JP2020193320A - Method for producing polyphenylene ether - Google Patents

Method for producing polyphenylene ether Download PDF

Info

Publication number
JP2020193320A
JP2020193320A JP2020015563A JP2020015563A JP2020193320A JP 2020193320 A JP2020193320 A JP 2020193320A JP 2020015563 A JP2020015563 A JP 2020015563A JP 2020015563 A JP2020015563 A JP 2020015563A JP 2020193320 A JP2020193320 A JP 2020193320A
Authority
JP
Japan
Prior art keywords
polyphenylene ether
dryer
ppe
wet
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020015563A
Other languages
Japanese (ja)
Other versions
JP7424846B2 (en
Inventor
山本 繁
Shigeru Yamamoto
繁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to CN202010429460.1A priority Critical patent/CN111978535B/en
Publication of JP2020193320A publication Critical patent/JP2020193320A/en
Application granted granted Critical
Publication of JP7424846B2 publication Critical patent/JP7424846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for producing polyphenylene ether, which can increase drying speed while reducing problems during drying such as scaling, fusion, deterioration, and the like in the dryer.SOLUTION: Provided is a method for producing polyphenylene ether, comprising a drying step of drying wet polyphenylene ether. In the drying step which includes contacting the wet polyphenylene ether with a heating surface, when a boiling point of a solvent having the lowest boiling point among solvent components is denoted by bl°C and a boiling point of a solvent having the highest boiling point is denoted by bh°C, a temperature T1 of the heating surface, with which the wet polyphenylene ether contacts until a content of the solvent component becomes equal to or less than a threshold liquid-containing ratio, is set in the following range: (bl+36)°C≤T1≤(Tg-45)°C, a temperature T2 of the heating surface, with which the wet polyphenylene ether contacts after the content of the solvent component became equal to or less than a threshold liquid-containing ratio, is set in the following range:(bh+15)°C≤T2≤(Tg-30)°C, and T2 is set at a higher temperature than T1.SELECTED DRAWING: None

Description

本発明は、湿潤ポリフェニレンエーテルを乾燥する新たな乾燥工程を含むポリフェニレンエーテル製造工程に関する。 The present invention relates to a polyphenylene ether production process including a new drying step of drying the wet polyphenylene ether.

ポリフェニレンエーテル(以下、単にPPEという場合がある)を原料とする変性PPE樹脂は、溶融射出成形法や溶融押出成形法等の成形方法により所望の形状の製品・部品を生産できるため、電気・電子分野、自動車分野、その他の各種工業材料分野の製品・部品用の材料として幅広く用いられている。 Modified PPE resin made from polyphenylene ether (hereinafter, may be simply referred to as PPE) can produce products and parts having a desired shape by a molding method such as a melt injection molding method or a melt extrusion molding method. It is widely used as a material for products and parts in the fields of automobiles, automobiles, and various other industrial materials fields.

一般的なPPE工業的生産での重合工程は、沈殿析出重合と溶液重合がある。沈殿析出重合では重合終了時にスラリー液であり、溶液重合では重合終了時は溶液であるが後工程でPPEの貧溶媒と混合しスラリー液となる。いずれの重合工程でも得られたスラリー液は、洗浄等の後処理後に固液分離を行い、湿潤PPEを得る。湿潤PPEはPPEの良溶媒と貧溶媒を含有するが、良溶媒の含有率が高い状態での乾燥はPPEの付着性が高いため、乾燥装置へのスケーリング等の問題が発生する。また、乾燥効率を上げるため乾燥温度を高温に上げていくと融着現象が発生し、強固なスケーリングや融着物が製品に混入する等のトラブルの原因となる。
そのため、工業的なPPEの製造において、湿潤PPEの乾燥方法について様々な検討がなされてきた。
Polymerization steps in general PPE industrial production include precipitation-precipitation polymerization and solution polymerization. In precipitation precipitation polymerization, it is a slurry liquid at the end of polymerization, and in solution polymerization, it is a solution at the end of polymerization, but it is mixed with a poor solvent of PPE in a later step to form a slurry liquid. The slurry liquid obtained in any of the polymerization steps is subjected to solid-liquid separation after post-treatment such as washing to obtain a wet PPE. Wet PPE contains a good solvent and a poor solvent of PPE, but drying in a state where the content of the good solvent is high causes problems such as scaling to a drying device because the adhesion of PPE is high. Further, if the drying temperature is raised to a high temperature in order to increase the drying efficiency, a fusion phenomenon occurs, which causes troubles such as strong scaling and mixing of the fused material into the product.
Therefore, in the production of industrial PPE, various studies have been made on a method for drying wet PPE.

特許文献1には、湿潤状態のポリフェニレンエーテルを乾燥させるために複数の加熱管が内部に配置された回転式乾燥機を用いる方法が記載されている。ポリフェニレンエーテルの良溶媒が、10重量%以上存在する乾燥ゾーンでのポリフェニレンエーテルの温度を、100℃以下にすることを特徴としているが、加熱温度の記載はない。
特許文献2には、乾燥状態でのポリフェニレンエーテル樹脂のガラス転移温度より40℃低い温度以上かつガラス転移温度以下に加熱したポリフェニレンエーテル樹脂の乾燥体と、湿潤状態のポリフェニレンエーテル樹脂を混合撹拌し造粒させる手法が開示されている。
Patent Document 1 describes a method of using a rotary dryer in which a plurality of heating tubes are arranged in order to dry a wet polyphenylene ether. It is characterized in that the temperature of the polyphenylene ether in the drying zone in which a good solvent of the polyphenylene ether is present in an amount of 10% by weight or more is set to 100 ° C. or lower, but the heating temperature is not described.
In Patent Document 2, a dried product of a polyphenylene ether resin heated to a temperature 40 ° C. lower than the glass transition temperature of the polyphenylene ether resin in a dry state and a temperature lower than the glass transition temperature of the polyphenylene ether resin in a dry state and a polyphenylene ether resin in a wet state are mixed and stirred. The method of graining is disclosed.

特開2001−335632号公報Japanese Unexamined Patent Publication No. 2001-335632 特開2006−241258号公報Japanese Unexamined Patent Publication No. 2006-241258

特許文献1のポリフェニレンエーテル良溶媒量が10重量%以上存在する乾燥ゾーンのポリフェニレンエーテルの温度は、乾燥途中のポリフェニレンエーテルが含有する溶媒中の最も低沸点溶媒の沸点付近となる。そのため、例えば代表的な貧溶媒であるメタノール(沸点:64.7℃)を含有する場合は、ポリフェニレンエーテルの温度はメタノールの沸点である64.7℃付近になるが、ポリフェニレンエーテルの温度を100℃以下に調整(維持)しつつ、乾燥効率を上げようとして加熱温度を上げると、加熱面の温度が100℃以上になる場合があり、加熱面でのスケーリングや融着を回避することが出来ないことも考えられる。
また、ポリフェニレンエーテルに残留する溶媒の主成分が、代表的な良溶媒であるトルエン(沸点:110℃)になった場合、ポリフェニレンエーテルの温度を100℃以下に保つためには加熱面の温度を100℃以下に設定する必要がある。しかしながら、湿潤ポリフェニレンエーテルの乾燥で限界含液率に達するまでの恒率乾燥速度に対し供給熱量が重要であり、加熱面の温度が100℃以下では乾燥効率が充分ではない。
The temperature of the polyphenylene ether in the drying zone in which the amount of the good solvent of the polyphenylene ether of Patent Document 1 is 10% by weight or more is close to the boiling point of the lowest boiling point solvent among the solvents contained in the polyphenylene ether during drying. Therefore, for example, when methanol (boiling point: 64.7 ° C.), which is a typical poor solvent, is contained, the temperature of the polyphenylene ether is around 64.7 ° C., which is the boiling point of methanol, but the temperature of the polyphenylene ether is 100. If the heating temperature is raised in an attempt to increase the drying efficiency while adjusting (maintaining) the temperature to ℃ or less, the temperature of the heated surface may rise to 100 ℃ or higher, and scaling and fusion on the heated surface can be avoided. It is possible that there is no such thing.
When the main component of the solvent remaining in the polyphenylene ether is toluene (boiling point: 110 ° C.), which is a typical good solvent, the temperature of the heated surface must be adjusted in order to keep the temperature of the polyphenylene ether below 100 ° C. It is necessary to set it to 100 ° C. or lower. However, the amount of heat supplied is important for the constant drying rate until the limit liquid content is reached by drying the wet polyphenylene ether, and the drying efficiency is not sufficient when the temperature of the heated surface is 100 ° C. or lower.

特許文献2の実施例では、混合状態で乾燥した場合の融着有無を確認しており、特許文献2の手法で乾燥時の融着現象を抑制できることが記載されている。しかしながら、ポリフェニレンエーテル樹脂の乾燥体を混合して乾燥するため、乾燥装置を大きくする必要があり、設備コストやランニングコストが増大し、効率的ではない。
また通常、PPEは加熱加工時に還元粘度が上昇する傾向にあり、加熱加工により機械強度が上昇するといった特性を持つ。そのため、PPEの重合段階での分子設計目標と、加熱加工後の分子設計目標が異なる。しかしながら、乾燥温度条件によってはPPEが変質し、加熱加工時の還元粘度上昇程度が変化してしまうため、設計通りの機械強度が得られなくなることがある。
In the examples of Patent Document 2, the presence or absence of fusion when dried in a mixed state is confirmed, and it is described that the fusion phenomenon at the time of drying can be suppressed by the method of Patent Document 2. However, since the dried body of the polyphenylene ether resin is mixed and dried, it is necessary to increase the size of the drying device, which increases the equipment cost and the running cost, which is not efficient.
In addition, PPE usually has a characteristic that the reducing viscosity tends to increase during heat processing, and the mechanical strength increases due to heat processing. Therefore, the molecular design target at the polymerization stage of PPE and the molecular design target after heat processing are different. However, depending on the drying temperature conditions, the PPE may change in quality and the degree of increase in reducing viscosity during heat processing may change, so that the mechanical strength as designed may not be obtained.

このように、PPE製造工程での湿潤PPEの乾燥については、スケーリング、融着やPPEの変質を回避して効率よく乾燥する手法が検討されてきたが、そのような手法は未だ得られていなかった。 As described above, regarding the drying of wet PPE in the PPE manufacturing process, a method of efficiently drying by avoiding scaling, fusion and alteration of PPE has been studied, but such a method has not yet been obtained. It was.

本発明は、上記課題を鑑みてなされたものであり、乾燥中に、乾燥機でのスケーリング、融着、変質等の問題を低減しつつ、乾燥速度を高めることが可能なPPEの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and a method for producing PPE capable of increasing the drying rate while reducing problems such as scaling, fusion, and alteration in a dryer during drying. The purpose is to provide.

本発明者らが鋭意検討を重ねた結果、湿潤PPEを乾燥するときに、溶媒成分の含有量が限界含液率以下になるまで、湿潤PPEが接触する加熱面の加熱温度を低めに調整することにより、スケーリングや融着を抑制でき、また、溶媒成分の含有量が限界含液率以下になった後では、PPE物性が変化しない範囲で加熱面の加熱温度を高めることにより、湿潤PPEの乾燥効率を大幅に改良できることを見出し、本発明に至った。 As a result of diligent studies by the present inventors, when the wet PPE is dried, the heating temperature of the heating surface to which the wet PPE comes into contact is adjusted to be low until the content of the solvent component becomes equal to or less than the limit liquid content. As a result, scaling and fusion can be suppressed, and after the content of the solvent component becomes equal to or less than the limit liquid content, the heating temperature of the heated surface is raised within the range where the PPE physical properties do not change, so that the wet PPE We have found that the drying efficiency can be significantly improved, and have reached the present invention.

すなわち、本発明は、以下の通りである。
[1]
ポリフェニレンエーテルと、ポリフェニレンエーテルの良溶媒と、ポリフェニレンエーテルの貧溶媒とを含むスラリー液を固液分離して得られた湿潤ポリフェニレンエーテルを乾燥する乾燥工程を含むポリフェニレンエーテルの製造方法であって、
前記湿潤ポリフェニレンエーテルが含有する溶媒成分の中で最も低沸点の溶媒の沸点をbl℃、最も高沸点の溶媒の沸点をbh℃、ポリフェニレンエーテルのガラス転移温度をTg℃としたとき、
前記乾燥工程において、
前記湿潤ポリフェニレンエーテルを加熱面に接触させることを含み、
前記溶媒成分の含有量が限界含液率以下になるまでの前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1を以下の範囲に設定し、
(bl+36)℃≦T1≦(Tg−45)℃
前記溶媒成分の含有量が限界含液率以下になった後の前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2を以下の範囲に設定し、
(bh+15)℃≦T2≦(Tg−30)℃
更に、T2をT1より高い温度に設定する、
ポリフェニレンエーテルの製造方法。
[2]
前記乾燥工程において、前記湿潤ポリフェニレンエーテルの乾燥が、前記加熱面からの伝導伝熱により前記湿潤ポリフェニレンエーテルを加熱することでなされる、[1]に記載のポリフェニレンエーテルの製造方法。
[3]
前記乾燥工程において、前記湿潤ポリフェニレンエーテルを伝導伝熱により加熱する前記加熱面を持ち、前記加熱面からの伝導伝熱により前記湿潤ポリフェニレンエーテルを加熱する乾燥機を用いる、[2]に記載のポリフェニレンエーテルの製造方法。
[4]
前記良溶媒が、ベンゼン、トルエン及びo−キシレンからなる群より選ばれる少なくとも一種である、[1]〜[3]のいずれかに記載のポリフェニレンエーテルの製造方法。
[5]
前記貧溶媒が、メタノール、エタノール、イソプロパノール、ブタノール、アセトン及び水からなる群より選ばれる少なくとも一種である、[1]〜[4]のいずれかに記載のポリフェニレンエーテルの製造方法。
[6]
前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1に設定した第1の乾燥単位と前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2に設定した第2の乾燥単位とを含む乾燥機を用いる、[1]〜[5]のいずれかに記載のポリフェニレンエーテルの製造方法。
[7]
直列に配置された前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1に設定した第1の乾燥機と前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2に設定した第2の乾燥機とを含む乾燥装置を用いる、[1]〜[6]のいずれかに記載のポリフェニレンエーテルの製造方法。
That is, the present invention is as follows.
[1]
A method for producing a polyphenylene ether, which comprises a drying step of drying a wet polyphenylene ether obtained by solid-liquid separation of a slurry liquid containing a polyphenylene ether, a good solvent for the polyphenylene ether, and a poor solvent for the polyphenylene ether.
When the boiling point of the solvent having the lowest boiling point among the solvent components contained in the wet polyphenylene ether is bl ° C., the boiling point of the solvent having the highest boiling point is bh ° C., and the glass transition temperature of the polyphenylene ether is Tg ° C.
In the drying step
Including contacting the wet polyphenylene ether with the heated surface,
The temperature of the heated surface to which the wet polyphenylene ether comes into contact until the content of the solvent component becomes equal to or less than the limit liquid content: T1 is set in the following range.
(Bl + 36) ° C. ≤ T1 ≤ (Tg-45) ° C.
The temperature of the heated surface to which the wet polyphenylene ether comes into contact after the content of the solvent component becomes equal to or less than the limit liquid content: T2 is set in the following range.
(Bh + 15) ° C. ≤ T2 ≤ (Tg-30) ° C.
Further, T2 is set to a temperature higher than T1.
A method for producing polyphenylene ether.
[2]
The method for producing a polyphenylene ether according to [1], wherein in the drying step, the wet polyphenylene ether is dried by heating the wet polyphenylene ether by conduction heat transfer from the heating surface.
[3]
The polyphenylene according to [2], wherein in the drying step, a dryer having the heating surface for heating the wet polyphenylene ether by conduction heat transfer and heating the wet polyphenylene ether by conduction heat transfer from the heating surface is used. Method for producing ether.
[4]
The method for producing a polyphenylene ether according to any one of [1] to [3], wherein the good solvent is at least one selected from the group consisting of benzene, toluene and o-xylene.
[5]
The method for producing a polyphenylene ether according to any one of [1] to [4], wherein the poor solvent is at least one selected from the group consisting of methanol, ethanol, isopropanol, butanol, acetone and water.
[6]
A dryer containing the temperature of the heated surface to which the wet polyphenylene ether comes into contact: the first drying unit set to T1 and the temperature of the heated surface to which the wet polyphenylene ether comes into contact: the second drying unit set to T2. The method for producing a polyphenylene ether according to any one of [1] to [5].
[7]
The temperature of the heated surface to which the wet polyphenylene ethers arranged in series come into contact: the temperature of the first dryer set to T1 and the temperature of the heated surface to which the wet polyphenylene ether contacts: the second dryer set to T2. The method for producing a polyphenylene ether according to any one of [1] to [6], which uses a drying device including.

本発明により、乾燥中に、乾燥機でのスケーリング、融着、変質等の問題を低減しつつ、乾燥速度を高めて、PPEを製造することができる。 According to the present invention, PPE can be produced by increasing the drying rate while reducing problems such as scaling, fusion, and alteration in a dryer during drying.

湿潤PPEを乾燥させたときの乾燥曲線の一例を示す図である。縦軸は、通常目盛として湿潤PPEの残留揮発分を示し、横軸は、乾燥時間を示す。It is a figure which shows an example of the drying curve when the wet PPE is dried. The vertical axis shows the residual volatile content of the wet PPE as a normal scale, and the horizontal axis shows the drying time. 湿潤PPEを乾燥させたときの乾燥曲線の一例を示す図である。縦軸は、対数目盛として湿潤PPEの残留揮発分を示し、横軸は、乾燥時間を示す。It is a figure which shows an example of the drying curve when the wet PPE is dried. The vertical axis shows the residual volatile content of the wet PPE as a logarithmic scale, and the horizontal axis shows the drying time.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.

〔PPE〕
本実施形態のPPEについて以下に説明する。PPEは、下記式(1)で表される繰返し単位構造からなるホモ重合体及び/又は共重合体である。

Figure 2020193320
・・・(1)
前記式(1)中、R1、R2、R3、及びR4は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜7のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、及び少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基からなる群より選ばれるいずれかである。 [PPE]
The PPE of this embodiment will be described below. PPE is a homopolymer and / or a copolymer having a repeating unit structure represented by the following formula (1).
Figure 2020193320
... (1)
In the above formula (1), R 1 , R 2 , R 3 and R 4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 7 carbon atoms, phenyl group, haloalkyl group and aminoalkyl group, respectively. , A hydrocarbon oxy group, and one selected from the group consisting of a halohydrocarbon oxy group in which at least two carbon atoms separate a halogen atom from an oxygen atom.

前記式(1)中、R1、R2、R3、及びR4で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子、臭素原子が好ましい。 Examples of the halogen atom represented by R 1 , R 2 , R 3 and R 4 in the above formula (1) include a fluorine atom, a chlorine atom and a bromine atom, and a chlorine atom and a bromine atom are preferable.

前記式(1)中、R1、R2、R3、及びR4で示される「アルキル基」は、炭素数が好ましくは1〜6、より好ましくは1〜3の、直鎖状又は分岐鎖状のアルキル基を示すものとし、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル等が挙げられる。メチル、エチルが好ましく、メチルがより好ましい。
前記式(1)中、R1、R2、R3、及びR4で示されるアルキル基は、置換可能な位置に、1又は2以上の置換基で置換されていてもよい。
In the formula (1), "alkyl group" represented by R 1, R 2, R 3, and R 4, the number of preferably 1 to 6, more preferably 1 to 3 carbon atoms, a straight-chain or branched It represents a chain alkyl group, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, and hexyl. Methyl and ethyl are preferable, and methyl is more preferable.
In the above formula (1), the alkyl groups represented by R 1 , R 2 , R 3 , and R 4 may be substituted with one or more substituents at substitutable positions.

このような置換基としては、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、炭素数1〜6のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシル)、アリール基(例えば、フェニル、ナフチル)、アルケニル基(例えば、エテニル、1−プロペニル、2−プロペニル)、アルキニル基(例えば、エチニル、1−プロピニル、2−プロピニル)、アラルキル基(例えば、ベンジル、フェネチル)、アルコキシ基(例えば、メトキシ、エトキシ)等が挙げられる。 Examples of such substituents include halogen atoms (eg, fluorine atom, chlorine atom, bromine atom) and alkyl groups having 1 to 6 carbon atoms (eg, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, etc. tert-butyl, pentyl, hexyl), aryl group (eg, phenyl, naphthyl), alkenyl group (eg, ethenyl, 1-propenyl, 2-propenyl), alkynyl group (eg, ethynyl, 1-propynyl, 2-propynyl) , Aralkyl groups (eg, benzyl, phenethyl), alkoxy groups (eg, methoxy, ethoxy) and the like.

本実施形態のPPEの、30℃、クロロホルム0.5g/dL溶液での還元粘度(ηsp/c)が0.25〜0.70dL/gであるものが好ましい。更に好ましくは0.28〜0.65dL/gである。 The PPE of the present embodiment preferably has a reduced viscosity (ηsp / c) of 0.25 to 0.70 dL / g in a solution of chloroform at 0.5 g / dL at 30 ° C. More preferably, it is 0.28 to 0.65 dL / g.

本実施形態のPPEのガラス転移温度(Tg)としては、209℃〜216℃が好ましく、より好ましくは209℃〜215℃であり、さらに好ましくは210℃〜214℃である。
なお、PPEのガラス転移温度は、示差熱走査熱量分析計を用いて測定することができ、具体的には、後述の実施例における測定方法により測定した値とする。
The glass transition temperature (Tg) of the PPE of the present embodiment is preferably 209 ° C to 216 ° C, more preferably 209 ° C to 215 ° C, and even more preferably 210 ° C to 214 ° C.
The glass transition temperature of PPE can be measured by using a differential thermal scanning calorimeter, and specifically, it is a value measured by the measuring method in the examples described later.

〔PPEの製造方法〕
PPEの製造方法としては、沈殿析出重合法と溶液重合法がある。
両法共に、PPEの良溶媒中、又はPPEの良溶媒と貧溶媒の混合溶媒中で、銅化合物及びアミン類の存在下、フェノール類を酸化重合する。
沈殿析出重合法では、酸化重合中にPPEが析出してスラリー状態になる。
一方、溶液重合法では、酸化重合中にPPEは析出しない。溶液重合法では、重合後のPPE溶液に必要であれば濃縮等の後処理を行った後、PPEの貧溶媒を加えてPPEを析出させてスラリー状態にする。
沈殿析出重合法、溶液重合法共に、得られたスラリー液を固液分離し、必要であればPPEの貧溶媒等で洗浄し湿潤PPEを得る。
得られた湿潤PPEを乾燥することにより、PPE製品パウダーを製造する。
[PPE manufacturing method]
As a method for producing PPE, there are a precipitation precipitation polymerization method and a solution polymerization method.
In both methods, phenols are oxidatively polymerized in the presence of copper compounds and amines in a good solvent for PPE or in a mixed solvent of a good solvent and a poor solvent for PPE.
In the precipitation-precipitation polymerization method, PPE is precipitated during oxidative polymerization to form a slurry state.
On the other hand, in the solution polymerization method, PPE does not precipitate during oxidative polymerization. In the solution polymerization method, the PPE solution after polymerization is subjected to post-treatment such as concentration if necessary, and then a poor solvent for PPE is added to precipitate PPE into a slurry state.
In both the precipitation precipitation polymerization method and the solution polymerization method, the obtained slurry liquid is solid-liquid separated, and if necessary, washed with a poor solvent of PPE or the like to obtain a wet PPE.
A PPE product powder is produced by drying the obtained wet PPE.

ここで代表的なPPEの良溶媒としては、クロロホルム(沸点:61.2℃)、ベンゼン(沸点:80.1℃)、トルエン(沸点:110.7℃)、o−キシレン(沸点:144.5℃)、m−キシレン(沸点:139.1℃)、p−キシレン(沸点:138℃)、エチルベンゼン(沸点:136℃)等が挙げられる。 Here, typical good solvents for PPE include chloroform (boiling point: 61.2 ° C.), benzene (boiling point: 80.1 ° C.), toluene (boiling point: 110.7 ° C.), and o-xylene (boiling point: 144 ° C.). 5 ° C.), m-xylene (boiling point: 139.1 ° C.), p-xylene (boiling point: 138 ° C.), ethylbenzene (boiling point: 136 ° C.) and the like.

また、代表的なPPEの貧溶媒としてはアセトン(沸点:56.5℃)、メチルエチルケトン(沸点:79.6℃)等のケトン類、メタノール(沸点:64.7℃)、エタノール(沸点:78.3℃)、1−プロパノール(沸点:97.2℃)、1−ブタノール(沸点:117.0℃)等のアルコール類、水等が挙げられる。 Typical PPE poor solvents include ketones such as acetone (boiling point: 56.5 ° C.) and methyl ethyl ketone (boiling point: 79.6 ° C.), methanol (boiling point: 64.7 ° C.), and ethanol (boiling point: 78 ° C.). .3 ° C.), 1-propanol (boiling point: 97.2 ° C.), 1-butanol (boiling point: 117.0 ° C.) and other alcohols, water and the like.

本実施形態では、これらの良溶媒や貧溶媒を単独で使用することも、複数の良溶媒や貧溶媒を組合せて使用することもできる。
本実施形態では、重合に使用された良溶媒及び貧溶媒は、湿潤PPEが含有する溶媒成分(後述)に含まれ得る。
溶媒成分の中で最も低沸点の溶媒の沸点をbl℃とした場合、50℃≦bl≦120℃であることが好ましく、55℃≦bl≦110℃であることがより好ましく、60℃≦bl≦100℃であることがさらに好ましい。
また、溶媒成分の中で最も高沸点の溶媒の沸点をbh℃とした場合、80℃≦bh≦180℃であることが好ましく、90℃≦bh≦165℃であることがより好ましく、100℃≦bh≦150℃であることがさらに好ましい。
また、bhとblとの差は、10℃≦(bh−bl)≦130℃であることが好ましく、25℃≦(bh−bl)≦100℃であることがより好ましく、40℃≦(bh−bl)≦70℃であることがさらに好ましい。
In the present embodiment, these good solvents and poor solvents can be used alone, or a plurality of good solvents and poor solvents can be used in combination.
In the present embodiment, the good solvent and the poor solvent used for the polymerization can be contained in the solvent component (described later) contained in the wet PPE.
When the boiling point of the solvent having the lowest boiling point among the solvent components is bl ° C., it is preferably 50 ° C.≤bl≤120 ° C., more preferably 55 ° C.≤bl≤110 ° C., and 60 ° C.≤bl. It is more preferable that the temperature is ≦ 100 ° C.
Further, when the boiling point of the solvent having the highest boiling point among the solvent components is bh ° C., 80 ° C. ≤ bh ≤ 180 ° C. is preferable, 90 ° C. ≤ bh ≤ 165 ° C. is more preferable, and 100 ° C. It is more preferable that ≦ bh ≦ 150 ° C.
The difference between bh and bl is preferably 10 ° C. ≤ (bh-bl) ≤ 130 ° C., more preferably 25 ° C. ≤ (bh-bl) ≤ 100 ° C., and 40 ° C. ≤ (bh). −bl) ≦ 70 ° C. is more preferable.

〔湿潤PPEの乾燥〕
本実施形態の湿潤PPEは、上記の通り、PPEの製造工程においてPPEとその良溶媒と貧溶媒とを含むスラリー液を固液分離して得られる。
湿潤PPEの乾燥は、2段階、場合によっては3段階以上の乾燥挙動を示してよい。
図1及び図2に、湿潤PPEを乾燥させたときの乾燥曲線の一例を示す。図1は、縦軸を通常目盛として湿潤PPEの残留揮発分を示し、横軸は、乾燥時間を示したものである。図2は、縦軸を対数目盛として湿潤PPEの残留揮発分を示し、横軸は、乾燥時間を示したものである。
図1において、Iは材料予熱期、IIは恒率乾燥期、IIIは減率乾燥期、図2において、IIIAは減率乾燥期1、IIIBは減率乾燥期2を示す。
図1のIで示される材料予熱期と呼ばれる段階は、溶媒成分の中で最も低沸点の溶媒の沸点(bl)まで温度が上昇する段階であり、昇温中は乾燥速度が遅い。
図1のIIで示される恒率乾燥と呼ばれる段階は、PPE粒子表面に付着した溶媒成分が気化して分離される段階であり、乾燥速度は比較的速い。
図1のIIIで示される減率乾燥と呼ばれる段階は、恒率乾燥終了後にPPE粒子内部の溶媒成分が粒子内を粒子表面へ拡散しながら、表面で気化して分離される段階であり、乾燥速度は恒率乾燥と比較して遅い。減率乾燥は、後述の減率乾燥期1及び減率乾燥期2に分けられる場合もある。
図2のIIIAで示される減率乾燥期1と呼ばれる段階は、粒子内部に溶媒成分が多く含まれる段階であり、溶媒成分が粒子表面に拡散していく流路が広く、減率乾燥の中では乾燥速度は速い。
図2のIIIBで示される減率乾燥期2と呼ばれる段階は、粒子内部の溶媒成分が少なくなった段階であり、溶媒成分が粒子表面に拡散していく流路が狭く、減率乾燥の中でも乾燥速度は遅い。
そして、本実施形態では、恒率乾燥から減率乾燥へ切替わるときの湿潤PPEの溶媒成分の含有量を限界含液率とする。
[Drying wet PPE]
As described above, the wet PPE of the present embodiment is obtained by solid-liquid separation of a slurry liquid containing PPE, a good solvent thereof, and a poor solvent in the manufacturing process of PPE.
The drying of the wet PPE may exhibit a drying behavior of two stages, and in some cases three or more stages.
1 and 2 show an example of a drying curve when the wet PPE is dried. In FIG. 1, the vertical axis shows the residual volatile content of the wet PPE with the normal scale, and the horizontal axis shows the drying time. In FIG. 2, the vertical axis shows the residual volatile content of the wet PPE on a logarithmic scale, and the horizontal axis shows the drying time.
In FIG. 1, I indicates a material preheating period, II indicates a constant drying period, III indicates a reduced drying period, and in FIG. 2, IIIA indicates a reduced drying period 1 and IIIB indicates a reduced drying period 2.
The stage called the material preheating period shown by I in FIG. 1 is a stage in which the temperature rises to the boiling point (bl) of the solvent having the lowest boiling point among the solvent components, and the drying rate is slow during the temperature rise.
The step called constant drying shown in II of FIG. 1 is a step in which the solvent component adhering to the surface of the PPE particles is vaporized and separated, and the drying rate is relatively high.
The step called reduced rate drying shown in FIG. 1 III is a step in which the solvent component inside the PPE particles is vaporized and separated on the surface while diffusing the inside of the particles to the particle surface after the completion of the constant rate drying. The rate is slow compared to constant drying. The lapse rate drying may be divided into a lapse rate drying period 1 and a lapse rate drying period 2, which will be described later.
The stage called the lapse rate drying period 1 shown by IIIA in FIG. 2 is a stage in which a large amount of solvent component is contained inside the particles, and the flow path through which the solvent component diffuses to the particle surface is wide, and during the lapse rate drying. Then the drying speed is fast.
The stage called the lapse rate drying period 2 shown by IIIB in FIG. 2 is a stage in which the solvent component inside the particles is reduced, and the flow path through which the solvent component diffuses to the particle surface is narrow, and even in the lapse rate drying. The drying rate is slow.
Then, in the present embodiment, the content of the solvent component of the wet PPE when switching from the constant rate drying to the reduced rate drying is set as the limit liquid content.

ここで、湿潤PPEに含まれる溶媒成分は、乾燥工程に供される湿潤PPEに含まれる溶媒のうち、湿潤PPE(100質量%)に対して0.35質量%以上含まれるものをいう。溶媒成分には、前述の良溶媒や貧溶媒を含まれていてよい。 Here, the solvent component contained in the wet PPE refers to a solvent contained in the wet PPE subjected to the drying step, which is contained in an amount of 0.35% by mass or more with respect to the wet PPE (100% by mass). The solvent component may include the above-mentioned good solvent and poor solvent.

湿潤PPEの乾燥では、含有する溶媒組成等により更に乾燥速度が低下することがあり、この場合、乾燥速度低下前の減率乾燥を減率乾燥1、乾燥速度低下後の減率乾燥を減率乾燥2と呼ぶ。この際、恒率乾燥から減率乾燥1へ切替わるときの含液率を限界含液率1、減率乾燥1から減率乾燥2へ切替わるときの含液率を限界含液率2と呼ぶこともあり、本実施形態では、限界含液率1を限界含液率とする。限界含液率の測定は実施例に記載した方法に従う。 In the drying of wet PPE, the drying rate may be further reduced depending on the composition of the solvent contained therein. In this case, the reduced rate drying before the decrease in the drying rate is reduced, and the reduced rate drying after the decrease in the drying rate is reduced. Called drying 2. At this time, the liquid content when switching from the constant rate drying to the reduced rate drying 1 is defined as the limit liquid content 1, and the liquid content when switching from the reduced rate drying 1 to the reduced rate drying 2 is defined as the limit liquid content 2. In the present embodiment, the limit liquid content is defined as the limit liquid content. The measurement of the critical liquid content follows the method described in the examples.

湿潤PPEは溶媒成分を含有しているが、良溶媒の含液率が高い状態で加熱すると、表面の付着性が高くなり乾燥装置壁面等へのスケーリングが発生したり、粒子自体が溶融して飴状の固い固体となる融着が発生したりする。融着は高温で発生しやすいため、特に湿潤PPEが接触する加熱面で発生する確率が高く、融着物が加熱面に付着すると伝熱が著しく低下する。更に加熱面に付着した融着物が脱落し製品に混入すると異物となり、最終製品の物性低下の原因となる。 Wet PPE contains a solvent component, but when heated in a state where the liquid content of a good solvent is high, the adhesiveness of the surface becomes high, scaling occurs on the wall surface of the drying device, etc., or the particles themselves melt. Fusion that becomes a candy-like hard solid may occur. Since the fusion is likely to occur at a high temperature, there is a high probability that it will occur on the heated surface in which the wet PPE comes into contact, and when the fused material adheres to the heated surface, the heat transfer is significantly reduced. Further, if the fused material adhering to the heated surface falls off and mixes with the product, it becomes a foreign substance, which causes deterioration of the physical properties of the final product.

発明者らは、限界含液率以上の溶媒成分を含有する状態で湿潤PPEを高温に加熱(例えば、湿潤PPEと接触する加熱面の温度を高く)すると、スケーリングや融着が発生しやすく、限界含液率以下の溶媒成分を含有する状態では、湿潤PPEを高温に加熱(例えば、湿潤PPEと接触する加熱面の温度を高く)しても、比較的スケーリングや融着が発生しにくいことを見出した。 When the wet PPE is heated to a high temperature (for example, the temperature of the heated surface in contact with the wet PPE is increased) while containing a solvent component having a liquid content equal to or higher than the limit liquid content, the inventors are likely to cause scaling and fusion. In a state containing a solvent component having a liquid content below the limit liquid content, even if the wet PPE is heated to a high temperature (for example, the temperature of the heated surface in contact with the wet PPE is increased), scaling and fusion are relatively unlikely to occur. I found.

本実施形態では、溶媒成分の含有量が限界含液率に到達する前後で湿潤PPEの加熱温度(例えば、湿潤PPEと接触する加熱面の温度)を変えることにより、スケーリングや融着を発生させずに効率よく湿潤PPEを乾燥することができる。 In the present embodiment, scaling and fusion are generated by changing the heating temperature of the wet PPE (for example, the temperature of the heated surface in contact with the wet PPE) before and after the content of the solvent component reaches the limit liquid content. Wet PPE can be dried efficiently without any need.

限界含液率以上の溶媒成分を含有する湿潤PPEを乾燥する際には、湿潤PPEにおける溶媒成分の含有量が限界含液率以下になるまで、湿潤PPEが含有する溶媒成分の中で最も低沸点の溶媒の沸点をbl℃、PPEのガラス転移温度をTg℃としたとき、加熱温度:T1を(bl+36)℃以上(Tg−45)℃以下にする。上記T1は、好ましくは(bl+41)℃以上(Tg−50)℃以下であり、更に好ましくは(bl+46)℃以上(Tg−55)℃以下である。
加熱温度:T1を(bl+36)℃以上にすることにより良好な乾燥速度で乾燥することが可能となり、加熱温度:T1を(Tg−45)℃以下にすることにより粒子表面付着性や溶融性を抑制しスケーリングや融着を防ぐことができる。
When drying a wet PPE containing a solvent component having a solvent component of the limit liquid content or more, the lowest of the solvent components contained in the wet PPE until the content of the solvent component in the wet PPE becomes equal to or less than the limit liquid content. When the boiling point of the solvent having a boiling point is bl ° C. and the glass transition temperature of PPE is Tg ° C., the heating temperature: T1 is set to (bl + 36) ° C. or higher (Tg-45) ° C. or lower. The T1 is preferably (bl + 41) ° C. or higher and (Tg-50) ° C. or lower, and more preferably (bl + 46) ° C. or higher and (Tg-55) ° C. or lower.
Heating temperature: T1 is set to (bl + 36) ° C or higher to enable drying at a good drying rate, and heating temperature: T1 is set to (Tg-45) ° C or lower to improve particle surface adhesion and meltability. It can be suppressed and scaling and fusion can be prevented.

乾燥が進み、湿潤PPEにおける溶媒成分の含有量が限界含液率以下になった後は、湿潤PPEが含有する溶媒成分の中で最も高沸点の溶媒の沸点をbh℃、PPEのガラス転移温度をTg℃としたとき、加熱温度:T2を(bh+15)℃以上(Tg−30)℃以下にする。上記T2は、好ましくは(bh+20)℃以上(Tg−30)℃以下であり、更に好ましくは(bh+25)℃以上(Tg−30)℃以下である。
加熱温度:T2を(bh+15)℃以上にすることにより良好な乾燥速度で乾燥することが可能となり、加熱温度:T2を(Tg−30)℃以下にすることにより粒子表面付着性や溶融性を抑制しスケーリングや融着を防ぐとともにPPEの変質を抑制することができる。
After the drying progresses and the content of the solvent component in the wet PPE becomes equal to or less than the limit liquid content, the boiling point of the solvent having the highest boiling point among the solvent components contained in the wet PPE is bh ° C., and the glass transition temperature of the PPE. When Tg ° C., the heating temperature: T2 is set to (bh + 15) ° C. or higher and (Tg-30) ° C. or lower. The T2 is preferably (bh + 20) ° C. or higher and (Tg-30) ° C. or lower, and more preferably (bh + 25) ° C. or higher and (Tg-30) ° C. or lower.
Heating temperature: T2 is set to (bh + 15) ° C or higher to enable drying at a good drying rate, and heating temperature: T2 is set to (Tg-30) ° C or lower to improve particle surface adhesion and meltability. It can suppress and prevent scaling and fusion, and can suppress the alteration of PPE.

ここで、加熱温度:T1及び加熱温度:T2とは、湿潤PPEの乾燥雰囲気の温度をいい、熱媒や電気ヒーター、湿潤PPEと接触する加熱面等の設定温度としてよい。中でも、湿潤PPEと接触する加熱面からの伝導伝熱により湿潤PPEを加熱することで、湿潤PPEの乾燥がなされることが好ましい。
また、加熱温度T1は、限界含液率以上の溶媒成分を含有する湿潤PPEを、湿潤PPEにおける溶媒成分の含有量が限界含液率以下になるまで乾燥する時間帯での平均の温度としてよく、この時間帯での最高温度と最低温度との差は15℃以下であることが好ましく、より好ましくは5℃以下である。
加熱温度T2は、湿潤PPEにおける溶媒成分の含有量が限界含液率以下になった後、乾燥PPEを得るまでの時間帯での平均の温度としてよく、この時間帯での最高温度と最低温度との差は10℃以下であることが好ましく、より好ましくは5℃以下である。
Here, the heating temperature: T1 and the heating temperature: T2 refer to the temperature of the drying atmosphere of the wet PPE, and may be the set temperature of the heat medium, the electric heater, the heating surface in contact with the wet PPE, or the like. Above all, it is preferable that the wet PPE is dried by heating the wet PPE by conduction heat transfer from the heating surface in contact with the wet PPE.
Further, the heating temperature T1 may be set as the average temperature in the time zone in which the wet PPE containing the solvent component having the limit liquid content or more is dried until the content of the solvent component in the wet PPE becomes equal to or less than the limit liquid content. The difference between the maximum temperature and the minimum temperature in this time zone is preferably 15 ° C. or less, more preferably 5 ° C. or less.
The heating temperature T2 may be the average temperature in the time zone from when the content of the solvent component in the wet PPE becomes equal to or less than the limit liquid content until the dry PPE is obtained, and the maximum temperature and the minimum temperature in this time zone are sufficient. The difference from the above is preferably 10 ° C. or lower, more preferably 5 ° C. or lower.

本実施形態では、加熱温度:T1と加熱温度:T2との差としては、5℃〜85℃が好ましく、より好ましくは10℃〜70℃であり、さらに好ましくは15℃〜55℃である。 In the present embodiment, the difference between the heating temperature: T1 and the heating temperature: T2 is preferably 5 ° C. to 85 ° C., more preferably 10 ° C. to 70 ° C., and even more preferably 15 ° C. to 55 ° C.

本実施形態では、限界含液率としては、溶媒の種類に応じて定まるものであり、特に限定されるものではないが、乾燥工程に供される湿潤PPE(100質量%)に対して、1〜30質量%が好ましく、より好ましくは2〜20質量%であり、さらに好ましくは3〜15質量%である。 In the present embodiment, the critical liquid content is determined according to the type of solvent and is not particularly limited, but is 1 with respect to the wet PPE (100% by mass) subjected to the drying step. It is preferably ~ 30% by mass, more preferably 2 to 20% by mass, and even more preferably 3 to 15% by mass.

〔乾燥装置〕
本実施形態での乾燥には、適当な乾燥装置を1個又は複数個用いてよく、乾燥装置には1個又は複数個の乾燥機を用いてよい。また、個々の乾燥機には、1個又は複数の乾燥単位が設けられてよい。
ここで、乾燥単位とは、乾燥工程に供される湿潤PPEが曝される乾燥環境を区画する単位をいうものとしてよい。また、複数の乾燥単位間において、乾燥中の湿潤PPEは、連続的に移動させてもよく、また、移し替えにより移動させてもよい。
[Drying device]
For drying in the present embodiment, one or more suitable drying devices may be used, and one or more drying machines may be used for the drying device. In addition, each dryer may be provided with one or more drying units.
Here, the drying unit may mean a unit that partitions the drying environment to which the wet PPE subjected to the drying step is exposed. In addition, the wet PPE during drying may be continuously moved between the plurality of drying units, or may be moved by transfer.

乾燥機としては連続式乾燥機及びバッチ式乾燥機のいずれも使用することができる。乾燥機は、連続式乾燥機及びバッチ式乾燥機のいずれにおいても、湿潤PPEを伝導伝熱により加熱する加熱面を持ち、加熱面からの伝導伝熱により湿潤PPEを加熱する、所謂、間接加熱型乾燥機であることが好ましい。加熱面としては、例えば、ジャケットの表面、加熱管の表面等が挙げられる。
本実施形態で使用可能な連続式乾燥機としては、パドルドライヤーに代表される撹拌型乾燥機、スチームチューブドライヤーに代表される回転式乾燥機、流動層乾燥機、ホッパードライヤー等が挙げられる。
本実施形態で使用可能なバッチ式乾燥機としては、リボン混合乾燥機、ナウターミキサー等が挙げられる他、前記の連続式乾燥機をバッチ式乾燥機として使用することもできる。
これらによれば、スケーリングや融着の発生を抑制し、効率的に残留揮発分を低下させることができる。
As the dryer, either a continuous dryer or a batch dryer can be used. In both the continuous dryer and the batch dryer, the dryer has a heating surface for heating the wet PPE by conduction heat transfer, and heats the wet PPE by conduction heat transfer from the heating surface, so-called indirect heating. It is preferably a mold dryer. Examples of the heating surface include the surface of a jacket and the surface of a heating tube.
Examples of the continuous dryer that can be used in the present embodiment include a stirring dryer represented by a paddle dryer, a rotary dryer represented by a steam tube dryer, a fluidized layer dryer, and a hopper dryer.
Examples of the batch dryer that can be used in the present embodiment include a ribbon mixing dryer, a Nauter mixer, and the like, and the continuous dryer can also be used as the batch dryer.
According to these, the occurrence of scaling and fusion can be suppressed, and the residual volatile matter can be efficiently reduced.

〔加熱温度の変更方法〕
本実施形態で使用される連続式乾燥機には、一台の乾燥機当たりで複数の加熱単位を備え、例えば、2つの加熱単位を備える場合には、前段/後段で異なる加熱温度を設定することが可能なものもある。
本実施形態では、例えば、前段の加熱温度を(bl+36)℃以上(Tg−45)℃以下に設定して限界含液率以下まで乾燥し、後段の加熱温度を(bh+15)℃以上(Tg−30)℃以下に設定し乾燥を完結させることもできる。
[How to change the heating temperature]
The continuous dryer used in the present embodiment is provided with a plurality of heating units per dryer. For example, when two heating units are provided, different heating temperatures are set in the front stage and the rear stage. Some can be done.
In the present embodiment, for example, the heating temperature in the first stage is set to (bl + 36) ° C. or higher (Tg-45) ° C. and dried to the limit liquid content or lower, and the heating temperature in the latter stage is set to (bh + 15) ° C. or higher (Tg−). 30) It is also possible to set the temperature below ° C to complete the drying.

本実施形態では、複数の連続式乾燥機を直列に配置し、例えば、2つの乾燥機を備える場合には、配置した連続式乾燥機の上流側の乾燥機の加熱温度を(bl+36)℃以上(Tg−45)℃以下に設定し、下流側の乾燥機の加熱温度を(bh+15)℃以上(Tg−30)℃以下に設定して乾燥を完結させることもできる。
この際、上流側の乾燥機に複数の加熱単位を備えるものを選び、加熱単位の前段/後段で温度を異ならせることもできる。その場合、上流側乾燥機前段の加熱単位の温度を(bl+36)℃以上(Tg−45)℃以下に設定し、上流側乾燥機後段の加熱単位の温度を(bl+36)℃以上(Tg−30)℃以下に設定し、下流側乾燥機前段の加熱単位の温度を(bl+36)℃以上(Tg−30)℃以下に設定し、下流側乾燥機後段の加熱単位の温度を(bh+15)℃以上(Tg−30)℃以下に設定してよい。
In the present embodiment, when a plurality of continuous dryers are arranged in series, for example, when two dryers are provided, the heating temperature of the dryer on the upstream side of the arranged continuous dryers is (bl + 36) ° C. or higher. It is also possible to set the temperature to (Tg-45) ° C. or lower and set the heating temperature of the dryer on the downstream side to (bh + 15) ° C. or higher and (Tg-30) ° C. or lower to complete the drying.
At this time, it is also possible to select a dryer having a plurality of heating units on the upstream side and make the temperature different between the first stage and the second stage of the heating unit. In that case, the temperature of the heating unit in the first stage of the upstream dryer is set to (bl + 36) ° C or higher (Tg-45) ° C, and the temperature of the heating unit in the latter stage of the upstream dryer is set to (bl + 36) ° C or higher (Tg-30). ) ° C or lower, set the temperature of the heating unit in the front stage of the downstream dryer to (bl + 36) ° C or higher (Tg-30) ° C or lower, and set the temperature of the heating unit in the latter stage of the downstream dryer to (bh + 15) ° C or higher. It may be set to (Tg-30) ° C. or lower.

本実施形態でバッチ式乾燥機を使用する場合には、溶媒成分の含有量が限界含液率以下になるまでは、加熱温度を(bl+36)℃以上(Tg−45)℃以下に設定し、溶媒成分の含有量が限界含液率以下になった後に、加熱温度を(bh+15)℃以上(Tg−30)℃以下に設定し乾燥を完結させることもできる。
本実施形態では、二台のバッチ式乾燥機を直列に配置し、例えば、一台目のバッチ式乾燥機の加熱温度を(bl+36)℃以上(Tg−45)℃以下に設定し、二台目のバッチ式乾燥機の加熱温度を(bh+15)℃以上(Tg−30)℃以下に設定しておき、一台目のバッチ式乾燥機で溶媒成分の含有量が限界含液率以下になるまで乾燥したPPEを、二台目のバッチ式乾燥機に仕込んで、乾燥を完結させることもできる。
When a batch dryer is used in the present embodiment, the heating temperature is set to (bl + 36) ° C. or higher and (Tg-45) ° C. or lower until the content of the solvent component becomes equal to or lower than the limit liquid content. After the content of the solvent component becomes the limit liquid content or less, the heating temperature can be set to (bh + 15) ° C. or higher (Tg-30) ° C. or lower to complete the drying.
In the present embodiment, two batch dryers are arranged in series, for example, the heating temperature of the first batch dryer is set to (bl + 36) ° C. or higher (Tg-45) ° C., and the two are set. The heating temperature of the batch type dryer of the eye is set to (bh + 15) ° C. or higher (Tg-30) ° C., and the content of the solvent component becomes lower than the limit liquid content in the first batch type dryer. It is also possible to put the PPE that has been dried up to the point in a second batch dryer to complete the drying.

なお、各乾燥機の加熱単位内で限界含液率以下まで乾燥できた場合は、その加熱単位から排出されるまでは限界含液率以下であっても、加熱温度を(bl+36)℃以上(Tg−45)℃以下で乾燥することもできる。 If the dryer can be dried to the limit liquid content or less within the heating unit, the heating temperature is set to (bl + 36) ° C. or higher (bl + 36) ° C. or higher even if the liquid content is below the limit liquid content until the dryer is discharged from the heating unit. It can also be dried at Tg-45) ° C. or lower.

〔乾燥後のPPE粉体中の残留揮発分〕
乾燥後のPPEは、通常粉体状態となり、粉体PPEには溶媒等の揮発分が残留する。
乾燥後のPPEにおける残留揮発分の含有量は、乾燥後のPPEを100質量%として、0.30質量%以下であることが好ましい。残留揮発分の含有量は、より好ましくは0.25質量%以下であり、更に好ましくは0.20質量%以下であり、より更に好ましくは0.10質量%以下である。
乾燥後の残留揮発分の含有量を0.30質量%以下にすることにより、押出/成形加工時の残留溶媒等の残留揮発分が気化する量を低減できるため作業環境を良好とできる他、残留揮発分ガスが押出/成形機内をバックフローすることを防止できるためフィードをより安定化させることができる傾向にある。
[Residual volatile matter in PPE powder after drying]
The PPE after drying is usually in a powder state, and volatile components such as a solvent remain in the powder PPE.
The content of residual volatile matter in the dried PPE is preferably 0.30% by mass or less, with the dried PPE as 100% by mass. The content of the residual volatile matter is more preferably 0.25% by mass or less, further preferably 0.20% by mass or less, and even more preferably 0.10% by mass or less.
By reducing the content of residual volatile matter after drying to 0.30% by mass or less, the amount of residual volatile matter such as residual solvent during extrusion / molding processing can be reduced, so that the working environment can be improved. Since the residual volatile gas can be prevented from backflowing in the extruder / molding machine, the feed tends to be more stable.

以下、本実施形態について、実施例と、これとの比較例を挙げて具体的に説明するが、本実施形態は、以下の実施例に限定されるものではない。 Hereinafter, the present embodiment will be specifically described with reference to Examples and comparative examples thereof, but the present embodiment is not limited to the following Examples.

先ず、実施例及び比較例に適用した、物性及び特性等の測定方法を下記に示す。 First, the methods for measuring physical properties, properties, etc. applied to Examples and Comparative Examples are shown below.

(1)残留揮発分の定量
各状態の湿潤PPEについて、温度185℃、絶対圧0.013kPaの条件で1時間真空乾燥させたときにPPEパウダーの質量をWdとし、当該真空乾燥前のPPEの質量をWとしたとき、残留揮発分(質量%)を以下の式で計算し、定量した。
残留揮発分={(W−Wd)/W}×100(質量%)
(1) Quantification of residual volatile matter When the wet PPE in each state was vacuum-dried at a temperature of 185 ° C. and an absolute pressure of 0.013 kPa for 1 hour, the mass of the PPE powder was defined as Wd, and the mass of the PPE before the vacuum drying was taken. When the mass was W, the residual volatile matter (mass%) was calculated by the following formula and quantified.
Residual volatile content = {(W-Wd) / W} x 100 (mass%)

(2)ガラス転移温度の測定
実施例及び比較例において乾燥工程後に得られた乾燥PPEを示差熱走査熱量分析計(DSC Perkin−Elmer社製 Pyris−1)を用い、窒素雰囲気下、40℃/minの昇温速度で50℃から250℃まで加熱し降温した後、同様の温度条件で加熱し、ガラス転移温度(℃)を測定した。
(2) Measurement of glass transition temperature The dried PPE obtained after the drying step in Examples and Comparative Examples was measured at 40 ° C./40 ° C. in a nitrogen atmosphere using a differential thermal scanning calorimeter (Pyris-1 manufactured by DSC Perkin-Elmer). The temperature was lowered by heating from 50 ° C. to 250 ° C. at a heating rate of min, and then heating was performed under the same temperature conditions, and the glass transition temperature (° C.) was measured.

(3)異物含有量の判定
後述の実施例及び比較例において乾燥工程後の乾燥機内を目視確認し、以下の判定とした。
○:加熱面等に融着物やおこし状凝集物が付着していない(粉が付着している程度)
△:加熱面等に融着物やおこし状凝集物が付着しているが、乾燥品への混入はしていない
×:加熱面等に融着物&おこし状凝集物が付着し、これらが乾燥品にも混入している
(3) Judgment of foreign matter content In the examples and comparative examples described later, the inside of the dryer after the drying step was visually confirmed, and the following judgment was made.
◯: No fused matter or raised aggregates adhered to the heated surface, etc. (to the extent that powder adhered)
Δ: Fused matter and shaving-like agglomerates adhered to the heated surface, etc., but did not mix in the dried product. ×: Fused material & shaving-like agglomerates adhered to the heated surface, etc., and these were dried products. Is also mixed in

(4)限界含液率の測定
使用する乾燥機に湿潤PPEを仕込み、加熱温度(bl+90)℃にてバッチ乾燥を行った。乾燥中10分ごとに乾燥機内のPPEをサンプリングし、残留揮発分を上記「(1)残留揮発分の定量」に従って定量した。横軸にサンプリング時間、縦軸に残留揮発分をプロットし、縦軸は通常目盛と対数目盛として2種の乾燥曲線を作成した(図1及び図2参照)。湿潤PPEの温度がbl付近まで上昇する材料予熱期、引き続き恒温乾燥期の後、最も短時間側の変曲点を恒率乾燥から減率乾燥(減率乾燥1)へ切替わる点とし、当該変曲点の残留揮発分を限界含液率(質量%)とした。
(4) Measurement of limit liquid content Wet PPE was charged in the dryer to be used, and batch drying was performed at a heating temperature (bl + 90) ° C. The PPE in the dryer was sampled every 10 minutes during drying, and the residual volatile matter was quantified according to the above "(1) Quantification of residual volatile matter". The sampling time was plotted on the horizontal axis and the residual volatile matter was plotted on the vertical axis, and two types of drying curves were created on the vertical axis as a normal scale and a logarithmic scale (see FIGS. 1 and 2). After the material preheating period in which the temperature of the wet PPE rises to around bl, and then the constant temperature drying period, the inflection point on the shortest side is switched from constant rate drying to reduced rate drying (decreased rate drying 1). The residual volatile content at the inflection point was defined as the critical liquid content (mass%).

(5)還元粘度(ηsp/c)の測定
後述の製造例で得られた湿潤PPEを、上記「(1)残留揮発分の定量」に示した方法で、真空乾燥した。真空乾燥後のPPEをクロロホルムに溶解して0.5g/dLクロロホルム溶液を作成し、ウベローデ粘度管を用いて30℃における還元粘度(ηsp/c)を測定した。還元粘度の単位はdL/gである。
(5) Measurement of reducing viscosity (ηsp / c) The wet PPE obtained in the production example described later was vacuum dried by the method shown in "(1) Quantification of residual volatile matter" above. The vacuum-dried PPE was dissolved in chloroform to prepare a 0.5 g / dL chloroform solution, and the reduced viscosity (ηsp / c) at 30 ° C. was measured using a Uberode viscosity tube. The unit of reducing viscosity is dL / g.

(6)加熱加工時の還元粘度増加評価
後述の実施例及び比較例において乾燥工程後に得られたPPEパウダーの還元粘度をηA(dL/g)とし、熱プレス処理(310℃×20分×10MPaの条件)したPPEの還元粘度をηB(dL/g)としたとき、加熱加工時の還元粘度増加を(ηB−ηA)/ηAの値で評価した。この値が低い場合、乾燥時の加熱によりPPEが変質していると考えられる。
(6) Evaluation of Increase in Reduced Viscosity During Heat Processing The reduced viscosity of PPE powder obtained after the drying step in Examples and Comparative Examples described later was set to ηA (dL / g) and heat pressed (310 ° C. × 20 minutes × 10 MPa). (Conditions of)) When the reduced viscosity of PPE was ηB (dL / g), the increase in reduced viscosity during heat processing was evaluated by the value of (ηB-ηA) / ηA. If this value is low, it is considered that the PPE has been altered by heating during drying.

(乾燥機1)
株式会社 奈良機械製作所製 パドルドライヤー 形式NPD−1.6W−12L−LG
有効容積12L
ジャケットは、一種のスチームで加熱できる構造
(乾燥機2)
株式会社 奈良機械製作所製 パドルドライヤー 形式NPD−1.6W−G−SFG
有効容積77L
ジャケットは、一種のスチームで加熱できる構造
(Dryer 1)
Paddle dryer type NPD-1.6W-12L-LG manufactured by Nara Machinery Co., Ltd.
Effective volume 12L
The jacket has a structure that can be heated with a kind of steam (dryer 2)
Paddle dryer type NPD-1.6W-G-SFG manufactured by Nara Machinery Co., Ltd.
Effective volume 77L
The jacket has a structure that can be heated with a kind of steam

〔製造例1〕
重合槽底部に酸素含有ガス導入の為のスパージャー、撹拌タービン翼及びバッフルを備え、重合槽上部のベントガスラインに還流冷却器を備えた400リットルのジャケット付き重合槽に、5.0L/分の流量で窒素ガスを吹き込みながら、40.2gの酸化第二銅、302.24gの47%臭化水素水溶液、96.84gのジ−t−ブチルエチレンジアミン、468.8gのジ−n−ブチルアミン、1426.8gのブチルジメチルアミン、206.5kgのトルエン(良溶媒:沸点110.6℃)、31.2kgの2,6−ジメチルフェノールを入れ、均一溶液となり、かつ反応器の内温が25℃になるまで撹拌した。
次に、重合槽へ328NL/分の速度で乾燥空気をスパージャーより導入を始め、重合を開始した。
[Manufacturing Example 1]
5.0 L / min in a 400 liter jacketed polymerization tank equipped with a spurger for introducing oxygen-containing gas at the bottom of the polymerization tank, a stirring turbine blade and a baffle, and a reflux cooler on the vent gas line at the top of the polymerization tank. While blowing nitrogen gas at a flow rate, 40.2 g of cupric oxide, 302.24 g of 47% hydrogen bromide solution, 96.84 g of di-t-butylethylenediamine, 468.8 g of di-n-butylamine, 1426. Add 0.8 g of butyl dimethylamine, 206.5 kg of toluene (good solvent: boiling point 110.6 ° C.), 31.2 kg of 2,6-dimethylphenol to make a uniform solution, and bring the internal temperature of the reactor to 25 ° C. It was stirred until it became.
Next, dry air was started to be introduced into the polymerization tank from a spudger at a rate of 328 NL / min, and polymerization was started.

142分間通気し、重合終結時の内温が40℃になるようコントロールした。
重合終結時の重合液は溶液状態であった。
上記乾燥空気の通気を停止し、重合混合物にエチレンジアミン四酢酸4ナトリウム塩(同仁化学研究所製試薬)の2.5%水溶液を100kg添加し、70℃で150分間重合混合物を撹拌した後静置し、液−液分離により有機相と水相を分離した。
得られた有機相を50℃にした後、メタノール(貧溶媒:沸点64.7℃)を過剰に加えてPPEを析出させた。析出したPPE粒子を含むスラリー液をバスケット型遠心分離機(タナベウィルテック社製)に投入し、固液分離を行った。バスケット型遠心分離機内に残った湿潤PPEを200kgのメタノールに分散させ50℃で30分間撹拌した後、再度固液分離した。この操作を2回繰り返し、湿潤PPEを得た。
The mixture was aerated for 142 minutes, and the internal temperature at the end of polymerization was controlled to be 40 ° C.
The polymerization solution at the end of the polymerization was in a solution state.
The aeration of the dry air is stopped, 100 kg of a 2.5% aqueous solution of ethylenediamine tetraacetic acid tetrasodium salt (reagent manufactured by Dojin Chemical Laboratory) is added to the polymerization mixture, and the polymerization mixture is stirred at 70 ° C. for 150 minutes and then allowed to stand. Then, the organic phase and the aqueous phase were separated by liquid-liquid separation.
After the obtained organic phase was brought to 50 ° C., methanol (poor solvent: boiling point 64.7 ° C.) was added in excess to precipitate PPE. The slurry liquid containing the precipitated PPE particles was put into a basket-type centrifuge (manufactured by Tanabe Wiltec) to perform solid-liquid separation. The wet PPE remaining in the basket-type centrifuge was dispersed in 200 kg of methanol, stirred at 50 ° C. for 30 minutes, and then solid-liquid separated again. This operation was repeated twice to obtain a wet PPE.

ここまでの操作を10回繰り返し行い、約610kgの湿潤PPEを得た。
得られた湿潤PPEの残留揮発分は39.3質量%であり、乾燥工程に供したところ限界含液率は湿潤PPEを100質量%としたときに6.8質量%であった。
また、湿潤PPE乾燥後のηsp/Cは、0.511dL/gであった。
The operation up to this point was repeated 10 times to obtain about 610 kg of wet PPE.
The residual volatile content of the obtained wet PPE was 39.3% by mass, and when subjected to the drying step, the critical liquid content was 6.8% by mass when the wet PPE was 100% by mass.
The ηsp / C after wet PPE drying was 0.511 dL / g.

〔製造例2〕
重合槽底部に酸素含有ガス導入の為のスパージャー、撹拌タービン翼及びバッフルを備え、重合槽上部のベントガスラインに還流冷却器を備えた400リットルのジャケット付き重合槽に、5.0L/分の流量で窒素ガスを吹き込みながら、40.2gの酸化第二銅、302.24gの47%臭化水素水溶液、96.84gのジ−t−ブチルエチレンジアミン、468.8gのジ−n−ブチルアミン、1426.8gのブチルジメチルアミン、206.5kgのトルエン(良溶媒:沸点110.6℃)、31.2kgの2,6−ジメチルフェノールを入れ、均一溶液となり、かつ反応器の内温が25℃になるまで撹拌した。
次に、重合槽へ328NL/分の速度で乾燥空気をスパージャーより導入を始め、重合を開始した。
[Manufacturing Example 2]
5.0 L / min in a 400 liter jacketed polymerization tank equipped with a spurger for introducing oxygen-containing gas at the bottom of the polymerization tank, a stirring turbine blade and a baffle, and a reflux cooler on the vent gas line at the top of the polymerization tank. While blowing nitrogen gas at a flow rate, 40.2 g of cupric oxide, 302.24 g of 47% hydrogen bromide solution, 96.84 g of di-t-butylethylenediamine, 468.8 g of di-n-butylamine, 1426. Add 0.8 g of butyl dimethylamine, 206.5 kg of toluene (good solvent: boiling point 110.6 ° C.), 31.2 kg of 2,6-dimethylphenol to make a uniform solution, and bring the internal temperature of the reactor to 25 ° C. It was stirred until it became.
Next, dry air was started to be introduced into the polymerization tank from a spudger at a rate of 328 NL / min, and polymerization was started.

142分間通気し、重合終結時の内温が40℃になるようコントロールした。
重合終結時の重合液は溶液状態であった。
上記乾燥空気の通気を停止し、重合混合物にエチレンジアミン四酢酸4ナトリウム塩(同仁化学研究所製試薬)の2.5%水溶液を100kg添加し、70℃で150分間重合混合物を撹拌した後静置し、液−液分離により有機相と水相を分離した。
得られた有機相を50℃にした後、アセトン(貧溶媒:沸点56.5℃)を過剰に加えてPPEを析出させた。析出したPPE粒子を含むスラリー液をバスケット型遠心分離機(タナベウィルテック社製)に投入し、固液分離を行った。バスケット型遠心分離機内に残った湿潤PPEを200kgのアセトンに分散させ50℃で30分間撹拌した後、再度固液分離した。この操作を2回繰り返し、湿潤PPEを得た。
The mixture was aerated for 142 minutes, and the internal temperature at the end of polymerization was controlled to be 40 ° C.
The polymerization solution at the end of the polymerization was in a solution state.
The aeration of the dry air is stopped, 100 kg of a 2.5% aqueous solution of ethylenediamine tetraacetic acid tetrasodium salt (reagent manufactured by Dojin Chemical Laboratory) is added to the polymerization mixture, and the polymerization mixture is stirred at 70 ° C. for 150 minutes and then allowed to stand. Then, the organic phase and the aqueous phase were separated by liquid-liquid separation.
After the obtained organic phase was brought to 50 ° C., acetone (poor solvent: boiling point 56.5 ° C.) was excessively added to precipitate PPE. The slurry liquid containing the precipitated PPE particles was put into a basket-type centrifuge (manufactured by Tanabe Wiltec) to perform solid-liquid separation. The wet PPE remaining in the basket-type centrifuge was dispersed in 200 kg of acetone, stirred at 50 ° C. for 30 minutes, and then solid-liquid separated again. This operation was repeated twice to obtain a wet PPE.

ここまでの操作を10回繰り返し行い、約610kgの湿潤PPEを得た。
得られた湿潤PPEの残留揮発分は47.3質量%であり、乾燥工程に供したところ限界含液率は湿潤PPEを100質量%としたときに6.8質量%であった。
また、湿潤PPE乾燥後のηsp/Cは、0.515dL/gであった。
The operation up to this point was repeated 10 times to obtain about 610 kg of wet PPE.
The residual volatile content of the obtained wet PPE was 47.3% by mass, and when subjected to the drying step, the critical liquid content was 6.8% by mass when the wet PPE was 100% by mass.
The ηsp / C after wet PPE drying was 0.515 dL / g.

〔製造例3〕
重合槽底部に酸素含有ガス導入用のスパージャー、撹拌タービン翼及びバッフル、重合槽上部のベントガスラインに還流冷却器、重合槽側面に第二重合槽へのオーバーフローラインを具備する160リットルのジャケット付き第一重合槽に、50L/minの流量で窒素ガスを吹き込みながら、19.1gの塩化第二銅2水和物、84.2gの35%塩酸、344.1gのジ−n−ブチルアミン、730.0gのN,N,N’,N’−テトラメチルプロパンジアミン、44.52kgのo−キシレン、17.02kgのn−ブタノール、51.05kgのメタノールを入れた。
同様に、反応器底部に酸素含有ガス導入用のスパージャー、撹拌タービン翼及びバッフル、反応器上部のベントガスラインに還流冷却器、重合槽側面に洗浄槽へのオーバーフローラインを具備する400リットルのジャケット付き第二重合槽に、100L/minの流量で窒素ガスを吹き込みながら、100.64kgのo−キシレン、37.74kgのn−ブタノール、153.22kgのメタノールを入れた。
[Manufacturing Example 3]
With a 160-liter jacket equipped with a spudger for introducing oxygen-containing gas at the bottom of the polymerization tank, stirring turbine blades and baffles, a reflux cooler at the vent gas line at the top of the polymerization tank, and an overflow line to the second polymerization tank on the side of the polymerization tank. 19.1 g of cupric chloride dihydrate, 84.2 g of 35% hydrochloric acid, 344.1 g of di-n-butylamine, 730 while blowing nitrogen gas into the first polymerization tank at a flow rate of 50 L / min. 9.0 g of N, N, N', N'-tetramethylpropanediamine, 44.52 kg of o-xylene, 17.02 kg of n-butanol and 51.05 kg of methanol were added.
Similarly, a 400 liter jacket with a spurger for introducing oxygen-containing gas at the bottom of the reactor, stirring turbine blades and baffles, a reflux condenser on the vent gas line at the top of the reactor, and an overflow line to the washing tank on the side of the polymerization tank. While blowing nitrogen gas at a flow rate of 100 L / min, 100.64 kg of o-xylene, 37.74 kg of n-butanol, and 153.22 kg of methanol were placed in the second polymerization tank.

また、プランジャーポンプにより第一重合槽に送液できるライン、撹拌タービン翼及び槽上部のベントガスラインに還流冷却器を備えた600リットルの第一原料タンクに、50L/minの流量で窒素ガスを吹き込みながら、51.4gの塩化第二銅2水和物、226.2gの35%塩酸、924.7gのジ−n−ブチルアミン、1961.6gのN,N,N’,N’−テトラメチルプロパンジアミン、119.65kgのo−キシレン、45.73kgのn−ブタノール、137.18kgのメタノール、92kgの2,6−ジメチルフェノールを入れ、撹拌により液を混合させた。
また、プランジャーポンプにより第二重合槽に送液できるライン、攪拌タービン翼及び槽上部のベントガスラインに還流冷却器を備えた200リットルの第二原料タンクに10L/minの流量で窒素ガスを吹き込みながら、120kgのメタノールを入れた。尚、第一原料タンクおよび第二原料タンクへの仕込み液は重合に供することで減量するため、その都度上記液組成のものを追加添加した。
In addition, nitrogen gas is supplied at a flow rate of 50 L / min to a 600 liter first raw material tank equipped with a reflux condenser on a line that can send liquid to the first polymerization tank by a plunger pump, a stirring turbine blade, and a vent gas line at the top of the tank. While blowing, 51.4 g of cupric chloride dihydrate, 226.2 g of 35% hydrochloric acid, 924.7 g of di-n-butylamine, 1961.6 g of N, N, N', N'-tetramethyl Propanediamine, 119.65 kg of o-xylene, 45.73 kg of n-butanol, 137.18 kg of methanol, and 92 kg of 2,6-dimethylphenol were added, and the liquids were mixed by stirring.
In addition, nitrogen gas is blown at a flow rate of 10 L / min into a 200 liter second raw material tank equipped with a reflux condenser on the line that can be sent to the second polymerization tank by a plunger pump, the stirring turbine blade, and the vent gas line at the top of the tank. However, 120 kg of methanol was added. Since the amounts of the liquids charged into the first raw material tank and the second raw material tank were reduced by subjecting them to polymerization, those having the above liquid composition were additionally added each time.

次に、激しく撹拌した第一重合槽へ、第一原料タンクより1494g/minの流量で重合溶液を供給するのと同時に、第一重合槽へ23.76L/minの速度で酸素をスパージャーより導入を始めた。
更に、第一重合槽より第二重合槽へのオーバーフローが開始されると同時に、第二原料タンクより第二重合槽へ86kg/minの流量でメタノールを添加し、更に7.92L/minの速度で酸素をスパージャーより導入させた。この時のメタノールの添加量は、2,6−ジメチルフェノールに対し、2.5質量%となる。
重合温度は第一重合槽及び第二重合槽ともに40℃を保つようにジャケットに熱媒を通して調節した。
その後40時間重合を継続し、第一重合槽及び第二重合槽における重合は安定状態となったことが確認され、PPEが連続的に得られた。
なお、上記第一重合槽の重合形態は溶液重合であり、上記第二重合槽の重合形態は沈殿析出重合である。
Next, the polymerization solution was supplied from the first raw material tank to the vigorously stirred first polymerization tank at a flow rate of 1494 g / min, and at the same time, oxygen was supplied to the first polymerization tank from a spudger at a rate of 23.76 L / min. Started to introduce.
Further, at the same time when the overflow from the first polymerization tank to the second polymerization tank is started, methanol is added from the second raw material tank to the second polymerization tank at a flow rate of 86 kg / min, and the rate is further 7.92 L / min. Oxygen was introduced from the spurger. The amount of methanol added at this time is 2.5% by mass with respect to 2,6-dimethylphenol.
The polymerization temperature was adjusted by passing a heat medium through the jacket so as to maintain 40 ° C. in both the first polymerization tank and the second polymerization tank.
After that, the polymerization was continued for 40 hours, and it was confirmed that the polymerization in the first polymerization tank and the second polymerization tank was in a stable state, and PPE was continuously obtained.
The polymerization form of the first polymerization tank is solution polymerization, and the polymerization form of the second polymerization tank is precipitation precipitation polymerization.

安定後20時間重合を継続し、PPE400kgを含むスラリー液を得た。
得られたスラリー液に、エチレンジアミン四酢酸3カリウム塩(同仁化学研究所製試薬)の10%水溶液を添加し、50℃に温めた。
次に、ハイドロキノン(和光純薬社製試薬)を少量ずつ添加し、スラリー状のPPEが白色となるまで、50℃での保温を続けた。
白色となったPPEのスラリー液をバスケット型遠心分離機(タナベウィルテック社製)に投入し、固液分離を行った。バスケット型遠心分離機内に残った湿潤PPEを200kgのメタノールに分散させ50℃で30分間撹拌した後、再度固液分離した。この操作を2回繰り返し、湿潤PPEを得た。
得られた湿潤PPEは約650kgであり、残留揮発分は47.3質量%であった。乾燥工程に供したところ限界含液率は湿潤PPEを100質量%としたときに7.2質量%であった。
また、湿潤PPE乾燥後のηsp/Cは、0.499dL/gであった。
After stabilization, polymerization was continued for 20 hours to obtain a slurry liquid containing 400 kg of PPE.
A 10% aqueous solution of ethylenediaminetetraacetic acid tripotassium salt (reagent manufactured by Dojin Chemical Laboratory) was added to the obtained slurry liquid, and the mixture was warmed to 50 ° C.
Next, hydroquinone (reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added little by little, and the temperature was kept at 50 ° C. until the slurry-like PPE turned white.
The white PPE slurry liquid was put into a basket-type centrifuge (manufactured by Tanabe Wiltec) to perform solid-liquid separation. The wet PPE remaining in the basket-type centrifuge was dispersed in 200 kg of methanol, stirred at 50 ° C. for 30 minutes, and then solid-liquid separated again. This operation was repeated twice to obtain a wet PPE.
The wet PPE obtained was about 650 kg and the residual volatile content was 47.3% by mass. When subjected to the drying step, the critical liquid content was 7.2% by mass when the wet PPE was 100% by mass.
The ηsp / C after wet PPE drying was 0.499 dL / g.

[実施例1]
製造例1で得られた湿潤PPEを5.0kg計量し、前段の乾燥機1に仕込み、軸シール部に20L/minの流量で窒素を供給した。パドルを30rpmで回転させた後、ジャケットに0.37MPaのスチームを供給した。ジャケット表面の加熱温度(湿潤PPEが接触する加熱面の温度)は139℃であった。PPEの残留揮発分が5.0質量%になるまで乾燥したところ、乾燥時間は16分であり、乾燥後の粉体は3.1kg得られた。
予めジャケットに0.93MPaのスチームを供給し、軸シール部に20L/minの流量で窒素を供給しておいた後段の乾燥機1に、前記の残留揮発分が5.0質量%まで乾燥したPPE:3.1kgを投入し、パドルを30rpmで回転させた。ジャケット表面の加熱温度は173℃であった。30分間乾燥後にPPEの残留揮発分は、0.09質量%であった。
乾燥終了後に前段及び後段の二台の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.114であった。
[Example 1]
5.0 kg of the wet PPE obtained in Production Example 1 was weighed, charged into the dryer 1 in the previous stage, and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. After rotating the paddle at 30 rpm, steam of 0.37 MPa was supplied to the jacket. The heating temperature of the jacket surface (the temperature of the heated surface with which the wet PPE contacts) was 139 ° C. When the PPE was dried to a residual volatile content of 5.0% by mass, the drying time was 16 minutes, and 3.1 kg of the dried powder was obtained.
The residual volatile matter was dried to 5.0% by mass in the subsequent dryer 1 in which 0.93 MPa of steam was supplied to the jacket in advance and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. PPE: 3.1 kg was added and the paddle was rotated at 30 rpm. The heating temperature of the jacket surface was 173 ° C. After drying for 30 minutes, the residual volatile content of PPE was 0.09% by mass.
After the drying was completed, the two dryers 1 in the front stage and the rear stage were opened, and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.114.

[実施例2]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.37MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て139℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを20kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEはそのまま後段の乾燥機2に供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.10/1.71hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ3.8質量%、0.08質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.112であった。
[Example 2]
Dryer 2: Two units were arranged in series, and steam of 0.37 MPa was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 139 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 was supplied to the pre-stage dryer 2 at 20 kg / hr, and the PPE discharged from the pre-stage dryer 2 was directly supplied to the post-stage dryer 2. The residence time of the dryer 2 in the first stage and the second stage was 1.10 / 1.71 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 3.8% by mass and 0.08% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.112.

[実施例3]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.12MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て103℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを11.6kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦103℃に加温したホッパーにため、後段の乾燥機2に20.0kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.83/1.10hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ4.2質量%、0.09質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.113であった。
[Example 3]
Dryer 2: Two units were arranged in series, and 0.12 MPa of steam was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 103 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 is supplied to the pre-stage dryer 2 at 11.6 kg / hr, and the PPE discharged from the pre-stage dryer 2 is stored in a hopper once heated to 103 ° C., so that the post-stage dryer 2 was supplied at 20.0 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 1.83 / 1.10 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 4.2% by mass and 0.09% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.113.

[実施例4]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.67MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て163℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを44.0kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦103℃に加温したホッパーにため、後段の乾燥機2に24.4kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ0.49/0.88hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ3.6質量%、0.07質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.114であった。
[Example 4]
Dryer 2: Two units were arranged in series, and 0.67 MPa of steam was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 163 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 is supplied to the front dryer 2 at 44.0 kg / hr, and the PPE discharged from the dryer 2 in the previous stage is stored in a hopper once heated to 103 ° C. 2 was supplied at 24.4 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 0.49 / 0.88 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 3.6% by mass and 0.07% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.114.

[実施例5]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.20MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て120℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て127℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを14.4kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦120℃に加温したホッパーにため、後段の乾燥機2に3.9kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.53/5.58hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ3.9質量%、0.09質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.112であった。
[Example 5]
Dryer 2: Two units were arranged in series, and 0.20 MPa of steam was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 120 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 127 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 is supplied to the front dryer 2 at 14.4 kg / hr, and the PPE discharged from the dryer 2 in the previous stage is stored in a hopper once heated to 120 ° C. 2 was supplied at 3.9 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 1.53 / 5.58 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 3.9% by mass and 0.09% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.112.

[実施例6]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.37MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て139℃であった。後段乾燥機2のジャケットに、0.99MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て179℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを20kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦139℃に加温したホッパーにため後段の乾燥機2に22.5kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.10/0.98hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ3.8質量%、0.07質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.113であった。
[Example 6]
Dryer 2: Two units were arranged in series, and steam of 0.37 MPa was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 139 ° C. Steam of 0.99 MPa was supplied to the jacket of the latter stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 179 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 was supplied to the pre-stage dryer 2 at 20 kg / hr, and the PPE discharged from the pre-stage dryer 2 was stored in the hopper once heated to 139 ° C. and stored in the post-stage dryer 2 22. It was supplied at .5 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 1.10 / 0.98 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 3.8% by mass and 0.07% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.113.

[実施例7]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.20MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て120℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例2で得られた湿潤PPEを14.3kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦120℃に加温したホッパーにため、後段の乾燥機2に20.0kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.54/1.10hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ3.7質量%、0.11質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.114であった。
[Example 7]
Dryer 2: Two units were arranged in series, and 0.20 MPa of steam was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 120 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 2 is supplied to the front dryer 2 at 14.3 kg / hr, and the PPE discharged from the dryer 2 in the previous stage is stored in a hopper once heated to 120 ° C. 2 was supplied at 20.0 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 1.54 / 1.10 hr, respectively.
After 6 hours of operation, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 3.7% by mass and 0.11% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.114.

[実施例8]
乾燥機2:二台を直列に配置し、前段の乾燥機2ジャケットに、0.37MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て139℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例3で得られた湿潤PPEを17.7kg/hrで前段乾燥機2に供給し、前段の乾燥機2から排出されたPPEは一旦139℃に加温したホッパーにため、後段の乾燥機2に17.7kg/hrで供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.24/1.24hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ4.1質量%、0.12質量%で安定した。
9時間まで運転した後、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.113であった。
[Example 8]
Dryer 2: Two units were arranged in series, and steam of 0.37 MPa was supplied to the dryer 2 jacket in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 139 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 3 is supplied to the front dryer 2 at 17.7 kg / hr, and the PPE discharged from the dryer 2 in the previous stage is stored in a hopper once heated to 139 ° C. 2 was supplied at 17.7 kg / hr. The residence time of the dryer 2 in the first stage and the second stage was 1.24 / 1.24 hr, respectively.
After operating for 6 hours, the residual volatile content of PPE discharged from the dryer 2 in the front stage / the rear stage was stable at 4.1% by mass and 0.12% by mass, respectively.
After operating for up to 9 hours, the dryer 2 in the front / rear stage was opened and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.113.

[比較例1]
製造例1で得られた湿潤PPEを5.0kg計量し、前段の乾燥機1に仕込み、軸シール部に20L/minの流量で窒素を供給した。パドルを30rpmで回転させた後、ジャケットに0.77MPaのスチームを供給した。ジャケット表面の加熱温度は169℃であった。PPEの残留揮発分が5.0質量%になるまで乾燥したところ、乾燥時間は19分であった。
前段の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。乾燥機1の加熱面には、黄色く着色した飴状の融着物が付着し、さらに融着物表面におこし状に凝集したPPEのスケールが付着していた。後段の乾燥機1に仕込む粉の量を実施例1に合わせるため同じ操作を繰り返し、3.1kgの粉体を確保した。
予めジャケットに0.93MPaのスチームを供給し、軸シール部に20L/minの流量で窒素を供給しておいた後段の乾燥機1に、前記の残留揮発分が5.0質量%まで乾燥したPPE:3.1kgを投入し、パドルを30rpmで回転させた。ジャケット表面の加熱温度は173℃であった。30分間乾燥後にPPEの残留揮発分は、0.15質量%であった。
後段の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。乾燥機1のジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかったが、乾燥後のPPEパウダー中に飴状の融着体顆粒が混入していた。融着体顆粒中の溶媒が乾燥では分離しにくく、残留揮発分量も高くなったと推定する。
また、(ηB−ηA)/ηAを測定したところ、0.110であった。
[Comparative Example 1]
5.0 kg of the wet PPE obtained in Production Example 1 was weighed, charged into the dryer 1 in the previous stage, and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. After rotating the paddle at 30 rpm, 0.77 MPa of steam was supplied to the jacket. The heating temperature of the jacket surface was 169 ° C. When the PPE was dried to a residual volatile content of 5.0% by mass, the drying time was 19 minutes.
The dryer 1 in the previous stage was opened, and the internal scaling and fusion status were confirmed. A candy-like fusion product colored yellow was attached to the heated surface of the dryer 1, and a scale of PPE aggregated in a raised shape was further attached to the surface of the fusion product. The same operation was repeated in order to match the amount of powder charged into the dryer 1 in the subsequent stage with that of Example 1, and 3.1 kg of powder was secured.
The residual volatile matter was dried to 5.0% by mass in the subsequent dryer 1 in which 0.93 MPa of steam was supplied to the jacket in advance and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. PPE: 3.1 kg was added and the paddle was rotated at 30 rpm. The heating temperature of the jacket surface was 173 ° C. After drying for 30 minutes, the residual volatile content of PPE was 0.15% by mass.
The dryer 1 in the latter stage was opened, and the internal scaling and fusion status were confirmed. Although there were thin powdery deposits on the surface of the jacket and paddle of the dryer 1, scaling and fusion were not achieved, but candy-like fused body granules were mixed in the dried PPE powder. Was there. It is presumed that the solvent in the cohesive granules was difficult to separate by drying and the residual volatile content was also high.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.110.

[比較例2]
乾燥機2:二台を直列に配置し、前段の乾燥機2のジャケットに、0.77MPaのスチームを供給した。前段乾燥機2のジャケット表面の加熱温度は全て169℃であった。後段乾燥機2のジャケットに、0.93MPaのスチームを供給した。後段乾燥機2のジャケット表面の加熱温度は全て173℃であった。前段/後段の乾燥機2ともに、排出側より100L/minの窒素を供給し、パドルを30rpmで回転させた。製造例1で得られた湿潤PPEを20kg/hrで前段の乾燥機2に供給し、前段の乾燥機2から排出されたPPEはそのまま後段の乾燥機2に供給した。前段/後段の乾燥機2の滞留時間はそれぞれ1.10/1.69hrであった。
6時間運転したところ前段/後段の乾燥機2から排出されるPPEの残留揮発分がそれぞれ4.2質量%、0.21質量%となった。
9時間まで運転したところ、前段/後段の乾燥機2から排出されるPPEの残留揮発分は徐々に上昇し、それぞれ5.9質量%、0.27質量%となった。
この状態で窒素供給とパドルの回転を停止し、前段/後段の乾燥機2を開放し内部のスケーリングおよび融着状況を確認した。前段の乾燥機2の原料供給交付金のジャケット表面には黄色く着色した飴状の融着物が付着し、さらに融着物表面におこし状に凝集したPPEのスケールが付着していた。後段の乾燥機2のジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。乾燥後のPPEパウダー中に飴状の融着体顆粒が混入していた。融着体顆粒中の溶媒が乾燥では分離しにくく、残留揮発分量も高くなったと推定する。
また、(ηB−ηA)/ηAを測定したところ、0.110であった。
[Comparative Example 2]
Dryer 2: Two units were arranged in series, and 0.77 MPa of steam was supplied to the jacket of the dryer 2 in the previous stage. The heating temperature of the jacket surface of the first-stage dryer 2 was 169 ° C. Steam of 0.93 MPa was supplied to the jacket of the latter-stage dryer 2. The heating temperature of the jacket surface of the latter-stage dryer 2 was 173 ° C. In both the first and second dryers 2, 100 L / min of nitrogen was supplied from the discharge side, and the paddle was rotated at 30 rpm. The wet PPE obtained in Production Example 1 was supplied to the dryer 2 in the previous stage at 20 kg / hr, and the PPE discharged from the dryer 2 in the previous stage was directly supplied to the dryer 2 in the subsequent stage. The residence time of the dryer 2 in the first stage and the second stage was 1.10 / 1.69 hr, respectively.
After operating for 6 hours, the residual volatile contents of PPE discharged from the dryer 2 in the first stage and the second stage were 4.2% by mass and 0.21% by mass, respectively.
After operating for up to 9 hours, the residual volatile content of PPE discharged from the dryer 2 in the first stage / the second stage gradually increased to 5.9% by mass and 0.27% by mass, respectively.
In this state, the nitrogen supply and the rotation of the paddle were stopped, the dryer 2 in the front / rear stage was opened, and the internal scaling and fusion status were confirmed. A candy-like fusion product colored yellow was attached to the jacket surface of the raw material supply grant of the dryer 2 in the previous stage, and a scale of PPE aggregated in a raised shape was further attached to the surface of the fusion product. Although there were thin powdery deposits on the surface of the jacket and paddle of the dryer 2 in the latter stage, scaling and fusion were not achieved. Candy-like fused body granules were mixed in the dried PPE powder. It is presumed that the solvent in the cohesive granules was difficult to separate by drying and the residual volatile content was also high.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.110.

[比較例3]
製造例1で得られた湿潤PPEを5.0kg計量し、前段の乾燥機1に仕込み、軸シール部に20L/minの流量で窒素を供給した。パドルを30rpmで回転させた後、ジャケットに90℃に加温した温水を供給した。ジャケット表面の加熱温度は86℃であった。PPEの残留揮発分が5.0質量%になるまで乾燥したところ、乾燥時間は169分であり、乾燥後の粉体は3.1kg得られた。
予めジャケットに0.93MPaのスチームを供給し、軸シール部に20L/minの流量で窒素を供給しておいた後段乾燥機1に、前記の残留揮発分が5.0質量%まで乾燥したPPE:3.1kgを投入し、パドルを30rpmで回転させた。ジャケット表面の加熱温度は173℃であった。30分間乾燥後にPPEの残留揮発分は、0.09質量%であった。
乾燥終了後に前段及び後段の二台の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.115であった。
[Comparative Example 3]
5.0 kg of the wet PPE obtained in Production Example 1 was weighed, charged into the dryer 1 in the previous stage, and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. After rotating the paddle at 30 rpm, the jacket was supplied with warm water heated to 90 ° C. The heating temperature of the jacket surface was 86 ° C. When the PPE was dried to a residual volatile content of 5.0% by mass, the drying time was 169 minutes, and 3.1 kg of the dried powder was obtained.
PPE whose residual volatile content was dried to 5.0% by mass in the latter stage dryer 1 in which 0.93 MPa of steam was supplied to the jacket in advance and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. : 3.1 kg was added and the paddle was rotated at 30 rpm. The heating temperature of the jacket surface was 173 ° C. After drying for 30 minutes, the residual volatile content of PPE was 0.09% by mass.
After the drying was completed, the two dryers 1 in the front stage and the rear stage were opened, and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.115.

[比較例4]
製造例1で得られた湿潤PPEを5.0kg計量し、前段の乾燥機1に仕込み、軸シール部に20L/minの流量で窒素を供給した。パドルを30rpmで回転させた後、ジャケットに0.37MPaのスチームを供給した。ジャケット表面の加熱温度は139℃であった。PPEの残留揮発分が5.0質量%になるまで乾燥したところ、乾燥時間は16分であり、乾燥後の粉体は3.1kg得られた。
予めジャケットに0.20MPaのスチームを供給し、軸シール部に20L/minの流量で窒素を供給しておいた後段の乾燥機1に、前記の残留揮発分が5.0質量%まで乾燥したPPE:3.1kgを投入し、パドルを30rpmで回転させた。ジャケット表面の加熱温度は118℃であった。30分間乾燥後にPPEの残留揮発分は、2.77質量%であった。
乾燥終了後に前段及び後段の二台の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.117であった。
[Comparative Example 4]
5.0 kg of the wet PPE obtained in Production Example 1 was weighed, charged into the dryer 1 in the previous stage, and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. After rotating the paddle at 30 rpm, steam of 0.37 MPa was supplied to the jacket. The heating temperature of the jacket surface was 139 ° C. When the PPE was dried to a residual volatile content of 5.0% by mass, the drying time was 16 minutes, and 3.1 kg of the dried powder was obtained.
The residual volatile matter was dried to 5.0% by mass in the subsequent dryer 1 in which 0.20 MPa of steam was supplied to the jacket in advance and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. PPE: 3.1 kg was added and the paddle was rotated at 30 rpm. The heating temperature of the jacket surface was 118 ° C. After drying for 30 minutes, the residual volatile content of PPE was 2.77% by mass.
After the drying was completed, the two dryers 1 in the front stage and the rear stage were opened, and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.117.

[比較例5]
製造例1で得られた湿潤PPEを5.0kg計量し、前段の乾燥機1に仕込み、軸シール部に20L/minの流量で窒素を供給した。パドルを30rpmで回転させた後、ジャケットに0.37MPaのスチームを供給した。ジャケット表面の加熱温度は139℃であった。PPEの残留揮発分が5.0質量%になるまで乾燥したところ、乾燥時間は16分であり、乾燥後の粉体は3.1kg得られた。
予めジャケットに1.14MPaのスチームを供給し、軸シール部に20L/minの流量で窒素を供給しておいた後段の乾燥機1に、前記の残留揮発分が5.0質量%まで乾燥したPPE:3.1kgを投入し、パドルを30rpmで回転させた。ジャケット表面の加熱温度は183℃であった。30分間乾燥後にPPEの残留揮発分は、0.001質量%であった。
乾燥終了後に前段及び後段の二台の乾燥機1を開放し、内部のスケーリングおよび融着状況を確認した。二台ともジャケットやパドルの表面には薄く粉状の付着物はあるものの、スケーリングや融着には至っていなかった。
また、(ηB−ηA)/ηAを測定したところ、0.074であった。
[Comparative Example 5]
5.0 kg of the wet PPE obtained in Production Example 1 was weighed, charged into the dryer 1 in the previous stage, and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. After rotating the paddle at 30 rpm, steam of 0.37 MPa was supplied to the jacket. The heating temperature of the jacket surface was 139 ° C. When the PPE was dried to a residual volatile content of 5.0% by mass, the drying time was 16 minutes, and 3.1 kg of the dried powder was obtained.
The residual volatile matter was dried to 5.0% by mass in the subsequent dryer 1 in which 1.14 MPa of steam was supplied to the jacket in advance and nitrogen was supplied to the shaft seal portion at a flow rate of 20 L / min. PPE: 3.1 kg was added and the paddle was rotated at 30 rpm. The heating temperature of the jacket surface was 183 ° C. After drying for 30 minutes, the residual volatile content of PPE was 0.001% by mass.
After the drying was completed, the two dryers 1 in the front stage and the rear stage were opened, and the internal scaling and fusion status were confirmed. Both of them had thin powdery deposits on the surface of the jacket and paddle, but did not scale or fuse.
Moreover, when (ηB-ηA) / ηA was measured, it was 0.074.

Figure 2020193320
Figure 2020193320
Figure 2020193320
Figure 2020193320

本発明により、湿潤PPE乾燥時にスケーリングや融着の発生を抑制し、効率的な乾燥が可能となった。また、融着体の製品への混入がなく、成形品等の最終製品まで加工しても物性低下が発生しないPPEを提供することができる。 According to the present invention, the occurrence of scaling and fusion is suppressed during wet PPE drying, and efficient drying is possible. Further, it is possible to provide a PPE in which the fused body is not mixed in the product and the physical properties are not deteriorated even if the final product such as a molded product is processed.

Claims (7)

ポリフェニレンエーテルと、ポリフェニレンエーテルの良溶媒と、ポリフェニレンエーテルの貧溶媒とを含むスラリー液を固液分離して得られた湿潤ポリフェニレンエーテルを乾燥する乾燥工程を含むポリフェニレンエーテルの製造方法であって、
前記湿潤ポリフェニレンエーテルが含有する溶媒成分の中で最も低沸点の溶媒の沸点をbl℃、最も高沸点の溶媒の沸点をbh℃、ポリフェニレンエーテルのガラス転移温度をTg℃としたとき、
前記乾燥工程において、
前記湿潤ポリフェニレンエーテルを加熱面に接触させることを含み、
前記溶媒成分の含有量が限界含液率以下になるまでの、前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1を以下の範囲に設定し、
(bl+36)℃≦T1≦(Tg−45)℃
前記溶媒成分の含有量が限界含液率以下になった後の、前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2を以下の範囲に設定し、
(bh+15)℃≦T2≦(Tg−30)℃
更に、T2をT1より高い温度に設定する、
ポリフェニレンエーテルの製造方法。
A method for producing a polyphenylene ether, which comprises a drying step of drying a wet polyphenylene ether obtained by solid-liquid separation of a slurry liquid containing a polyphenylene ether, a good solvent for the polyphenylene ether, and a poor solvent for the polyphenylene ether.
When the boiling point of the solvent having the lowest boiling point among the solvent components contained in the wet polyphenylene ether is bl ° C., the boiling point of the solvent having the highest boiling point is bh ° C., and the glass transition temperature of the polyphenylene ether is Tg ° C.
In the drying step
Including contacting the wet polyphenylene ether with the heated surface,
The temperature of the heated surface to which the wet polyphenylene ether comes into contact until the content of the solvent component becomes equal to or less than the limit liquid content: T1 is set in the following range.
(Bl + 36) ° C. ≤ T1 ≤ (Tg-45) ° C.
After the content of the solvent component becomes equal to or less than the limit liquid content, the temperature of the heated surface to which the wet polyphenylene ether comes into contact: T2 is set in the following range.
(Bh + 15) ° C. ≤ T2 ≤ (Tg-30) ° C.
Further, T2 is set to a temperature higher than T1.
A method for producing polyphenylene ether.
前記乾燥工程において、前記湿潤ポリフェニレンエーテルの乾燥が、前記加熱面からの伝導伝熱により前記湿潤ポリフェニレンエーテルを加熱することでなされる、請求項1に記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to claim 1, wherein in the drying step, the wet polyphenylene ether is dried by heating the wet polyphenylene ether by conduction heat transfer from the heating surface. 前記乾燥工程において、前記湿潤ポリフェニレンエーテルを伝導伝熱により加熱する前記加熱面を持ち、前記加熱面からの伝導伝熱により前記湿潤ポリフェニレンエーテルを加熱する乾燥機を用いる、請求項2に記載のポリフェニレンエーテルの製造方法。 The polyphenylene according to claim 2, wherein in the drying step, a dryer having the heating surface for heating the wet polyphenylene ether by conduction heat transfer and heating the wet polyphenylene ether by conduction heat transfer from the heating surface is used. Method for producing ether. 前記良溶媒が、ベンゼン、トルエン及びo−キシレンからなる群より選ばれる少なくとも一種である、請求項1〜3のいずれか一項に記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to any one of claims 1 to 3, wherein the good solvent is at least one selected from the group consisting of benzene, toluene and o-xylene. 前記貧溶媒が、メタノール、エタノール、イソプロパノール、ブタノール、アセトン及び水からなる群より選ばれる少なくとも一種である、請求項1〜4のいずれか一項に記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to any one of claims 1 to 4, wherein the poor solvent is at least one selected from the group consisting of methanol, ethanol, isopropanol, butanol, acetone and water. 前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1に設定した第1の乾燥単位と前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2に設定した第2の乾燥単位とを含む乾燥機を用いる、請求項1〜5のいずれか一項に記載のポリフェニレンエーテルの製造方法。 A dryer containing the temperature of the heated surface to which the wet polyphenylene ether comes into contact: the first drying unit set to T1 and the temperature of the heated surface to which the wet polyphenylene ether comes into contact: the second drying unit set to T2. The method for producing a polyphenylene ether according to any one of claims 1 to 5, wherein the method for producing polyphenylene ether. 直列に配置された前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T1に設定した第1の乾燥機と前記湿潤ポリフェニレンエーテルが接触する前記加熱面の温度:T2に設定した第2の乾燥機とを含む乾燥装置を用いる、請求項1〜6のいずれか一項に記載のポリフェニレンエーテルの製造方法。 The temperature of the heated surface to which the wet polyphenylene ethers arranged in series come into contact: the temperature of the first dryer set to T1 and the temperature of the heated surface to which the wet polyphenylene ethers come into contact: the second dryer set to T2. The method for producing a polyphenylene ether according to any one of claims 1 to 6, wherein a drying device including the above is used.
JP2020015563A 2019-05-23 2020-01-31 Method for producing polyphenylene ether Active JP7424846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010429460.1A CN111978535B (en) 2019-05-23 2020-05-20 Process for producing polyphenylene ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019097020 2019-05-23
JP2019097020 2019-05-23

Publications (2)

Publication Number Publication Date
JP2020193320A true JP2020193320A (en) 2020-12-03
JP7424846B2 JP7424846B2 (en) 2024-01-30

Family

ID=73547829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020015563A Active JP7424846B2 (en) 2019-05-23 2020-01-31 Method for producing polyphenylene ether

Country Status (1)

Country Link
JP (1) JP7424846B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635296B2 (en) 2000-05-26 2011-02-23 三菱瓦斯化学株式会社 Process for producing polyphenylene ether
JP4557749B2 (en) 2005-03-02 2010-10-06 旭化成ケミカルズ株式会社 Method for producing granular polyphenylene ether resin
JP2013256648A (en) 2012-05-17 2013-12-26 Asahi Kasei Chemicals Corp Method for producing polyphenylene ether powder

Also Published As

Publication number Publication date
JP7424846B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US6469124B2 (en) Functionalized polyphenylene ether resins and curable compositions comprising them
JP4350909B2 (en) Method for producing low molecular weight polyphenylene ether resin
KR100728424B1 (en) Method of separating a polyarylene ether from a solvent
KR101746893B1 (en) Method for producing polyphenylene ether resin compositions
JP4145243B2 (en) Precipitation method of polyphenylene ether
JP5066634B2 (en) Method for producing polyphenylene ether resin molding
JP5265991B2 (en) Method for isolating polyphenylene ether polymer resin from solution
JP2019181825A (en) Extruder and manufacturing method of thermoplastic resin composition
CA1149997A (en) Method for recovering polyphenylene oxides
US6407202B1 (en) Poly(arylene ether) and process for making the same
CN103421182A (en) Production method for polyphenylene ether powder
JP2020193320A (en) Method for producing polyphenylene ether
JP2002541293A (en) Composition of interpolymer and polyphenylene ether resin
SU852177A3 (en) Method of preparing oxymethylenecopolymeric moulding masses
US7822583B2 (en) Method of batch falling strand devolatilizer
CN111978535B (en) Process for producing polyphenylene ether
JP6374343B2 (en) Process for producing polyphenylene ether
JP2022029302A (en) Method for producing polyphenylene ether
JP6789009B2 (en) Method for producing polyphenylene ether powder
JP2011099033A (en) Method of producing polyphenylene ether
CN107446126B (en) Method for producing polyphenylene ether
CN103421181A (en) Production method for polyphenylene ether powder
JP2007031618A (en) Method for transporting polyalkylene oxide-based water-soluble resin
JP2011099051A (en) Method for producing polyphenylene ether
TW202328286A (en) Method of producing polyethernitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7424846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150