JP2021008669A - Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film - Google Patents

Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film Download PDF

Info

Publication number
JP2021008669A
JP2021008669A JP2020163647A JP2020163647A JP2021008669A JP 2021008669 A JP2021008669 A JP 2021008669A JP 2020163647 A JP2020163647 A JP 2020163647A JP 2020163647 A JP2020163647 A JP 2020163647A JP 2021008669 A JP2021008669 A JP 2021008669A
Authority
JP
Japan
Prior art keywords
plastic container
electrode
gas barrier
barrier film
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020163647A
Other languages
Japanese (ja)
Inventor
英人 柳原
Hideto Yanagihara
英人 柳原
香 松村
Kaori Matsumura
香 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020163647A priority Critical patent/JP2021008669A/en
Publication of JP2021008669A publication Critical patent/JP2021008669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

To uniformly deposit a gas barrier film in the inside of a vessel having a small inner diameter of mouth part and a height larger than the inner diameter thereof by a plasma CVD method to manufacture a plastic container having high gas barrier.SOLUTION: A method for depositing a gas barrier film comprises: providing a conductor member 11 and/or a dielectric member 12 so as to satisfy specific conditions between the barrel of a plastic container 1 and the recessed part 2A of a first electrode 2 having the recessed part 2A for storing the bottom of the plastic container 1 on the depth side when storing the plastic container 1 in the recessed part 2A; supplying a raw material gas after exhausting the inside of the plastic container 1; applying a high frequency voltage between the first electrode 2 and a second electrode 3 to convert the raw material gas into plasma; and depositing the gas barrier film on the inner surface of the plastic container 1.SELECTED DRAWING: Figure 1

Description

本発明は、プラスチック容器の内面にガスバリア性膜を成膜する成膜装置及び成膜方法と、ガスバリア性膜付プラスチック容器の製造方法に関する。 The present invention relates to a film forming apparatus and a film forming method for forming a gas barrier film on the inner surface of a plastic container, and a method for manufacturing a plastic container with a gas barrier film.

外部及び内部からの酸素や水蒸気の透過防止を目的として、ペットボトルなどのプラスチック容器(以下、単に「容器」ともいう)の内面にガスバリア性膜を成膜した容器やその製造方法は従来から知られている。 For the purpose of preventing the permeation of oxygen and water vapor from the outside and the inside, a container in which a gas barrier film is formed on the inner surface of a plastic container such as a PET bottle (hereinafter, also simply referred to as “container”) and a manufacturing method thereof have been known from the past. Has been done.

例えば特許文献1には、容器を収容する空間が形成された外部電極内に容器を収容し、この容器内に、原料ガス供給管が接続された管状の内部電極を挿入した後、排気と原料ガスの供給を行い、外部電極に高周波電圧を印加して外部電極と内部電極の間にプラズマを発生させることで、ダイヤモンドライクカーボン膜(以下、DLC膜)を容器内部に成膜する方法が開示されている。 For example, in Patent Document 1, a container is housed in an external electrode in which a space for housed the container is formed, and a tubular internal electrode to which a raw material gas supply pipe is connected is inserted into the container, and then exhaust and a raw material are used. A method of forming a diamond-like carbon film (hereinafter, DLC film) inside a container by supplying gas and applying a high-frequency voltage to the external electrode to generate plasma between the external electrode and the internal electrode is disclosed. Has been done.

特許文献2には、容器内面にバリア膜を均質に成膜することを目的として、誘電体部材の材料、厚さや、外部電極と容器との間の空間又は誘電体部材と容器との間の空間を調整して、容器内面に印加される電圧を均一化するように工夫したバリア膜形成装置が開示されている。 Patent Document 2 describes the material and thickness of the dielectric member, the space between the external electrode and the container, or the space between the dielectric member and the container for the purpose of uniformly forming a barrier film on the inner surface of the container. A barrier film forming apparatus devised so as to adjust the space to make the voltage applied to the inner surface of the container uniform is disclosed.

この特許文献2では、次のような理論が示されている。
プラズマCVD法において、放電を発生させるための電界とは、交番電界であり、AC,LF,RF,VHF,マイクロ波等の電源周波数fを持つ電界、あるいはパルスを含むものである。この場合、外部電極と容器内面の間に設置された誘電体部材や空間には変位電流が流れる。
In this Patent Document 2, the following theory is shown.
In the plasma CVD method, the electric field for generating a discharge is an alternating electric field, and includes an electric field having a power frequency f such as AC, LF, RF, VHF, and microwave, or a pulse. In this case, a displacement current flows through the dielectric member or space installed between the external electrode and the inner surface of the container.

このような誘電体部材や空間のインピーダンスZは、下記式(1)で求められる。 The impedance Z of such a dielectric member or space is obtained by the following equation (1).

Figure 2021008669
Figure 2021008669

ここで、ωは一定であるので、容量Cの大きさでインピーダンスZが決まる。
例えば、誘電体と空隙が存在する場合の容量Cは、下記式(2)で求められる。
Here, since ω is constant, the impedance Z is determined by the magnitude of the capacitance C.
For example, the capacitance C in the presence of the dielectric and the void is calculated by the following equation (2).

Figure 2021008669
Figure 2021008669

前記式(1)、式(2)より、下記式(3)で換算距離Gが求められる。 From the above equations (1) and (2), the conversion distance G can be obtained by the following equation (3).

Figure 2021008669
Figure 2021008669

すなわち換算距離Gは、各部の距離(厚さ)dを当該部分を構成する材料(誘電体又は空間)の比誘電率εで割ったものの総和である。なお、空間の比誘電率εは1である。 That converted distance G is the sum total each unit distance (thickness) d i divided by the dielectric constant epsilon i materials (dielectric or space) constituting the part. The relative permittivity ε of space is 1.

この換算距離Gは、誘電体をすべて空間に置き換えたときの電気的な空間の距離(厚さ)に相当する。この定義により、外部電極内面から容器内側表面までのインピーダンスZの均一性は、換算距離Gの均一性、すなわち、容器の各場所の換算距離Gの比で表される。
したがって、換算距離Gの比が小さいほど、外部電極内面から容器内側表面までのインピーダンスZは均一で、容器内側表面に形成されるバリア膜が略均一となり、バリア性が向上することになる。
This converted distance G corresponds to the distance (thickness) of the electrical space when all the dielectrics are replaced with space. According to this definition, the uniformity of the impedance Z from the inner surface of the outer electrode to the inner surface of the container is represented by the uniformity of the conversion distance G, that is, the ratio of the conversion distance G at each location of the container.
Therefore, the smaller the ratio of the converted distance G, the more uniform the impedance Z from the inner surface of the outer electrode to the inner surface of the container, the more uniform the barrier film formed on the inner surface of the container, and the better the barrier property.

このような理論から、特許文献2では、誘電体部材又は空間の厚さ(d)を比誘電率(ε)で除した換算距離d/εの外部電極内表面から前記容器内表面までの総和が、容器全体に亙って略均一となるように、誘電体部材の材料と、誘電体部材と空間の厚さと、外部電極形状を組み合わせるとされている。 From this theory, in Patent Document 2, the dielectric member or the thickness of the space (d i) the relative dielectric constant (epsilon i) the vessel from dividing the converted distances d i / ε i external electrode inner surface in It is said that the material of the dielectric member, the thickness of the dielectric member and the space, and the shape of the external electrode are combined so that the total to the surface becomes substantially uniform over the entire container.

特許文献3には、特許文献1に開示された容器よりも小型のプラスチック容器の内壁面にガスバリア性膜を均一に成膜する方法として、容器の外壁面と外部電極の内壁面との間に誘電体部材を配置し、原料ガス供給管として機能する内部電極を容器内部に挿入せず、容器の口部から所定距離だけ離して配置する成膜方法が開示されている。 In Patent Document 3, as a method of uniformly forming a gas barrier film on the inner wall surface of a plastic container smaller than the container disclosed in Patent Document 1, between the outer wall surface of the container and the inner wall surface of the outer electrode. A film forming method is disclosed in which a dielectric member is arranged and an internal electrode functioning as a raw material gas supply pipe is not inserted into the container and is arranged at a predetermined distance from the mouth of the container.

特開平8−53116号公報Japanese Unexamined Patent Publication No. 8-53116 特開2008−231468号公報Japanese Unexamined Patent Publication No. 2008-231468 特開2012−116541号公報Japanese Unexamined Patent Publication No. 2012-116541

本発明者らは、口部の内径が小さく、口部の内径に対して高さの高い容器に対して、特許文献3に記載されたように、容器の外壁面と外部電極の内壁面の間に誘電体部材を配置し、容器の外部で原料ガスを供給した後、外部電極に高周波電力を印加したところ、主に容器の口部側でのみプラズマが発生し、容器内部ではプラズマが発生しにくい傾向があり、容器の底部側では、ほとんどガスバリア性膜が成膜されないことを確認した。
また、容器内に成膜されたガスバリア性膜の膜厚は、容器口部付近では厚く、容器の底部側では薄く、容器全体においてガスバリア性膜の膜厚の均一性が悪いため、成膜後の容器は酸素や水蒸気の透過を十分に抑制することができないことを確認した。
この場合において、容器内部でのプラズマの発生を向上させるために、外部電極に印加する高周波電力を大きくすると、容器が熱変形してしまうという不具合が生じた。
As described in Patent Document 3, the present inventors have a container having a small inner diameter of the mouth and a high height with respect to the inner diameter of the mouth, as described in Patent Document 3, on the outer wall surface of the container and the inner wall surface of the outer electrode. When a dielectric member was placed between them, the raw material gas was supplied outside the container, and then high-frequency power was applied to the external electrodes, plasma was generated mainly only on the mouth side of the container, and plasma was generated inside the container. It tended to be difficult, and it was confirmed that almost no gas barrier film was formed on the bottom side of the container.
In addition, the film thickness of the gas barrier film formed in the container is thick near the container mouth and thin on the bottom side of the container, and the film thickness of the gas barrier film is not uniform throughout the container. It was confirmed that the container of No. 1 could not sufficiently suppress the permeation of oxygen and water vapor.
In this case, if the high frequency power applied to the external electrode is increased in order to improve the generation of plasma inside the container, there is a problem that the container is thermally deformed.

この問題は、特許文献2の技術を採用しても解決することはできない。 This problem cannot be solved by adopting the technique of Patent Document 2.

本発明は、上記状況に鑑みてなされたものであり、その目的は、口部の内径が小さく、口部の内径に対して高さの高い容器であっても、容器内面にガスバリア性膜を均一に成膜して、高いガスバリア性を有するプラスチック容器を製造することができる成膜装置及び成膜方法と、ガスバリア性膜付プラスチック容器の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas barrier film on the inner surface of a container even if the container has a small inner diameter of the mouth and a height higher than the inner diameter of the mouth. It is an object of the present invention to provide a film forming apparatus and a film forming method capable of producing a plastic container having a high gas barrier property by uniformly forming a film, and a method for manufacturing a plastic container having a gas barrier property.

本発明者らは上記課題を解決すべく鋭意検討した結果、容器と容器を収容した電極凹部との間に、特定条件を満たすよう導電体部材及び/又は誘電体部材を配置して成膜を行うことにより、容器内面にガスバリア性膜を均一に成膜することができることを見出し、本発明に到達した。
すなわち本発明の要旨は以下の通りである。
As a result of diligent studies to solve the above problems, the present inventors have arranged a conductor member and / or a dielectric member so as to satisfy a specific condition between the container and the electrode recess containing the container to form a film. By doing so, it has been found that a gas barrier film can be uniformly formed on the inner surface of the container, and the present invention has been reached.
That is, the gist of the present invention is as follows.

[1] 少なくとも口部、胴部及び底部を有するプラスチック容器の内面に、プラズマCVD法によりガスバリア性膜を成膜する装置であって、該プラスチック容器の底部が奥側となるように該プラスチック容器を収容する凹部が形成された第1の電極と、該第1の電極との間でプラズマを発生させる第2の電極と、該第1の電極と第2の電極との間にプラズマ発生用の電圧を印加する電源と、該凹部に収容されたプラスチック容器内を排気する排気手段と、該プラスチック容器内に原料ガスを供給する原料ガス供給手段とを有するガスバリア性膜の成膜装置において、該凹部内面と該プラスチック容器の胴部との間に、誘電体部材、又は導電体部材、又は導電体部材とその内側の誘電体部材が設けられており、以下の条件Aを満たすことを特徴とするガスバリア性膜の成膜装置。
条件A:該凹部に収容されたプラスチック容器の高さ方向に直交する断面(以下、「横断面」と称す。)において、該第1の電極又は導電体部材で形成される実質電極表面と、該プラスチック容器の胴部外表面との間に存在する空隙及び/又は誘電体部材の厚さ(d)を比誘電率(ε)で除した換算距離d/εの、該実質電極表面から胴部外表面までの総和が、該プラスチック容器の口部側よりも底部側の方が小さい。
[1] A device for forming a gas barrier film on the inner surface of a plastic container having at least a mouth, a body, and a bottom by a plasma CVD method, and the plastic container is provided so that the bottom of the plastic container is on the back side. For generating gas between the first electrode formed with a recess for accommodating the gas, the second electrode for generating gas between the first electrode, and the first electrode and the second electrode. In a gas barrier film forming apparatus having a power source for applying the voltage of the above, an exhaust means for exhausting the inside of the plastic container housed in the recess, and a raw material gas supply means for supplying the raw material gas into the plastic container. A dielectric member or a conductive member, or a conductive member and a dielectric member inside the conductive member are provided between the inner surface of the recess and the body of the plastic container, and the following condition A is satisfied. A device for forming a gas barrier film.
Condition A: In a cross section orthogonal to the height direction of the plastic container housed in the recess (hereinafter, referred to as "cross section"), the surface of the substantial electrode formed by the first electrode or the conductor member and conversion distance d i / epsilon i the thickness of the air gap and / or the dielectric member exists a (d i) divided by the dielectric constant (epsilon i) between said plastic container body outer surface, said actual quality The total from the electrode surface to the outer surface of the body is smaller on the bottom side than on the mouth side of the plastic container.

[2] [1]において、前記導電体部材が、下記条件Bを満たすように設置されていることを特徴とする[1]に記載のガスバリア性膜の成膜装置。
条件B:前記横断面において、前記実質電極表面から該プラスチック容器の胴部外表面までの距離が、該プラスチック容器の口部側よりも底部側の方が小さい。
[2] The film forming apparatus for a gas barrier film according to [1], wherein the conductor member is installed so as to satisfy the following condition B in [1].
Condition B: In the cross section, the distance from the surface of the substantial electrode to the outer surface of the body of the plastic container is smaller on the bottom side than on the mouth side of the plastic container.

[3] 前記第1の電極の凹部が、有底の筒型形状であることを特徴とする[1]又は[2]に記載のガスバリア性膜の成膜装置。 [3] The gas barrier film forming apparatus according to [1] or [2], wherein the recess of the first electrode has a bottomed tubular shape.

[4] 前記凹部に設けられた前記誘電体部材及び/又は導電体部材が、有底又は無底の筒型形状であることを特徴とする[1]ないし[3]のいずれかに記載のガスバリア性膜の成膜装置。 [4] The description according to any one of [1] to [3], wherein the dielectric member and / or the conductor member provided in the recess has a bottomed or bottomless tubular shape. A device for forming a gas barrier film.

[5] 前記凹部に設けられた前記導電体部材及び/又は誘電体部材の少なくとも前記プラスチック容器側面の前記横断面の形状が、前記プラスチック容器の胴部外面の前記横断面の形状と相似形であることを特徴とする[4]に記載のガスバリア性膜の成膜装置。 [5] The shape of the cross section of at least the side surface of the plastic container of the conductor member and / or the dielectric member provided in the recess is similar to the shape of the cross section of the outer surface of the body of the plastic container. The device for forming a gas barrier film according to [4].

[6] 前記プラスチック容器の口部の内径(D)が35mm以下であり、該口部の内径(D)に対する該プラスチック容器の高さ(H)の比(H/D)が3以上であることを特徴とする[1]ないし[5]のいずれかに記載のガスバリア性膜の成膜装置。 [6] The inner diameter (D) of the mouth of the plastic container is 35 mm or less, and the ratio (H / D) of the height (H) of the plastic container to the inner diameter (D) of the mouth is 3 or more. The device for forming a gas barrier film according to any one of [1] to [5].

[7] [1]ないし[6]のいずれかに記載のガスバリア性膜の成膜装置により、プラスチック容器の内面にガスバリア性膜を成膜することを特徴とするガスバリア性膜の成膜方法。 [7] A method for forming a gas barrier film, which comprises forming a gas barrier film on the inner surface of a plastic container by the gas barrier film forming apparatus according to any one of [1] to [6].

[8] 少なくとも口部、胴部及び底部を有するプラスチック容器の内面に、プラズマCVD法によりガスバリア性膜を成膜してガスバリア性膜付プラスチック容器を製造する方法において、該プラスチック容器の底部が奥側となるように該プラスチック容器を収容する凹部が形成された第1の電極の該凹部内に、誘電体部材、又は導電体部材、又は導電体部材とその内側の誘電体部材を、下記条件Aを満たすように設置した後、該凹部に該プラスチック容器を収容する工程と、該第1の電極との間でプラズマを発生させる第2の電極を該プラスチック容器の口部側に配置する工程と、該プラスチック容器内を排気する工程と、該プラスチック容器内に原料ガスを供給する工程と、該第1の電極と第2の電極との間にプラズマ発生用の電圧を印加することにより、該原料ガスをプラズマ化して該プラスチック容器の内面にガスバリア性膜を成膜する工程とを有することを特徴とするガスバリア性膜付プラスチック容器の製造方法。
条件A:該凹部に収容されたプラスチック容器の高さ方向に直交する断面(以下、「横断面」と称す。)において、該第1の電極又は導電体部材で形成される実質電極表面と、該プラスチック容器の胴部外表面との間に存在する空隙及び/又は誘電体部材の厚さ(d)を比誘電率(ε)で除した換算距離d/εの、該実質電極表面から胴部外表面までの総和が、該プラスチック容器の口部側よりも底部側の方が小さい。
[8] In a method for producing a plastic container with a gas barrier film by forming a gas barrier film on the inner surface of a plastic container having at least a mouth, a body, and a bottom by a plasma CVD method, the bottom of the plastic container is deep. In the recess of the first electrode in which the recess for accommodating the plastic container is formed so as to be on the side, a dielectric member or a conductor member, or a conductor member and a dielectric member inside the conductor member are provided under the following conditions. A step of accommodating the plastic container in the recess after installing so as to satisfy A, and a step of arranging a second electrode for generating plasma between the first electrode and the plastic container on the mouth side of the plastic container. By applying a voltage for generating plasma between the first electrode and the second electrode, the step of exhausting the inside of the plastic container, the step of supplying the raw material gas into the plastic container, and so on. A method for producing a plastic container with a gas barrier film, which comprises a step of converting the raw material gas into plasma and forming a gas barrier film on the inner surface of the plastic container.
Condition A: In a cross section orthogonal to the height direction of the plastic container housed in the recess (hereinafter, referred to as "cross section"), the surface of the substantial electrode formed by the first electrode or the conductor member and conversion distance d i / epsilon i the thickness of the air gap and / or the dielectric member exists a (d i) divided by the dielectric constant (epsilon i) between said plastic container body outer surface, said actual quality The total from the electrode surface to the outer surface of the body is smaller on the bottom side than on the mouth side of the plastic container.

[9] 前記導電体部材を、下記条件Bを満たすよう設置することを特徴とする[8]に記載のガスバリア性膜付プラスチック容器の製造方法。
条件B:前記横断面において、前記実質電極表面から該プラスチック容器の胴部外表面までの距離が、該プラスチック容器の口部側よりも底部側の方が小さい。
[9] The method for manufacturing a plastic container with a gas barrier film according to [8], wherein the conductor member is installed so as to satisfy the following condition B.
Condition B: In the cross section, the distance from the surface of the substantial electrode to the outer surface of the body of the plastic container is smaller on the bottom side than on the mouth side of the plastic container.

[10] 前記プラスチック容器の口部の内径(D)が35mm以下であり、該口部の内径(D)に対する該プラスチック容器の高さ(H)の比(H/D)が3以上であることを特徴とする[8]又は[9]に記載のガスバリア性膜付プラスチック容器の製造方法。 [10] The inner diameter (D) of the mouth of the plastic container is 35 mm or less, and the ratio (H / D) of the height (H) of the plastic container to the inner diameter (D) of the mouth is 3 or more. The method for producing a plastic container with a gas barrier film according to [8] or [9].

本発明によれば、口部の内径が小さく、口部の内径に対して高さの高い容器であっても、容器内面に、ガスバリア性膜を均一に成膜することができ、高いガスバリア性を有するガスバリア性膜付プラスチック容器を製造することが可能となる。
本発明は、所定の条件を満たすように導電体部材及び/又は誘電体部材を配置するのみで、既存のガスバリア性膜の成膜装置にも容易に適用することが可能であり、実用性に優れる。
According to the present invention, even in a container having a small inner diameter of the mouth portion and a height higher than the inner diameter of the mouth portion, a gas barrier film can be uniformly formed on the inner surface of the container, and the gas barrier property is high. It becomes possible to manufacture a plastic container with a gas barrier film having the above.
The present invention can be easily applied to an existing gas barrier film forming apparatus by simply arranging a conductor member and / or a dielectric member so as to satisfy a predetermined condition, and is practical. Excellent.

本発明のガスバリア性膜の成膜装置の実施の形態の一例を示す模式的な断面図である。It is a schematic cross-sectional view which shows an example of embodiment of the film forming apparatus of a gas barrier film of this invention. 本発明のガスバリア性膜の成膜装置の別の実施の形態の一例を示す模式的な断面図である。It is a schematic cross-sectional view which shows an example of another Embodiment of the film forming apparatus of a gas barrier film of this invention. 本発明における第1の電極の凹部内の導電体部材及び/又は誘電体部材の配置例を示す断面図である。It is sectional drawing which shows the arrangement example of the conductor member and / or the dielectric member in the recess of the 1st electrode in this invention. 本発明における第1の電極の凹部内の導電体部材及び/又は誘電体部材の配置例を示す断面図である。It is sectional drawing which shows the arrangement example of the conductor member and / or the dielectric member in the recess of the 1st electrode in this invention. 換算距離d/εの算出例を説明するための凹部内面〜容器胴部までの横断面図である。Calculation example of the converted distances d i / ε i is a cross-sectional view of the up concave inner surface ~ container body for explaining. プラスチック容器の形状例を示す図であって、(a),(c),(e)図は縦断面図、(b),(d),(f)図は、それぞれ(a),(c),(e)図のB−B線、D−D線、F−F線に沿う横断面図である。It is a figure which shows the shape example of a plastic container, (a), (c), (e) are vertical sectional views, (b), (d), (f) are figures (a), (c) respectively. ), (E) is a cross-sectional view taken along the lines BB, DD, and FF of FIGS. プラスチック容器と導電体部材及び誘電体部材の横断面形状の形状例を示す図であって、(a)図は縦断面図、(b−1)図,(b−2)図,(b−3)図は(a)図のB−B線に沿う断面図である。It is a figure which shows the shape example of the cross-sectional shape of a plastic container, a conductor member, and a dielectric member, and (a) is a vertical cross-sectional view, (b-1) figure, (b-2) figure, (b-). 3) The figure is a cross-sectional view taken along the line BB of the figure (a). 実施例における換算距離d/εの総和の算出位置を示す断面図である。Is a cross-sectional view showing the calculation position of the sum of the converted distances d i / ε i in the embodiment. 実施例におけるガスバリア性膜の膜厚の測定部位を示す断面図である。It is sectional drawing which shows the measurement site of the film thickness of the gas barrier film in an Example. 比較例における導電体部材又は誘電体部材の配置を示す断面図である。It is sectional drawing which shows the arrangement of the conductor member or the dielectric member in the comparative example.

以下に本発明の実施の形態を詳細に説明するが、以下の説明は、本発明の実施形態の一例(代表例)を説明するものであり、本発明はこれらの内容に特定されるものではない。 The embodiments of the present invention will be described in detail below, but the following description describes an example (representative example) of the embodiments of the present invention, and the present invention is not specified in these contents. Absent.

[作用機構]
本発明においては、下記条件Aを満たすように、第1の電極の凹部内に誘電体部材及び/又は導電体部材を設ける。なお、導電体部材と誘電体部材を設ける場合、誘電体部材は導電体部材の内側に設けられる。
条件A:該凹部に収容されたプラスチック容器の高さ方向に直交する断面(以下、「横断面」と称す。)において、該第1の電極又は導電体部材で形成される実質電極表面と、該プラスチック容器の胴部外表面との間に存在する空隙及び/又は誘電体部材の厚さ(d)を比誘電率(ε)で除した換算距離d/εの、該実質電極表面から胴部外表面までの総和が、該プラスチック容器の口部側よりも底部側の方が小さい。
[Working mechanism]
In the present invention, a dielectric member and / or a conductor member is provided in the recess of the first electrode so as to satisfy the following condition A. When the conductor member and the dielectric member are provided, the dielectric member is provided inside the conductor member.
Condition A: In a cross section orthogonal to the height direction of the plastic container housed in the recess (hereinafter, referred to as "cross section"), the surface of the substantial electrode formed by the first electrode or the conductor member and conversion distance d i / epsilon i the thickness of the air gap and / or the dielectric member exists a (d i) divided by the dielectric constant (epsilon i) between said plastic container body outer surface, said actual quality The total from the electrode surface to the outer surface of the body is smaller on the bottom side than on the mouth side of the plastic container.

本発明により、条件Aを満たすように誘電体部材及び/又は導電体部材を設けることにより、口部の内径が小さく、口部の内径に対して高さの高い容器であっても、容器内面にガスバリア性膜を均一に成膜することができる理由は、以下の通りである。 According to the present invention, by providing the dielectric member and / or the conductive member so as to satisfy the condition A, the inner surface of the container is small even if the inner diameter of the mouth is small and the height is higher than the inner diameter of the mouth. The reason why the gas barrier film can be uniformly formed is as follows.

口部の内径が小さく、口部の内径に対して高さの高い容器では、既存のガスバリア性膜の成膜装置を用いた場合、主に容器の口部側でのみプラズマが発生し、容器内部ではプラズマが発生しにくい、すなわちプラズマの発生が容器内部で不均一になる傾向があり、容器の底部側では、ほとんどガスバリア性膜が成膜されない。
この問題に対して、本発明では、上記条件Aを満たすように導電体部材及び/又は誘電体部材を設けることで、プラスチック容器の凹部における実質電極表面から容器胴部の外表面までのインピーダンスを、容器胴部の口部側から、容器胴部の底部側にかけて小さくする、傾斜(グラデーション)又は段差を付ける。このようにすることによって、容器の底部側でプラズマをより発生し易くし、容器内部でのプラズマの発生を均一にし、容器内面に付着するガスバリア性膜の膜厚均一性を高めることが可能となる。
In a container with a small inner diameter of the mouth and a height higher than the inner diameter of the mouth, when the existing gas barrier film film forming apparatus is used, plasma is generated mainly only on the mouth side of the container, and the container Plasma is unlikely to be generated inside, that is, plasma generation tends to be non-uniform inside the container, and a gas barrier film is hardly formed on the bottom side of the container.
In response to this problem, in the present invention, by providing the conductor member and / or the dielectric member so as to satisfy the above condition A, the impedance from the substantial electrode surface in the recess of the plastic container to the outer surface of the container body is increased. , Make a small slope (gradation) or step from the mouth side of the container body to the bottom side of the container body. By doing so, it is possible to make it easier to generate plasma on the bottom side of the container, make the generation of plasma inside the container uniform, and improve the film thickness uniformity of the gas barrier film adhering to the inner surface of the container. Become.

[ガスバリア性膜の成膜装置]
まず、図1,2を参照して本発明のガスバリア性膜の成膜装置について説明する。図1,2は本発明のガスバリア性膜の成膜装置の実施の形態の一例を示す模式的な断面図であり、同一機能を奏する部材には同一符号を付してある。
[Gas barrier film film forming equipment]
First, the gas barrier film forming apparatus of the present invention will be described with reference to FIGS. 1 and 2. FIGS. 1 and 2 are schematic cross-sectional views showing an example of an embodiment of the gas barrier film forming apparatus of the present invention, and members having the same function are designated by the same reference numerals.

図1,2において、2は、ガスバリア性膜を成膜するプラスチック容器1を収容する凹部2Aが形成された第1の電極であり、絶縁部材8を介して密閉される蓋部4Aと本体部4Bとで構成される真空チャンバ4の本体部4B側に設けられている。また、第1の電極2には、整合器5Aを介して高周波電源5より電力が供給される。 In FIGS. 1 and 2, 2 is a first electrode in which a recess 2A for accommodating a plastic container 1 for forming a gas barrier film is formed, and is a lid portion 4A and a main body portion sealed via an insulating member 8. It is provided on the main body 4B side of the vacuum chamber 4 composed of 4B. Further, power is supplied to the first electrode 2 from the high frequency power supply 5 via the matching device 5A.

第1の電極2の凹部2Aは、プラスチック容器1の高さよりも深く、かつその横断面はプラスチック容器1の横断面よりも大きく、プラスチック容器1の全体を、その底部が奥側となるように収容し得ると共に、プラスチック容器1と第1の電極2の凹部2Aの内面の間に、導電体部材及び/又は誘電体部材、場合により更に空隙(空間)を設けることができる大きさに形成されている。 The recess 2A of the first electrode 2 is deeper than the height of the plastic container 1 and its cross section is larger than the cross section of the plastic container 1, so that the bottom of the entire plastic container 1 is on the back side. It is formed in a size that can accommodate and can provide a conductive member and / or a dielectric member, and in some cases, a gap (space) between the inner surface of the recess 2A of the plastic container 1 and the first electrode 2. ing.

図1において、3は、第1の電極2との間でプラズマを発生させるための第2の電極である。
本実施の形態においては、第2の電極3は真空チャンバ4の蓋部4Aの板面の内面に積層された板状電極であるが、第2の電極の形状、配置構成は何ら図示のものに限定されるものではない。
ただし、図1のように、第2の電極3を、第1の電極2の凹部2Aに収容されたプラスチック容器1の口部から離隔して設けられた板状電極とすることにより、電極構造を簡略化することができ、また多様な形状の対象物に成膜することができ、工業的に有利である。
In FIG. 1, reference numeral 3 denotes a second electrode for generating plasma with the first electrode 2.
In the present embodiment, the second electrode 3 is a plate-shaped electrode laminated on the inner surface of the plate surface of the lid portion 4A of the vacuum chamber 4, but the shape and arrangement configuration of the second electrode are not shown at all. It is not limited to.
However, as shown in FIG. 1, the electrode structure is formed by forming the second electrode 3 as a plate-shaped electrode provided apart from the mouth of the plastic container 1 housed in the recess 2A of the first electrode 2. It is possible to simplify the process, and it is possible to form a film on an object having various shapes, which is industrially advantageous.

第2の電極3と第1の電極2との距離(図1中のL)は5〜250mmとすることが好ましい。この範囲内であれば、第2の電極3と第1の電極2との間でプラズマを生成、維持することが容易になる傾向がある。 The distance between the second electrode 3 and the first electrode 2 (L 1 in FIG. 1 ) is preferably 5 to 250 mm. Within this range, it tends to be easy to generate and maintain plasma between the second electrode 3 and the first electrode 2.

真空チャンバ4の蓋部4Aには、原料ガスの供給管6が貫通して設けられてもよい。図1の実施の形態では、この原料ガスの供給管6の先端のノズル6Aが第1の電極2の凹部2Aに収容されたプラスチック容器1内に位置するように設けられている。原料ガスの供給管6は、第2の電極3に接続されており、第2の電極の一部としての役割も果たす。 The lid 4A of the vacuum chamber 4 may be provided with the raw material gas supply pipe 6 penetrating. In the embodiment of FIG. 1, the nozzle 6A at the tip of the raw material gas supply pipe 6 is provided so as to be located in the plastic container 1 housed in the recess 2A of the first electrode 2. The raw material gas supply pipe 6 is connected to the second electrode 3 and also serves as a part of the second electrode.

このように、原料ガス供給ノズル6Aの先端をプラスチック容器1内に位置するように設けることにより、口部の内径が小さく、口部の内径に対して高さの高い容器であっても、容器の底部にまで十分量の原料ガスを供給して容器1の底部側にもガスバリア性膜を効率的に成膜することができるようになる。原料ガス供給ノズル6Aの先端の位置は、ガスバリア性膜を成膜するプラスチック容器1の寸法や形状によっても異なるが、排気効率、プラズマ生成の観点から、プラスチック容器1の口部から容器1内に挿入された原料ガス供給ノズル6Aの先端までの長さ(挿入深さ)(図1中L)が、プラスチック容器1の高さの1/10〜4/5となるようにすることが好ましく、1/5〜1/2となるようにすることがより好ましい。 By providing the tip of the raw material gas supply nozzle 6A so as to be located inside the plastic container 1 in this way, even if the inner diameter of the mouth portion is small and the height is higher than the inner diameter of the mouth portion, the container By supplying a sufficient amount of raw material gas to the bottom of the container 1, a gas barrier film can be efficiently formed on the bottom of the container 1. The position of the tip of the raw material gas supply nozzle 6A differs depending on the size and shape of the plastic container 1 on which the gas barrier film is formed, but from the viewpoint of exhaust efficiency and plasma generation, the position of the tip of the raw material gas supply nozzle 6A is from the mouth of the plastic container 1 into the container 1. It is preferable that the length (insertion depth) (L 2 in FIG. 1) of the inserted raw material gas supply nozzle 6A to the tip is 1/10 to 4/5 of the height of the plastic container 1. , 1/5 to 1/2, more preferably.

7は、真空チャンバ4内を排気する排気管であり、図示しない真空ポンプに接続されている。 Reference numeral 7 denotes an exhaust pipe for exhausting the inside of the vacuum chamber 4, which is connected to a vacuum pump (not shown).

第2の電極は、原料ガスを真空チャンバ内に供給するシャワーヘッドを兼ねてもよい。第2の電極をシャワーヘッドとすることで、容器の形状に関わらず、真空チャンバ内に安定して原料ガスを供給することができる。 The second electrode may also serve as a shower head that supplies the raw material gas into the vacuum chamber. By using the shower head as the second electrode, the raw material gas can be stably supplied into the vacuum chamber regardless of the shape of the container.

図2は、第2の電極が原料ガスを真空チャンバ内に供給するシャワーヘッドを兼ねるように構成された成膜装置を示すものであり、真空チャンバ4の蓋部4Aに設けられたシャワーヘッド嵌め込み用の孔部に、絶縁部材9を介して第2の電極30と電極支持体31の積層体が一体的に設けられている。電極支持体31内には、ガス拡散室32が設けられており、このガス拡散室32から真空チャンバ4内に連通する多数のガス吐出孔33が電極支持体31と第2の電極30を貫通して設けられている。また、原料ガスの供給管6がこのガス拡散室32に連結されている。 FIG. 2 shows a film forming apparatus in which the second electrode also serves as a shower head for supplying the raw material gas into the vacuum chamber, and the shower head is fitted in the lid portion 4A of the vacuum chamber 4. A laminated body of the second electrode 30 and the electrode support 31 is integrally provided in the hole portion for the purpose via the insulating member 9. A gas diffusion chamber 32 is provided in the electrode support 31, and a large number of gas discharge holes 33 communicating from the gas diffusion chamber 32 into the vacuum chamber 4 penetrate the electrode support 31 and the second electrode 30. It is provided. Further, the raw material gas supply pipe 6 is connected to the gas diffusion chamber 32.

図2の成膜装置は、このように、第2の電極30が原料ガスを真空チャンバ内に供給するシャワーヘッドを兼ね、原料ガスの供給管6の先端が、電極支持体31のガス拡散室32に連結されていること以外は、図1の成膜装置と同様の構成とされている。 In the film forming apparatus of FIG. 2, the second electrode 30 also serves as a shower head for supplying the raw material gas into the vacuum chamber, and the tip of the raw material gas supply pipe 6 is the gas diffusion chamber of the electrode support 31. It has the same configuration as the film forming apparatus of FIG. 1 except that it is connected to 32.

本発明のガスバリア性膜の成膜装置は、第1の電極2の凹部2A内に導電体部材11及び/又は誘電体部材12を前述の条件Aを満たすように設け、その内側にプラスチック容器1を配置してプラズマCVD法によりガスバリア性膜を成膜することを特徴とする。 In the gas barrier film forming apparatus of the present invention, the conductor member 11 and / or the dielectric member 12 is provided in the recess 2A of the first electrode 2 so as to satisfy the above-mentioned condition A, and the plastic container 1 is provided inside the conductor member 11 and / or the dielectric member 12. Is arranged to form a gas barrier film by a plasma CVD method.

図1,2の成膜装置では、凹部2A内の奥側に有底筒状の導電体部材11が設けられ、その上に導電体部材11と同径の筒状の誘電体部材12が積み重ねられている。 In the film forming apparatus of FIGS. 1 and 2, a bottomed tubular conductor member 11 is provided on the inner side in the recess 2A, and a tubular dielectric member 12 having the same diameter as the conductor member 11 is stacked on the bottomed tubular conductor member 11. Has been done.

図1,2の成膜装置では、プラスチック容器1の高さ方向において、上から約1/2の部分に誘電体部材12が設けられ、その下に導電体部材11が設けられ、導電体部材11及び誘電体部材12は、第1の電極2及びプラスチック容器1と接するように設けられているが、本発明において、導電体部材及び/又は誘電体部材は、プラスチック容器1と第1の電極2の凹部2Aとの間に、前述の条件Aを満たすように設けられていればよく、その他、以下のような態様が挙げられる。 In the film forming apparatus of FIGS. 1 and 2, a dielectric member 12 is provided in a portion about 1/2 from the top in the height direction of the plastic container 1, and a conductor member 11 is provided below the dielectric member. The 11 and the dielectric member 12 are provided so as to be in contact with the first electrode 2 and the plastic container 1. However, in the present invention, the conductor member and / or the dielectric member is the plastic container 1 and the first electrode. It suffices if it is provided between the recess 2A of 2 so as to satisfy the above-mentioned condition A, and the following aspects can be mentioned.

(1) 図3(a)に示すようにプラスチック容器1の高さ方向に、プラスチック容器1の高さの約1/3の筒状の導電体部材11Aと、筒状の誘電体部材12A,12Bとを積み重ねて設けたもの。この配置例では、プラスチック容器1の底部側の容器1の外表面と第1の電極2との間には導電体部材11Aが存在し、プラスチック容器1の口部側及び中間部では誘電体部材12A,12Bが存在する。
(2) 図3(b)に示すように、図3(a)における誘電体部材12A部分を筒状の導電体部材11Bと誘電体部材12Cとの2層構造としたもの。この配置例では、プラスチック容器1の底部側の容器1の外表面と第1の電極2との間には導電体部材11Aが存在し、プラスチック容器1の口部側では誘電体部材12Bが存在し、中間部では導電体部材11Bと誘電体部材12Cが存在する。
(3) 図3(c)に示すように、プラスチック容器1の高さ方向の下から約1/3の高さ部分に筒状の誘電体部材12Dを設け、その上に、プラスチック容器1の高さの約1/3の、筒状で、外径が誘電体部材12Dに等しく、肉厚の薄い誘電体部材12Eを積み重ねたもの。この配置例では、プラスチック容器1の底部側の容器1の外表面と第1の電極2との間は誘電体部材12Dのみが存在し、プラスチック容器1の口部側では、空隙10のみが存在し、中間部では、誘電体部材12Eと空隙10とが存在する。
(4) 図3(d)に示すように、プラスチック容器1の高さ方向の下から約1/3の高さ部分に有底筒状の導電体部材11Bを設けたもの。この配置例では、プラスチック容器1の底部側の容器1の外表面と第1の電極2との間には導電体部材11Bが存在し、プラスチック容器1の口部側及び中間部では空隙10が存在する。
(1) As shown in FIG. 3A, in the height direction of the plastic container 1, the tubular conductor member 11A, which is about 1/3 of the height of the plastic container 1, and the tubular dielectric member 12A, 12B is stacked and provided. In this arrangement example, the conductor member 11A exists between the outer surface of the container 1 on the bottom side of the plastic container 1 and the first electrode 2, and the dielectric member is present on the mouth side and the intermediate portion of the plastic container 1. There are 12A and 12B.
(2) As shown in FIG. 3 (b), the dielectric member 12A portion in FIG. 3 (a) has a two-layer structure of a tubular conductor member 11B and a dielectric member 12C. In this arrangement example, the conductor member 11A exists between the outer surface of the container 1 on the bottom side of the plastic container 1 and the first electrode 2, and the dielectric member 12B exists on the mouth side of the plastic container 1. However, the conductor member 11B and the dielectric member 12C are present in the intermediate portion.
(3) As shown in FIG. 3C, a tubular dielectric member 12D is provided at a height of about 1/3 from the bottom in the height direction of the plastic container 1, and the plastic container 1 is placed on the tubular dielectric member 12D. A stack of thin dielectric members 12E that are about 1/3 of the height and have a tubular shape and an outer diameter equal to that of the dielectric member 12D. In this arrangement example, only the dielectric member 12D exists between the outer surface of the container 1 on the bottom side of the plastic container 1 and the first electrode 2, and only the void 10 exists on the mouth side of the plastic container 1. However, in the intermediate portion, the dielectric member 12E and the void 10 are present.
(4) As shown in FIG. 3D, a bottomed tubular conductor member 11B is provided at a height portion of about 1/3 from the bottom in the height direction of the plastic container 1. In this arrangement example, the conductor member 11B exists between the outer surface of the container 1 on the bottom side of the plastic container 1 and the first electrode 2, and the gap 10 is formed on the mouth side and the intermediate portion of the plastic container 1. Exists.

このように、容器1の高さ方向に同じ厚みの誘電体部材や導電体部材を積み重ねてもよいし、異なる厚みの誘電体部材や導電体部材を積み重ねて設置してもよいし、容器1の高さ方向の途中まで導電体部材や誘電体部材を設置してもよい。 In this way, the dielectric members and conductor members having the same thickness may be stacked in the height direction of the container 1, the dielectric members and conductor members having different thicknesses may be stacked and installed, or the container 1 may be stacked. The conductor member or the dielectric member may be installed halfway in the height direction of.

また、導電体部材や誘電体部材は容器の高さ方向において厚みに傾斜(グラデーション)や段差を設けてもよく、例えば、以下のような態様も採用することができる。 Further, the conductor member and the dielectric member may be provided with an inclination (gradation) or a step in thickness in the height direction of the container, and for example, the following aspects can be adopted.

(5) 図4(a)に示すように、図1,2に示す導電体部材及び誘電体部材の配置において、導電体部材11Cと誘電体部材12Fの当接部に嵌合用の段差を設けたもの。
(6) 図4(b)に示すように、導電体部材11Dをプラスチック容器1の底部側から高さ方向に肉厚が次第に薄くなる有底筒状とし、誘電体部材12Gを逆に肉厚が次第に厚くなる筒状としたもの。この配置例では、プラスチック容器1の口部側では誘電体部材の肉厚が厚く、底部側では導電体部材の肉厚が厚くなる。
(5) As shown in FIG. 4A, in the arrangement of the conductor member and the dielectric member shown in FIGS. 1 and 2, a step for fitting is provided at the contact portion between the conductor member 11C and the dielectric member 12F. Dielectric.
(6) As shown in FIG. 4B, the conductor member 11D has a bottomed tubular shape in which the wall thickness gradually decreases in the height direction from the bottom side of the plastic container 1, and the dielectric member 12G has a wall thickness conversely. A tubular shape that gradually thickens. In this arrangement example, the wall thickness of the dielectric member is thick on the mouth side of the plastic container 1, and the wall thickness of the conductor member is thick on the bottom side.

(7) 図4(c)に示すように、図3(d)に示す有底筒状の導電体部材11Bに容器1の高さ方向に次第に肉厚が薄くなるように肉厚に傾斜をつけた導電体部材11Eを設けたもの。
(8) 図4(d)に示すように、図4(c)の導電体部材11Eと同形状の誘電体部材12Hを設けたもの。
(7) As shown in FIG. 4 (c), the bottomed tubular conductor member 11B shown in FIG. 3 (d) is inclined in thickness so that the wall thickness gradually decreases in the height direction of the container 1. The one provided with the attached conductor member 11E.
(8) As shown in FIG. 4 (d), a dielectric member 12H having the same shape as the conductor member 11E in FIG. 4 (c) is provided.

このように、容器1の高さ方向の途中まで導電体部材を設けその上に誘電体部材を積み重ねてもよいし、容器の胴部途中まで導電体部材又は誘電体部材を設置してもよいし、第1の電極の凹部表面に沿って、異なる厚みの導電体部材を積み重ねて設置してもよいし、厚みに傾斜のある誘電体部材を設置してもよい。
換算距離d/εの調整の自由度、異常放電の抑制の観点から、導電体部材及び誘電体部材の両方を配置する態様が好ましい。
In this way, the conductor member may be provided halfway in the height direction of the container 1 and the dielectric member may be stacked on the conductor member, or the conductor member or the dielectric member may be installed halfway in the body of the container. Then, the conductor members having different thicknesses may be stacked and installed along the concave surface of the first electrode, or the dielectric members having an inclined thickness may be installed.
Freedom of adjustment of the converted distances d i / ε i, from the viewpoint of suppression of abnormal discharge mode to place both the conductive member and the dielectric member is preferred.

特に、導電体部材を設ける場合、導電体部材は下記条件Bを満たすように設けることが、容器内部でのプラズマの発生をより均一にすることができるので好ましい。
条件B:前記横断面において、前記実質電極表面から該プラスチック容器の胴部外表面までの距離が、該プラスチック容器の口部側よりも底部側の方が小さい。
In particular, when the conductor member is provided, it is preferable to provide the conductor member so as to satisfy the following condition B because the generation of plasma inside the container can be made more uniform.
Condition B: In the cross section, the distance from the surface of the substantial electrode to the outer surface of the body of the plastic container is smaller on the bottom side than on the mouth side of the plastic container.

プラズマ発生効率の面から、第1の電極の凹部の内面(導電体部材を設置した場合は、導電体部材面)と誘電体部材との間隙は2mm以下であることが好ましく、接触していることがより好ましい。
また、異常放電を防ぐ観点から、導電体部材は、第1の電極の少なくとも一部と接触(導通)していることが好ましい。
From the viewpoint of plasma generation efficiency, the gap between the inner surface of the recess of the first electrode (the surface of the conductor member when the conductor member is installed) and the dielectric member is preferably 2 mm or less, and is in contact with each other. Is more preferable.
Further, from the viewpoint of preventing abnormal discharge, it is preferable that the conductor member is in contact (conducting) with at least a part of the first electrode.

導電体部材や誘電体部材は、図1に示すように収容されたプラスチック容器1と第1の電極2の間に設置される。導電体部材や誘電体部材の形状は、第1の電極及び収容されたプラスチック容器の間に収まる形状であれば、特に限定されない。
第1の電極の凹部が、筒型形状である場合は、導電体部材や誘電体部材も、筒型形状であることが好ましく、第1の電極の凹部と容器の底部の間に収まるよう有底筒型形状であることも好ましい。
The conductor member and the dielectric member are installed between the plastic container 1 and the first electrode 2 housed as shown in FIG. The shape of the conductor member or the dielectric member is not particularly limited as long as it fits between the first electrode and the housed plastic container.
When the concave portion of the first electrode has a tubular shape, the conductor member and the dielectric member also preferably have a tubular shape, and are provided so as to fit between the concave portion of the first electrode and the bottom of the container. It is also preferable to have a bottom tubular shape.

導電体部材や誘電体部材が筒型形状である場合、これらの部材の少なくともその誘電体部材側面の横断面形状が、プラスチック容器の胴部外面の横断面形状と相似形であることがより好ましい。このように導電体部材や誘電体部材がプラスチック容器と相似形であれば、横断面全体において、容器外表面と第1の電極の凹部表面までの換算距離の総和が、均一に近くなる。
同じ理由で、第1の電極の凹部の横断面形状も、プラスチック容器の胴部外面の横断面形状と相似であることも好ましい。
When the conductor member or the dielectric member has a tubular shape, it is more preferable that at least the cross-sectional shape of the side surface of the dielectric member of these members is similar to the cross-sectional shape of the outer surface of the body of the plastic container. .. If the conductor member and the dielectric member have a shape similar to that of the plastic container in this way, the total conversion distance between the outer surface of the container and the concave surface of the first electrode becomes almost uniform over the entire cross section.
For the same reason, it is also preferable that the cross-sectional shape of the recess of the first electrode is similar to the cross-sectional shape of the outer surface of the body of the plastic container.

誘電体部材を構成する誘電体としては、ポリテトラフルオロエチレン等のフッ化炭素樹脂、ポリアセタール、硬質塩化ビニル、ポリカーボネート、ポリエーテル・エーテル・ケトン樹脂などのプラスチック樹脂、ガラス、セラミックスなどが挙げられ、単一の誘電体を使用してもよいし、複数の誘電体を同時に使用してもよい。
一方、導電体部材を構成する導電材料としては、アルミニウム、銅、鉄及びそれらから成る合金、ステンレス鋼などを用いることができ、中でもアルミニウム合金が、導電性、熱伝導性、加工性の観点から好ましい。
誘電体部材及び導電体部材の肉厚は2〜30mmの範囲で設けることが好ましい。
Examples of the dielectric constituting the dielectric member include fluorocarbon resins such as polytetrafluoroethylene, plastic resins such as polyacetal, hard vinyl chloride, polycarbonate, polyether ether / ketone resin, glass, and ceramics. A single dielectric may be used, or a plurality of dielectrics may be used at the same time.
On the other hand, as the conductive material constituting the conductive member, aluminum, copper, iron and an alloy composed of them, stainless steel and the like can be used, and among them, the aluminum alloy is considered from the viewpoint of conductivity, thermal conductivity and processability. preferable.
The wall thickness of the dielectric member and the conductor member is preferably provided in the range of 2 to 30 mm.

なお、比較的大きなプラスチック容器にガスバリア性膜を成膜するための既存の成膜装置を用いて、比較的小さなプラスチック容器にガスバリア性膜を成膜する場合、第1の電極の凹部がプラスチック容器に対して大き過ぎることとなる。このような場合において、プラスチック容器1と凹部の内面との間隙に導電体部材及び/又は誘電体部材を介在させることにより、均一成膜を図ると共に、凹部の寸法調整を行える。 When a gas barrier film is formed on a relatively small plastic container by using an existing film forming apparatus for forming a gas barrier film on a relatively large plastic container, the recess of the first electrode is a plastic container. It will be too large for. In such a case, by interposing a conductor member and / or a dielectric member in the gap between the plastic container 1 and the inner surface of the recess, uniform film formation can be achieved and the dimensions of the recess can be adjusted.

[換算距離d/εの算出方法]
以下に、図5を参照して換算距離d/εの算出方法について説明する。
[Method of calculating the converted distances d i / ε i]
The following describes the method for calculating the reference to converted distances d i / ε i Figure 5.

説明の便宜上、図5では第1の電極2の凹部と容器1の胴部との間に、導電体部材11、誘電体部材12及び空隙10が存在する場合を示す。 For convenience of explanation, FIG. 5 shows a case where the conductor member 11, the dielectric member 12, and the gap 10 are present between the recess of the first electrode 2 and the body of the container 1.

横断面における、誘電体部材12の厚さをd、空隙10の厚さをdとする。また、誘電体部材12の比誘電率をε、空隙10の比誘電率をεとする。ε=1である。第1の電極2の凹部に接して導電体部材11が設けられているため、実質電極表面は導電体部材11の内表面となる。この実質電極表面と容器1の胴部外表面との間に存在する誘電体部材12の換算距離d/εはd/εであり、空隙の換算距離d/εはd/ε=dである。従って、これらの総和は、d/ε+dとなる。
本発明においては、このようにして算出される換算距離d/εの実質電極表面から容器1の胴部外表面までの総和が、プラスチック容器の口部側よりも底部側の方が小さくなるように、第1の電極と容器胴部との間に誘電体部材及び/又は導電体部材、場合により更に空隙を設ける。
また、容器内部でのプラズマの発生をより細かく調整する観点から、換算距離d/εの実質電極表面から容器1の胴部外表面までの総和が、プラスチック容器の口部側から底部側の方が小さく、かつ、少なくとも2つ以上の段差が付いていることが好ましい。
さらには、換算距離d/εの実質電極表面から容器1の胴部外表面までの総和が、プラスチック容器の口部側から底部側の方が小さく、かつ、傾斜が付いていることが特に好ましい。
Let d 1 be the thickness of the dielectric member 12 and d 2 be the thickness of the void 10 in the cross section. Further, the relative permittivity of the dielectric member 12 is ε 1 , and the relative permittivity of the void 10 is ε 2 . ε 2 = 1. Since the conductor member 11 is provided in contact with the recess of the first electrode 2, the substantially electrode surface is the inner surface of the conductor member 11. Converted distances d i / epsilon i of the dielectric member 12 that exists between the real electrode surface and the vessel 1 of the cylinder outer surface is d 1 / epsilon 1, converted distances d i / epsilon i voids d 2 / ε 2 = d 2 . Therefore, the sum of these is d 1 / ε 1 + d 2 .
In the present invention, the sum of the real electrode surface of the converted distances d i / ε i, which is calculated in this manner until the cylinder outer surface of the container 1, smaller towards the bottom side of the mouth portion of the plastic container As such, a dielectric member and / or a conductor member, and in some cases, a gap is further provided between the first electrode and the container body.
From the viewpoint of more finely adjust the generation of the plasma inside the container, the sum of the real electrode surface of the converted distances d i / ε i to cylinder outer surface of the container 1, the bottom side from the mouth portion of the plastic container Is smaller and preferably has at least two or more steps.
Further, that the sum of the real electrode surface of the converted distances d i / ε i to cylinder outer surface of the container 1 is smaller is better from the mouth portion of the plastic container at the bottom side, and is attached inclined Especially preferable.

[プラスチック容器]
本発明において、ガスバリア性膜を成膜するプラスチック容器には特に制限はなく、図6(a),(b)((b)図は(a)図のB−B線断面図)に示すような、有底角筒型形状の容器1Aであってもよく、図6(c),(d)((d)図は(c)図のD−D線断面図)に示すように、底部が丸みを帯びた断面楕円形状の容器1Bであってもよい。また、図6(e),(f)((f)図は(e)図のF−F線断面図)に示すように、胴部に対して口部が縮径された有底円筒型形状の容器1Cであってもよい。図6(a),(c)に示す容器1A,1Bの口部が図6(e)に示されるように、縮径されたものであってもよい。なお、図6において、Xは口部を、Yは胴部を、Zは底部をそれぞれ示す。
図6(a),(c),(e)の胴部の縦断面形状においては、胴部の内径がほぼ均一な形状が示されているが、これに限られず、例えば、口部側から底部側につれて胴部の内径が増加または減少する形状であってもよいし、丸みを帯びた形状であってもよい。
また、胴部にリブ形状や凹凸形状を有していてもよい。
よりプラズマが発生しにくい容器形状、例えば、図6(e)に示されるように胴部に対して口部が縮径された容器であれば、より顕著に本発明の効果を得ることできる。
[Plastic container]
In the present invention, the plastic container on which the gas barrier film is formed is not particularly limited, and FIGS. 6 (a), (b) ((b) and FIG. 6 (a) are cross-sectional views taken along the line BB). The container 1A may have a bottomed square cylinder shape, and the bottom portion is shown in FIGS. 6 (c), (d) ((d) is a sectional view taken along line DD of FIG. 6 (c)). May be a container 1B having a rounded cross section and an elliptical cross section. Further, as shown in FIGS. 6 (e) and 6 (f) (FIG. 6 (e) is a cross-sectional view taken along the line FF of FIG. 6), a bottomed cylindrical type having a reduced diameter in the mouth with respect to the body It may be a container 1C having a shape. The mouth portions of the containers 1A and 1B shown in FIGS. 6 (a) and 6 (c) may be reduced in diameter as shown in FIG. 6 (e). In FIG. 6, X indicates the mouth portion, Y indicates the body portion, and Z indicates the bottom portion.
In the vertical cross-sectional shape of the body portion in FIGS. 6 (a), 6 (c), and 6 (e), the inner diameter of the body portion is substantially uniform, but the shape is not limited to this, and for example, from the mouth side. The inner diameter of the body may increase or decrease toward the bottom, or it may have a rounded shape.
Further, the body may have a rib shape or an uneven shape.
The effect of the present invention can be obtained more remarkably if the container shape is less likely to generate plasma, for example, if the container has a diameter reduced with respect to the body as shown in FIG. 6 (e).

いずれの形状であっても、本発明は特に、口部の内径(D)に対して高さ(H)の高い容器に対して有効である。例えば、本発明は、口部の内径(D)が35mm以下、特に20mm以下、とりわけ15mm以下、例えば5〜35mmの範囲で、口部の内径(D)に対する高さ(H)の比(H/D)比が3以上、4以上、6以上、例えば3〜10の範囲であり、有効容量として300ml以下、特に50ml以下、とりわけ20ml以下であるような容器へのガスバリア性膜の成膜に有効であり、このようにH/D比が大きい容器であっても、特定条件を満たすよう導電体部材及び/又は誘電体部材を配置したことにより、容器の底部にまでガスバリア性膜を成膜することができる。 Regardless of the shape, the present invention is particularly effective for a container having a height (H) higher than the inner diameter (D) of the mouth portion. For example, in the present invention, the ratio (H) of the height (H) to the inner diameter (D) of the mouth portion is 35 mm or less, particularly 20 mm or less, particularly 15 mm or less, for example, 5 to 35 mm. / D) For forming a gas barrier film on a container having a ratio of 3 or more, 4 or more, 6 or more, for example, 3 to 10, and an effective capacity of 300 ml or less, particularly 50 ml or less, especially 20 ml or less. Even in a container that is effective and has a large H / D ratio, by arranging the conductor member and / or the dielectric member so as to satisfy a specific condition, a gas barrier film is formed even on the bottom of the container. can do.

プラスチック容器を構成するプラスチック材料としては、例えば、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンテレフタレート系共重合樹脂(ポリエステルのアルコール成分にエチレングリコールの代わりに、シクロヘキサンジメタノール等を使用した共重合樹脂等)、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリ乳酸(PLA)等の脂肪族ポリエステル系樹脂、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、シクロオレフィンポリマー樹脂(COP)、シクロオレフィンコポリマー樹脂(COC)等のシクロオレフィン系樹脂、アイオノマ樹脂、ポリ−4−メチルペンテン−1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂(PS)、エチレン−ビニルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂(PC)、ポリスルホン樹脂、フッ化エチレン樹脂、スチレン−ブタジエン樹脂、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン−スチレン樹脂等が挙げられ、これらの中でも、成形性や耐熱性の観点から、PET、PC及びシクロオレフィン系樹脂が好ましい。 Examples of the plastic material constituting the plastic container include polyethylene terephthalate resin (PET), polyethylene terephthalate copolymer resin (copolymer resin using cyclohexanedimethanol or the like as the alcohol component of polyester instead of ethylene glycol), and the like. Polybutylene terephthalate resin, polyethylene naphthalate resin, aliphatic polyester resin such as polylactic acid (PLA), polyethylene resin (PE), polypropylene resin (PP), cycloolefin polymer resin (COP), cycloolefin copolymer resin (COC) Cycloolefin resin such as, ionoma resin, poly-4-methylpentene-1 resin, polymethylmethacrylate resin, polystyrene resin (PS), ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polychloride Examples thereof include vinylidene resin, polyamide resin, polyamideimide resin, polyacetal resin, polycarbonate resin (PC), polysulfone resin, ethylene fluoride resin, styrene-butadiene resin, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, and the like. Among them, PET, PC and cycloolefin resins are preferable from the viewpoint of moldability and heat resistance.

前述の通り、誘電体部材、導電体部材、更には第1の電極の凹部は、プラスチック容器の横断面形状と相似形であることが好ましい。図3(b)に示した態様において、この相似形状を図7を参照して説明すると、図7(a)のB−B線断面において、横断面形状が楕円形の容器1aであれば、図7(b−1)の通りであり、横断面形状が円形の容器1bであれば、図7(b−2)の通りであり、横断面形状が略長方形状の容器1cであれば図7(b−3)の通りである。この形状例では第1の電極2の凹部の横断面形状が円形であるため、横断面形状が楕円形の容器1aや略長方形状の容器1cの場合、導電体部材11B、誘電体部材12C、特に導電体部材11Bは、その横断面形状が第1の電極の凹部の円形形状から、次第に容器の形状に近づくように、外側の形状と内側(容器側)の形状が設計されている。 As described above, the dielectric member, the conductor member, and the recess of the first electrode preferably have a shape similar to the cross-sectional shape of the plastic container. In the embodiment shown in FIG. 3B, this similar shape will be described with reference to FIG. 7. If the container 1a has an elliptical cross-sectional shape in the BB line cross section of FIG. 7A, As shown in FIG. 7 (b-1), if the container 1b has a circular cross-sectional shape, it is as shown in FIG. 7 (b-2), and if the container 1c has a substantially elliptical cross-sectional shape, FIG. 7 (b-3). In this shape example, since the cross-sectional shape of the recess of the first electrode 2 is circular, in the case of the container 1a having an elliptical cross-sectional shape or the container 1c having a substantially rectangular shape, the conductor member 11B and the dielectric member 12C, In particular, the conductor member 11B is designed to have an outer shape and an inner (container side) shape so that the cross-sectional shape thereof gradually approaches the shape of the container from the circular shape of the recess of the first electrode.

[ガスバリア性膜付プラスチック容器の製造方法]
次に、上記のような本発明のガスバリア性膜の成膜装置によりガスバリア性膜を成膜してガスバリア性膜付きプラスチック容器を製造する方法について説明する。
[Manufacturing method of plastic container with gas barrier membrane]
Next, a method of forming a gas barrier film by the gas barrier film film forming apparatus of the present invention as described above to manufacture a plastic container with a gas barrier film will be described.

プラスチック容器1にガスバリア性膜を成膜するには、まず、図1の真空チャンバ4の蓋部4Aを開放した状態で、第1の電極2の凹部2A内に導電体部材11及び誘電体部材12を設けプラスチック容器1を挿入する。
次いで、第2の電極3と原料ガス供給管6を有する蓋部4Aを絶縁部材8を介して本体部4Bに気密に取り付けた後、排気管7より真空引きして真空チャンバ4内を真空にする。この真空の程度は例えば0.1〜50Pa程度である。
In order to form a gas barrier film on the plastic container 1, first, with the lid 4A of the vacuum chamber 4 of FIG. 1 open, the conductor member 11 and the dielectric member are formed in the recess 2A of the first electrode 2. 12 is provided and the plastic container 1 is inserted.
Next, the lid portion 4A having the second electrode 3 and the raw material gas supply pipe 6 is airtightly attached to the main body portion 4B via the insulating member 8, and then evacuated from the exhaust pipe 7 to evacuate the inside of the vacuum chamber 4. To do. The degree of this vacuum is, for example, about 0.1 to 50 Pa.

次に、原料ガス供給管6より原料ガスをプラスチック容器1内に供給し、高周波電源5により、第1の電極2と第2の電極3との間に電圧を印加してプラズマを発生させる。 Next, the raw material gas is supplied into the plastic container 1 from the raw material gas supply pipe 6, and a voltage is applied between the first electrode 2 and the second electrode 3 by the high frequency power source 5 to generate plasma.

原料ガスの供給流量には、特に制限はないが、通常10〜200sccm程度である。
また、印加する電力量にも特に制限はないが、通常40〜500W程度であり、容器形状や装置の構成によって、40〜200Wであることが好ましい場合がある。
The supply flow rate of the raw material gas is not particularly limited, but is usually about 10 to 200 sccm.
The amount of electric power to be applied is not particularly limited, but is usually about 40 to 500 W, and may be preferably 40 to 200 W depending on the shape of the container and the configuration of the device.

このように、プラスチック容器1の内部に向けて原料ガスを減圧された所定圧力下で吹き出させているときに、高周波電力を供給すると、この電力をエネルギー源として、プラスチック容器1内の原料ガスがプラズマ化され、これによって、プラスチック容器1の内壁面にガスバリア性膜が成膜される。 In this way, when high-frequency power is supplied while the raw material gas is blown out toward the inside of the plastic container 1 under a predetermined pressure reduced, the raw material gas in the plastic container 1 uses this power as an energy source. It is converted into plasma, whereby a gas barrier film is formed on the inner wall surface of the plastic container 1.

成膜時間は、電力量や原料ガス供給流量、所望のガスバリア性膜の膜厚等により適宜調整されるが、通常1〜90秒の範囲であり、生産性の観点から、好ましくは1〜20秒、より好ましくは1〜10秒の範囲である。
成膜後は原料ガスの供給を停止すると共に電源をOFFとし、真空チャンバ4内を復圧して開放し、ガスバリア性膜付きプラスチック容器を取り出す。
The film formation time is appropriately adjusted depending on the amount of electric power, the flow rate of the raw material gas, the desired film thickness of the gas barrier film, etc., but is usually in the range of 1 to 90 seconds, and is preferably 1 to 20 from the viewpoint of productivity. Seconds, more preferably in the range of 1-10 seconds.
After the film formation, the supply of the raw material gas is stopped, the power is turned off, the inside of the vacuum chamber 4 is restored and opened, and the plastic container with the gas barrier film is taken out.

図2に示す成膜装置であっても、上記と同様に成膜を行える。 Even with the film forming apparatus shown in FIG. 2, film forming can be performed in the same manner as described above.

[ガスバリア性膜]
本発明において、プラスチック容器の内面に成膜されるガスバリア性膜は、酸素又は水蒸気等の透過を抑制可能であれば、その組成は特に限定されるものではない。特にダイヤモンドライクカーボン膜(DLC膜)、SiO膜、SiON膜、SiOC膜、SiONC膜、Si含有ダイヤモンドカーボン膜等のSi含有膜、又は、アルミナ膜であることが好ましい。中でも、化学的に不活性であること、柔軟性によりプラスチック容器の伸縮に追従性があることから、DLC膜が好ましい。尚、ガスバリア性膜は、異なる組成の膜を複数重ねたものであってもよい。
[Gas barrier film]
In the present invention, the composition of the gas barrier film formed on the inner surface of the plastic container is not particularly limited as long as it can suppress the permeation of oxygen, water vapor, or the like. In particular, a Si-containing film such as a diamond-like carbon film (DLC film), a SiO film, a SiON film, a SiOC film, a SiONC film, or a Si-containing diamond carbon film, or an alumina film is preferable. Among them, the DLC film is preferable because it is chemically inert and has flexibility to follow the expansion and contraction of the plastic container. The gas barrier film may be a stack of a plurality of films having different compositions.

ガスバリア性膜の膜厚は、用途に応じた要求特性により適宜設定されるが通常5〜200nmである。 The film thickness of the gas barrier film is appropriately set according to the required characteristics according to the application, but is usually 5 to 200 nm.

DLC膜としては、アモルファスカーボン膜、水素化アモルファスカーボン膜、テトラヘドラルアモルファスカーボン膜、水素化テトラヘドラルアモルファスカーボン膜などを例示することができる。DLC膜中には、窒素や酸素が含まれていてもよい。その場合、炭素原子数100に対し、窒素原子数、酸素原子数が好ましくは、各20以下、より好ましくは、各15以下である。炭素原子数に対する各原子数は、X線光電子分光分析で分析可能である。 Examples of the DLC film include an amorphous carbon film, a hydrogenated amorphous carbon film, a tetrahedral amorphous carbon film, and a hydrogenated tetrahedral amorphous carbon film. Nitrogen and oxygen may be contained in the DLC film. In that case, the number of nitrogen atoms and the number of oxygen atoms are preferably 20 or less, more preferably 15 or less, respectively, with respect to 100 carbon atoms. Each number of atoms relative to the number of carbon atoms can be analyzed by X-ray photoelectron spectroscopy.

[原料ガス]
原料ガスとしては、例えば、DLC膜を成膜する場合、常温で気体又は液体の脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類などが使用される。特に炭素数が6以上のベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、シクロヘキサン等が望ましい。食品等の容器に使用する場合には、衛生上の観点から脂肪族炭化水素類、特にエチレン、プロピレン又はブチレン等のエチレン系炭化水素、又は、アセチレン、アリレン又は1−ブチン等のアセチレン系炭化水素が好ましい。
[Raw material gas]
As the raw material gas, for example, when a DLC film is formed, gaseous or liquid aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons and the like are used at room temperature. In particular, benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable. When used in containers for foods, etc., from the viewpoint of hygiene, aliphatic hydrocarbons, especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, allylene or 1-butyne. Is preferable.

Si含有膜を成膜する場合には、珪化炭化水素ガス又は珪化水素ガスを使用する。具体的には、四塩化ケイ素、シラン(SiH)、ヘキサメチルジシラン、ビニルトリメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等の有機シラン化合物、オクタメチルシクロテトラシロキサン、1,1,3,3−テトラメチルジシロキサン、ヘキサメチルジシロキサン(HMDSO)等の有機シロキサン化合物等が使用される。また、これらの材料以外にも、アミノシラン、シラザンなども用いられる。 When forming a Si-containing film, a silicified hydrocarbon gas or a hydrogen silicate gas is used. Specifically, silicon tetrachloride, silane (SiH 4 ), hexamethyldisilane, vinyltrimethylsilane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, diethylsilane, propylsilane, phenylsilane, methyltriethoxysilane, vinyl. Organic silane compounds such as triethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane, 1,1,3,3 -Organic siloxane compounds such as tetramethyldisiloxane and hexamethyldisiloxane (HMDSO) are used. In addition to these materials, aminosilane, silazane and the like are also used.

アルミナ膜を成膜する場合には、炭化水素アルミニウムガスを使用する。例えば、トリアルキルアルミニウム、トリメチルアルミニウム、トリエチルアルミニウム、ジアルキルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、ジメチルイソプロピルアルミニウムを用いる。 When forming an alumina film, aluminum hydrocarbon gas is used. For example, trialkylaluminum, trimethylaluminum, triethylaluminum, dialkylaluminum, triisopropylaluminum, tri-n-butylaluminum, and dimethylisopropylaluminum are used.

これらの原料ガスは、単独で用いてもよいが、2種以上の混合ガスとして使用するようにしてもよい。さらにこれらのガスをアルゴンやヘリウムの様な希ガスで希釈して用いてもよい。また、水素ガスや窒素ガス、又は酸素ガスを加えてガスバリア性膜の組成を調整してもよい。 These raw material gases may be used alone, or may be used as a mixed gas of two or more kinds. Further, these gases may be diluted with a rare gas such as argon or helium before use. Further, the composition of the gas barrier film may be adjusted by adding hydrogen gas, nitrogen gas, or oxygen gas.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で種々の応用が可能である。 Examples will be shown below and the present invention will be described in more detail. However, the present invention is not limited thereto, and various applications are possible without departing from the technical idea of the present invention.

[測定及び評価方法]
<換算距離d/εの総和>
図8の位置I、位置II、位置IIIにおいて、各位置での換算距離d/εの総和を算出した。
なお、図8は、導電体部材及び/又は誘電体部材の配置例として、図3(b)に示したものを例示して算出位置を示したものであり、プラスチック容器の底部から口部までの高さ(図8中のHy)を3等分し、各々3等分した領域の中間位置を換算距離d/εの総和の算出位置とした。
[Measurement and evaluation method]
<Sum of the terms of the distance d i / ε i>
Position I in FIG. 8, position II, in position III, and calculates the total sum of converted distances d i / ε i at each position.
Note that FIG. 8 shows the calculated positions by exemplifying the one shown in FIG. 3B as an example of arrangement of the conductor member and / or the dielectric member, from the bottom to the mouth of the plastic container. the height (Hy in FIG. 8) divided into three equal parts, and with each divided into three equal areas calculated position of the sum of the intermediate position converted distances d i / ε i of.

<ガスバリア性膜の膜厚均一性>
図9に示すように、予め、プラスチック容器1の内壁面に、シリコンウェハ20を配置してガスバリア性膜21の成膜を行った。成膜後、容器1からシリコンウェハ20を取り出し、シリコンウェハ20上に堆積しているガスバリア性膜21の膜厚を高精度微細形状測定器(小坂研究所株式会社製、製品名「サーフコーダET4000A」)を用いて測定した。
<Film thickness uniformity of gas barrier film>
As shown in FIG. 9, a silicon wafer 20 was arranged on the inner wall surface of the plastic container 1 in advance to form a gas barrier film 21. After film formation, the silicon wafer 20 is taken out from the container 1, and the film thickness of the gas barrier film 21 deposited on the silicon wafer 20 is measured by a high-precision fine shape measuring instrument (manufactured by Kosaka Laboratory Co., Ltd., product name "Surfcoder ET4000A". ”) Was measured.

膜厚の測定は、プラスチック容器1の胴部を、図9に示すように高さ方向に分割し、位置A(容器底部側、胴部最下部から20mm上方の位置)におけるガスバリア性膜の膜厚T、位置B(容器胴部の高さ方向の中央部分の位置であり、位置Aと位置Bとの距離と、位置Bと位置Cとの距離は等しい。)におけるガスバリア性膜の膜厚T、位置C(容器口部側、胴部最上部から10mm下方の位置)におけるガスバリア性膜の膜厚Tをそれぞれ測定し、T/T及びT/Tを算出した。T/T及びT/Tの値がいずれも0.50以上であれば膜厚が均一であると評価できる。 To measure the film thickness, the body of the plastic container 1 is divided in the height direction as shown in FIG. 9, and the film of the gas barrier film at position A (the position on the bottom of the container, 20 mm above the bottom of the body). the thickness T a, (the position in the height direction central portion of the container body, the distance between the position B and the position a, the distance between the position C and the position B is equal.) position B in the gas barrier film of the film the thickness T B, position C the film thickness T C of the gas barrier film (container mouth portion, from the body portion top 10mm lower position) in each measured and calculated T a / T B and T a / T C .. Thickness if the value of T A / T B and T A / T C are both 0.50 or higher can be evaluated as being uniform.

ガスバリア性膜を成膜するプラスチック容器としては、いずれも、図6(f)に示すような円筒型形状であって、底部が図6(c)に示すように丸底形状となっているポリカーボネート製容器(口部内径D=15mm、高さH=90mm、H/D=6、容量16mL)(以下、容器イ)を用いた。 The plastic container on which the gas barrier film is formed is a polycarbonate having a cylindrical shape as shown in FIG. 6 (f) and a round bottom shape as shown in FIG. 6 (c). A container made (mouth inner diameter D = 15 mm, height H = 90 mm, H / D = 6, capacity 16 mL) (hereinafter referred to as container a) was used.

導電体部材としてはアルミニウムを用い、誘電体部材としてはテフロン(登録商標)又はポリアセタールを用いた。テフロン(登録商標)の比誘電率は2.1で、ポリアセタールの比誘電率は3.7である。 Aluminum was used as the conductor member, and Teflon (registered trademark) or polyacetal was used as the dielectric member. The relative permittivity of Teflon (registered trademark) is 2.1, and the relative permittivity of polyacetal is 3.7.

また、いずれも成膜装置としては、図2に示す成膜装置(第1の電極2と第2の電極30との距離Lは35mm)を用い、第1の電極に印加する高周波電力100W、原料ガス(アセチレンガス)の流量100sccm、成膜時間14秒として、容器1の内面にDLC膜を成膜した。 Further, as the film forming apparatus, the film forming apparatus shown in FIG. 2 (the distance L 1 between the first electrode 2 and the second electrode 30 is 35 mm) is used, and the high frequency power of 100 W applied to the first electrode is used. A DLC film was formed on the inner surface of the container 1 with a flow rate of 100 sccm of the raw material gas (acetylene gas) and a film forming time of 14 seconds.

[実施例1]
誘電体部材としてテフロン(登録商標)を用い、導電体部材と誘電体部材を図3(b)の配置として容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
[Example 1]
Teflon (registered trademark) was used as the dielectric member, and a DLC film was formed on the inner surface of the container a with the conductor member and the dielectric member arranged in FIG. 3 (b).
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.

[実施例2]
誘電体部材としてテフロン(登録商標)を用い、導電体部材と誘電体部材を図3(a)の配置として容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
[Example 2]
Using Teflon (registered trademark) as the dielectric member, a DLC film was formed on the inner surface of the container a with the conductor member and the dielectric member arranged in FIG. 3 (a).
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.

[実施例3]
誘電体部材としてテフロン(登録商標)を用い、導電体部材を用いず、誘電体部材を図3(c)の配置として容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
[Example 3]
A DLC film was formed on the inner surface of the container a using Teflon (registered trademark) as the dielectric member and arranging the dielectric members in FIG. 3 (c) without using the conductor member.
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.

[比較例1]
導電体部材のみを用い、図10(a)の配置として、容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
なお、図10(a)及び以下の図10(b)において、図3(a)と同一機能を奏する部材には同一符号を付してある。
[Comparative Example 1]
A DLC film was formed on the inner surface of the container a as the arrangement shown in FIG. 10A using only the conductor member.
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.
In addition, in FIG. 10A and FIG. 10B below, members having the same functions as those in FIG. 3A are designated by the same reference numerals.

[比較例2]
誘電体部材としてテフロン(登録商標)を用い、導電体部材を用いず、図10(b)の配置として容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
[Comparative Example 2]
Teflon (registered trademark) was used as the dielectric member, and a DLC film was formed on the inner surface of the container a as the arrangement shown in FIG. 10B without using the conductor member.
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.

[比較例3]
誘電体部材としてポリアセタールを用い、導電体部材を用いず、図10(b)の配置として、容器イの内面にDLC膜を成膜した。
得られた容器のガスバリア性膜の膜厚均一性の評価結果を表1に示す。
[Comparative Example 3]
A DLC film was formed on the inner surface of the container a in the arrangement shown in FIG. 10B, using polyacetal as the dielectric member and not using the conductor member.
Table 1 shows the evaluation results of the film thickness uniformity of the gas barrier film of the obtained container.

なお、表1には各例における換算距離d/εの総和と、実質電極表面(第1の電極表面又は導電体部材を用いた場合は導電体部材表面)から容器の胴部表面までの距離を示す。 In Table 1 the sum of converted distances d i / ε i in each example, the real electrode surface (conductive member surface in the case of using the first electrode surface or conductive member) to the body portion surface of the container Indicates the distance of.

Figure 2021008669
Figure 2021008669

表1より、本発明に従って、換算距離d/εの総和が位置IIIよりも位置I側の方が小さくなるように導電体部材及び/又は誘電体部材を容器と第1の電極との間に配置することにより、H/D比の大きい容器イであっても均一な膜厚でガスバリア性膜を成膜することができることが分かる。
これに対して導電体部材のみ又は誘電体部材のみを用い、換算距離d/εの総和が位置I,II,IIIで等しい比較例1〜3では、ガスバリア性膜の膜厚均一性に劣る。
From Table 1, according to the present invention, in terms of the distance d i / epsilon i sum the conductor member and / or the dielectric member so that the direction of the position I side from the position III smaller container and the first electrode of It can be seen that the gas barrier film can be formed with a uniform film thickness even in the container a having a large H / D ratio by arranging the containers in between.
Using only the conductive member only or a dielectric member contrast, converted distances d i / ε i sum position I of, II, Comparative Examples 1 to 3 equal III, the thickness uniformity of the gas barrier film Inferior.

1,1A,1B,1C,1a,1b,1c プラスチック容器
2 第1の電極
2A 凹部
3,30 第2の電極
4 真空チャンバ
5 高周波電源
6 原料ガス供給管
7 排気管
8,9 絶縁部材
10 空隙
11,11A,11B,11C,11D,11E 導電体部材
12,12A,12B,12C,12D,12E,12F,12G,12H 誘電体部材
20 シリコンウェハ
21 ガスバリア性膜
31 電極支持体
32 ガス拡散室
33 ガス吐出孔
1,1A, 1B, 1C, 1a, 1b, 1c Plastic container 2 1st electrode 2A recess 3,30 2nd electrode 4 Vacuum chamber 5 High frequency power supply 6 Raw material gas supply pipe 7 Exhaust pipe 8, 9 Insulation member 10 Void 11, 11A, 11B, 11C, 11D, 11E Conductor member 12, 12A, 12B, 12C, 12D, 12E, 12F, 12G, 12H Dielectric member 20 Silicon wafer 21 Gas barrier film 31 Electrode support 32 Gas diffusion chamber 33 Gas discharge hole

Claims (10)

少なくとも口部、胴部及び底部を有するプラスチック容器の内面に、プラズマCVD法によりガスバリア性膜を成膜する装置であって、
該プラスチック容器の底部が奥側となるように該プラスチック容器を収容する凹部が形成された第1の電極と、
該第1の電極との間でプラズマを発生させる第2の電極と、
該第1の電極と第2の電極との間にプラズマ発生用の電圧を印加する電源と、
該凹部に収容されたプラスチック容器内を排気する排気手段と、
該プラスチック容器内に原料ガスを供給する原料ガス供給手段とを有するガスバリア性膜の成膜装置において、
該凹部内面と該プラスチック容器の胴部との間に、誘電体部材と導電体部材とが設けられており、該導電体部材は筒形形状であり、該導電体部材の少なくとも該プラスチック容器側面における該プラスチック容器の高さ方向に直交する断面(以下、「横断面」と称す。)の形状が、該プラスチック容器の胴部外面の該横断面の形状と相似形であり、以下の条件Aを満たすことを特徴とするガスバリア性膜の成膜装置。
条件A:該横断面において、該第1の電極又は導電体部材で形成される実質電極表面と、該プラスチック容器の胴部外表面との間に存在する空隙及び/又は誘電体部材の厚さ(d)を比誘電率(ε)で除した換算距離d/εの、該実質電極表面から胴部外表面までの総和が、該プラスチック容器の口部側よりも底部側の方が小さい。
A device for forming a gas barrier film on the inner surface of a plastic container having at least a mouth, a body, and a bottom by a plasma CVD method.
A first electrode formed with a recess for accommodating the plastic container so that the bottom of the plastic container is on the back side.
A second electrode that generates plasma between the first electrode and
A power supply that applies a voltage for plasma generation between the first electrode and the second electrode, and
An exhaust means for exhausting the inside of the plastic container housed in the recess,
In a gas barrier film forming apparatus having a raw material gas supply means for supplying a raw material gas into the plastic container,
A dielectric member and a conductor member are provided between the inner surface of the recess and the body of the plastic container, and the conductor member has a tubular shape, and at least the side surface of the plastic container of the conductor member. The shape of the cross section orthogonal to the height direction of the plastic container (hereinafter, referred to as “cross section”) is similar to the shape of the cross section on the outer surface of the body of the plastic container, and the following condition A A gas barrier film forming apparatus characterized by satisfying the above conditions.
Condition A: In the cross section, the thickness of the void and / or the dielectric member existing between the surface of the substantial electrode formed of the first electrode or the conductor member and the outer surface of the body of the plastic container. (d i) the relative dielectric constant (epsilon i) of the converted distances d i / ε i obtained by dividing the sum of the said actual quality electrode surface to cylinder outer surface, of the bottom side of the mouth portion of the plastic container Is smaller.
前記導電体部材が、下記条件Bを満たすように設置されている請求項1に記載のガスバリア性膜の成膜装置。
条件B:前記横断面において、前記実質電極表面から該プラスチック容器の胴部外表面までの距離が、該プラスチック容器の口部側よりも底部側の方が小さい。
The film forming apparatus for a gas barrier film according to claim 1, wherein the conductor member is installed so as to satisfy the following condition B.
Condition B: In the cross section, the distance from the surface of the substantial electrode to the outer surface of the body of the plastic container is smaller on the bottom side than on the mouth side of the plastic container.
前記凹部に設けられた前記誘電体部材が筒形形状であり、該誘電体部材の少なくとも前記プラスチック容器側面の前記横断面の形状が、前記プラスチック容器の胴部外面の前記横断面の形状と相似形である請求項1又は2に記載のガスバリア性膜の成膜装置。 The dielectric member provided in the recess has a tubular shape, and at least the shape of the cross section of the side surface of the plastic container of the dielectric member is similar to the shape of the cross section of the outer surface of the body of the plastic container. The film forming apparatus for a gas barrier film according to claim 1 or 2, which is a form. 前記プラスチック容器の高さ方向の途中まで前記導電体部材を設け、その上に誘電体部材を積み重ねた請求項1〜3のいずれか1項に記載のガスバリア性膜の成膜装置。 The film forming apparatus for a gas barrier film according to any one of claims 1 to 3, wherein the conductor member is provided halfway in the height direction of the plastic container, and a dielectric member is stacked on the conductor member. 前記導電体部材及び誘電体部材が、容器の高さ方向において厚みに傾斜又は段差を有する請求項1〜4のいずれか1項に記載のガスバリア性膜の成膜装置。 The film forming apparatus for a gas barrier film according to any one of claims 1 to 4, wherein the conductor member and the dielectric member have an inclination or a step in thickness in the height direction of the container. 前記プラスチック容器の口部の内径(D)が35mm以下であり、該口部の内径(D)に対する該プラスチック容器の高さ(H)の比(H/D)が3以上である請求項1〜5のいずれか1項に記載のガスバリア性膜の成膜装置。 Claim 1 in which the inner diameter (D) of the mouth of the plastic container is 35 mm or less, and the ratio (H / D) of the height (H) of the plastic container to the inner diameter (D) of the mouth is 3 or more. The device for forming a gas barrier film according to any one of 5 to 5. 請求項1〜6のいずれか1項に記載のガスバリア性膜の成膜装置により、プラスチック容器の内面にガスバリア性膜を成膜することを特徴とするガスバリア性膜の成膜方法。 A method for forming a gas barrier film, which comprises forming a gas barrier film on the inner surface of a plastic container by the gas barrier film forming apparatus according to any one of claims 1 to 6. 少なくとも口部、胴部及び底部を有するプラスチック容器の内面に、プラズマCVD法によりガスバリア性膜を成膜してガスバリア性膜付プラスチック容器を製造する方法において、
該プラスチック容器の底部が奥側となるように該プラスチック容器を収容する凹部が形成された第1の電極の該凹部内に、誘電体部材と導電体部材とを、下記条件Aを満たすように設置した後、該凹部に該プラスチック容器を収容する工程と、
該第1の電極との間でプラズマを発生させる第2の電極を該プラスチック容器の口部側に配置する工程と、
該プラスチック容器内を排気する工程と、
該プラスチック容器内に原料ガスを供給する工程と、
該第1の電極と第2の電極との間にプラズマ発生用の電圧を印加することにより、該原料ガスをプラズマ化して該プラスチック容器の内面にガスバリア性膜を成膜する工程とを有するガスバリア性膜付プラスチック容器の製造方法であり、
該導電体部材は筒形形状であり、該導電体部材の少なくとも該プラスチック容器側面における該プラスチック容器の高さ方向に直交する断面(以下、「横断面」と称す。)の形状が、該プラスチック容器の胴部外面の該横断面の形状と相似形であることを特徴とするガスバリア性膜付プラスチック容器の製造方法。
条件A:該横断面において、該第1の電極又は導電体部材で形成される実質電極表面と、該プラスチック容器の胴部外表面との間に存在する空隙及び/又は誘電体部材の厚さ(d)を比誘電率(ε)で除した換算距離d/εの、該実質電極表面から胴部外表面までの総和が、該プラスチック容器の口部側よりも底部側の方が小さい。
In a method for producing a plastic container with a gas barrier film by forming a gas barrier film on the inner surface of a plastic container having at least a mouth, a body and a bottom by a plasma CVD method.
The dielectric member and the conductor member are placed in the recess of the first electrode in which the recess for accommodating the plastic container is formed so that the bottom of the plastic container is on the back side so as to satisfy the following condition A. After installation, the process of accommodating the plastic container in the recess and
A step of arranging a second electrode that generates plasma with the first electrode on the mouth side of the plastic container, and
The process of exhausting the inside of the plastic container and
The process of supplying the raw material gas into the plastic container and
A gas barrier having a step of converting the raw material gas into plasma and forming a gas barrier film on the inner surface of the plastic container by applying a voltage for generating plasma between the first electrode and the second electrode. This is a method for manufacturing plastic containers with a sex film.
The conductor member has a tubular shape, and the shape of the cross section (hereinafter, referred to as “cross section”) of the conductor member at least on the side surface of the plastic container perpendicular to the height direction of the plastic container is the plastic. A method for producing a plastic container with a gas barrier film, which has a shape similar to the shape of the cross section of the outer surface of the body of the container.
Condition A: In the cross section, the thickness of the void and / or the dielectric member existing between the surface of the substantial electrode formed of the first electrode or the conductor member and the outer surface of the body of the plastic container. (d i) the relative dielectric constant (epsilon i) of the converted distances d i / ε i obtained by dividing the sum of the said actual quality electrode surface to cylinder outer surface, of the bottom side of the mouth portion of the plastic container Is smaller.
前記導電体部材を、下記条件Bを満たすよう設置する請求項8に記載のガスバリア性膜付プラスチック容器の製造方法。
条件B:前記横断面において、前記実質電極表面から該プラスチック容器の胴部外表面までの距離が、該プラスチック容器の口部側よりも底部側の方が小さい。
The method for manufacturing a plastic container with a gas barrier film according to claim 8, wherein the conductor member is installed so as to satisfy the following condition B.
Condition B: In the cross section, the distance from the surface of the substantial electrode to the outer surface of the body of the plastic container is smaller on the bottom side than on the mouth side of the plastic container.
前記プラスチック容器の口部の内径(D)が35mm以下であり、該口部の内径(D)に対する該プラスチック容器の高さ(H)の比(H/D)が3以上である請求項8又は9に記載のガスバリア性膜付プラスチック容器の製造方法。 8. Claim 8 in which the inner diameter (D) of the mouth of the plastic container is 35 mm or less, and the ratio (H / D) of the height (H) of the plastic container to the inner diameter (D) of the mouth is 3 or more. Alternatively, the method for manufacturing a plastic container with a gas barrier film according to 9.
JP2020163647A 2020-09-29 2020-09-29 Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film Pending JP2021008669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020163647A JP2021008669A (en) 2020-09-29 2020-09-29 Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020163647A JP2021008669A (en) 2020-09-29 2020-09-29 Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016089347A Division JP2017197810A (en) 2016-04-27 2016-04-27 Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film

Publications (1)

Publication Number Publication Date
JP2021008669A true JP2021008669A (en) 2021-01-28

Family

ID=74199676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020163647A Pending JP2021008669A (en) 2020-09-29 2020-09-29 Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film

Country Status (1)

Country Link
JP (1) JP2021008669A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003341673A (en) * 2002-05-28 2003-12-03 Kirin Brewery Co Ltd Manufacturing system for dlc film-coated plastic container
JP2005194606A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Apparatus for forming barrier film on inner surface of plastic vessel, and method for manufacturing plastic vessel with barrier film-coated inner surface
WO2008114475A1 (en) * 2007-03-16 2008-09-25 Mitsubishi Heavy Industries Food & Packaging Machinery Co., Ltd. Barrier-film forming apparatus, barrier-film forming method, and barrier-film coated container
JP4188315B2 (en) * 2002-05-28 2008-11-26 麒麟麦酒株式会社 DLC film coated plastic container and manufacturing apparatus thereof
JP2013256708A (en) * 2012-06-14 2013-12-26 Mitsubishi Plastics Inc Dielectric member, film forming apparatus and thin-film forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003341673A (en) * 2002-05-28 2003-12-03 Kirin Brewery Co Ltd Manufacturing system for dlc film-coated plastic container
JP4188315B2 (en) * 2002-05-28 2008-11-26 麒麟麦酒株式会社 DLC film coated plastic container and manufacturing apparatus thereof
JP2005194606A (en) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd Apparatus for forming barrier film on inner surface of plastic vessel, and method for manufacturing plastic vessel with barrier film-coated inner surface
WO2008114475A1 (en) * 2007-03-16 2008-09-25 Mitsubishi Heavy Industries Food & Packaging Machinery Co., Ltd. Barrier-film forming apparatus, barrier-film forming method, and barrier-film coated container
JP2013256708A (en) * 2012-06-14 2013-12-26 Mitsubishi Plastics Inc Dielectric member, film forming apparatus and thin-film forming method

Similar Documents

Publication Publication Date Title
JP4747605B2 (en) Deposition film by plasma CVD method
CN102605350B (en) Barrier-film forming apparatus, barrier-film forming method and barrier films are by coated container
US9410245B2 (en) Gas-barrier plastic molded product and manufacturing process therefor
JP2004169087A (en) High frequency plasma cvd system, and plastic vessel
JP2006224992A (en) Plastic container coated with gas barrier membrane, its manufacturing device, and its manufacturing method
JP4424033B2 (en) Deposition film by plasma CVD method
JP6862926B2 (en) Gas barrier film forming apparatus and film forming method and manufacturing method of plastic container with gas barrier film
WO2001036703A1 (en) System and method for depositing inorganic/organic dielectric films
EP2396451A1 (en) Two layer barrier on polymeric substrate
JP4854983B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP2021008669A (en) Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film
JP5273760B2 (en) Plastic container
JP4722667B2 (en) Method for suppressing plasma generation outside reaction chamber, method for manufacturing gas barrier plastic container, and apparatus for manufacturing the same
JP2017197810A (en) Apparatus and method for depositing gas barrier film and method for manufacturing plastic container having gas barrier film
JP2006160269A (en) Plasma cvd film forming apparatus and method for manufacturing plastic container with gas barrier property
JP4722674B2 (en) Plasma CVD film forming apparatus and gas barrier plastic container manufacturing method
JP4442182B2 (en) Method for forming metal oxide film
WO2007007395A1 (en) Device for forming coating film on inner surface of container and method for producing container having coated inner surface
JP6657766B2 (en) Plastic container and manufacturing method thereof
JP6888455B2 (en) Manufacturing method of gas barrier plastic container
JP5610345B2 (en) Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP4078326B2 (en) Film forming apparatus and method
JPWO2003000558A1 (en) Moisture / gas barrier plastic container with partition plate, device for manufacturing the same, and method for manufacturing the same
JP2006335379A (en) Synthetic-resin-made container with coat, method and apparatus for forming coat on synthetic-resin-made container
JP4593213B2 (en) Gas barrier plastic container and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426