、第1取付具12のストッパ部18との間でストッパ作用を発揮する。また、符号32は、ストッパ金具30の上面を覆うストッパゴムである。   The second fixture 14 includes a cylindrical tubular fitting 22 and a cup-shaped bottom fitting 24 on which the vibration-proof base 16 is vulcanized, and a downward mounting bolt 26 projects from the bottom surface of the bottom fitting 24. Further, it is configured to be attached to the vehicle body side via the bolt 26. The lower end of the cylindrical fitting 22 is fixed by caulking to the upper end opening of the bottom fitting 24 by a caulking portion 28. Reference numeral 30 denotes a stopper fitting fixed by caulking to the upper end portion of the cylindrical fitting 22, and exerts a stopper action with the stopper portion 18 of the first fixture 12. Reference numeral 32 denotes a stopper rubber that covers the upper surface of the stopper fitting 30.

防振基体16は略傘状に形成され、その上端部が第1取付具12に、下端部が筒状金具22の上端開口部にそれぞれ加硫接着されている。この防振基体16の下端部に、筒状金具22の内周面を覆うゴム膜状のシール壁部34が連なっている。   The anti-vibration base 16 is formed in a substantially umbrella shape, and its upper end is vulcanized and bonded to the first fixture 12 and its lower end is vulcanized and bonded to the upper end opening of the cylindrical fitting 22. A rubber film-like seal wall portion 34 covering the inner peripheral surface of the cylindrical metal fitting 22 is connected to the lower end portion of the vibration isolation base 16.

第2取付具14には、防振基体16の下面に対して軸方向Xに対向配置されて当該下面との間に液体封入室36を形成する可撓性ゴム膜からなるダイヤフラム38が取り付けられ、液体封入室36に水やエチレングリコール、シリコーンオイル等の液体が封入されている。ダイヤフラム38は、外周部に環状の補強金具39を備え、該補強金具39を介して上記かしめ部28に固定されている。   A diaphragm 38 made of a flexible rubber film is attached to the second fixture 14 so as to face the lower surface of the vibration-isolating base 16 in the axial direction X and form a liquid sealing chamber 36 between the lower surface. A liquid such as water, ethylene glycol, or silicone oil is sealed in the liquid sealing chamber 36. The diaphragm 38 includes an annular reinforcing metal fitting 39 on the outer peripheral portion, and is fixed to the caulking portion 28 via the reinforcing metal fitting 39.

上記液体封入室36は、仕切り体40により、防振基体16が室壁の一部をなす上側(即ち、防振基体側)の主液室42と、ダイヤフラム38が室壁の一部をなす下側(即ち、ダイヤフラム側)の副液室44とに仕切られている。   The liquid sealing chamber 36 is divided into a main liquid chamber 42 on the upper side (i.e., on the side of the vibration isolating base), and the diaphragm 38 forms a part of the chamber wall. The secondary liquid chamber 44 is divided into a lower side (that is, a diaphragm side).

仕切り体40は、平面視円形状をなして筒状金具22の内側にシール壁部34を介して嵌着された金属や樹脂等の剛性材料からなる仕切り体本体46と、該仕切り体本体46の下面側に当接配置された仕切り受板48とで構成されている。仕切り受板48は、略中央部に円形の開口部を持つ円板状の金具であり、該仕切り受板48を、ダイヤフラム38の補強金具39とともに、上記かしめ部28で固定することにより、仕切り体本体46は、シール壁部34に設けられた段部34Aと仕切り受板48との間で軸方向Xに挟まれた状態に保持されている。   The partition body 40 has a circular shape in a plan view, and is a partition body main body 46 made of a rigid material such as a metal or a resin and is fitted inside the cylindrical fitting 22 via a seal wall 34, and the partition body main body 46. And a partition receiving plate 48 disposed in contact with the lower surface of the plate. The partition receiving plate 48 is a disk-shaped metal fitting having a circular opening at a substantially central portion, and the partition receiving plate 48 is fixed together with the reinforcing metal fitting 39 of the diaphragm 38 by the caulking portion 28 to thereby partition the partition receiving plate 48. The body main body 46 is held in a state of being sandwiched in the axial direction X between the step portion 34 </ b> A provided on the seal wall portion 34 and the partition receiving plate 48.

主液室42と副液室44は、仕切り体40に設けられた絞り流路であるオリフィス流路50を介して互いに連通されている。オリフィス流路50は、この例では車両走行時のシェイク振動を減衰するために、シェイク振動に対応した低周波数域(例えば、5〜15Hz程度)にチューニングされた低周波域オリフィスである。すなわち、オリフィス流路50を通じて流動する液体の共振作用に基づく減衰効果がシェイク振動の入力時に有効に発揮されるように、流路の断面積及び長さを調整することによってチューニングされている。   The main liquid chamber 42 and the sub liquid chamber 44 are communicated with each other via an orifice channel 50 which is a throttle channel provided in the partition body 40. In this example, the orifice flow path 50 is a low frequency range orifice tuned to a low frequency range (for example, about 5 to 15 Hz) corresponding to the shake vibration in order to attenuate the shake vibration during traveling of the vehicle. That is, tuning is performed by adjusting the cross-sectional area and length of the flow path so that the damping effect based on the resonance action of the liquid flowing through the orifice flow path 50 is effectively exhibited when the shake vibration is input.

オリフィス流路50は、仕切り体40の外周部に設けられた主たる流路部分である第1流路部分52と、仕切り体40の内周側でその厚み方向(第2取付具14の軸方向Xと同じ。)に延びる第2流路部分54と、第1流路部分52と第2流路部分54を連結する第3流路部分56とで構成されている。   The orifice channel 50 includes a first channel portion 52 which is a main channel portion provided on the outer peripheral portion of the partition body 40, and a thickness direction (an axial direction of the second fixture 14) on the inner periphery side of the partition body 40. The same as X.) and a third flow path portion 56 connecting the first flow path portion 52 and the second flow path portion 54.

第1流路部分52は、仕切り体本体46の外周部に設けられた外向きに開かれた第1オリフィス形成溝58と、上記シール壁部34との間で、周方向に延びて形成されている。第1流路部分52は、その周方向の一端に副液室44に対して開口する副液室側開口(不図示)を備え、これがオリフィス流路50の副液室側開口となっている。   The first flow path portion 52 is formed to extend in the circumferential direction between a first orifice forming groove 58 provided on the outer peripheral portion of the partition body main body 46 and opened outward, and the seal wall portion 34. ing. The first flow path portion 52 includes a secondary liquid chamber side opening (not shown) that opens to the secondary liquid chamber 44 at one end in the circumferential direction, and this is the secondary liquid chamber side opening of the orifice flow path 50. .

第2流路部分54は、仕切り体本体46を軸方向Xに貫通する断面円形の孔により形成されており、その一端(即ち、主液室42側に位置する上端)が主液室42に対して開口しており、該開口がオリフィス流路50の主液室側開口50Aとなっている。   The second flow path portion 54 is formed by a hole having a circular cross section that penetrates the partition body 46 in the axial direction X, and one end thereof (that is, the upper end located on the main liquid chamber 42 side) is in the main liquid chamber 42. The opening is a main liquid chamber side opening 50 </ b> A of the orifice channel 50.

第3流路部分56は、第1流路部分52の周方向の他端と第2流路部分54の他端(即ち、下端)とを繋ぐ流路部分であり、軸方向Xに直交する方向に延びている。第3流路部分56は、仕切り体本体46の下面(副液室側の面)に凹設された溝と、当該下面を覆う仕切り受板48との間に形成されている。   The third flow path portion 56 is a flow path portion that connects the other end in the circumferential direction of the first flow path portion 52 and the other end (that is, the lower end) of the second flow path portion 54, and is orthogonal to the axial direction X. Extending in the direction. The third flow path portion 56 is formed between a groove recessed in the lower surface (surface on the sub liquid chamber side) of the partition body 46 and a partition receiving plate 48 that covers the lower surface.

以上より、オリフィス流路50は、第2流路部分54の上端の主液室側開口50Aで主液室42に対して開口し、第2流路部分54から第3流路部分56を介して第1流路部分52に接続され、第1流路部分52の一端の副液室側開口で副液室44に対して開口することにより、主液室42と副液室44との間を連通している。   As described above, the orifice flow channel 50 opens to the main liquid chamber 42 through the main liquid chamber side opening 50 </ b> A at the upper end of the second flow channel portion 54, and passes through the third flow channel portion 56 from the second flow channel portion 54. Are connected to the first flow path portion 52 and opened to the secondary liquid chamber 44 at the secondary liquid chamber side opening at one end of the first flow path portion 52, so that the gap between the main liquid chamber 42 and the secondary liquid chamber 44 is established. Is communicated.

図1,2に示すように、防振装置10は、オリフィス流路50での液体の流れを制限し得るゴム弾性体からなる膜状(隔壁状)の弁部材60を備える。弁部材60は、仕切り体40の主液室42側において、オリフィス流路50の主液室側開口50Aを開閉するものであり、該主液室側開口50Aの開口方向(即ち、この部分でのオリフィス流路50の流れ方向である軸方向X)に対して直交するように、当該開口50Aの主液室42側に対向して設けられている。   As shown in FIGS. 1 and 2, the vibration isolator 10 includes a film-like (partition-like) valve member 60 made of a rubber elastic body that can restrict the flow of liquid in the orifice channel 50. The valve member 60 opens and closes the main liquid chamber side opening 50A of the orifice channel 50 on the main liquid chamber 42 side of the partition body 40, and the opening direction of the main liquid chamber side opening 50A (that is, in this portion). The opening 50 </ b> A is provided opposite to the main liquid chamber 42 side so as to be orthogonal to the axial direction X) which is the flow direction of the orifice channel 50.

弁部材60を収容するため、図3に示すように、仕切り体40の主液室42側には弁収容凹部62が設けられている。弁収容凹部62は、主液室42側に開かれた平面視円形の凹部であり、仕切り体本体46の上面に段付き凹状に形成されている。この弁収容凹部62の底面の中央部に、オリフィス流路50の上記主液室側開口50Aが設けられている。また、弁収容凹部62の開口側には、金属や樹脂等の剛性材料からなる円板状の規制部材64が内嵌固定されており、これにより弁部材60が仕切り体42に保持されている。   In order to accommodate the valve member 60, as shown in FIG. 3, a valve housing recess 62 is provided on the main liquid chamber 42 side of the partition body 40. The valve accommodating recess 62 is a circular recess in a plan view opened to the main liquid chamber 42 side, and is formed in a stepped recess shape on the upper surface of the partition body 46. The main liquid chamber side opening 50 </ b> A of the orifice channel 50 is provided at the center of the bottom surface of the valve housing recess 62. In addition, a disc-shaped regulating member 64 made of a rigid material such as metal or resin is fitted and fixed to the opening side of the valve housing recess 62, whereby the valve member 60 is held by the partition body 42. .

詳細には、弁部材60は、円板状(円形膜状)をなし、その外周部60Aが弁収容凹部62の外周部と規制部材64の外周部との間で軸方向Xに液密(即ち、液体がリークしないよう)に挟持された状態にて、仕切り体40に保持されている。図4に示すように、弁部材60は、外周部60Aが全周にわたって厚肉状をなすとともに、該厚肉の外周部60Aの内側に薄肉膜状をなす可撓性膜部60Bを備える。可撓性膜部60Bは、厚肉の外周部60Aの厚み方向(軸方向X)の中間位置において、その内周面間を塞ぐように形成されている。   Specifically, the valve member 60 has a disk shape (circular membrane shape), and the outer peripheral portion 60 </ b> A is liquid-tight in the axial direction X between the outer peripheral portion of the valve accommodating recess 62 and the outer peripheral portion of the regulating member 64 ( That is, it is held by the partition body 40 in a state of being sandwiched so that the liquid does not leak. As shown in FIG. 4, the valve member 60 includes a flexible film part 60 </ b> B that forms a thin film on the inner side of the thick outer peripheral part 60 </ b> A while the outer peripheral part 60 </ b> A has a thick wall shape over the entire circumference. The flexible film part 60B is formed so as to close the inner peripheral surface at an intermediate position in the thickness direction (axial direction X) of the thick outer peripheral part 60A.

可撓性膜部60Bは、主液室42と副液室44との間の液圧差及びそれに基づくオリフィス流路50内の液流動によって、図3に示す中立位置から軸方向Xに撓み変形(弾性変形)するように構成されている。可撓性膜部60Bの中央部には、主液室側開口50Aに対して主液室42側に対向配置されて、上記可撓性膜部60Bの撓み変形によりオリフィス流路50での液体の流れを制限する弁部66が設けられている。弁部66は、可撓性膜部60Bの下方、即ち副液室44側への撓み変形時に、主液室側開口50Aの周りに押し付けられて当該開口50Aを塞ぐことによりオリフィス流路50での液体の流れを制限するとともに、当該押し付けられた状態でも仕切り体40(詳細には、前記開口50Aの周りの仕切り体部分)との間で液体の流れが確保されるように形成されている。従って、弁部66は、可撓性膜部60Bの下方への撓み変形時にオリフィス流路50の主液室側開口50Aを狭窄するように形成されている。   The flexible membrane portion 60B is bent and deformed in the axial direction X from the neutral position shown in FIG. 3 due to the hydraulic pressure difference between the main liquid chamber 42 and the sub liquid chamber 44 and the liquid flow in the orifice channel 50 based on the difference ( (Elastic deformation). In the central portion of the flexible membrane portion 60B, the main fluid chamber side opening 50A is opposed to the main fluid chamber 42 side, and the liquid in the orifice channel 50 is deformed by the bending deformation of the flexible membrane portion 60B. The valve part 66 which restricts the flow of the is provided. The valve portion 66 is pressed around the main liquid chamber side opening 50A and closes the opening 50A when the flexible membrane portion 60B is bent downward toward the sub liquid chamber 44, thereby closing the opening 50A. In addition to restricting the flow of the liquid, the liquid flow between the partition 40 (specifically, the partition around the opening 50A) is ensured even in the pressed state. . Therefore, the valve portion 66 is formed so as to narrow the main liquid chamber side opening 50A of the orifice channel 50 when the flexible membrane portion 60B is bent and deformed downward.

可撓性膜部60Bには、また、上記開口50Aに対して重ならない位置、即ち軸方向Xからみてラップしない位置に、オリフィス流路50を主液室42側に連通させる連通穴68が設けられている。連通穴68は、図5に示すように、弁部66を取り囲む円周上の複数箇所に並設されており、この例では、等間隔にて4個の連通穴68が設けられている。連通穴68は、弁部66が上記開口50Aから離間して開放した状態(図3参照)で、該連通穴68を通ってオリフィス流路50内に液体が流動し、これによりオリフィス流路50を開放させるよう構成されている。連通穴68の開口面積は、連通穴68において絞り効果が発揮されないように、その総面積が、オリフィス流路50の断面積、即ち上記開口50Aの面積よりも大きく設定されている。   The flexible membrane portion 60B is also provided with a communication hole 68 that allows the orifice channel 50 to communicate with the main liquid chamber 42 at a position that does not overlap the opening 50A, that is, a position that does not wrap when viewed from the axial direction X. It has been. As shown in FIG. 5, the communication holes 68 are arranged in parallel at a plurality of locations on the circumference surrounding the valve portion 66. In this example, four communication holes 68 are provided at equal intervals. In the communication hole 68, in a state where the valve portion 66 is opened apart from the opening 50A (see FIG. 3), the liquid flows through the communication hole 68 into the orifice flow path 50, whereby the orifice flow path 50. Is configured to open. The opening area of the communication hole 68 is set to be larger than the cross-sectional area of the orifice channel 50, that is, the area of the opening 50A so that the throttling effect is not exhibited in the communication hole 68.

図3〜5に示すように、弁部66は、可撓性膜部60Bの膜面(詳細には下面、即ち副液室44側の膜面)から突出した筒状緩衝部70を備えてなる。筒状緩衝部70は、可撓性膜部60Bの下方への撓み変形時に主液室側開口50Aの周りに当接して当該開口50Aを取り囲む円筒状のゴム部分であり、当該撓み変形時に主液室側開口50Aの周りに押し付けられてオリフィス流路50での液体の流れを制限する。なお、弁部材60の中立位置では、筒状緩衝部70と仕切り体40との間に設けられた隙間を介して、主液室42とオリフィス流路50とが連通されており、この隙間での流路面積は、圧力損失がないように、オリフィス流路50の断面積、即ち上記開口50Aの面積よりも大きく設定されている。   3-5, the valve part 66 is provided with the cylindrical buffer part 70 which protruded from the film | membrane surface (in detail, the lower surface, ie, the film surface at the side of the secondary liquid chamber 44) of the flexible film | membrane part 60B. Become. The cylindrical buffer portion 70 is a cylindrical rubber portion that abuts around the main liquid chamber side opening 50A and surrounds the opening 50A when the flexible membrane portion 60B is deformed downward. It is pressed around the liquid chamber side opening 50 </ b> A to restrict the flow of the liquid in the orifice channel 50. At the neutral position of the valve member 60, the main liquid chamber 42 and the orifice channel 50 are communicated with each other through a gap provided between the cylindrical buffer portion 70 and the partition body 40. The flow path area is set larger than the cross-sectional area of the orifice flow path 50, that is, the area of the opening 50A so that there is no pressure loss.

筒状緩衝部70は、仕切り体40への当接による衝撃を和らげるとともに、当接後にも弁部66の変形を許容して仕切り体40への伝達エネルギーを緩和させるように構成されている。すなわち、筒状緩衝部70は、その肉厚Pよりも突出高さ(可撓性膜部60Bからの突出高さ)Qが大きく(P<Q)なるように薄肉かつ高く設定されており(図7参照)、これにより、図9に示すオリフィス流路50の狭窄後にも、軸方向Xにおいて弁部66(即ち、筒状緩衝部70)が容易に変形できるよう構成されている。より好ましくは、筒状緩衝部70の突出高さQはその外側における可撓性膜部60Bの肉厚Rよりも大きく設定され(Q>R)、また、筒状緩衝部70の肉厚Pは突出高さQに対してP<0.5Qを満足するように設定されている。一例として、本実施形態ではR=1(例えば1mm)として、Q=2.5、P=0.6に設定されている。   The cylindrical buffer portion 70 is configured to reduce the impact due to the contact with the partition body 40 and to allow the valve portion 66 to be deformed even after the contact so as to reduce the transmission energy to the partition body 40. That is, the cylindrical buffer part 70 is set to be thin and high so that the protrusion height (protrusion height from the flexible film part 60B) Q is larger than the thickness P (P <Q) ( Accordingly, the valve portion 66 (that is, the cylindrical buffer portion 70) can be easily deformed in the axial direction X even after the orifice channel 50 shown in FIG. 9 is narrowed. More preferably, the protruding height Q of the cylindrical buffer portion 70 is set to be larger than the thickness R of the flexible membrane portion 60B on the outer side (Q> R), and the thickness P of the cylindrical buffer portion 70 is also set. Is set so as to satisfy P <0.5Q with respect to the protrusion height Q. As an example, in this embodiment, R = 1 (for example, 1 mm), and Q = 2.5 and P = 0.6 are set.

図4,5に示すように、筒状緩衝部70には、仕切り体40との当接後にも仕切り体40との間で流路確保可能にするための切欠部として、スリット72が設けられている。スリット72は、筒状緩衝部70の高さ方向(軸方向Xと同じ)に延びる細い切込み(隙間)であり、筒状緩衝部70の周方向における複数箇所(この例では3箇所)に設けられている。特に限定するものではないが、スリット72の幅Sは、筒状緩衝部70の肉厚Pと同等に設定することが好ましく、また、スリット72の深さT(軸方向Xにおける寸法)は、筒状緩衝部70の突出高さQと同等、即ち筒状緩衝部74の高さ方向の全体にわたって延びるように形成することが好ましい(図6(b)参照)。   As shown in FIGS. 4 and 5, the cylindrical buffer part 70 is provided with a slit 72 as a notch part for ensuring a flow path between the cylindrical buffer part 70 and the partition body 40 even after contact with the partition body 40. ing. The slits 72 are thin cuts (gap) extending in the height direction (same as the axial direction X) of the cylindrical buffer portion 70, and are provided at a plurality of locations (three locations in this example) in the circumferential direction of the cylindrical buffer portion 70. It has been. Although not particularly limited, the width S of the slit 72 is preferably set to be equal to the thickness P of the cylindrical buffer portion 70, and the depth T (dimension in the axial direction X) of the slit 72 is It is preferably formed so as to be equivalent to the protruding height Q of the cylindrical buffer portion 70, that is, to extend over the entire height direction of the cylindrical buffer portion 74 (see FIG. 6B).

図4〜6に示すように、可撓性膜部60Bには、筒状緩衝部70の外側に筒状緩衝部70よりも突出高さの高い円柱状の突起74が複数設けられている。突起74は、上記開口50Aに対して重ならない位置の膜面に設けられており、図5(a)に示すように、筒状緩衝部70を取り囲む円周上(この例では、上記連通穴68と同じ円周上)において、連通穴68の間に各2個ずつ設けられている。突起74は、弁部材60の中立位置において、その先端が仕切り体40の壁面に当接しても当接しなくてもよい。   As shown in FIGS. 4 to 6, the flexible film part 60 </ b> B is provided with a plurality of columnar protrusions 74 having a protruding height higher than the cylindrical buffer part 70 on the outside of the cylindrical buffer part 70. The protrusion 74 is provided on the film surface at a position that does not overlap the opening 50A, and as shown in FIG. 5A, on the circumference surrounding the cylindrical buffer portion 70 (in this example, the communication hole). Two on the same circumference as 68) between the communicating holes 68. The protrusion 74 may or may not come into contact with the wall surface of the partition body 40 at the neutral position of the valve member 60.

上記複数の突起74は、この例では、突出高さが異なる3種類の突起からなる。詳細には、突出高さが最も高い4つの第1突起74Aと、突出高さが最も低い2つの第3突起74Cと、これらの中間の突出高さを持つ2つの第2突起74Bとからなる。   In this example, the plurality of protrusions 74 include three kinds of protrusions having different protrusion heights. Specifically, the first protrusion 74A has four protrusions with the highest protrusion height, two third protrusions 74C have the lowest protrusion height, and two second protrusions 74B with an intermediate protrusion height. .

筒状緩衝部70には、その先端に複数の補助突起76が設けられている。補助突起76は、微小な半球状の突起であり、筒状緩衝部70の先端部において周方向に等間隔にて並設されている。図5(b)に示すように、補助突起76の高さは上記突起74(特には最も低い第3突起74C)よりも低く設定されている。   The cylindrical buffer portion 70 is provided with a plurality of auxiliary projections 76 at the tip thereof. The auxiliary protrusions 76 are minute hemispherical protrusions, and are arranged in parallel at equal intervals in the circumferential direction at the distal end portion of the cylindrical buffer portion 70. As shown in FIG. 5B, the height of the auxiliary protrusion 76 is set lower than the protrusion 74 (particularly, the lowest third protrusion 74C).

筒状緩衝部70には、また、その内側の膜部分60Cに筒状緩衝部70を補強するための突条からなるリブ78が設けられている。リブ78は、弁部材60の中心(弁部66の中心と同じ)から複数本(この例では3本)が放射状に延びて筒状緩衝部70の内周面に連結された形状をなし、図6に示すように中心から径方向外方に向かって漸次高くなるように上面が傾斜して形成されており、これにより筒状緩衝部70の根元部を補強している。   The cylindrical buffer portion 70 is further provided with ribs 78 formed of protrusions for reinforcing the cylindrical buffer portion 70 on the inner film portion 60C. The rib 78 has a shape in which a plurality (three in this example) extend radially from the center of the valve member 60 (same as the center of the valve portion 66) and are connected to the inner peripheral surface of the cylindrical buffer portion 70, As shown in FIG. 6, the upper surface is formed to be inclined so as to gradually increase from the center toward the outer side in the radial direction, thereby reinforcing the root portion of the cylindrical buffer portion 70.

図3に示すように、上記規制部材64は、弁部材60の主液室42側において可撓性膜部60Bに対向配置されて、当該可撓性膜部60Bの上方(即ち、主液室42側)への所定以上の撓み変形を規制する。図3,8に示されるように、規制部材64には、中央部に平面視円形状の貫通穴80が設けられるともに、該貫通穴80の周りに複数の連通穴82が設けられている。   As shown in FIG. 3, the regulating member 64 is disposed opposite to the flexible membrane portion 60B on the main fluid chamber 42 side of the valve member 60, and is above the flexible membrane portion 60B (ie, the main fluid chamber). 42 side) or more than a predetermined amount. As shown in FIGS. 3 and 8, the restricting member 64 is provided with a through hole 80 having a circular shape in a plan view at the center and a plurality of communication holes 82 around the through hole 80.

中央の貫通穴80は、主液室42の液圧とオリフィス流路50への液流れを弁部66に作用させやすくするために、弁部66に対向する位置に設けられている。貫通穴80の開口面積は、貫通穴80において絞り効果が発揮されないように、オリフィス流路50の断面積、即ち上記開口50Aの面積よりも大きく設定されている。   The central through hole 80 is provided at a position facing the valve portion 66 so that the hydraulic pressure in the main liquid chamber 42 and the liquid flow to the orifice channel 50 can be easily applied to the valve portion 66. The opening area of the through hole 80 is set larger than the cross-sectional area of the orifice channel 50, that is, the area of the opening 50A so that the throttling effect is not exhibited in the through hole 80.

規制部材64の連通穴82は、オリフィス流路50を主液室42側に連通させるための開口部であり、弁部材60の連通穴68が設けられた円周上と重なり合う同径の円周上において、周方向に等間隔にて複数個(この例では4個)が設けられている。連通穴82は、図10に示すように弁部材60が主液室42側に撓み変形して中央の貫通穴80が塞がれた場合でも、連通穴82において絞り効果が発揮されないように、その総面積がオリフィス流路50の断面積、即ち上記開口50Aの面積よりも大きく設定されている。この例では、規制部材64の連通穴82は、弁部材60の連通穴68に対して、軸方向Xにおいて互いに重なり合う位置に設けられており、この部分での液体の流動抵抗ができるだけ小さくなるようにしている。   The communication hole 82 of the regulating member 64 is an opening for communicating the orifice channel 50 to the main liquid chamber 42 side, and has a circumference of the same diameter that overlaps the circumference of the valve member 60 where the communication hole 68 is provided. In the above, a plurality (four in this example) are provided at equal intervals in the circumferential direction. As shown in FIG. 10, the communication hole 82 is not deformed in the communication hole 82 even when the valve member 60 is bent and deformed toward the main liquid chamber 42 and the central through hole 80 is blocked. The total area is set larger than the sectional area of the orifice channel 50, that is, the area of the opening 50A. In this example, the communication hole 82 of the restricting member 64 is provided at a position overlapping with each other in the axial direction X with respect to the communication hole 68 of the valve member 60 so that the flow resistance of the liquid in this portion is as small as possible. I have to.

図3に示すように、弁部材60には、規制部材64の貫通穴80に対して重ならない位置における主液室42側の膜面に、可撓性膜部60Bの主液室42側への撓み変形時に規制部材64に押し付けられる緩衝突起84が設けられている。この例では、緩衝突起84は、弁部66の主液室42側の膜面から突出して規制部材64の貫通穴80を取り囲む円筒状に形成されている。より詳細には、緩衝突起84は、上記弁部66の副液室44側の膜面に設けられた筒状緩衝部70と同一形状に形成されている。従って、緩衝突起84には、筒状緩衝部70と同様のスリット72及び補助突起76も設けられており、これらは下側の筒状緩衝部70と上側の緩衝突起84とで上下対称に形成されている。また、主液室42側の膜面には、上記副液室44側の膜面と同様に、突起74(即ち、第1突起74A、第2突起74B、第3突起74C)が設けられるとともに、リブ78も設けられている。突起74は可撓性膜部62Bの両側の膜面で上下対称に形成されている。一方、リブ78は上下で位相をずらして配置されている(図5(a)及び(c)参照)。これにより、弁部材60の組み付け時における上下方向性をなくして、組み立て作業性を向上している。   As shown in FIG. 3, the valve member 60 has a membrane surface on the main liquid chamber 42 side at a position where it does not overlap the through hole 80 of the regulating member 64, toward the main liquid chamber 42 side of the flexible membrane portion 60 </ b> B. A buffer projection 84 is provided that is pressed against the restricting member 64 at the time of bending deformation. In this example, the buffer protrusion 84 is formed in a cylindrical shape that protrudes from the membrane surface of the valve portion 66 on the main liquid chamber 42 side and surrounds the through hole 80 of the regulating member 64. More specifically, the buffer protrusion 84 is formed in the same shape as the cylindrical buffer portion 70 provided on the membrane surface of the valve portion 66 on the side of the secondary liquid chamber 44. Therefore, the buffer projection 84 is also provided with the slit 72 and the auxiliary projection 76 similar to the cylindrical buffer portion 70, and these are formed vertically symmetrically by the lower cylindrical buffer portion 70 and the upper buffer projection 84. Has been. The film surface on the main liquid chamber 42 side is provided with protrusions 74 (that is, the first protrusion 74A, the second protrusion 74B, and the third protrusion 74C), similarly to the film surface on the sub liquid chamber 44 side. Ribs 78 are also provided. The protrusions 74 are formed symmetrically on the film surfaces on both sides of the flexible film part 62B. On the other hand, the ribs 78 are arranged with their phases shifted vertically (see FIGS. 5A and 5C). Thereby, the up-down direction property at the time of the assembly | attachment of the valve member 60 is eliminated, and assembly workability | operativity is improved.

以上よりなる液封入式防振装置10であると、車両走行時においてシェイク振動のような所定振幅未満の振動入力に対しては、可撓性膜部60Bの撓み変形が小さく、そのため、図3に示すように、弁部材60によってオリフィス流路50の流れが制限されないので、オリフィス流路50内での液流動による本来の減衰性能を発揮することができる。その際、弁部材60はオリフィス流路50内に設けられるものではなく、また、弁部66の筒状緩衝部70と仕切り体40との間に設けられた隙間、弁部材60に設けられた連通穴68、並びに規制部材64に設けられた貫通穴80及び連通穴82が、オリフィス流路50の断面積に対して同等以上に設定されているので、圧力損失の増大を伴わず、減衰性能の低下を回避することができる。   With the liquid-filled vibration isolator 10 having the above-described configuration, the flexural deformation of the flexible film portion 60B is small with respect to vibration input having a predetermined amplitude or less, such as shake vibration, when the vehicle is running. As shown in FIG. 6, since the flow of the orifice channel 50 is not limited by the valve member 60, the original damping performance due to the liquid flow in the orifice channel 50 can be exhibited. At that time, the valve member 60 is not provided in the orifice channel 50, and is provided in the valve member 60, a gap provided between the cylindrical buffer portion 70 of the valve portion 66 and the partition body 40. Since the communication hole 68 and the through hole 80 and the communication hole 82 provided in the regulating member 64 are set to be equal to or larger than the cross-sectional area of the orifice channel 50, the damping performance is not increased without increasing the pressure loss. Can be avoided.

一方、所定振幅以上の大荷重振動入力(例えば、路面の段差を乗り越えたとき等のような瞬間的に大きな荷重の入力)に対し、液体が主液室42側から副液室44側に流れる際には、主液室42と副液室44との圧力差のみならず、オリフィス流路50での液流れによる噴流の効果として、図9に示すように可撓性膜部60Bを下方に押し下げるように撓み変形する。そのため、中央の弁部66が主液室側開口50Aの周りに押し付けられて、流路が制限(即ち、狭窄)される。これにより、オリフィス流路50での主液室42から副液室44への液体の流れが規制されるので、主液室42内の正圧が大きくなる。その後、副液室44側から主液室42側に液体が流れる際には、図10に示すように、可撓性膜部60Bが主液室42側に撓み変形するが、これによってオリフィス流路50は制限されず、開放状態に保持される。そのため、オリフィス流路50を通って副液室44から主液室42への液体の供給が可能である。このように大振幅振動入力時にオリフィス流路50の流れを制限することにより主液室42内の正圧を高めることができるので、続けて主液室42の液圧が下降する方向の荷重が入力されたときに主液室42内の過度な負圧状態を抑制して、キャビテーションの発生を抑えることができる。   On the other hand, the liquid flows from the main liquid chamber 42 side to the sub liquid chamber 44 side in response to a large load vibration input having a predetermined amplitude or more (for example, an input of a momentary large load such as when overcoming a road step). At this time, not only the pressure difference between the main liquid chamber 42 and the sub liquid chamber 44 but also the effect of the jet flow caused by the liquid flow in the orifice channel 50, the flexible film portion 60B is moved downward as shown in FIG. It bends and deforms to push down. Therefore, the central valve portion 66 is pressed around the main liquid chamber side opening 50A, and the flow path is restricted (that is, narrowed). As a result, the flow of the liquid from the main liquid chamber 42 to the sub liquid chamber 44 in the orifice channel 50 is restricted, so that the positive pressure in the main liquid chamber 42 increases. Thereafter, when the liquid flows from the sub liquid chamber 44 side to the main liquid chamber 42 side, as shown in FIG. 10, the flexible film portion 60B is bent and deformed to the main liquid chamber 42 side. The path 50 is not limited and is kept open. Therefore, the liquid can be supplied from the auxiliary liquid chamber 44 to the main liquid chamber 42 through the orifice channel 50. In this way, the positive pressure in the main liquid chamber 42 can be increased by restricting the flow of the orifice flow path 50 when a large amplitude vibration is input. When input, it is possible to suppress an excessive negative pressure state in the main liquid chamber 42 and suppress the occurrence of cavitation.

また、本実施形態であると、弁部材60を主液室側開口50Aの開口方向に対して直交するように対向配置させた上で、その外周部60Aを液密に保持するようにしたので、液室42,44間の圧力差のみならず、オリフィス流路50での液流動により弁部材60を撓み変形させることができる。そのため、圧力差のみで弁部材を作動させる場合に比べて、信頼性を損なうことなく、より低振幅側から作動させることができる。   In the present embodiment, since the valve member 60 is disposed so as to be orthogonal to the opening direction of the main liquid chamber side opening 50A, the outer peripheral portion 60A is held liquid-tight. The valve member 60 can be bent and deformed not only by the pressure difference between the liquid chambers 42 and 44 but also by the liquid flow in the orifice channel 50. Therefore, compared with the case where the valve member is operated only by the pressure difference, the valve member can be operated from the lower amplitude side without impairing the reliability.

また、弁部66である筒状緩衝部70に切欠部としてのスリット72を設けて、筒状緩衝部70が仕切り体40に押し付けられた状態でも流路を確保できる形状としたので、弁部66が仕切り体40の上記開口50A周りに吸い付くことにより中立位置に復帰できなくなるという不具合を回避することができる。また、かかるスリット72は、筒状緩衝部70が仕切り体40に押し付けられて圧縮されたときに、圧縮量に従い流路面積が徐々に小さくので、入力振幅の大きさに応じて流路を絞る量が変化し、入力振幅に応じたキャビテーション対策を行うことができる。   In addition, a slit 72 serving as a notch is provided in the cylindrical buffer portion 70 that is the valve portion 66 so that the flow path can be secured even when the cylindrical buffer portion 70 is pressed against the partition body 40. It is possible to avoid the inconvenience that 66 cannot return to the neutral position by sucking around the opening 50A of the partition body 40. Further, the slit 72 narrows the flow path according to the magnitude of the input amplitude because the flow path area gradually decreases according to the compression amount when the cylindrical buffer portion 70 is compressed by being pressed against the partition body 40. The amount changes, and cavitation countermeasures can be taken according to the input amplitude.

また、弁部66に薄肉状のゴム壁からなる筒状緩衝部70を設けたので、図9に示すオリフィス流路50の閉塞後においても、筒状緩衝部70が弾性変形することにより弁部66の変形が許容されている。そのため、例えば、悪路走行時等の大振幅入力時においてオリフィス流路50の閉塞後にも弁部66が変形することで、仕切り体40への伝達エネルギーを緩和させることができる。すなわち、この場合、仕切り体40への伝達エネルギーEは、上記液流動により撓み変形する弁部材60の運動エネルギーをE1とし、弁部66の変形による消費エネルギーをE2として、E=E1−E2で表されるので、弁部66の変形による消費エネルギーの分だけ、仕切り体40への伝達エネルギーを低減することができ、異音の発生を抑えることができる。可撓性膜部60Bの主液室42側の膜面に設けた円筒状の緩衝突起84についても、同様であり、規制部材64に対する当接後にも変形によって規制部材64への伝達エネルギーを低減することができる。   Further, since the cylindrical buffer portion 70 made of a thin rubber wall is provided in the valve portion 66, the cylindrical buffer portion 70 is elastically deformed even after the orifice channel 50 shown in FIG. 66 deformations are allowed. Therefore, for example, when the large-amplitude input such as when traveling on a rough road, the valve portion 66 is deformed even after the orifice channel 50 is closed, so that the energy transmitted to the partition body 40 can be reduced. That is, in this case, the transmission energy E to the partition 40 is E = E1-E2 where E1 is the kinetic energy of the valve member 60 that is bent and deformed by the liquid flow, and E2 is the energy consumed by the deformation of the valve portion 66. Therefore, the energy transmitted to the partition 40 can be reduced by the amount of energy consumed due to the deformation of the valve portion 66, and the generation of abnormal noise can be suppressed. The same applies to the cylindrical buffer protrusion 84 provided on the main liquid chamber 42 side film surface of the flexible film portion 60B, and the transmission energy to the regulating member 64 is reduced by deformation after contact with the regulating member 64. can do.

また、弁部66に上記筒状緩衝部70を設けたことにより、仕切り体40への弁部66の当接による荷重変化が滑らかとなり、当接による衝撃を低減することができる。特に、本実施形態では、上記のように突起74及び補助突起76を設けたことにより、弁部材60の撓み変形時には、第1突起74A→第2突起74B→第3突起74C→補助突起76→筒状緩衝部70本体の順番で、弁部66は仕切り体40に当接していく。このように弁部66を段階的に当接させることで、弁部66の当接による荷重変化を更に滑らかなものにすることができ、異音発生を抑えることができる。可撓性膜部60Bの主液室42側についても、同様であり、上記円筒状の緩衝突起84、突起74及び補助突起76を設けたことにより、規制部材64に対する当接時の衝撃を和らげて、異音を低減することができる。   Further, by providing the cylindrical buffer portion 70 in the valve portion 66, the load change due to the contact of the valve portion 66 with the partition body 40 becomes smooth, and the impact due to the contact can be reduced. In particular, in the present embodiment, by providing the protrusion 74 and the auxiliary protrusion 76 as described above, when the valve member 60 is bent and deformed, the first protrusion 74A → the second protrusion 74B → the third protrusion 74C → the auxiliary protrusion 76 → The valve part 66 contacts the partition body 40 in the order of the cylindrical buffer part 70 main body. Thus, by making the valve part 66 contact | abut in steps, the load change by contact | abutting of the valve part 66 can be made still smoother, and generation | occurrence | production of abnormal noise can be suppressed. The same applies to the main liquid chamber 42 side of the flexible membrane portion 60B. By providing the cylindrical buffer protrusion 84, protrusion 74, and auxiliary protrusion 76, the impact upon contact with the regulating member 64 is reduced. Thus, abnormal noise can be reduced.

また、筒状緩衝部70と緩衝突起84の内側に補強用のリブ78を設けたことにより、これら筒状緩衝部70と緩衝突起84の繰り返し変形によるヘタリを大幅に改善することができる。また、このような筒状緩衝部70と緩衝突起84の付け根部を補強するリブ78であるので、筒状緩衝部70全体としての剛性変化は小さく、異音性能への影響を抑えることができる。   Further, by providing the reinforcing ribs 78 inside the cylindrical buffer portion 70 and the buffer projection 84, the settling due to repeated deformation of the cylindrical buffer portion 70 and the buffer projection 84 can be greatly improved. Further, since the rib 78 reinforces the base portion of the cylindrical buffer portion 70 and the buffer protrusion 84, the change in rigidity of the cylindrical buffer portion 70 as a whole is small, and the influence on the noise performance can be suppressed. .

なお、上記実施形態では、筒状緩衝部70に設ける切欠部としてスリット72を複数設けたが、仕切り体40との当接後にも流路が確保される限り、スリット72は1つだけ設けてもよい。また、切欠部としては、スリットには限定されず、筒状緩衝部70の先端側からV字状やU字状の切込みを入れたり、筒状緩衝部70のゴム壁に貫通孔を設けたりするなど、仕切り体40との当接後にも流路が確保される限り、種々の変更が可能である。   In the above embodiment, a plurality of slits 72 are provided as notches provided in the cylindrical buffer portion 70. However, only one slit 72 is provided as long as a flow path is secured even after contact with the partition body 40. Also good. Further, the notch is not limited to a slit, and a V-shaped or U-shaped cut is made from the front end side of the cylindrical buffer 70, or a through hole is provided in the rubber wall of the cylindrical buffer 70. As long as the flow path is secured even after contact with the partition body 40, various modifications are possible.

また、上記実施形態では、筒状緩衝部70は、弁部材60の中立位置で仕切り体40から離間させて設けたが、中立位置において既に仕切り体40に当接していてもよい。すなわち、中立位置において筒状緩衝部70が仕切り体40に当接していたとしても、筒状緩衝部70に設けた切欠部等によって、弁部66と仕切り体40との間にオリフィス流路50への流路が十分に確保され、かつ、可撓性膜部60Bが下方に撓み変形したときに当該流路が狭窄されるようになっていればよい。   Moreover, in the said embodiment, although the cylindrical buffer part 70 was spaced apart and provided from the partition body 40 in the neutral position of the valve member 60, you may already contact | abut to the partition body 40 in the neutral position. That is, even if the cylindrical buffer portion 70 is in contact with the partition body 40 in the neutral position, the orifice channel 50 is provided between the valve portion 66 and the partition body 40 by a notch or the like provided in the cylindrical buffer portion 70. It is only necessary that a sufficient flow path is secured and the flow path is narrowed when the flexible film portion 60B is bent downward and deformed.

また、上記実施形態では、規制部材64側に当接する緩衝突起84を、仕切り体40側の筒状緩衝部70と同一形状としてスリット72も設けたが、緩衝突起84については、規制部材64の貫通穴80周りに当接して該貫通穴80を完全に塞いだとしても、その外周の連通孔82において主液室42への流路が確保することができるので、内側への流路を確保するためのスリット等の切欠部は設けなくてもよい。また、緩衝突起84の形状は、上記の円筒状には限定されず、規制部材64との当接による衝撃を緩衝し得る種々の形状を採用することができる。   Moreover, in the said embodiment, although the buffer protrusion 84 which contact | abuts to the control member 64 side is provided with the slit 72 as the same shape as the cylindrical buffer part 70 by the side of the partition body 40, the buffer protrusion 84 of the control member 64 is provided. Even if the periphery of the through hole 80 is contacted and completely closed, the flow path to the main liquid chamber 42 can be secured in the communication hole 82 on the outer periphery, so that the flow path to the inside is secured. It is not necessary to provide notches such as slits for the purpose. Further, the shape of the buffer protrusion 84 is not limited to the above-described cylindrical shape, and various shapes that can buffer an impact caused by contact with the regulating member 64 can be employed.

また、上記実施形態では、弁部材60の可撓性膜部60Bに複数種類の突起74を設ける際に、その突出高さを変えて設けたが、突起74の径を変えるなど断面積を変えて設けてもよい。また、突出高さと断面積の双方を変えて複数種類の突起74を設けてもよい。   In the above embodiment, when a plurality of types of projections 74 are provided on the flexible film portion 60B of the valve member 60, the projection height is changed. However, the cross-sectional area is changed, for example, by changing the diameter of the projection 74. May be provided. Further, a plurality of types of protrusions 74 may be provided by changing both the protrusion height and the cross-sectional area.

また、上記実施形態では、主液室42と副液室44を単一のオリフィス流路50で連結した構成、即ち、1本のオリフィス流路を持つものについて説明したが、複数本のオリフィス流路を持つ液封入式防振装置に適用してもよい。その場合、複数の副液室を設けてもよく、あるいはまた、主液室と単一の副液室との間を複数のオリフィス流路で連結してもよい。また、複数本のオリフィス流路を設ける場合、低周波数側のオリフィス流路に上記弁部材を設けることが好ましい。すなわち、第1オリフィス流路と、該第1オリフィス流路よりも高周波数域にチューニングされた第2オリフィス流路とを有する場合、低周波数側の第1オリフィス流路に上記弁部材を組み込むことが好ましい。   In the above embodiment, the configuration in which the main liquid chamber 42 and the sub liquid chamber 44 are connected by a single orifice flow path 50, that is, a structure having one orifice flow path has been described. The present invention may be applied to a liquid-filled vibration isolator having a path. In that case, a plurality of sub liquid chambers may be provided, or alternatively, the main liquid chamber and the single sub liquid chamber may be connected by a plurality of orifice channels. Further, when providing a plurality of orifice channels, it is preferable to provide the valve member in the orifice channel on the low frequency side. That is, when the first orifice channel and the second orifice channel tuned to a higher frequency range than the first orifice channel are included, the valve member is incorporated into the first orifice channel on the low frequency side. Is preferred.

その他、一々列挙しないが、本発明の趣旨を逸脱しない限り、種々の変更が可能である。   Although not enumerated one by one, various modifications can be made without departing from the spirit of the present invention.

本発明は、エンジンマウントの他、例えばボディマウント、デフマウントなど、種々の防振装置に利用することができる。   The present invention can be used for various vibration isolation devices such as a body mount and a differential mount in addition to an engine mount.

10…防振装置 12…第1取付具 14…第2取付具
16…防振基体 38…ダイヤフラム 40…仕切り体
42…主液室 44…副液室 50…オリフィス流路
50A…主液室側開口 60…弁部材 60A…外周部
60B…可撓性膜部 64…規制部材 66…弁部
68…可撓性膜部の連通穴 70…筒状緩衝部 72…スリット(切欠部)
74…突起 78…リブ 80…規制部材の貫通穴
82…規制部材の連通穴 84…緩衝突起 X…軸方向
P…筒状緩衝部の肉厚 Q…筒状緩衝部の突出高さ R…可撓性膜部の肉厚
DESCRIPTION OF SYMBOLS 10 ... Vibration isolator 12 ... 1st fixture 14 ... 2nd fixture 16 ... Vibration proof base 38 ... Diaphragm 40 ... Partition body 42 ... Main liquid chamber 44 ... Sub liquid chamber 50 ... Orifice flow path 50A ... Main liquid chamber side Opening 60 ... Valve member 60A ... Outer peripheral part 60B ... Flexible membrane part 64 ... Restriction member 66 ... Valve part 68 ... Communication hole 70 of the flexible membrane part 70 ... Cylindrical buffer part 72 ... Slit (notch part)
74 ... Projection 78 ... Rib 80 ... Through hole 82 of restricting member ... Communication hole of restricting member 84 ... Buffer protrusion X ... Axial direction P ... Thickness of cylindrical buffer part Q ... Projection height of cylindrical buffer part R ... Possible Wall thickness of flexible film

Claims (9)

振動源側と支持側の一方に取り付けられる第1取付具と、
振動源側と支持側の他方に取り付けられる第2取付具と、
前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、
前記防振基体が室壁の一部をなす液体が封入された主液室と、
ゴム状弾性膜からなるダイヤフラムが室壁の一部をなす液体が封入された副液室と、
前記主液室と副液室とを連結するオリフィス流路と、
前記主液室と副液室とを仕切るとともに前記オリフィス流路が形成された仕切り体と、
前記オリフィス流路の主液室側開口の開口方向に対して直交するように当該主液室側開口の主液室側に対向して前記仕切り体に設けられたゴム状弾性体からなる弁部材と、
を備え、
前記弁部材は、外周部が前記仕切り体に液密に保持されるとともに、前記外周部よりも内側の可撓性膜部において、前記主液室側開口に対して主液室側に対向配置されて前記可撓性膜部の撓み変形により前記オリフィス流路での液体の流れを制限する弁部と、前記主液室側開口に対して重ならない位置に設けられて前記オリフィス流路を前記主液室側に連通させる連通穴とを備え、
前記弁部は、前記可撓性膜部の主液室側への撓み変形時には前記オリフィス流路を制限せず、前記可撓性膜部の副液室側への撓み変形時に前記主液室側開口の周りに押し付けられて前記オリフィス流路での液体の流れを制限するとともに、当該押し付けられた状態でも前記仕切り体との間で液体の流れが確保されるよう形成された
ことを特徴とする液封入式防振装置。
A first fixture attached to one of the vibration source side and the support side;
A second fixture attached to the other of the vibration source side and the support side;
A vibration isolating base made of a rubber-like elastic body interposed between the first fixture and the second fixture;
A main liquid chamber in which a liquid in which the vibration isolating substrate forms a part of a chamber wall is enclosed;
A sub-fluid chamber in which a liquid made of a rubber elastic membrane forms a part of a chamber wall;
An orifice channel connecting the main liquid chamber and the sub liquid chamber;
A partition body that partitions the main liquid chamber and the sub liquid chamber and is formed with the orifice channel;
The valve member comprising the orifice passage of the main liquid chamber side opening the main liquid chamber side main liquid chamber side opposite to the rubber-like elastic body provided in the partition member of the opening so as to be orthogonal to the opening direction of the When,
With
The valve member has an outer peripheral portion that is liquid-tightly held by the partition body, and is disposed opposite to the main liquid chamber side opening on the main liquid chamber side opening in the flexible film portion inside the outer peripheral portion. A valve portion that restricts the flow of liquid in the orifice flow path due to bending deformation of the flexible membrane section, and a position that does not overlap the opening on the main liquid chamber side. A communication hole communicating with the main liquid chamber side,
The valve portion does not limit the orifice flow path when the flexible membrane portion is bent and deformed toward the main liquid chamber, and the main liquid chamber is not deformed when the flexible membrane portion is bent and deformed toward the sub liquid chamber. It is pressed around the side opening to restrict the flow of the liquid in the orifice channel, and is formed so as to ensure the liquid flow with the partition even in the pressed state. Liquid-filled vibration isolator.
前記弁部は、前記可撓性膜部の膜面から突出して前記主液室側開口を取り囲む筒状をなす筒状緩衝部を備え、前記筒状緩衝部は、前記可撓性膜部の撓み変形時に前記主液室側開口の周りに押し付けられて前記オリフィス流路での液体の流れを制限するとともに、当該押し付けられた状態でも前記仕切り体との間で液体の流れが確保されるように1又は複数の切欠部が設けられたことを特徴とする請求項1記載の液封入式防振装置。   The valve portion includes a cylindrical buffer portion that protrudes from the membrane surface of the flexible membrane portion and surrounds the main liquid chamber side opening, and the cylindrical buffer portion is formed of the flexible membrane portion. It is pressed around the opening on the main liquid chamber side during bending deformation to restrict the flow of liquid in the orifice flow path, and the flow of liquid is ensured between the partition and the pressed body. The liquid-filled type vibration damping device according to claim 1, wherein one or a plurality of cutouts are provided in the liquid crystal type vibration damping device. 前記筒状緩衝部は、肉厚よりも突出高さが大きい筒状をなしていることを特徴とする請求項2記載の液封入式防振装置。   The liquid filled type vibration damping device according to claim 2, wherein the cylindrical buffer portion has a cylindrical shape with a protruding height larger than a wall thickness. 前記筒状緩衝部は、前記可撓性膜部からの突出高さが当該筒状緩衝部の外側における前記可撓性膜部の肉厚よりも大きく設定されたことを特徴とする請求項3記載の液封入式防振装置。   The cylindrical buffer portion is characterized in that a protruding height from the flexible membrane portion is set to be larger than a thickness of the flexible membrane portion outside the cylindrical buffer portion. The liquid-filled vibration isolator as described. 前記可撓性膜部には、前記筒状緩衝部の外側に当該筒状緩衝部よりも突出高さが高い突起が複数設けられたことを特徴とする請求項2〜4のいずれか1項に記載の液封入式防振装置。   5. The flexible film part according to claim 2, wherein a plurality of protrusions having a protrusion height higher than that of the cylindrical buffer part are provided outside the cylindrical buffer part. Liquid-filled vibration isolator as described in 1. 前記筒状緩衝部の内側の膜部分にリブが設けられたことを特徴とする請求項2〜5のいずれか1項に記載の液封入式防振装置。   The liquid-filled vibration isolator according to claim 2, wherein a rib is provided on a film portion inside the cylindrical buffer portion. 前記オリフィス流路が前記仕切り体の厚み方向に延びる流路部分を備え、該流路部分の一端が前記主液室に開口して前記主液室側開口となっていることを特徴とする請求項1〜6のいずれか1項に記載の液封入式防振装置。   The orifice channel includes a channel portion extending in a thickness direction of the partition, and one end of the channel portion opens into the main liquid chamber to be the main liquid chamber side opening. Item 7. The liquid-filled vibration isolator according to any one of Items 1 to 6. 振動源側と支持側の一方に取り付けられる第1取付具と、
振動源側と支持側の他方に取り付けられる第2取付具と、
前記第1取付具と第2取付具との間に介設されたゴム状弾性体からなる防振基体と、
前記防振基体が室壁の一部をなす液体が封入された主液室と、
ゴム状弾性膜からなるダイヤフラムが室壁の一部をなす液体が封入された副液室と、
前記主液室と副液室とを連結するオリフィス流路と、
前記主液室と副液室とを仕切るとともに前記オリフィス流路が形成された仕切り体と、
前記オリフィス流路の主液室側開口の開口方向に対して直交するように前記仕切り体に設けられたゴム状弾性体からなる弁部材と、
を備え、
前記弁部材は、外周部が前記仕切り体に液密に保持されるとともに、前記外周部よりも内側の可撓性膜部において、前記主液室側開口に対して主液室側に対向配置されて前記可撓性膜部の撓み変形により前記オリフィス流路での液体の流れを制限する弁部と、前記主液室側開口に対して重ならない位置に設けられて前記オリフィス流路を前記主液室側に連通させる連通穴とを備え、
前記弁部が、前記可撓性膜部の撓み変形時に前記主液室側開口の周りに押し付けられて前記オリフィス流路での液体の流れを制限するとともに、当該押し付けられた状態でも前記仕切り体との間で液体の流れが確保されるよう形成され、
前記弁部材の主液室側に前記可撓性膜部の主液室側への撓み変形を規制する規制部材が設けられ、前記規制部材は、前記弁部に対向する位置に貫通穴が設けられるともに、該貫通穴の周りに複数の連通穴が設けられており、前記弁部材には、前記規制部材の前記貫通穴に対して重ならない位置における主液室側の膜面に、前記可撓性膜部の主液室側への撓み変形時に前記規制部材に押し付けられる緩衝突起が設けられた
ことを特徴とする液封入式防振装置。
A first fixture attached to one of the vibration source side and the support side;
A second fixture attached to the other of the vibration source side and the support side;
An anti-vibration base made of a rubber-like elastic body interposed between the first fixture and the second fixture;
A main liquid chamber in which a liquid in which the vibration isolating substrate forms a part of a chamber wall is enclosed;
A sub-fluid chamber in which a liquid made of a rubber elastic membrane forms a part of a chamber wall;
An orifice channel connecting the main liquid chamber and the sub liquid chamber;
A partition body that partitions the main liquid chamber and the sub liquid chamber and is formed with the orifice channel;
A valve member made of a rubber-like elastic body provided in the partition so as to be orthogonal to the opening direction of the main liquid chamber side opening of the orifice channel;
With
The valve member has an outer peripheral portion that is liquid-tightly held by the partition body, and is disposed opposite to the main liquid chamber side opening on the main liquid chamber side opening in the flexible film portion inside the outer peripheral portion. A valve portion that restricts the flow of liquid in the orifice flow path due to bending deformation of the flexible membrane section, and a position that does not overlap the opening on the main liquid chamber side. A communication hole communicating with the main liquid chamber side,
The valve portion is pressed around the main liquid chamber side opening when the flexible membrane portion is bent and deformed to restrict the flow of the liquid in the orifice flow path, and the partition body even in the pressed state. To ensure a liquid flow between
A restricting member for restricting the deformation of the flexible membrane portion toward the main liquid chamber is provided on the main fluid chamber side of the valve member, and the restricting member is provided with a through hole at a position facing the valve portion. In addition, a plurality of communication holes are provided around the through hole, and the valve member is formed on the membrane surface on the main liquid chamber side at a position where the valve member does not overlap the through hole. hydraulic antivibration device FLEXIBLE film unit said buffer protrusion is pressed against the regulating member during bending deformation of the main liquid chamber side of you, characterized in that provided.
前記緩衝突起が、前記弁部の主液室側の膜面から突出して前記規制部材の前記貫通穴を取り囲む筒状をなしていることを特徴とする請求項8記載の液封入式防振装置。   9. The liquid filled type vibration damping device according to claim 8, wherein the buffer protrusion protrudes from a membrane surface of the valve portion on the main liquid chamber side and surrounds the through hole of the regulating member. .
JP2011054469A 2011-03-11 2011-03-11 Liquid-filled vibration isolator Active JP5668231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054469A JP5668231B2 (en) 2011-03-11 2011-03-11 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054469A JP5668231B2 (en) 2011-03-11 2011-03-11 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2012189167A JP2012189167A (en) 2012-10-04
JP5668231B2 true JP5668231B2 (en) 2015-02-12

Family

ID=47082566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054469A Active JP5668231B2 (en) 2011-03-11 2011-03-11 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5668231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343486B2 (en) * 2014-05-12 2018-06-13 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP6975628B2 (en) * 2017-12-04 2021-12-01 株式会社ブリヂストン Anti-vibration device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184273B2 (en) * 2008-09-17 2013-04-17 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP4705670B2 (en) * 2008-10-30 2011-06-22 東洋ゴム工業株式会社 Liquid-filled vibration isolator

Also Published As

Publication number Publication date
JP2012189167A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5198605B2 (en) Liquid-filled vibration isolator
JP5248645B2 (en) Liquid-filled vibration isolator
JP4919783B2 (en) Liquid seal vibration isolator
JP5095763B2 (en) Liquid-filled vibration isolator
JP5882125B2 (en) Liquid-filled vibration isolator
JP5535958B2 (en) Liquid-filled vibration isolator
JP5801134B2 (en) Liquid-filled vibration isolator
JP5882124B2 (en) Liquid-filled vibration isolator
JP5431982B2 (en) Liquid-filled vibration isolator
WO2018135312A1 (en) Vibration-damping device
JP5668231B2 (en) Liquid-filled vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP6153428B2 (en) Liquid-filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
WO2016175273A1 (en) Vibration-damping device
JP5969917B2 (en) Vibration isolator
JP5801135B2 (en) Liquid-filled vibration isolator
WO2014021110A1 (en) Vibration damping device
JP6343486B2 (en) Liquid-filled vibration isolator
JP6391162B2 (en) Vibration isolator
JP6279497B2 (en) Vibration isolator
JP5893482B2 (en) Liquid-filled vibration isolator
JP5050283B2 (en) Liquid-filled vibration isolator
JP5690988B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5668231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250