JP2020174438A - 車載電子制御装置 - Google Patents

車載電子制御装置 Download PDF

Info

Publication number
JP2020174438A
JP2020174438A JP2019073854A JP2019073854A JP2020174438A JP 2020174438 A JP2020174438 A JP 2020174438A JP 2019073854 A JP2019073854 A JP 2019073854A JP 2019073854 A JP2019073854 A JP 2019073854A JP 2020174438 A JP2020174438 A JP 2020174438A
Authority
JP
Japan
Prior art keywords
signal
activation
command
charging
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019073854A
Other languages
English (en)
Other versions
JP6698909B1 (ja
Inventor
将造 神▲崎▼
Shozo Kanzaki
将造 神▲崎▼
佳利 石田
Yoshitoshi Ishida
佳利 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019073854A priority Critical patent/JP6698909B1/ja
Priority to US16/798,988 priority patent/US11465523B2/en
Priority to CN202010254102.1A priority patent/CN111791815B/zh
Priority to DE102020204373.6A priority patent/DE102020204373A1/de
Application granted granted Critical
Publication of JP6698909B1 publication Critical patent/JP6698909B1/ja
Publication of JP2020174438A publication Critical patent/JP2020174438A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】不確定な人為操作による起動信号に基づいて制御動作を行う演算制御部の待機電流を抑制する。【解決手段】演算制御部120Aに給電する電源リレー103Aは、電源スイッチ102によって閉路駆動されて主電気機器104を駆動制4御するとともに、電源スイッチ102が開路されているときであっても、起動指令素子21a・22A・28Aの閉路動作に応動する起動信号処理部130Aが発生する合成起動信号STAによって補助電気機器105を駆動制御し、前記起動信号処理部130Aで発生する待機電流は演算制御部120Aを間欠起動した場合に比べて大幅に抑制することができる。【選択図】図1

Description

この発明は、車両運転用の電源スイッチが閉路されている期間中において、制御用の車載バッテリから給電されて主電気機器を駆動制御するとともに、前記電源スイッチが開路されているときであっても補助電気機器の駆動制御が行えるように構成された起動信号処理部を有する車載電子制御装置の改良、特には、前記主電気機器が電動車両の走行用モータを車載の主バッテリから給電駆動するモータコントローラであり、前記補助電気機器が地上電源から前記主バッテリと前記制御用の補助バッテリを充電する充電制御ユニットである場合に適した車載電子制御装置の起動処理部の改良に関するものである。
電動車両の走行用モータに給電する車載の主バッテリを地上電源から充電する車上機器の構成例である、下記の特許文献1「蓄電システム」の図1によれば、メインリレーSMRを介してモータ・ジェネレータ22に給電する組電池10は、地上の直流電源33から充電リレーDCRを介して充電されるか、又は地上の交流電源44から充電リレーCHRを介して充電され、メインリレーSMRと充電リレーDCR・CHRはいずれも車載のコントローラ50によって選択閉路されるようになっている。
なお、交流電源44は一般家庭の商用電源が使用されて、小電流・長時間の夜間充電に適しており、地上の付帯設備もなく、単に充電ケーブルを接続するだけでよい特徴があり、一般に普通充電方式と呼ばれているのに対し、直流電源33は充電ステーションに設置された大電流・短時間の充電が行えて、出先での充電残量の不足分を短時間で応急補充するのに適しており、一般には急速充電方式と呼ばれているものである。
例えば、地上設備として、急速充電を行うのに適した直流電源システムの一例である下記の特許文献2「充電システム、充電器、電動移動体、および電動移動体用バッテリの充電方法(以下充電システムという)」の図1によれば、地上の充電器100と電動車両200とを接続する充電ケーブル101は、電力供給用の充電用ライン1011と、デジタル信号による通信用ライン1012と、アナログ信号による制御用ライン1013が設けられ、充電制御シーケンスの開始及び終了の合図が充電器100と電動車両200との間で交信されるようになっていて、その交信手順はCHAdeMO(登録商標)規格において記載されている。
また、商用交流電源から普通充電が行えて、家電機器への給電も行えるようにしたものとして、下記の特許文献3「電動車両の外部給電装置」の図2・図4によれば、普通充電口12に接続されるバッテリ充電用の充電ガン21、又は家電機器給電用のアダプタ20には、抵抗R6に直列接続された抵抗R7と、抵抗R7に並列接続されたスイッチS3が設けられ、車両側では抵抗R5が前記抵抗R6・R7の直列回路に対して並列接続され、抵抗R5には抵抗R4が直列接続されて基準電圧VDCが印加されるようになっている。そして、充電ガン21又はアダプタ20における抵抗R6・R7の値が異なっており、車両コントローラ16は抵抗R5の両端電圧を接続信号SIG3として受信して、充電ガン21又はアダプタ20のどちらが接続されているかを検知して充電制御又は放電制御を行うようになっている。
このような急速及び普通充電システムにおいて、車両システムの停止中に消費される待機電流(暗電流)によって、バッテリ電圧が低下するのを抑制するためのものである、下記の特許文献4「車両の充電制御装置およびそれを備える車両」の図3によれば、(1)利用者による充電要求の意志を示す第1の信号(充電ケーブルの接続)が検知されるまでは、メインクロックを停止させて、第1の信号をハード割込みとして受ける第1の休止モード(スリープモード)で動作し、(2)第1の信号が検知されるとメインクロックが動作して通常モード(ウェイクアップモード)に移行し、(3)充電が終了すればメインクロックを動作させた第2の休止モード(ウェイトモード)と、前記通常モード(ウェイクアップモード)とを交互に切換える間欠起動モードに移行し、(4)利用者による充電終了の意志を示す第2の信号(充電ケーブルの取外し)が検知されると前記第1の休止モードへ移行するようになっている。
特開2015−089152号公報(要約、図1) 特開2011−114962号公報(要約、図1) 特開2014−030283号公報(要約、図2・図4) WO2013/054387号公報(要約、図3)
(1)従来技術の課題の説明
前記特許文献1〜3における商用交流電源による普通充電、及び地上充電器を用いた急速充電システムでは、車載電子制御装置の具体的な役割は記載されていないが、これらの充電システムに対する車載電子制御装置としての課題である待機電流(暗電流)の抑制対策を提示している特許文献4については次のような課題が残されている。なお、電動車両における車載電子制御装置は、運転用の電源スイッチが閉路しているときに動作し、走行用モータに対する電力変換ユニットを制御するモータ制御ユニットと、主として運転用の電源スイッチが開路しているときに動作し、モータ駆動用の主バッテリに対する電力変換ユニットを制御する充電制御ユニットとを統括制御している。従って、車載電子制御装置を構成するマイクロプロセッサであるメインCPUに対するプログラムメモリの容量は膨大であり、その始動点検に要する始動遅延時間、及び動作停止前の現状退避処理に要するアフターラン時間が長くなり、1回の起動停止には合計で例えば1秒の不活性時間が発生する。
一方、前記特許文献4において、充電ケーブルの脱着や地上の電源スイッチの入り切りは人為的操作であるため、充電ケーブルが接続されてから地上の電源スイッチが投入されるまでの時間は不確定の長時間となる可能性があるとともに、バッテリの充電が完了してから充電ケーブルが取外されるまでの時間も不確定の長時間となる可能性がある。
従って、充電ケーブルが接続されてから取外しされるまでに発生する間欠起動時間帯の全時間は不確定長時間となる可能性があるとともに、充電ケーブルの着脱発生タイミングを速やかに検出するためには間欠起動間隔を短くしておく必要がある一方で、1回の間欠起動には、前述したマイクロプロセッサの不活性時間(例えば1秒)以上の給電が必要となる。
その結果、無人状態で地上電源からモータ駆動用の車載の主バッテリを充電する場合に、電動車両に適用される車載電子制御装置を間欠起動することによって待機電流を抑制するのは困難となり、より効果的な手段を用いる必要性がある。
(2)発明の目的の説明
この発明は、車載バッテリから電源スイッチの閉路動作に応動する電源リレーを介して給電されて主電気機器の駆動制御を行う演算制御部が、前記電源スイッチが開路されているときであっても、複数の起動指令素子の閉路動作に応動して起動されて、補助電気機器の駆動制御を行うように構成されていて、前記起動指令素子を設けることによって演算制御部全体で発生する待機電流を大幅に抑制することができる起動信号処理部を提供するとともに、特には、電動車両の充電制御を行うのに適した起動処理部を有する車載電子制御装置を提供するものである。
この発明による起動信号処理部を有する車載電子制御装置は、車載バッテリから電源スイッチの閉路動作に応動する電源リレーと安定化電源とを介して安定化電圧Vccが印加されたことにより制御動作を開始して正常運転信号RUNが発生し、前記電源リレーの閉路動作を維持するとともに、主電気機器の駆動制御と当該駆動制御に対する反応状態を監視する主制御運転手段となる制御プログラムを実行する演算制御部を備え、当該演算制御部は、前記電源スイッチが開路されると、少なくとも、最新の現在情報の一部を不揮発性メモリに転送退避してから前記正常運転信号RUNを停止して、前記電源リレーを消勢停止し、前記電源スイッチが開路されているときであっても、複数の起動指令素子の閉路動作に応動して、前記演算制御部を起動して、補助電気機器の駆動制御と当該駆動制御に対する反応状態を監視する補助制御手段となる制御プログラムを実行するものであって、前記起動信号処理部は、前記起動指令素子の開閉状態に応動する起動指令信号が入力される複数の個別起動処理部によって構成され、
複数の前記起動指令素子の一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号を発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号を発生するようになっている。
そして、複数の前記個別起動処理部は、それぞれ前記起動指令信号の発生を記憶する起動ラッチ部を備え、当該起動ラッチ部の出力信号である合成用起動信号STnをそれぞれ論理和結合して合成起動信号を発生するとともに、前記起動指令信号の発生状態を個別に前記演算制御部に入力する個別起動信号SIG3nを発生し、
前記演算制御部は、前記合成起動信号に応動して閉路駆動される前記電源リレーを介して前記安定化電圧Vccが印可されて制御動作を開始し、前記正常運転信号RUNによって前記電源リレーの動作状態を維持するとともに、
前記個別起動信号SIG3nを読出して、前記補助電気機器の駆動制御を行い、当該駆動制御に伴う動作確認又は所定時間の経過判定により、前記正常運転信号RUNの発生を停止するまでに、前記起動ラッチ部の出力を停止する起動信号遮断指令CNT3n2を発生し、
前記個別起動処理部は更に、遮断ラッチ部と回復判定部を備え、
前記遮断ラッチ部は、前記起動信号遮断指令CNT3n2によってセット駆動されて、複数の前記起動指令素子が正常閉路又は異常閉路しているときに前記合成用起動信号STnの発生を停止し、
前記回復判定部は、前記複数の起動指令素子が正常開路又は開路復帰したときに前記遮断ラッチ部をリセットして、複数の前記起動指令素子が閉路したときに前記合成用起動信号STnの発生が有効となるようになっている。
以上のとおり、この発明による起動信号処理部を有する車載電子制御装置は、電源スイッチが閉路されている運転期間において安定化電源から給電されて、主電気機器の駆動制御を行い、電源スイッチが開路されても正常運転信号RUNによって給電状態を維持しながら、運転期間中に発生した例えば学習情報或いは異常発生情報を揮発性のRAMメモリから不揮発性のデータメモリ又はプログラムメモリに転送退避し、この退避処理の完了に伴って正常運転信号RUNを停止することによって給電停止される演算制御部を有する車載電子制御装置において、複数の起動指令素子が発生する起動指令信号S31・S32・・S3nの開閉状態に応動する個別起動処理部が付加されて、当該個別起動処理部は前記起動指令信号S3n(n=1・2・・n)の発生を個別に記憶する起動ラッチ部を備え、当該起動ラッチ部の出力信号を論理和結合した合成起動信号STA〜STCを発生するとともに、前記起動指令信号S3nの発生状態を個別に前記演算制御部の制御入力端子に入力する個別起動信号SIG3nを発生するようになっている。
そして、前記演算制御部は、前記合成起動信号に応動して前記安定化電圧が印可されて制御動作を開始し、前記正常運転信号RUNによって給電状態が維持されているとともに、前記個別起動信号SIG3nを読み出すことによって、補助電気機器の一部を駆動制御し、その応答信号であるか、又は経過時間超過によって前記正常運転信号RUNの発生を停止するようになっている。
従って、起動指令素子が例えば押しボタンスイッチであって、比較的短時間の押圧操作が行われ、この押圧時間が安定化電源の電圧立上り時間と演算制御部の自己診断所要時間に要する演算制御部の不活性時間よりも短い場合であっても、起動ラッチ部によって確実に合成起動信号を発生して演算制御部を起動することができ、演算制御部が動作停止する前には遮断ラッチ部によって合成起動信号を解除しておくことができるので、電源スイッチが閉路されていない時点であっても、多様な補助制御を演算制御部によって容易に実行することができる効果があるとともに、この押しボタンスイッチに短絡異常が発生していた場合や、起動指令素子が不確定長時間の閉路動作を行うものであった場合でも、演算制御部による補助制御が完了した時点で合成起動信号を解除して、不必要な給電状態が発生しないようにし、車載バッテリの無駄な放電を防止することができる効果がある。
また、閉路された起動指令素子を一旦開路すれば、回復判定部によって遮断ラッチ部による遮断動作が解除されるので、起動指令素子が不特定長時間の閉路動作を行う場合には、起動指令素子の再閉路によって補助制御が再度有効となり、長時間の閉路動作中にあっては遮断ラッチ部が作動して節電処理が行われるので、起動指令素子の動作特性に相違があっても共通の個別起動処理部を適用できる効果がある。
この発明の実施の形態1による起動処理部を有する車載電子制御装置の全体回路ブロック図である。 図1のものの個別起動処理部に関する一般例の詳細回路図である。 図1のものの個別起動処理部に関する特殊例の詳細回路図である。 図2Aのものの動作説明用のタイムチャートの第1例図である。 図2Aのものの動作説明用のタイムチャートの第2例図である。 図2Aのものの動作説明用のタイムチャートの第3例図である。 図2Bのものの動作説明用のタイムチャートの第4例図である。 図1のものの主制御運転手段に関する動作説明用のフローチャートである。 図1のものの補助制御運転手段に関する動作説明用のフローチャートである。 図1のものの変形実施形態による起動処理部を有する車載電子制御装置の全体回路ブロック図である。 この発明の実施の形態2による起動処理部を有する車載電子制御装置の全体回路ブロック図である。 図7のものの個別起動処理部に関する特殊例の詳細回路図である。 図8のものの部分詳細回路図である。 図7(及び図12)のものの起動処理に関する動作説明用のフローチャートである。 図7のものによる普通充電の操作手順の詳細説明図である。 この発明の実施の形態3による起動処理部を有する車載電子制御装置の全体回路ブロック図である。 図12のものの起動信号処理部に関する全体回路ブロック図である。 図12(及び図7)のものの起動指令信号の一例を示す全体接続図である。 図12のものによる急速充電の操作手順の詳細説明図である。
実施の形態1.
[実施の形態1の詳細な説明]
(1)構成の詳細な説明
以下、この発明の実施の形態1による起動処理部を有する車載電子制御装置の全体回路ブロック図である図1について、その構成を詳細に説明する。
図1において、車載電子制御装置100Aには、例えばDC12V系の車載バッテリ101から車載バッテリ電圧Vbsが印加されるとともに、電源スイッチ102が閉路されているときに付勢される電源リレー103Aを介して駆動電源電圧Vbbが印加されるようになっている。また、車載電子制御装置100Aには、電源スイッチ102が閉路されているときに駆動制御される主電気機器104が接続され、この主電気機器104は電気負荷群1とセンサ群1によって構成されている。
車載電子制御装置100Aには更に、電源スイッチ102が開路されているときに駆動制御される補助電気機器105が接続され、この補助電気機器105は電気負荷群2とセンサ群2によって構成されている。
車載電子制御装置100Aの内部又は外部に接続されている起動補助信号群106Aは、起動指令素子21a〜28a(以下2naと記載することがある)と、天絡限流抵抗21b〜28b(以下2nbと記載することがある)とが相互に直列接続されている補助起動指令回路21〜28(以下2nと記載することがある、以下同様である)によって構成されていて、それぞれが起動指令信号S3nを発生するようになっている。
なお、起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものであり、天絡限流抵抗2nbは起動指令素子2naが正側電源線に混触した場合の短絡保護を目的としたものである。
また、補助起動指令回路2nの個数は8個に限定されるものではなく、全体システムの規模に応じて増減されるようになっている。
車載電子制御装置100Aは、マイクロプロセッサであるメインCPUを含む演算制御部120Aと、起動信号処理部130Aとを主体として構成されている。
演算制御部120Aには、駆動電源電圧Vbbから例えばDC5Vの安定化電圧Vccを生成する安定化電源110が接続されて、電源リレー103Aが付勢されているときに作動するメインCPUと、不揮発性のプログラムメモリPMEM、データメモリDMEM、揮発性のRAMメモリRMEM、多チャンネルAD変換器ADCを含み、ウォッチドッグタイマWDTと協働して正常運転時に正常運転信号RUNを発生するようになっている。
そして、電源スイッチ102が閉路されると、駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、電源スイッチ102が開路されても駆動信号合成回路113とリレー駆動素子112を介してメインCPUの動作が継続し、所定の停止処理を行ってから正常運転信号RUNを停止することによって制御動作が完了するようになっている。
なお、演算制御部120Aには、車載バッテリ電圧Vbsから例えばDC5Vのバックアップ電圧Vaを生成するバックアップ電源114が接続されているが、メインCPUの動作中にRAMメモリRMEMに保存されていた学習情報や異常発生情報などの重要情報は、電源スイッチ102が開路された直後のアフターラン期間において不揮発性のデータメモリDMEMに転送保存してから正常運転信号RUNが停止して、電源リレー103Aが消勢されるようになっている。
一方、電源スイッチ102が閉路されて電源スイッチ信号PWSが発生しているときには、例えばNPN型のトランジスタである運転開始指令素子111sを介して運転信号SIG0がメインCPUに入力されていることによって主電気機器104の駆動制御が行われるようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Aが合成起動信号STAを発生すると駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STAが停止しても駆動信号合成回路113とリレー駆動素子112を介してメインCPUの動作が継続し、これによって補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっている。
起動信号処理部130Aを構成する複数の個別起動処理部13n(n=1〜8)は、起動指令素子2naが発生する起動指令信号S3nに応動して個別起動素子13ndを介して合成起動信号STAを発生するとともに、例えばNPN型のトランジスタである個別バッファ素子13nsを介してメインCPUに対して個別起動信号SIG3nを発生し、メインCPUは起動要因別に設けられた起動指令素子2naに対応して補助電気機器105の駆動制御を行うようになっている。
なお、メインCPUは個別起動処理部13nに対して、ラッチクリア信号CNTn1、起動信号遮断指令CNTn2、遮断状態解除指令CNTn3、異常診断指令CNTn4を個別又は一斉に発生するようになっており、その詳細は図2A・図2Bによって後述する。
次に、図1のものの個別起動処理部に関する一般例の詳細回路図である図2Aと、図1のものの個別起動処理部に関する特殊例の詳細回路図である図2Bについて、その構成を詳細に説明する。
なお、図2Aは起動指令素子2naが例えば押しボタンスイッチのような不確定短時間の閉路動作を行うものであるか、又はトグルスイッチのような不確定長時間の開閉動作を行うどちらにでも適用できる個別起動処理部13nの構成図であり、図2Bは不確定長時間の開閉動作をを行うものに適した個別起動処理部13nの構成図となっている。
まず、図2Aにおいて、個別起動処理部13nは車載バッテリ電圧Vbs及びバックアップ電圧Vaによって動作するようになっていて、ここで使用されている複数のトランジスタのうち、PNP型トランジスタで示されている4個のトランジスタと、1個の電界効果型トランジスタに流れる電流は車両の駐車状態においても流れている待機電流となっている。
車載バッテリ電圧Vbsから給電される入力素子61は、起動指令信号S3nの論理レベルが「L」となっているときにベース抵抗61aを介して導通駆動され、フィルタ回路61cを介して第1起動素子61eを閉路駆動するとともに、直列抵抗61dを介して第2起動素子61fを閉路駆動するPNP型のトランジスタとなっていて、このトランジスタのエミッタ端子とベース端子との間には開路安定抵抗61bが接続されている。
なお、起動指令信号S3nの論理レベルが「H」となっているときであっても、強制閉路素子68によって入力素子61を閉路駆動することができるようになっていて、この強制閉路素子68は、演算制御部120Aの中のメインCPUが発生する異常診断指令CNT3n4によって試験的に開閉してみることができるようになっている。
また、抵抗とコンデンサによって構成されたフィルタ回路61cは、第1起動素子61eや第2起動素子61fのノイズ誤動作を防止するためのものである。
車載バッテリ電圧Vbsから給電される第1協働素子62aは、第2起動素子61fによって閉路駆動されて、連携抵抗62cを介して第2協働素子62bを閉路駆動し、第2協働素子62bは第1協働素子62aを閉路駆動することによって、全体として起動ラッチ部62を構成するようになっている。
そして、第1協働素子62aの出力電圧は合成用起動信号STnとなり、個別起動素子13ndとなるダイオードを介して論理和結合されて合成起動信号STAを発生するとともに、NPN型トランジスタである個別バッファ素子13nsを介してメインCPUに対する個別起動信号SIG3nとして入力され、この個別起動信号SIG3nはプルアップ抵抗を介して安定化電圧Vccに接続されている。
一方、第2協働素子62bの導通を遮断するために、そのベース端子とエミッタ端子との間に接続されているクリア指令素子63は、メインCPUが発生するラッチクリア信号CNT3n1によって導通制御されて、起動ラッチ部62の記憶状態が消去されるようになっている。ただし、第2起動素子61fが閉路しているときには、クリア指令素子63が閉路していても第1協働素子62aの閉路状態が維持されるようにセット優先型の起動ラッチ部62が構成されている。
車載バッテリ電圧Vbsから給電される第一協働素子64aは、第二協働素子64bによって閉路駆動されて継続ラッチ遮断信号S64を発生し、連携抵抗64cを介して第二協働素子64bの閉路状態を維持し、全体として遮断ラッチ部64を構成するようになっている。
そして、第一協働素子64aによって閉路駆動される前段信号遮断素子65aは第2起動素子61fを遮断し、第一協働素子64aによって閉路駆動される後段信号遮断素子65bは第2協働素子62bを遮断し、その結果として第1協働素子62aが開路されるようになっている。
なお、第二協働素子64bは、メインCPUが発生する起動信号遮断指令CNT3n2によって起動信号遮断抵抗66aを介して通電駆動されるとともに、メインCPUが発生する遮断状態解除指令CNT3n3によって、遮断状態解除素子66bを介して通電遮断されるようになっている。
一方、遮断状態解除素子66bと並列接続されている電界効果型トランジスタである開路判定素子67aは、回復判定部67を構成し、起動指令信号S3nが発生(論理レベルL)して、入力素子61と第1起動素子61eが閉路しているときには、閉路時遮断抵抗67bを介して開路判定素子67aのゲート電位が低下して開路判定素子67aは開路状態を維持している。
しかし、起動指令信号S3nが停止(論理レベルH)して、入力素子61と第1起動素子61eが開路すると、バックアップ電圧Vaから開路時駆動抵抗67cを介して開路判定素子67aが閉路駆動され、これによって遮断ラッチ部64が開路し、その結果として起動ラッチ部62の遮断状態が解除されるようになっている。
なお、開路時駆動抵抗67cのゲート端子には、ノイズ電圧による誤動作を防止するためのコンデンサ67dが接続されている。
次に、図2Bで示された個別起動処理部138(n=8の例)について、図2Aのものとの相違点を中心にしてその構成を説明する。
図2Bにおいて、個別起動信号SIG38は図2(A)における点線の位置に代わって、フィルタ回路61cの出力部から個別バッファ素子138sを介してメインCPUに入力されている一方で、後段信号遮断素子65bの接続位置が第1協働素子62aの出力回路に追加された直列抵抗65cと個別起動素子138dとの接続点に接続されている。
これによって、メインCPUは起動ラッチ部62の動作状態とは無関係に、起動信号S38の論理常態を常時監視することができるようになっている。
但し、起動指令素子28aが例えば押しボタンスイッチであって、その押圧操作時間がメインCPUの立上り所要時間(例えば0.5秒)以下であった場合には、メインCPUは複数の起動指令素子2naのどれが閉路したものであるか認識することができないことになるので、図2(B)の回路構成は、起動指令素子2naが比較的長時間の閉路及び開路動作を行うものである場合に適したものとなっている。
また、メインCPUが発生する起動信号遮断指令CNT382は、連動ダイオード65cを介してクリア指令素子63を駆動するようになっている。
従って、起動信号遮断指令CNT382によって前段信号遮断素子65a及び後段信号遮断素子65bが閉路されているときに、クリア指令素子63によって起動ラッチ部62をリセットして、第1協働素子62aを開路しておくようになっている。
なお、メインCPUが起動信号遮断指令382を発生するときには、同時にラッチクリア信号381を発生するようにしておけば、連動ダイオード66cによるクリア指令素子63の駆動回路は不要となるものである。
(2)作用・動作の詳細な説明
以下、図1と図2A・図2Bのとおりに構成されたこの発明の実施の形態1による起動信号処理部130Aを有する車載電子制御装置100Aについて、その作用・動作を詳細に説明する。
まず、図1において、車両運転用の電源スイッチ102が閉路されると、駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aが付勢され、その出力接点を介して車載バッテリ101による駆動電源電圧Vbbが車載電子制御装置100Aに印加され、安定化電源110を介して安定化電圧Vccが演算制御部120Aを構成するメインCPUに印加される。
なお、車載電子制御装置100Aには、車載バッテリ101自体の出力電圧である車載バッテリ電圧Vbsも入力されていて、バックアップ電源114を介してバックアップ電圧Vaが常時発生してメインCPU内の揮発性メモリであるRAMメモリRMEMの記憶情報を維持するようになっている。
安定化電圧Vccが印加されたメインCPUは、協働する不揮発性のプログラムメモリPMEMやデータメモリDMEMを含む内部点検を行ったのち、ウォッチドッグタイマWDTと協働して正常運転信号RUNを発生し、駆動信号合成回路113を介して電源リレー103Aの自己保持動作を行うとともに、運転開始信号SIG0を監視しながら主電気負荷104の駆動制御を行うようになっている。
そして、電源スイッチ102が開路されて運転開始信号SIG0が停止すると、RAMメモリに含まれる主要現在値情報を不揮発性のデータメモリDMEMに転送する退避処理を含むアフターランを行ってからウォッチドッグ信号を停止し、その結果正常運転信号RUNが停止して電源リレー103Aが消勢開路するようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Aが合成起動信号STAを発生すると駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STAが停止しても駆動信号合成回路113とリレー駆動素子112を介してメインCPUの動作が継続し、これによって補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっていることは前述したとおりであり、起動信号処理部130Aを構成する個別起動処理部13nの詳細構成は図2A・図2Bによって前述したとおりである。
次に、図2Aのものの動作説明用のタイムチャートの第1例図である図3Aと、第2例図である図3Bについて詳細に説明する。
図3Aにおいて、上段a列のタイムチャートは補助起動指令回路2n(n=1〜8)内の起動指令素子2naの開(OFF)閉(ON)状態を示し、中段b列のタイムチャートはフィルタ回路61cの出力信号である後段平滑入力信号S61fの波形を示している。中段c列のタイムチャートは起動ラッチ部62の出力信号に応動する合成起動信号STAとその論理反転信号である個別起動信号SIG3nの動作状態を示す起動ラッチ信号の波形を示している。
従って、この起動ラッチ波形は起動指令素子2naの動作波形よりも、フィルタ回路61cのフィルタ定数によって定まる遅延応答時間td(例えば5msec)をおいて発生していることを示しているとともに、起動指令素子2naのON時間幅が遅延応答時間td以上であることによって起動ラッチ部62は起動指令素子2naの閉路を認知することを示している。一方、下段d列のタイムチャートはメインCPUが所定のクリアパルス発生周期Td(例えば100msec)によって、定期的に発生するラッチクリア指令CNT3n1によるパルス信号を示している。
そして、図3Aによる第1事例では、起動指令素子2naのON時間幅が、td+Td以上であって、td+2Td未満であった場合を示しており、その結果として2度目のラッチクリア指令CNT3n1が発生した時点で合成起動信号STAは停止するようになっている。
一方、第2事例の場合である図3Bにおいては、例えばN=10回(1秒)以上のラッチクリア指令CNT3n1を発生しても起動指令素子2naがOFFとならない状態を示しており、このような場合にはメインCPUは起動指令素子2naの短絡異常であると判定するようになっている。
ただし、起動指令素子2naがトグルスイッチのような長時間の閉路状態が発生するものである場合には、例えばN=10回(1秒)以上のラッチクリア指令CNT3n1を発生している間に、起動指令素子2naがONからOFFに変化したことによりメインCPUは起動指令素子2naの接触不良であると判定するようになっている。
なお、前述した判定回数Nは、個々の起動指令素子2naの特性に応じて適宜に異なる値に設定することができ、それぞれの設定値は不揮発性のプログラムメモリPMEM又はデータメモリDMEMに予め格納保存しておくようになっている。
次に、図2Aのものの動作説明用のタイムチャートの第3例図である図4Aと、図2Bのものの動作説明用のタイムチャートの第4例図である図4Bについて詳細に説明する。
図4Aにおいて、上段部のa〜d列は図3Aと同様にa列で起動指令素子2naの開閉状態、b列で平滑入力信号S61fの波形、c列で合成起動信号STA、d列でラッチクリア指令CNT3n1の発生状態を示しており、j列では合成起動信号STAの論理反転信号である個別起動信号SIG3nの発生状態を示している。
そして、この事例においては、3回のラッチクリア指令CNT3n1を発生した時点で、中段部e列に示す起動信号遮断指令CNT3n2を発生して、図2Aにおける前段信号遮断素子65aと後段信号遮断素子65bとを閉路駆動することによって、a列の起動指令素子2naが閉路状態であるにも関わらずc列の合成起動信号STAとj列の個別起動信号SIG3nを解除するようになっている。
下段部f列の継続ラッチ遮断信号S64は、図2Aにおける遮断ラッチ部64の出力信号であり、前段e列における起動信号遮断指令CNT3n2の発生に伴って論理レベルが「H」となっている。
下段部g列の前段平滑入力信号S61eは、図2Aにおけるフィルタ回路61cの直後の電圧信号であり、上段部b列の平滑入力信号61fに比べると直列抵抗61dが介在するか否かの相違によって、前段信号遮断素子65aが閉路しても前段部の平滑入力信号S61eは僅かに減衰するようになっている。
次に、上段a列の起動指令素子2naが開路(OFF)すると、図2Aにおける入力素子61と第1起動素子61eが開路して、回復判定部67の開路判定素子67aが開路状態から閉路状態に変化するようになっている。
その結果、遮断ラッチ部64がリセットされて正常状態に復帰し、上段a列の右側部において起動指令素子2naが閉路(ON)すると、c列の起動ラッチ信号SIG3nが発生するようになる。
図2Bに対応したタイムチャートでる図4Bにおいて、図2Aに対応したタイムチャート図4Aの場合との相違点は次のとおりである。
なお、図2Bにおける個別起動信号SIG38(n=8の例)はフィルタ回路61cの出力信号である前段平滑入力信号S61eを個別起動処理部138sによって論理変換したものであり、その出力波形は、図4Bの最下段部j列に示すとおり、最上段a列の起動指令素子28aの波形からフィルタ回路61cによる応答遅延時間tdによる遅延波形を得て、これを個別起動処理部138sによって論理変換したものとなっている。
従って、ここで得られる個別起動信号SIG38は、起動ラッチ部62や遮断ラッチ部64の動作常態による影響を受けていないが、合成起動信号STAは図4Aの場合と同様となっている。
次に、図1のものの主制御運転手段に関する動作説明用のフローチャートである図5Aと、図1のものの補助制御運転手段に関する動作説明用のフローチャートである図5Bについて詳細に説明する。
図5Aにおいて、予備工程501は電源スイッチ102が閉路されて、電源スイッチ信号PWSが発生するか、又は起動信号処理部130Aが合成起動信号STAを発生するステップである。続く予備工程502は、駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aが付勢されて、駆動電源電圧Vbbが車載電子制御装置100Aに印加され、安定化電源110が安定化電圧Vccを演算制御部120Aに供給するステップである。
続く工程510は演算制御部120Aの主体を構成するメインCPUが、ウォッチドッグ信号の発生と制御動作を開始するステップである。
続く工程511は、図示しないウォッチドッグタイマWDTによってウォッチドッグ信号の発生常態を監視して、これが正常であればウォッチドッグタイマWDTが正常運転信号RUNを発生するステップである。
続く工程512は電源スイッチ102が閉路されているかどうかを運転開始信号SIG0によって判定し、閉路されておればYESの判定を行って工程ブロック513へ移行し、閉路されていなければNOの判定を行って、中継端子Aを介して図5Bの工程531へ移行する判定ステップである。
工程ブロック513では、初期点検としてプログラムメモリPMEMやデータメモリDMEM、演算処理用のRAMメモリRMEMに関するサムチェック或いはパリティチェックを行うとともに、その他に車両の運転に不都合な異常が無いかどうかを点検するステップである。
続く工程514は、工程ブロック513において異常が発見された場合にはYESの判定を行って工程515へ移行し、異常がなければNOの判定を行って工程ブロック516へ移行する判定ステップである。
なお、メインCPUは、動作開始工程510と後述の動作終了工程519の間で、例えば5msec以下の周期で制御動作を繰り返すようになっているが、初回の工程ブロック513で行う初期点検では、例えば0.5秒程度の時間を要するものである。
工程515は異常報知などの所定の処置を行って所定時間内に工程517へ移行するステップである。
工程ブロック516は車両の走行・運転制御を行い所定時間内に工程517へ移行するステップである。
工程517は、工程512と同様に電源スイッチ102が閉路されているかどうかを再判定して、電源スイッチ102が閉路されておればYESの判定を行って動作終了工程519へ移行し、電源スイッチ102が閉路されていなければNOの判定を行って工程520へ移行する判定ステップである。
動作終了工程519では、その他の制御プログラムを実行して、例えば5msec以下の演算周期となるように動作開始工程510へ復帰するようになっていて、動作開始工程510から動作終了工程510までの一連の工程は主制御運転手段500となり、その内の工程511は自己保持手段となっている。
工程520は、起動処理部130Aの機能点検と、車両の運転中にRAMメモリに書込みされた学習データや異常発生記録の中の重要データを、不揮発性のデータメモリDMEM又はプログラムメモリPMEMに転送書込みする制御停止処理手段となるステップである。
なお、工程520における起動処理部130Aの機能点検に当たっては、遮断ラッチ部64に対する遮断状態解除指令CNT3n3や、起動指令信号S3nに対する異常診断指令CNT3n4を用いて、回復判定部67を含む起動信号処理部130Aの予備点検を行うことができるようになっている。
続く工程521はウォッチドッグ信号を停止することによって、ウォッチドッグタイマが正常運転信号RUNを停止する自己保持停止手段となるステップである。
続く工程522はメインCPUへの給電が停止されて、一連の制御動作が完了するステップである。
図5Bにおいて、工程531は図5Aにおける予備工程501が合成起動信号STAの発生によって初期工程510へ移行した場合であればYESの判定を行って工程532へ移行し、電源スイッチ102が閉路したことによって工程510へ移行した場合であればNOの判定を行って図5Aの工程520へ移行する判定ステップであって、要するに電源スイッチ102による運転開始信号SIG0が発生していない状態であれば工程531はYESの判定を行い、運転開始信号SIG0が発生しておれば工程531はNOの判定を行うようになっている。
工程532は、個別起動信号SIG3nを動作状態を読み出してその現在情報を所定アドレスのRAMメモリに書込み記憶するステップである。
続く工程533は、図3Bで説明したとおり、複数回のラッチクリア信号CNT3n1を発生してみることによって起動指令素子2naの短絡異常又は接触不良の有無を判定する起動信号異常判定手段となるステップである。
続く工程534は、工程533による異常判定結果により、正常であればYESの判定を行って工程535へ移行し、異常であればNOの判定を行って、中継端子Bを介して図5Aの工程520へ移行する判定ステップである。
工程535は、工程532で読出された個別起動信号SIG3nの内容に対応した補助電気機器105の駆動制御を行う出力処理手段となるステップである。
続く工程536は、工程535による出力処理の結果として作動するセンサの入力状態を監視して、検出入力を受信すればYESの判定を行って工程538へ移行し、検出入力が受信できない場合にはNOの判定を行って工程537へ移行する判定ステップである。
工程537は、所定の許容時間が経過したかどうかを判定し、未経過であればNOの判定を行って工程535へ復帰し、応答遅延時間が所定値を超過するとYESの判定を行って工程538へ移行する経過時間超過判定手段となる判定ステップである。
工程538は、起動信号遮断指令CNT3n2を発生して遮断ラッチ部64を作動させることによって起動ラッチ部62の出力を停止し、これによって合成起動信号STAを停止する起動信号遮断手段となるステップである。
なお、工程531から工程538に至る一連の工程は補助制御手段530となるものであり、工程538に続いて中継端子Bを介して図5Aの工程520へ移行するようになっている。
(3)変形実施形態の詳細な説明
以下、図1のものの変形実施形態による起動処理部を有する車載電子制御装置の全体回路ブロック図である図6について、図1のものとの相違点を中心にしてその構成と作用動作を詳細に説明する。
なお、図6においては図1に対応した関連部位には図1と同じ符号が使用されている。図6において、車載バッテリ101から電源リレー103Aを介して給電されて、主電気機器104と補助電気機器105を駆動制御する車載電子制御装置100Aは、演算制御部120Aと起動補助信号群106Aとの間に設けられた起動信号処理部130Cを備えている。
なお、図1における起動信号処理部130Aは複数の個別起動処理部13nとして、図2A又は図2Bで示されたハードウエアによる論理回路によって構成されていた。
しかし、図6における起動信号処理部130Cは補助のマイクロプロセッサであるサブCPUによって構成されていて、個別起動処理部13nはサブCPUを用いた制御プログラムによって構築された起動信号処理手段となっている。
但し、図2A・図2Bにおけるフィルタ回路61cに対応する部位は、図6においては入力インタフェース回路160として集約されていて、起動補助信号群106Aと起動信号処理部130Cとの間に接続されている。
また、起動信号処理部130Cは車載バッテリ電圧Vbsから常時給電されている補助制御電源115が発生する補助電圧Vcから給電されていて、起動指令素子2na(n=1〜8)の何れかが閉路すると、合成起動信号STAを発生して、駆動信号合成回路113とリレー駆動素子112を介して電源リレー103Aを付勢し、安定化電源110を介して演算制御部120Aに給電するようになっている。
駆動信号合成回路113が電源スイッチ102による電源スイッチ信号PWSと、合成起動信号STAと、ウォッチドッグタイマWDTが発生する正常運転信号RUNによって電源リレー駆動素子112を介して電源リレー103Aを付勢するものでることは図1の場合と同様である。
この変形実施形態においては、起動信号処理部130Cを構成するサブCPUは、演算制御部120Aを構成するメインCPUに比べて圧倒的にプログラムメモリのメモリ容量と全体の消費電力が少なく、立上り時の応答遅延時間が短くなることによって、短時間の閉路動作を行う押しボタンスイッチの閉路信号であってもサブCPUによって直接取込みが可能となっている。
そして、サブCPUに常時給電しておいてもその待機電流が小さく、ハードウエアによる起動信号処理部130Aと比べて遜色のない起動信号処理部を有する車載電子制御装置を得ることができるものである。
(4)実施の形態1及びその変形形態の要点と特徴
以上の説明で明らかなとおり、この発明の実施の形態1及びその変形形態による起動信号処理部130A;130Cを有する車載電子制御装置100Aは、車載バッテリ101から電源スイッチ102の閉路動作に応動する電源リレー103Aと安定化電源110とを介して安定化電圧Vccが印加されたことにより制御動作を開始して正常運転信号RUNが発生し、前記電源リレー103Aの閉路動作を維持するとともに、主電気機器104の駆動制御と当該駆動制御に対する反応状態を監視する主制御運転手段500となる制御プログラムを実行する演算制御部120Aを備え、当該演算制御部は、前記電源スイッチ102が開路されると、少なくとも、最新の現在情報の一部を不揮発性メモリに転送退避してから前記正常運転信号RUNを停止して、前記電源リレー103Aを消勢停止し、前記電源スイッチ102が開路されているときであっても、
複数の起動指令素子21a・22a・・2naの閉路動作に応動して、前記演算制御部120Aを起動して、補助電気機器105の駆動制御と当該駆動制御に対する反応状態を監視する補助制御手段530となる制御プログラムを実行するための起動信号処理部130A;130Cを有する車載電子制御装置100Aであって、
前記起動信号処理部130A;130Cは、前記起動指令素子2na(n=1・2・・nで以下同様)の開閉状態に応動する起動指令信号S31・S32・・S3nが入力される複数の個別起動処理部131・132・・13nによって構成され、
複数の前記起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものとなっている。
そして、複数の前記個別起動処理部13nは、それぞれ前記起動指令信号S3nの発生を記憶する起動ラッチ部62を備え、当該起動ラッチ部の出力信号である合成用起動信号STnをそれぞれ論理和結合して合成起動信号STAを発生するとともに、前記起動指令信号S3nの発生状態を個別に前記演算制御部120Aに入力する個別起動信号SIG3nを発生し、
前記演算制御部120Aは、前記合成起動信号STAに応動して閉路駆動される前記電源リレー103Aを介して前記安定化電圧Vccが印可されて制御動作を開始し、前記正常運転信号RUNによって前記電源リレー103Aの動作状態を維持するとともに、
前記個別起動信号SIG3nを読出して、前記補助電気機器105の駆動制御を行い、当該駆動制御に伴う動作確認又は所定時間の経過判定により、前記正常運転信号RUNの発生を停止するまでに、前記起動ラッチ部62の出力を停止する起動信号遮断指令CNT3n2を発生し、
前記個別起動処理部13nは更に、遮断ラッチ部64と回復判定部67を備え、
前記遮断ラッチ部64は、前記起動信号遮断指令CNT3n2によってセット駆動されて、複数の前記起動指令素子2naが正常閉路又は異常閉路しているときに前記合成用起動信号STnの発生を停止し、
前記回復判定部67は、前記複数の起動指令素子2naが正常開路又は開路復帰したときに前記遮断ラッチ部64をリセットして、複数の前記起動指令素子2naが閉路したときに前記合成用起動信号STnの発生が有効となる起動信号処理部を有する車載電子制御装置となっている。
前記起動ラッチ部62のセット入力信号は、前記起動指令信号S3nによって通電駆動される入力素子61と、フィルタ回路61cと直列抵抗61dを介して得られる後段平滑入力信号S61fであり、
前記起動指令素子2naが前記不確定短時間動作又は前記不確定長時間動作のいずれの場合であっても、前記個別起動信号SIG3nは、前記合成用起動信号STnを個別バッファ素子13nsによって論理変換して系電圧の変更を行ったものであるか、
前記起動指令素子2naが、前記不確定長時間動作のものであって、前記起動ラッチ部62を経由しなくとも安定して合成用起動信号STnを発生することができるものにおいて、前記個別起動信号SIG3nは前記フィルタ回路61cの出力信号である前段平滑入力信号S61eを個別バッファ素子13nsによって論理変換して系電圧の変更を行ったものであり、
前記演算制御部120Aは、前記補助制御手段530の一部として、複数の前記個別起動処理部13nのそれぞれに設けられた前記起動ラッチ部62に対して個別又は一斉にラッチクリア信号CNT3n1を発生する制御プログラムである起動信号異常判定手段を備え、
前記起動ラッチ部62は、前記起動指令素子2naの閉路時に前記合成用起動信号STnを発生記憶して、その後に前記起動指令素子2naが開路しても前記合成用起動信号STnの発生状態を維持するとともに、前記ラッチクリア信号CNT3n1が発生すると前記合成用起動信号STnの記憶はリセットされるが、前記起動指令素子2naが継続して閉路しているときには、前記合成用起動信号STnは発生状態を持続するセット優先形の記憶部となっている。
そして、前記起動信号異常判定手段は、前記起動ラッチ部62に対するラッチクリア信号CNT3n1を断続発生したときの、前記個別起動信号SIG3nによって前記起動指令素子2naの開閉状態を監視し、
前記起動指令素子2naが不確定短時間の閉路信号を発生するものであれば、所定回数の前記ラッチクリア信号CNT3n1の発生期間において前記個別起動信号SIGnが前記起動指令素子2naの閉路状態を検出している場合には当該起動指令素子2naの短絡異常であると判定し、
前記起動指令素子2naが不確定長時間の閉路信号を発生するものであれば、所定回数の前記ラッチクリア信号CNT3n1の発生期間において、一旦は前記個別起動信号SIGnが前記起動指令素子2naの閉路状態を検出し、その後に所定時間内に開路状態に変化した場合には、当該起動指令素子2naの断線異常であると判定するようになっている。
以上のとおり、この発明の請求項2に関連し、演算制御部はセット優先形の記憶部である起動ラッチ部に対して複数回のラッチクリア信号を発生し、当該ラッチクリア信号を発生している期間における個別起動信号SIG3nの論理状態によって起動指令素子2naの短絡異常又は断線異常を検出するようになっている。
従って、合成用起動信号STnと個別起動信号SIG3nとは、同じ起動ラッチ部の出力信号を振り分けて使用することができるとともに、異常判定時間はラッチクリア信号の発生回数によって調整が可能となる特徴がある。
また、個別起動信号SIGnを起動ラッチ部に対する入力信号である平滑入力信号から得るものにおいては、起動ラッチ部の作動状態とは無関係に起動指令素子2naの開閉状態を監視することができる特徴がある。
前記遮断ラッチ部64は、前記起動信号遮断指令CNT3n2が発生したときに、前記起動ラッチ部62のセット入力と、リセット入力又は前記合成用起動信号STnを遮断する前段信号遮断素子65aと後段信号遮断素子65bを閉路駆動することによって、前記合成用起動信号STnを停止するものであり、
前記回復判定部67は、前記遮断ラッチ部64をリセットするための電界効果型のトランジスタである開路判定素子67aを備え、当該開路判定素子は前記起動指令信号S3nが発生しているときに導通する第1起動素子61eによって導通遮断され、前記起動指令信号S3nが停止して前記第1起動素子61eが開路しているときに、開路時駆動抵抗67cによるゲート電圧が印加されて導通閉路し、
前記ゲート電圧は、前記車載バッテリ101から常時給電されているバックアップ電源114が発生する安定化電圧であるバックアップ電圧Vaが適用されている。
以上のとおり、この発明の請求項3に関連し、起動指令信号S3nの発生を記憶していた起動ラッチ部をリセットするための遮断ラッチ部は、起動指令信号S3nが解除されたときに電界効果型トランジスタを用いた回復判定部によって遮断ラッチ状態が解除され、リセット状態になっている起動ラッチ部は起動指令信号S3nが新たに発生したときにこれを記憶保持するようになっているとともに、この遮断ラッチ部と回復判定部は、複数の起動処理部ごとに設けられている。
従って、特定の起動指令素子2naが一旦閉路すると、演算制御部はこれに応動する起動処理制御を行ってから作動停止して、電源リレーが遮断されることによって節電が行われ、この特定の起動指令素子2naが異常閉路又は連続閉路している場合には、低消費電力の遮断ラッチ部によって再起動が禁止され、この特定の起動指令素子2naに関しては、これが一旦開路した後に再閉路されることによって再起動が可能であるとともに、前記特定の起動指令素子2naが連続閉路している場合であっても、他の起動指令素子2naによる起動処理制御は随時実行できる特徴がある。
前記演算制御部120Aは、前記主制御運転手段500の一部として、前記電源スイッチ102が開路されたときに実行される制御プログラムである制御停止処理手段を備え、当該制御停止処理手段は前記起動処理部130A・130Cに含まれる構成要素の診断を行うための遮断状態解除指令CNT3n3と異常診断指令CNTn4を発生し、
前記異常診断指令CNT3n4は、前記起動指令素子2naが閉路動作していない通常状態において、前記起動指令素子2naと並列接続されている強制閉路素子68を個別又は一斉に開閉制御し、前記ラッチクリア信号CNT3n1と協働して、前記起動ラッチ部62の挙動を監視し、適正な個別起動信号SIG3nが発生しているかどうかを点検し、
前記遮断状態解除指令CNT3n3は、前記起動信号遮断指令CNT3n2によってセット駆動された前記遮断ラッチ部64をリセットするための遮断状態解除素子66bを個別又は一斉に駆動して、前記遮断ラッチ部64の解除状態を前記異常診断指令CNT3n4と前記個別起動信号SIG3nによって点検するとともに、前記起動信号遮断指令CNT3n2によってセット駆動された前記遮断ラッチ部64が前記回復判定部67によって解除されるかどうかを前記異常診断指令CNT3n4の発生と停止によって点検するようになっている。
以上のとおり、この発明の請求項4に関連し、起動処理部の内部点検は、電源スイッチを閉路した主制御運転に続き、電源スイッチが切られた直後において実行されるようになっている。
従って、起動指令素子2naによる補助制御が実行される前に余裕をもって起動処理部の点検動作を完了しておいて、起動指令素子2na自体に関する外部点検は補助制御の実行開始時点で、正常な起動処理部に基づいて正確に点検することができる特徴がある。
前記起動信号処理部130Cは、前記車載バッテリ101から常時給電されて、補助電圧Vcを発生する補助制御電源115から給電されている補助マイクロプロセッサSCPUによって構成され、
複数の前記補助起動指令回路2nを含む起動補助信号群106Aと前記補助マイクロプロセッサSCPUとの間には、フィルタ回路であるインタフェース回路160が設けられており、
前記補助マイクロプロセッサSCPUは、複数の前記個別起動処理部13nを構成し、当該個別起動処理部13nは前記起動ラッチ部62と前記遮断ラッチ部64と前記回復判定部67を構成する制御プログラムを包含しているとともに、複数の前記個別起動処理部13nはそれぞれが前記合成用起動信号STnを発生して、前記合成起動信号STAによって前記電源リレー103Aを付勢し、
複数の前記個別起動処理部13nはまた、それぞれが前記演算制御部120Aに対して前記個別起動信号SIG3nを発生し、前記演算制御回路部120Aからは、少なくとも前記起動信号遮指令CNT3n2wo含む前記ラッチクリア指令CNT3n1と遮断状態解除指令CNT3n3と異常診断指令CNT3n4を受信するようになっている。
以上のとおり、この発明の請求項5に関連し、起動補助信号群と演算制御部とのあいだに介在する起動信号処理部は、車載バッテリから常時給電されている補助マイクロプロセッサによって構成されている。
なお、演算制御部を構成するメインのマイクロプロセッサは、プログラムメモリの容量が大きくて起動処理時間が大きくなり、さらには消費電力が大きくなる問題点があるが、補助マイクロプロセッサはプログラムメモリの容量が小さくて起動処理時間が短く、さらには消費電力が小さくなる利点があり、様々な論理回路部を個別回路に依存せずに、制御プログラムによって実行することができる利点がある。
従って、短時間の指令信号であっても補助マイクロプロセッサによって直接読み込むことができる一方、車載バッテリから常時給電しておいても消費電力が大きくならない特徴がある。
実施の形態2.
[実施の形態2の詳細な説明]
(1)構成の詳細な説明
以下、この発明の実施の形態2による起動処理部を有する車載電子制御装置の全体回路ブロック図である図7について、図1のものとの相違点を中心にしてその構成を詳細に説明する。
図7において、車載電子制御装置100Bには、例えばDC12V系の車載バッテリ101から車載バッテリ電圧Vbsが印加されるとともに、電源スイッチ102が閉路されているときに付勢される電源リレー103Bを介して駆動電源電圧Vbbが印加されるようになっている。また、車載電子制御装置100Bには、電源スイッチ102が閉路されているときに駆動制御される主電気機器104が接続されている。
この主電気機器104は、車載の主バッテリ300から給電駆動される車両の走行用モータ200に対する直流/交流変換器である駆動電力変換回路210と、協働するモータ制御ユニット122Bを含む走行制御部によって構成されていて、主バッテリ300は例えばDC400V系の主電源電圧Vbmを発生するようになっている。
車載電子制御装置100Bには更に、電源スイッチ102が開路されているときに駆動制御される補助電気機器105が接続されている。
この補助電気機器105は、主バッテリ300と車載バッテリ101に対する充電電力変換回路310と、協働する充電制御ユニット121Bを含む充電制御部によって構成されている。
そして、車載電子制御装置100Bと走行制御部104、充電制御部105とは一体化されて複合電子制御装置107を構成している。
なお、充電制御ユニット121Bとモータ制御ユニット122Bとは、いずれも図示しない定電圧電源から個別の駆動されるマイクロプロセッサを包含し、これらの定電圧電源は演算制御部120Bから起動されて安定化電圧を発生し、その後は各マイクロプロセッサが自己保持給電を行うとともに、演算制御部120Bからの起動指令が解除されると、それぞれのマイクロプロセッサがアフターラン処理を行って給電停止を行うように構成されている。
車載電子制御装置100Bの内部又は外部に接続されている起動補助信号群106Bは、起動指令素子21a〜28a(以下2naと記載することがある)と、天絡限流抵抗21b〜28b(以下2nbと記載することがある)とが相互に直列接続されている補助起動指令回路21〜28(以下2nと記載することがある、以下同様である)によって構成されていて、それぞれが起動指令信号S3nを発生するようになっている。
なお、起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものであり、天絡限流抵抗2nbは起動指令素子2naが正側電源線に混触した場合の短絡保護を目的としたものである。
また、補助起動指令回路2nの個数は8個に限定されるものではなく、全体システムの規模に応じて増減されるようになっている。
車載電子制御装置100Bは、マイクロプロセッサであるメインCPUを含む演算制御部120Bと、起動信号処理部130Bとを主体として構成されている。
演算制御部120Bには、図1のものと同様に、駆動電源電圧Vbbから例えばDC5Vの安定化電圧Vccを生成する安定化電源110が接続されて、電源リレー103Bが付勢されているときに作動するメインCPUと、不揮発性のプログラムメモリPMEM、データメモリDMEM、揮発性のRAMメモリRMEM、多チャンネルAD変換器ADCを含み(図8参照)、ウォッチドッグタイマWDTと協働して正常運転時に正常運転信号RUNを発生するようになっている。
そして、電源スイッチ102が閉路されると、駆動信号合成回路113と図示しないリレー駆動素子を介して電源リレー103Bが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、電源スイッチ102が開路されても駆動信号合成回路113とリレー駆動素子を介してメインCPUの動作が継続し、所定の停止処理を行ってから正常運転信号RUNを停止することによって制御動作が完了するようになっている。
なお、演算制御部120Bには、車載バッテリ電圧Vbsから例えばDC5Vのバックアップ電圧Vaを生成するバックアップ電源114が接続されているが、メインCPUの動作中にRAMメモリRMEMに保存されていた学習情報や異常発生情報などの重要情報は、電源スイッチ102が開路された直後のアフターラン期間において不揮発性のデータメモリDMEMに転送保存してから正常運転信号RUNが停止して、電源リレー103Bが消勢されるようになっている。一方、電源スイッチ102が閉路されているときには、図示しない運転開始指令素子を介して図1の場合と同様に運転信号SIG0がメインCPUに入力されていることによって主電気機器104の駆動制御が行われるようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Bが合成起動信号STBを発生すると駆動信号合成回路113と図示しないリレー駆動素子を介して電源リレー103Bが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STBが停止しても駆動信号合成回路113を介してメインCPUの動作が継続し、その結果、補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっている。
起動信号処理部130Bを構成する複数の個別起動処理部13n(n=1〜8)は、起動指令素子2naが発生する起動指令信号S3nに応動して図示しない個別起動素子を介して合成起動信号STBを発生するとともに、例えばNPN型のトランジスタである個別バッファ素子13nsを介してメインCPUに対して個別起動信号SIG3nを発生し、メインCPUは起動要因別に設けられた起動指令素子2naに対応して補助電気機器105の駆動制御を行うようになっている。
なお、メインCPUは個別起動処理部13nに対して、ラッチクリア信号CNTn1、起動信号遮断指令CNTn2、遮断状態解除指令CNTn3、異常診断指令CNTn4を個別又は一斉に発生するようになっており、その詳細は図2A・図2Bによって前述したとおりである。
複合電子制御装置107には更に、急速充電コネクタ170と普通充電コネクタ190とが設けられ、この急速充電コネクタ170は第1充電ケーブルを介して地上設備である急速充電器109aに接続され、普通充電コネクタ190は第2充電ケーブルを介して例えばAC100Vの商用電源109bに接続されるようになっている。
複合電子制御装置107の外部に設けられている補助入出力部108は、第1・第2充電ケーブルを接続するための窓穴に設けられたリッドの開閉指令スイッチ及び開閉駆動用のアクチェータであり、電動操作でリッドの開閉を行うときにはその開閉指令信号は起動指令素子2naの一つとなって起動信号処理部130Bに入力されるものである。
また、車両の駐車中に、バッテリマネージメントユニット321が発生する定期起動信号は起動指令素子2naの他の一つとなって起動信号処理部130Bに入力され、これによって演算制御部120Bが定期的に起動されて、セルマネージメントユニット322に定期給電し、このセルマネージメントユニット322はリチウムイオン電池である主バッテリ300の環境温度と充電電圧及び充電率を含む監視診断情報を演算制御部120Bに送信するようになっている。
また、急速充電コネクタ170から得られる急速充電器109aからの受信信号の一部、或いは普通充電コネクタ190の接続検出信号や受電検出素子191の検出信号なども起動指令素子2naの一部となって起動信号処理部130Bに入力されるようになっている。
なお、車載電子制御装置100Bに設けられたシリアルコントローラ116は、演算制御部120Bと充電制御ユニット121Bやモータ制御ユニット122B、或いは、セルマネージメントユニット322や急速充電器109aとの間でシリアル信号による交信を行うようになっている。
次に、図7のものの個別起動処理部に関する特殊例の詳細回路図である図8と、図8のものの部分詳細回路図である図9について、その構成を詳細に説明する。
図8において、個別起動処理部138の基本構成は図2Bにおいて前述したとおりのものであるが、ここでは個別起動処理部138によって普通充電コネクタ190における充電ケーブルの接続検出を行うのに適した抵抗検出回路69が付加されていて、その詳細は図9において詳述する。
その他、図2A・図2B・図8において示された入力素子61、起動ラッチ部62、遮断ラッチ部64に対する電源は、車載バッテリ電圧Vbsに代わって例えばDC5Vの補助電圧Vcであってもよいことを例示しており、この補助電圧Vcは図7で示すとおり、車載バッテリ電圧Vbsから給電される補助制御電源115の出力電圧となっている。
図9において、普通充電コネクタ190に接続される第2充電ケーブルは、充電電力を供給する一対のAC電源線に加えて、補助起動指令回路28(n=8に割付ている)を構成するロックスイッチ28cと、このロックスイッチ28sに並列接続されている並列抵抗28pと、このロックスイッチ28sと並列抵抗28pとの並列回路に対して直列接続された直列抵抗28sを含んでいる。
一方、前述した入力素子61のベース抵抗61aは、抵抗値検出回路69における第1逆流防止素子69aと電流検出抵抗69bを介して補助起動指令回路28の一端に接続され、補助起動指令回路28の他端は車載電子制御装置100Bの中でグランド回路に接続されている。
そして、電流検出抵抗69bの上流側電圧V1は第1アナログ信号AD1として演算制御部120B内の多チャンネルAD変換器ADCに入力され、電流検出抵抗69bの下流側電圧V2は第2アナログ信号AD2として演算制御部120B内の多チャンネルAD変換器ADCに入力されている。なお、電流検出抵抗69bの上流側には第2逆流防止素子69cを介して安定化電圧Vccが印加されている。
また、直列抵抗28sの抵抗値R28sと、並列抵抗28pの抵抗値R28pとの加算値である直列合成抵抗R28=R28s+R28pの値、及び抵抗値R28sの値は、第2充電ケーブルに許容される最大充電電流の値によって異なる値に設定されているとともに、ロックスイッチ28cは第2充電ケーブルを接続するときに押圧開路し、第2充電ケーブルの装着後には閉路している常閉接点となっている。
そして、第2充電ケーブルが接続されたことに伴って入力素子61が閉路駆動されると、図8で示された個別起動処理部138によって合成起動信号STBが発生し、これによって演算制御部120Bが起動されるとメインCPUは次の算式(1)(2)(3)によって合成抵抗R28又は個別の抵抗値R28sとR28pの値を算出するようになっている。
(V1−V2)/R69b=V2/(R28又はR28s) ・・・・・(1)
∴ R28又はR28s=R69b×V2/(V1−V2) ・・・・・(2)
R28p=R28−R28s ・・・・・(3)
但し、R69bは既知の基準抵抗である電流検出抵抗69bの抵抗値であり、ロックスイッチ28cが押圧開路されているときには算式(2)によって合成抵抗R28が算出され、ロックスイッチ28cが常態閉路しているときには算式(2)によって直列抵抗28sの抵抗値R28sが算出される。
適用される直列抵抗28sと並列抵抗28pとの組み合わせは、予め決定されていてデータメモリDMEM又はプログラムメモリPMEMにデータテーブルとして格納されており、合成抵抗値R28、抵抗値R28sのいずれか一方が算出されると、他方の合成抵抗値R28、抵抗値R28s、及び残りの抵抗値R28pが検出されるとともに、測定時点においてロックスイッチ28cが開路していたか閉路していたかの判定も行うことができるものである。
なお、選択された合成抵抗R28又は直列抵抗28sの抵抗値R28sがベース抵抗61aの抵抗値よりも大幅に小さい値であるときには、第2逆流防止素子69cによって安定化電圧Vccを印加しておくことによって、補助起動指令回路28に対する印可電圧を安定増加させて、抵抗値の算出精度を向上させることができるとともに、ベース抵抗61bの抵抗値を大きく設定しておくことによって、非充電駐車中における待機電流を抑制し、第2充電ケーブルの接続放置状態における消費電力を抑制することができるようになっている。
(2)作用・動作の詳細な説明
以下、図7と図8・図9のとおりに構成されたこの発明の実施の形態2による起動信号処理部130Bを有する車載電子制御装置100Bについて、図1のものとの相違点を中心にしてその作用・動作を詳細に説明する。
まず、図7において、車両運転用の電源スイッチ102が閉路されると、電源リレー103Bが付勢され、その出力接点を介して車載バッテリ101による駆動電源電圧Vbbが車載電子制御装置100Bに印加され、安定化電源110を介して安定化電圧Vccが演算制御部120Bを構成するメインCPUに印加される。
なお、車載電子制御装置100Bには、車載バッテリ101自体の出力電圧である車載バッテリ電圧Vbsも入力されていて、バックアップ電源114を介してバックアップ電圧Vaが常時発生してメインCPU内の揮発性メモリであるRAMメモリRMEMの記憶情報を維持するようになっている。
安定化電圧Vccが印加されたメインCPUは、協働する不揮発性のプログラムメモリPMEMやデータメモリDMEMを含む内部点検を行ったのち、図示しないウォッチドッグタイマWDTと協働して正常運転信号RUNを発生し、駆動信号合成回路113と図示しないリレー駆動素子を介して電源リレー103Bの自己保持動作を行うとともに、電源スイッチ102から図示しない運転開始指令素子を介して入力された運転開始信号SIG0(図1参照)を監視しながら主電気負荷104の駆動制御を行うようになっている。
そして、電源スイッチ102が開路されて運転開始信号SIG0が停止すると、RAMメモリに含まれる主要現在値情報を不揮発性のデータメモリDMEMに転送する退避処理を含むアフターランを行ってからウォッチドッグ信号を停止し、その結果正常運転信号RUNが停止して電源リレー103Bが消勢開路するようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Bが合成起動信号STBを発生すると駆動信号合成回路113と図示しないリレー駆動素子を介して電源リレー103Bが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STBが停止しても駆動信号合成回路113を介してメインCPUの動作が継続し、これによって補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっていることは前述したとおりであり、起動信号処理部130Bを構成する個別起動処理部13nの詳細構成は図2A・図2B、或いは図8によって前述したとおりである。
次に、図7のものの起動処理に関する動作説明用のフローチャートである図10について詳細に説明する。
なお、図10は前述した図5Aと図5Bとを合併して、電源スイッチ102が開路している状態に限定したフローチャートとなっている。
図10において、準備工程501aは、起動信号処理部130Bが合成起動信号STBを発生して、安定化電圧VccがメインCPUに印加されるステップである。
続く工程510aは、メインCPUが、ウォッチドッグ信号の発生と制御動作を開始するステップである。
続く工程511aは、図示しないウォッチドッグタイマWDTによってウォッチドッグ信号の発生常態を監視して、これが正常であればウォッチドッグタイマWDTが正常運転信号RUNを発生するステップである。
続く工程533aは、図3Bで説明したとおり、複数回のラッチクリア信号CNT3n1を発生してみることによって起動指令素子2naの短絡異常又は接触不良の有無を判定する起動信号異常判定手段となるステップである。
続く工程535aは、工程533aで読出された個別起動信号SIG3nの内容に対応した補助電気機器105の駆動制御を行う出力処理手段となるステップである。
続く工程536aは、工程535aによる出力処理の結果として作動するセンサの入力状態を監視して、検出入力を受信するか、所定時間が経過すれば工程538aへ移行するステップである。
続く工程538aは、起動信号遮断指令CNT3n2を発生して遮断ラッチ部64を作動させることによって起動ラッチ部62の出力を停止し、これによって合成起動信号STBを停止する起動信号遮断手段となるステップである。
続く工程520aは、起動処理部130Bの機能点検と、メインCPUの動作中にRAMメモリに書込みされた学習データや異常発生記録の中の重要データを、不揮発性のデータメモリDMEM又はプログラムメモリPMEMに転送書込みする制御停止処理手段となるステップである。
なお、工程520aにおける起動処理部130Bの機能点検に当たっては、遮断ラッチ部64に対する遮断状態解除指令CNT3n3や、起動指令信号S3nに対する異常診断指令CNT3n4を用いて、回復判定部67を含む起動信号処理部130Bの予備点検を行うこともできるようになっている。
続く工程521aは、ウォッチドッグ信号を停止することによって、ウォッチドッグタイマが正常運転信号RUNを停止する自己保持停止手段となるステップである。
続く工程522aは、メインCPUへの給電が停止されて、今回の個別起動信号SIG3n(n=1〜8)に対応した制御動作が終了するようになっている。
次に、図7のものによる普通充電の操作手順の詳細説明図である図11について詳細に説明する。
なお、後述する図14では、実施の形態1における普通充電の場合と実施の形態2における急速充電の場合を複合した個別起動処理部13nの番号割付が行われており、以下の説明において適時に図14を引用することがある。
図11において、商用電源109bによる普通充電における処理工程は、左列の初期工程から第1工程、第2工程、第3工程、完了工程に大別することができ、各工程間には人為操作に関連する不確定待機時間T1〜T4が発生する可能性があり、この不確定待機時間T1、T2、T3、T4においては電源リレー103Bを開路して、メインCPUを停止しておくことが眼目である。
また、各処理工程は、最上段部においてその起動要因を記載し、次段部でこの起動要因によって実行される出力処理の内容を記載し、下段部においてこの出力処理を停止する要因を明確にし、最下段部では関連する要点記事が記載されている。
まず、左列の初期工程は、第2充電ケーブルを接続するための開閉扉であるリッドの開放制御に関する工程であり、この開閉操作を手動で行う場合や、電動リモート操作であってもメインCPUに依存しないローカル処理である場合にはこの初期工程は省略することができるものである。
リッドの開閉制御を演算制御部120Bで行う場合には、例えば補助起動指令回路26(n=6)にリッド開放指令用の押しボタンスイッチ26aを接続しておくようになっていて(図14参照)、起動要因はこの押しボタンスイッチ26aによって発生する起動指令信号S36(n=6)となっている。
この起動要因に基づく出力処理はリッド開放用のモータをメインCPUによって開放駆動することである。
この出力処理に対する停止要因は、補助入出力部108に設けられたリッド開放検出センサの動作、又はメインCPUのプログラムメモリPMEMに設定されている所定のタイマ定数によって決定されている。
ここで注意を要することは、リッドが開放されたからといって、直ちに第2充電ケーブルが接続されるとは限らず、ここにどれだけの空き時間が発生するかは不明であるため、リッドが開放された時点でメインCPUは作動停止するようになっている。
従って、初期工程と第1工程との間の不確定待機時間T1はコネクタの接続待機時間となっている。
第1工程は、第2充電ケーブルの接続作業後の処理工程であり、その起動要因は図9で示された補助起動指令回路28(図14参照)が発生する起動指令信号S38である。
この起動要因に基づく出力処理は、補助起動指令回路28内の合成抵抗R28又は抵抗値R28sの値を算出して、データテーブルを参照することによって充電電力変換回路310の出力電流の規制値を得ることである。
この出力処理に対する停止要因は、メインCPUが充電制御ユニット121Bに電流規制値を送信し、その受信回答情報を得たことである。
ここで注意を要することは、第2充電ケーブルの接続が完了していても、商用電源109bの電源スイッチが投入されているとは限らず、ここにどれだけの空き時間が発生するかは不明であるため、第2充電ケーブルの接続が完了した時点でメインCPUは作動停止するようになっている。
従って、第1工程と第2工程との間の不確定待機時間T2は送電開始待機時間となっている。
但し、第2充電ケーブルの接続したときに商用電源109bの電源スイッチが既に投入されている場合であれば、メインCPUは一時停止することはなく、直ちに第2工程へ移行することができるものである。
第2工程は、充電制御ユニット121Bと充電電力変換回路310とが主バッテリ300と車載バッテリ101に対する充電作業を行う処理工程であり、その起動要因は図7で示された受電検出素子191に応動する補助起動指令回路25(図14参照)が発生する起動指令信号S35である。
この起動要因に基づく出力処理は、充電用コンタクタ190u(図14参照)を閉路するとともに、第1工程で算出された電流規制値に基づいて充電電力変換回路310の出力電流を制御することである。
この出力処理に対する停止要因は、本来は充電完了信号であるが、ここでは充電完了する前に停電が発生したり、意図的に電源スイッチが解除されたことを想定したものとなっていて、このような特殊事態が発生するとメインCPUは充電完了を待たないで作動停止するようになっている。
従って、第2工程と第3工程との間の不確定待機時間T3は送電中断又は停電時間となっていて、この状態から第3工程を飛ばして完了工程に移行することも可能である。
なお、充電途中に電源を遮断するときには、ロックスイッチ28cを開路する押しボタンをおすことによって、接続検出抵抗の変化を検出し、充電用コンタクタ190uを開路することによって第2充電ケーブルを取り外すことも可能あり、この状態から再充電を行いたときときは第1工程を経由して第3工程へ移行し、充電中止するときは完了工程へ移行することになる。
第3工程は、充電電圧が再検出された場合の残りの充電作業を行う処理工程であり、その起動要因は工程2と同様の起動指令信号S35となっている。
この起動要因に基づく出力処理は、充電用コンタクタ190u(図14参照)を再度閉路するとともに、第1工程で算出された電流規制値に基づいて充電電力変換回路310の出力電流を制御することである。
この出力処理に対する停止要因は、充電制御ユニット121Bが発生する充電完了信号であり、充電中はメインCPUは動作を継続して充電制御ユニット121Bとの間で充電進行情報のシリアル交信を行っている。
従って、第3工程と第4工程との間の不確定待機時間T4は第2充電ケーブルの取外し待機時間となっており、充電完了していても直ちに第2充電ケーブルが取り外されるとは限らない。
完了工程は、図示しない工程によって第2充電ケーブルを取り外してから行う、リッドの閉鎖制御に関する工程であり、この開閉操作を手動で行う場合や、電動リモート操作であってもメインCPUに依存しないローカル処理である場合にはこの完了工程は省略することができるものである。
リッドの開閉制御を演算制御部120Bで行う場合には、例えば補助起動指令回路27(n=7)にリッド閉鎖指令用の押しボタンスイッチ27aを接続しておくようになっていて(図14参照)、起動要因はこの押しボタンスイッチ27aによって発生する起動指令信号S37(n=7)となっている。
この起動要因に基づく出力処理は、リッド閉鎖用のモータをメインCPUによって閉鎖駆動することである。
この出力処理に対する停止要因は、補助入出力部108に設けられたリッド閉鎖検出センサの動作によって決定されているが、合わせて第2充電ケーブルの取外しを確認しておくようになっている。
(3)実施の形態2の要点と特徴
以上の説明で明らかなとおりこの発明の実施の形態2による起動信号処理部130Bを有する車載電子制御装置100Bは、車載バッテリ101から電源スイッチ102の閉路動作に応動する電源リレー103Bと安定化電源110とを介して安定化電圧Vccが印加されたことにより制御動作を開始して正常運転信号RUNが発生し、前記電源リレー103Bの閉路動作を維持するとともに、主電気機器104の駆動制御と当該駆動制御に対する反応状態を監視する主制御運転手段500となる制御プログラムを実行する演算制御部120Bを備え、当該演算制御部は、前記電源スイッチ102が開路されると、少なくとも、最新の現在情報の一部を不揮発性メモリに転送退避してから前記正常運転信号RUNを停止して、前記電源リレー103Bを消勢停止し、前記電源スイッチ102が開路されているときであっても、複数の起動指令素子21a・22a・・2naの閉路動作に応動して、前記演算制御部120Bを起動して、補助電気機器105の駆動制御と当該駆動制御に対する反応状態を監視する補助制御手段530となる制御プログラムを実行するための起動信号処理部130Bを有する車載電子制御装置100Bであって、
前記起動信号処理部130Bは、前記起動指令素子2na(n=1・2・・nで以下同様)の開閉状態に応動する起動指令信号S31・S32・・S3nが入力される複数の個別起動処理部131・132・・13nによって構成され、
複数の前記起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものとなっている。
そして、複数の前記個別起動処理部13nは、それぞれ前記起動指令信号S3nの発生を記憶する起動ラッチ部62を備え、当該起動ラッチ部の出力信号である合成用起動信号STnをそれぞれ論理和結合して合成起動信号STBを発生するとともに、前記起動指令信号S3nの発生状態を個別に前記演算制御部120Bに入力する個別起動信号SIG3nを発生し、
前記演算制御部120Bは、前記合成起動信号STBに応動して閉路駆動される前記電源リレー103Bを介して前記安定化電圧Vccが印可されて制御動作を開始し、前記正常運転信号RUNによって前記電源リレー103Bの動作状態を維持するとともに、
前記個別起動信号SIG3nを読出して、前記補助電気機器105の駆動制御を行い、当該駆動制御に伴う動作確認又は所定時間の経過判定により、前記正常運転信号RUNの発生を停止するまでに、前記起動ラッチ部62の出力を停止する起動信号遮断指令CNT3n2を発生し、
前記個別起動処理部13nは更に、遮断ラッチ部64と回復判定部67を備え、
前記遮断ラッチ部64は、前記起動信号遮断指令CNT3n2によってセット駆動されて、複数の前記起動指令素子2naが正常閉路又は異常閉路しているときに前記合成用起動信号STnの発生を停止し、
前記回復判定部67は、前記複数の起動指令素子2naが正常開路又は開路復帰したときに前記遮断ラッチ部64をリセットして、複数の前記起動指令素子2naが閉路したときに前記合成用起動信号STnの発生が有効となる起動信号処理部を有する車載電子制御装置となっている。
前記車載電子制御装置100Bは、車載の主バッテリ300から給電駆動される走行用モータ200に対するモータ制御ユニット122Bと駆動電力変換回路210とを含む前記主電気機器104、及び、前記主バッテリ300と前記車載バッテリ101に対する充電制御ユニット121Bと充電電力変換回路310とを含む前記補助電気機器105とが合体されて電気自動車用の複合電子制御装置107を構成し、
前記複合電子制御装置107は、一般家庭の商用交流電源109bから第2充電ケーブルを介して交流電圧が印加される普通充電コネクタ190を備え、
前記起動処理部130Bには、前記起動指令信号S3nとして前記普通充電コネクタ190の接続状態を検出する第8起動指令信号S38が入力されるとともに、前記普通充電コネクタ190の電源端子の受電状態を検出する第5起動指令信号S35が入力されて前記合成起動信号STBを発生するようになっている。
そして、前記演算制御部120Bは、前記第8起動指令信号S38が、前記普通充電コネクタ190の接続状態を検出しているときであって、前記第5起動指令信号S35が前記普通充電コネクタ190の受電状態を検出しているときに、前記電源スイッチ102の開路状態であっても、前記充電制御ユニット121Bを介して前記主バッテリ300及び前記車載バッテリ101に対する充電制御を行うとともに、
前記起動処理部130Bは、前記普通充電コネクタ190の接続状態を検出されているときであっても、前記普通充電コネクタ190が受電状態となっていないときには前記演算制御部120Bに対する給電を停止し、前記普通充電コネクタ190が受電状態と判定されたときに前記演算制御部120Bに対する給電を開始するようになっている。
以上のとおり、この発明の請求項6に関連し、車載電子制御装置は電気自動車における走行用モータの駆動制御と、モータ駆動用の主バッテリ及び制御用の補助バッテリとして搭載されている車載バッテリに対する充電制御を行う複合電子制御装置を構成し、電源スイッチが閉路されているときには駆動制御が行われ、電源スイッチが開路されているときには充電制御を行うように機能分担されている。
但し、主バッテリから制御用の車載バッテリに対する充電は、例外として電源スイッチの閉路中に行うことが可能である。
従って、充電ケーブルが接続されてから地上電源の供給が開始されるまでに発生する不特定の待機期間と、充電中に発生する停電又は一時的な給電停止による不特定の待機期間と、充電完了後に充電ケーブルが取外されてリッドが閉鎖されるまでの不特定の待機期間において、演算制御部に対する給電を停止して、非充電中における無駄な消費電力の発生を抑制することができる特徴がある。
前記起動処理部130Bには、前記起動指令信号S3nとして、前記普通充電コネクタ190の全体を覆う開閉扉であるリッドに対するリッド開放指令である第6起動指令信号S36と、リッド閉鎖指令である第7起動指令信号S37が入力されて、前記合成起動信号STBを発生し、
前記演算制御部120Bには、前記リッドの開閉駆動機構と開閉状態の検出センサとを含む補助入出力部108が接続され、
前記演算制御部120Bは更に、前記第6起動指令信号S36、又は前記第7起動指令信号S37の発生に伴って起動された前記電源リレー103Bの動作状態を維持しながら、前記開閉駆動機構に対する制御出力を発生し、前記検出センサの状態に応動して制御動作を完了して、所定の停止処理を行ってから前記電源リレー103Bが消勢されるようになっている。
以上のとおり、この発明の請求項7に関連し、演算制御部に対する起動処理部には、電気自動車用のバッテリの充電開始の前段階と充電完了の後段階で実行されるリッドの開閉動作に関する第6起動指令信号S36と、第7起動指令信号S37が入力されて、補助入出力部によってリッドの開閉動作を行うようになっている。
従って、リッド開放後にコネクタの接続や給電動作が開始するまでの不確定な待機時間、及び、充電完了後におけるコネクタの取外しまでの不確定な待機時間において、演算制御部に対する給電を停止して、非充電中における無駄な消費電力の発生を抑制することができる特徴がある。
これは、実施の形態3についても同様である。
前記起動処理部130Bには、前記起動指令信号S3nとしてバッテリマネージメントユニット321が発生する定期パルス信号である第4起動指令信号S34が入力されて前記合成起動信号STBを発生し、
前記演算制御部120Bは、前記第4起動指令信号S34によって定期的に起動されて、セルマネージメントユニット322に定期給電し、当該セルマネージメントユニット322はリチウムイオン電池である前記主バッテリ300の環境温度と充電電圧及び充電率を含む監視診断情報を前記演算制御部120Bに送信するようになっている。
以上のとおり、この発明の請求項8に関連し、演算制御部に対する起動処理部には、定期的に発生するパルス信号である第4起動指令信号S34が入力され、これによって演算制御部とセルマネージメントユニットに定期給電が行われて、主バッテリに対する監視診断情報が演算制御部に送信されるようになっている。
従って、低消費電力の定期覚醒起動タイマであるバッテリマネージメントユニットによって演算制御部とセルマネージメントユニットが定期的に短時間起動されるようになっているので、常時に発生する消費電力が抑制される特徴がある。
これは、実施の形態3についても同様である。
前記普通充電コネクタ190に接続される前記第2充電ケーブル側に設けられた相手コネクタには、充電ガンの挿抜時に押圧開閉されるロックスイッチ28cと、当該ロックスイッチに接続された並列抵抗28pと、前記ロックスイッチ28cと前記並列抵抗28pとの並列回路に対して直列接続された直列抵抗28sによって構成された抵抗回路が接続されて、前記起動信号処理部130Bに対して前記第8起動指令信号S38を発生する補助起動指令回路28を構成し、
前記直列抵抗28sの抵抗値R28sと、前記並列抵抗28pの抵抗値R28pとの加算値である直列合成抵抗R28=R28s+R28pの値、及び前記抵抗値R28sの値は、前記第2充電ケーブルに許容される最大充電電流の値によって異なっており、
前記第8起動指令信号S38によって通電駆動されて、前記起動ラッチ部62のセット入力信号を生成するトランジスタである入力素子61は、ベース抵抗61aと第1逆流防止素子69aと電流検出抵抗69bと前記直列合成抵抗R28との直列回路によって導通駆動されるとともに、前記電流検出抵抗69bの抵抗値である基準抵抗R69bの上流側電圧V1と下流側電圧V2は、それぞれ第1アナログ信号AD1、第2アナログ信号AD2として前記演算制御部120Bに設けられて多チャンネルAD変換器ADCに入力されている。
そして、前記入力素子61が閉路したことに応動して、前記起動信号処理部130Bが合成起動信号STBを発生し、前記演算制御部130Bが起動されると、当該演算制御部130Bは算式(1)(2)によって前記直列合成抵抗R28又は前記直列抵抗28sの抵抗値R28sを算出し、予めデータメモリに格納されている換算データによって前記充電制御ユニット121Bに対する最大充電電流の設定が行われ、検出される抵抗値は前記ロックスイッチ28cの開閉状態によって異なっている。
(V1−V2)/R69b=V2/(R28又はR28s) ・・・・・(1)
∴ R28又はR28s=R69b×V2/(V1−V2) ・・・・・(2)
以上のとおり、この発明の請求項9に関連し、普通充電コネクタに接続される第2充電ケーブルには、補助起動指令回路となる抵抗回路が設けられており、第2充電ケーブルが接続されると第8起動指令信号S38を発生して、起動信号処理部を介して演算制御部が起動するようになっている。
そして、起動された演算制御部は第2充電ケーブル内の直列合成抵抗R28又は直列抵抗の抵抗値R28sの値を算出して、充電制御ユニットによる充電電流の最大値を規制するようになっている。
従って、直列合成抵抗R28又は直列抵抗の抵抗値R28sの値は、演算制御部の起動後に多チャンネルAD変換器を介して精確に測定されるので、直列合成抵抗R28又は抵抗値R28sの抵抗値として多様な値を設定することができ、測定時にロックスイッチが開路しているか閉路しているかに関わらず共通の最大充電電流の設定値をデータテーブルから読出すことができる特徴がある。
そして、第2充電ケーブルが接続されていて、非充電状態である不確定の充電待機期間において、ベース抵抗や電流検出抵抗或いは直並列抵抗の抵抗値を大きく設定しておくことにより入力素子に流入する電流を抑制し、充電待機期間における消費電流を抑制することができる特徴がある。
なお、ケーブル内の並列抵抗を大きくしておいて、この並列抵抗は充電用コネクタの装着時にロックスイッチによって手動閉路するようにした第1の場合であれば、装着時における入力素子のベース電流を確保し、しかも充電待機中における消費電流を更に抑制することができるものである。
一方、充電用コネクタの装着時にロックスイッチが開路するように構成した第2の場合には、このロックスイッチは常態において閉路しているので、接点間の接触不良のが発生し難い利点があるが、充電待機中における消費電流は増加することになるので、直列抵抗の抵抗値R28sを大きくし、並列抵抗の抵抗値R28pは小さくしておくとよい。
いずれの場合も、個別の抵抗値R28sと抵抗値R28pの組合せを適宜に設定しておくことにより、直列合成抵抗R28又は個別の抵抗値R28s・R28pの何れか一つが判明すれば、残りの抵抗値も確定することができる特徴がある。
実施の形態3.
[実施の形態3の詳細な説明]
(1)構成の詳細な説明
以下、この発明の実施の形態3による起動処理部を有する車載電子制御装置の全体回路ブロック図である図12と、図12のものの起動信号処理部に関する全体回路ブロック図である図13について、図1のものとの相違点を中心にしてその構成を詳細に説明する。
図12において、車載電子制御装置100Cには、例えばDC12V系の車載バッテリ101から車載バッテリ電圧Vbsが印加されるとともに、電源スイッチ102が閉路されているときに付勢される電源リレー103Cを介して駆動電源電圧Vbbが印加されるようになっている。また、車載電子制御装置100Cには、電源スイッチ102が閉路されているときに駆動制御される主電気機器104が接続されている。
この主電気機器104は、車載の主バッテリ300から給電駆動される車両の走行用モータ200に対する直流/交流変換器である駆動電力変換回路210と、協働するモータ制御ユニット122Cを含む走行制御部によって構成されていて、主バッテリ300は例えばDC400V系の主電源電圧Vbmを発生するようになっている。
車載電子制御装置100Cには更に、電源スイッチ102が開路されているときに駆動制御される補助電気機器105が接続されている。
この補助電気機器105は、主バッテリ300と車載バッテリ101に対する充電電力変換回路310と、協働する充電制御ユニット121Cを含む充電制御部によって構成されている。
そして、車載電子制御装置100Cと主電気機器104(走行制御部)、補助電気機器105(充電制御部)とは一体化されて複合電子制御装置107を構成している。
車載電子制御装置100Cの内部又は外部に接続されている起動補助信号群106Cは、起動指令素子21a〜28a(以下2naと記載することがある)と、天絡限流抵抗21b〜28b(以下2nbと記載することがある)とが相互に直列接続されている補助起動指令回路21〜28(以下2nと記載することがある、以下同様である)によって構成されていて、それぞれが起動指令信号S3nを発生するようになっている。
なお、起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものであり、天絡限流抵抗2nbは起動指令素子2naが正側電源線に混触した場合の短絡保護を目的としたものである。
また、補助起動指令回路2nの個数は8個に限定されるものではなく、全体システムの規模に応じて増減されるようになっている。
車載電子制御装置100Cは、マイクロプロセッサであるメインCPUを含む演算制御部120Cと、起動信号処理部130Cとを主体として構成されている。
そして、この起動処理部130Cは、図1のハードウエアロジック回路による起動信号処理部130Aに代わって、図6で前述したサブCPUを用いたものとなっている。
演算制御部120Cには、図1のものと同様に、駆動電源電圧Vbbから例えばDC5Vの安定化電圧Vccを生成する安定化電源110が接続されて、電源リレー103Cが付勢されているときに作動するメインCPUと、不揮発性のプログラムメモリPMEM、データメモリDMEM、揮発性のRAMメモリRMEM、多チャンネルAD変換器ADCを含み(図13参照)、ウォッチドッグタイマWDTと協働して正常運転時に正常運転信号RUNを発生するようになっている。
そして、電源スイッチ102が閉路されると、リレー駆動素子111を介して電源リレー103Cが付勢され(図13参照)、これによってメインCPUが起動されて正常運転信号RUN発生すると、電源スイッチ102が開路されても駆動信号合成回路113とリレー駆動素子111を介してメインCPUの動作が継続し、所定の停止処理を行ってから正常運転信号RUNを停止することによって制御動作が完了するようになっている。
なお、演算制御部120Cには、車載バッテリ電圧Vbsから例えばDC5Vのバックアップ電圧Vaを生成するバックアップ電源114が接続されているが、メインCPUの動作中にRAMメモリRMEMに保存されていた学習情報や異常発生情報などの重要情報は、電源スイッチ102が開路された直後のアフターラン期間において不揮発性のデータメモリDMEMに転送保存してから正常運転信号RUNが停止して、電源リレー103Cが消勢されるようになっている。
一方、電源スイッチ102が閉路されているときには、図13で後述する運転開始指令素子111sを介し運転信号SIG0がメインCPUに入力されていることによって主電気機器104の駆動制御が行われるようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Cが合成起動信号STCを発生すると駆動信号合成回路113とリレー駆動素子111を介して電源リレー103Cが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STCが停止しても駆動信号合成回路113を介してメインCPUの動作が継続し、これによって補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっている。
図13において、車載バッテリ101から電界効果型トランジスタによる無接点式の電源リレー103Cと安定化電源110を介して給電されて、図12で前述した主電気機器104と補助電気機器105を駆動制御する車載電子制御装置100Cは、演算制御部120Cと起動補助信号群106Cとの間に設けられた起動信号処理部130Cを備えている。
なお、図1における起動信号処理部130Aは複数の個別起動処理部13nとして、図2A又は図2Bで示されたハードウエアによる論理回路によって構成されていたが、図13における起動信号処理部130Cは補助のマイクロプロセッサであるサブCPUによって構成されていて、個別起動処理部13nはサブCPUを用いた制御プログラムによって構築された起動信号処理手段となっている。
また、電源リレー103Cは車載電子制御装置100Cに内蔵されている。
そして、図2A・図2Bにおけるフィルタ回路61cに対応する部位は、図13においては入力インタフェース回路160として集約されていて、起動補助信号群106Cと起動信号処理部130Cとの間に接続されている。
また、起動信号処理部130Cは車載バッテリ電圧Vbsから常時給電されているバックアップ電源114が発生するバックアップ電圧Vaから給電されていて、起動指令素子2na(n=1〜8)の何れかが閉路すると、合成起動信号STCを発生して、駆動信号合成回路113とリレー駆動素子111を介して電源リレー103Cを付勢し、安定化電源110を介して演算制御部120Cに給電するようになっている。
このバックアップ電圧Vaは演算制御部120Cにも給電されて、RAMメモリRMEMの停電保持動作を行うようになっている。
電源リレー駆動素子111と駆動信号合成回路113とは、電源スイッチ102による電源スイッチ信号PWSと、合成起動信号STCと、ウォッチドッグタイマWDTが発生する正常運転信号RUNによって電源リレー103Cを付勢するようになっている。
実施の形態3において、起動信号処理部130Cを構成するサブCPUは、演算制御部120Cを構成するメインCPUに比べて圧倒的にプログラムメモリのメモリ容量と全体の消費電力が少なく、立上り時の応答遅延時間が短くなることによって、短時間の閉路動作を行う押しボタンスイッチの閉路信号であってもサブCPUによって直接取込みが可能となっている。そして、サブCPUに常時給電しておいてもその待機電流が小さく、実施の形態1におけるハードウエアによる起動信号処理部130Aと比べて遜色のない起動信号処理部を有する車載電子制御装置を得ることができるものである。
次に、実施の形態2の図12及び実施の形態1の図7のものの起動指令信号の一例を示す全体接続図である図14について詳細に説明する。
図14において、複合電子制御装置107の主体要素である演算制御回路部120C(120B)は、起動信号処理部130C(130B)と協働して、充電制御ユニット121C(121B)と充電電力変換回路310とによって構成された補助電気機器105(充電制御部)と、モータ制御ユニット122C(122B)と駆動電力変換回路210とによって構成された主電気機器104(走行制御部)とを監視・制御し、複合電子制御装置107の外部にはリッドの開閉制御に関連する補助入出力部108が接続されている。
そして、補助入出力部108は演算制御回路部120C(120B)との間で、リッド開閉駆動指令Xとリッド開閉センサ信号Yの交信を行うようになっている。
また、起動信号処理部130C(130B)には、後述のとおりに割り付けられた補助起動指令回路2n(n=1〜8のうち、n=3は未使用予備回路になっている)が接続されている。
このうち、補助起動指令回路26は、リッド開指令となる起動指令信号S36を発生するものであり、補助起動指令回路27は、リッド閉指令となる起動指令信号S37を発生するものであり、補助起動指令回路24は、バッテリマネージメントユニット321が発生する定期指令信号である起動指令信号S34を発生するものとなっている。
また、普通充電コネクタ190に接続されている第2充電ケーブルに含まれる補助起動指令回路28は、ケーブルの接続検出を行うための補助起動指令信号S38を発生するものとなっている。
また、補助起動指令回路25は、第2充電ケーブルに含まれる交流電源線間に電源電圧が発生しているかどうかを検出する受電検出素子191の動作状態に応動する起動指令信号S35を発生するようになっている。
急速充電コネクタ170に接続されている第1充電ケーブルは、地上の急速充電器109aとの間で後述の信号交信を行い、急速充電コネクタ170のピン配列と信号に対する符号(d1・d2e・f・g・h・j・k)はCHAdeMO(登録商標)仕様に基づいたものである。
急速充電コネクタ170の1番端子は、地上の急速充電器109aと車載の複合電子制御装置107との間を連結する接地線FGが接続されている。
7番端子は、演算制御部120C(120B)に対してコネクタ接続確認信号hを送信する端子であり、接続確認信号送信素子41は車載バッテリ電圧Vbsから7番端子を介して給電されるホトカプラによって構成されている。
4番端子は、演算制御部120C(120B)が発生する制御出力信号CNT40を、充電許可信号素子40を介して充電許可信号kとして急速受電器109aに送信する端子である。
2番端子と10番端子は、急速充電器109aが充電開始/停止スイッチd1、d2を閉路したときに、充電器側のDC12V電圧が印加される端子である。
そして、補助起動指令回路21は2番端子から給電されるホトカプラによって構成されていて、その出力信号である起動指令信号S31は充電開始指令fとして起動信号処理部130C(130B)に入力されている。
また、補助起動指令回路22は2番端子と10番端子間の電圧が印加されるホトカプラによって構成されていて、その出力信号である起動指令信号S32は充電開始指令gとして起動信号処理部130C(130B)に入力されている。
なお、信号端子8と信号端子9は、急速充電器109aと演算制御部120C(120B)との間のCAN通信によるシリアル信号回線の中継端子である。
また、電力端子5と電力端子6は、急速充電器109aから複合電子制御装置107内の充電用コンタクタ170uを介して主バッテリ300に接続される中継端子となっている。
(2)作用・動作の詳細な説明
以下、図12のとおりに構成されたこの発明の実施の形態3による起動信号処理部130Cを有する車載電子制御装置100Cについて、図1のものとの相違点を中心にしてその作用・動作を詳細に説明する。
まず、図12及び図13・図14において、車両運転用の電源スイッチ102が閉路されると、リレー駆動素子111(図13参照)を介して電源リレー103Cが付勢され、車載バッテリ101による駆動電源電圧Vbbが車載電子制御装置100C内に印加され、安定化電源110を介して安定化電圧Vccが演算制御部120Cを構成するメインCPUに印加される。
なお、電源リレー103Cは車載電子制御装置100Cに内蔵されたトランジスタ方式のものとなっている。
また、車載電子制御装置100Cには、車載バッテリ101自体の出力電圧である車載バッテリ電圧Vbsも入力されていて、バックアップ電源114を介してバックアップ電圧Vaが常時発生してメインCPU内の揮発性メモリであるRAMメモリRMEMの記憶情報を維持するとともに、起動信号処理部130Cを構成するサブCPUに給電するようになっている。
安定化電圧Vccが印加されたメインCPUは、協働する不揮発性のプログラムメモリPMEMやデータメモリDMEMを含む内部点検を行ったのち、ウォッチドッグタイマWDTと協働して正常運転信号RUNを発生し、駆動信号合成回路113とリレー駆動素子111(図13参照)を介して電源リレー103Cの自己保持動作を行うとともに、電源スイッチ102から運転開始指令素子111s(図13参照)を介して入力された運転開始信号SIG0(図13参照)を監視しながら主電気負荷104の駆動制御を行うようになっている。
そして、電源スイッチ102が開路されて運転開始信号SIG0が停止すると、RAMメモリに含まれる主要現在値情報を不揮発性のデータメモリDMEMに転送する退避処理を含むアフターランを行ってからウォッチドッグ信号を停止し、その結果正常運転信号RUNが停止して電源リレー103Cが消勢開路するようになっている。
しかし、電源スイッチ102が開路されているときであっても、起動信号処理部130Cが合成起動信号STCを発生すると駆動信号合成回路113とリレー駆動素子111(図13参照)を介して電源リレー103Cが付勢され、これによってメインCPUが起動されて正常運転信号RUN発生すると、合成起動信号STCが停止しても駆動信号合成回路113を介してメインCPUの動作が継続し、これによって補助電気機器105の駆動制御が完了すると、所定の停止処理を行ってから正常運転信号RUNを停止することによって補助制御動作が完了するようになっていることは前述したとおりであり、起動信号処理部130Cを構成する個別起動処理部13nの詳細構成は図2A・図2B、或いは図8によって前述したとおりである。
また、図12のものの起動処理に関する動作説明用のフローチャートは、図10において説明したとおりである。
次に、図12のものによる急速充電の操作手順の詳細説明図である図15について詳細に説明する。
図15において、急速充電器109aによる急速充電における処理工程は、左列の初期工程から第1工程、第2工程、第3工程、完了工程に大別することができ、各工程間には人為操作に関連する不確定待機時間T1〜T4が発生する可能性があり、この不確定待機時間T1、T2、T3、T4においては電源リレー103Cを開路して、メインCPUを停止しておくことが眼目である。
また、各処理工程は、最上段部においてその起動要因を記載し、次段部でこの起動要因によって実行される出力処理の内容を記載し、下段部においてこの出力処理を停止する要因を明確にし、最下段部では関連する要点記事が記載されている。
まず、左列の初期工程は、第1充電ケーブルを接続するための開閉扉であるリッドの開放制御に関する工程であり、この開閉操作を手動で行う場合や、電動リモート操作であってもメインCPUに依存しないローカル処理である場合にはこの初期工程は省略することができるものである。
リッドの開閉制御を演算制御部120Cで行う場合には、例えば補助起動指令回路26(n=6)にリッド開放指令用の押しボタンスイッチ26aを接続しておくようになっていて(図14参照)、起動要因はこの押しボタンスイッチ26aによって発生する起動指令信号S36(n=6)となっている。
この起動要因に基づく出力処理はリッド開放用のモータをメインCPUによって開放駆動することである。
この出力処理に対する停止要因は、補助入出力部108に設けられたリッド開放検出センサの動作、又はメインCPUのプログラムメモリPMEMに設定されている所定のタイマ定数によって決定されている。
ここで注意を要することは、リッドが開放されたからといって、直ちに第1充電ケーブルが接続されるとは限らず、ここにどれだけの空き時間が発生するかは不明であるため、リッドが開放された時点でメインCPUは作動停止するようになっている。
従って、初期工程と第1工程との間の不確定待機時間T1はコネクタの接続待機時間となっていて、これは図11の場合と同じである。
第1工程は、急速充電器109aと演算制御部120Cとの間で充電制御仕様の相互確認を行う充電前処理工程であり、その起動要因は図14で示された補助起動指令回路21が発生する起動指令信号S31であって、これは急速充電器109aが発生する充電開始/停止指令fが適用され、これによってシリアル通信を開始する通信開始指令fと読み直している。
この起動要因に基づく出力処理は、シリアルコントローラ116を介して主バッテリ300に対する充電仕様として、図示しない設定表示パネルで設定された例えば最大充電電流、充電所要時間などが急速充電器109aにシリアル送信され、急速充電器109aが承認したことで制御出力信号CNT40によって充電許可信号kを発生することである。
この出力処理に対する停止要因は、充電許可信号kを発生してから所定時間が経過するか、又は、急速充電器109aから補助起動指令回路22を介して充電開始信号gを受信したことによる。
ここで注意を要することは、第1充電ケーブルの接続が完了していて、急速充電器109a電源スイッチも閉路されていて所定の通信が行われていても、充電仕様が不整合であればその状態が確認された時点でメインCPUは作動停止するようになっている。
従って、第1工程と第2工程との間の不確定待機時間T2は送電開始待機時間となっている。
但し、充電開始信号gを直ちに受信した場合には、メインCPUは一時停止することはなく、直ちに第2工程へ移行することができるものである。
第2工程は、充電制御ユニット121Cと充電電力変換回路310とが主バッテリ300と車載バッテリ101に対する充電作業を行う処理工程であり、その起動要因は補助起動指令回路22(図14参照)が発生する起動指令信号S32である。
この起動要因に基づく出力処理は、充電用コンタクタ170u(図14参照)を閉路するとともに、充電電力変換回路310で測定された充電電流及び充電電圧の現在値をシりアル信号回線を通じて急速充電器109aに送信することである。
この出力処理に対する停止要因は、本来は充電完了信号であるが、ここでは充電完了する前に停電が発生したり、意図的に電源スイッチが解除されたことを想定したものとなっていて、このような特殊事態が発生するとメインCPUは充電完了を待たないで作動停止するようになっている。
従って、第2工程と第3工程との間の不確定待機時間T3は送電中断又は停電時間となっていて、この状態から第3工程を飛ばして完了工程に移行することも可能である。
第3工程は、起動指令信号S32が再検出された場合の残りの充電作業を行う処理工程であり、その起動要因は工程2と同様の起動指令信号S32となっている。
この起動要因に基づく出力処理は、充電用コンタクタ170u(図14参照)を再度閉路するとともに、充電電力変換回路310で測定された充電電流及び充電電圧の現在値をシシアル信号回線を通じて急速充電器109aに送信することである。
この出力処理に対する停止要因は、急速充電器109aからの充電開始信号f・gとなる起動指令信号S31・S32が停止して、演算制御部120Cが充電許可信号kとなる制御出力信号kを停止したこととなっている。
従って、第3工程と終了工程との間の不確定待機時間T4は第1充電ケーブルの取外し待機時間となっており、充電完了していても直ちに第1充電ケーブルが取り外されるとは限らない。
完了工程は、図示しない工程によって第1充電ケーブルを取り外してから行う、リッドの閉鎖制御に関する工程であり、この開閉操作を手動で行う場合や、電動リモート操作であってもメインCPUに依存しないローカル処理である場合にはこの完了工程は省略することができるものである。
リッドの開閉制御を演算制御部120Cで行う場合には、例えば補助起動指令回路27(n=7)にリッド閉鎖指令用の押しボタンスイッチ27aを接続しておくようになっていて(図14参照)、起動要因はこの押しボタンスイッチ27aによって発生する起動指令信号S37(n=7)となっている。
この起動要因に基づく出力処理は、リッド閉鎖用のモータをメインCPUによって閉鎖駆動することである。
この出力処理に対する停止要因は、補助入出力部108に設けられたリッド閉鎖検出センサの動作によって決定されているが、合わせて第1充電ケーブルの取外しを確認しておくようになっている。
なお、第1充電ケーブルの取外し確認は、接続確認信号受信素子41によって得られるコネクタ接続確認信号hが停止していることによって確認されるものである。
以上の説明では、実施の形態2における起動信号処理部130Bは、実施の形態1における起動信号処理部130Aと同様に、図2A・図2B或いは図8で示されたハードウエアロジックによって構成され、実施の形態3における起動信号処理部130Cは、実施の形態1の変形形態として適用されたサブCPUによる制御プログラムによって構成されている。
しかし、実施の形態2においてサブCPUによる起動処理部130Cを適用したり、実施の形態3においてハードウエアロジックによる起動処理部130Bを適用することは可能である。
また、実施の形態2は普通充電の場合、実施の形態3は急速充電の場合で説明されているが、一つの車両において普通充電と急速充電はどちらでも適用可能なものであって、実態としては、ハードウエアロジック方式又はサブCPU方式のいずれか一方が適用されるものとなっている。
また、電源スイッチが閉路されているときには、演算制御部120A・120B・120Cは主として主電気機器104の駆動制御を行うが、補助電気機器105についても自由に制御することができるものであって、不必要な制御は行わないようにプログラムメモリ上で制約されているものに過ぎない。
(3)実施の形態3の要点と特徴
以上の説明で明らかなとおり、この発明の実施の形態3による起動信号処理部130Cを有する車載電子制御装置100Cは、車載バッテリ101から電源スイッチ102の閉路動作に応動する電源リレー103Cと安定化電源110とを介して安定化電圧Vccが印加されたことにより制御動作を開始して正常運転信号RUNが発生し、前記電源リレー103Cの閉路動作を維持するとともに、主電気機器104の駆動制御と当該駆動制御に対する反応状態を監視する主制御運転手段500となる制御プログラムを実行する演算制御部120Cを備え、当該演算制御部は、前記電源スイッチ102が開路されると、少なくとも、最新の現在情報の一部を不揮発性メモリに転送退避してから前記正常運転信号RUNを停止して、前記電源リレー103Cを消勢停止し、前記電源スイッチ102が開路されているときであっても、複数の起動指令素子21a・22a・・2naの閉路動作に応動して、前記演算制御部120Cを起動して、補助電気機器105の駆動制御と当該駆動制御に対する反応状態を監視する補助制御手段530となる制御プログラムを実行するための起動信号処理部130Cを有する車載電子制御装置100Cであって、
前記起動信号処理部130Cは、前記起動指令素子2na(n=1・2・・nで以下同様)の開閉状態に応動する起動指令信号S31・S32・・S3nが入力される複数の個別起動処理部131・132・・13nによって構成され、
複数の前記起動指令素子2naの一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号S3nを発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号S3nを発生するものとなっている。
そして、複数の前記個別起動処理部13nは、それぞれ前記起動指令信号S3nの発生を記憶する起動ラッチ部62を備え、当該起動ラッチ部の出力信号である合成用起動信号STnをそれぞれ論理和結合して合成起動信号STCを発生するとともに、前記起動指令信号S3nの発生状態を個別に前記演算制御部120Bに入力する個別起動信号SIG3nを発生し、
前記演算制御部120Cは、前記合成起動信号STCに応動して閉路駆動される前記電源リレー103Cを介して前記安定化電圧Vccが印可されて制御動作を開始し、前記正常運転信号RUNによって前記電源リレー103Cの動作状態を維持するとともに、
前記個別起動信号SIG3nを読出して、前記補助電気機器105の駆動制御を行い、当該駆動制御に伴う動作確認又は所定時間の経過判定により、前記正常運転信号RUNの発生を停止するまでに、前記起動ラッチ部62の出力を停止する起動信号遮断指令CNT3n2を発生し、
前記個別起動処理部13nは更に、遮断ラッチ部64と回復判定部67を備え、
前記遮断ラッチ部64は、前記起動信号遮断指令CNT3n2によってセット駆動されて、複数の前記起動指令素子2naが正常閉路又は異常閉路しているときに前記合成用起動信号STnの発生を停止し、
前記回復判定部67は、前記複数の起動指令素子2naが正常開路又は開路復帰したときに前記遮断ラッチ部64をリセットして、複数の前記起動指令素子2naが閉路したときに前記合成用起動信号STnの発生が有効となる起動信号処理部を有する車載電子制御装置となっている。
前記起動信号処理部130Cは、前記車載バッテリ101から常時給電されて、バックアップ電圧Vaを発生するバックアップ電源114から給電されている補助マイクロプロセッサSCPUによって構成され、
複数の前記補助起動指令回路2nを含む起動補助信号群106Cと前記補助マイクロプロセッサSCPUとの間には、フィルタ回路であるインタフェース回路160が設けられており、
前記補助マイクロプロセッサSCPUは、複数の前記個別起動処理部13nを構成し、当該個別起動処理部13nは前記起動ラッチ部62と前記遮断ラッチ部64と前記回復判定部67を構成する制御プログラムを包含しているとともに、複数の前記個別起動処理部13nはそれぞれが前記合成用起動信号STnを発生して、前記合成起動信号STCによって前記電源リレー103Cを付勢し、
複数の前記個別起動処理部13nはまた、それぞれが前記演算制御部120Cに対して前記個別起動信号SIG3nを発生し、前記演算制御回路部120Cからは、少なくとも前記起動信号遮指令CNT3n2を含む前記ラッチクリア指令CNT3n1と遮断状態解除指令CNT3n3と異常診断指令CNT3n4を受信するようになっている。
以上のとおり、この発明の請求項5に関連し、起動補助信号群と演算制御部とのあいだに介在する起動信号処理部は、車載バッテリから常時給電されている補助マイクロプロセッサによって構成されている。
なお、演算制御部を構成するメインのマイクロプロセッサは、プログラムメモリの容量が大きくて起動処理時間が大きくなり、さらには消費電力が大きくなる問題点があるが、補助マイクロプロセッサはプログラムメモリの容量が小さくて起動処理時間が短く、さらには消費電力が小さくなる利点があり、様々な論理回路部を個別回路に依存せずに、制御プログラムによって実行することができる利点がある。
従って、短時間の指令信号であっても補助マイクロプロセッサによって直接読み込むことができる一方、車載バッテリから常時給電しておいても消費電力が大きくならない特徴がある。
前記車載電子制御装置100Cは、車載の主バッテリ300から給電駆動される走行用モータ200に対するモータ制御ユニット122Cと駆動電力変換回路210とを含む前記主電気機器104、及び、前記主バッテリ300と前記車載バッテリ101に対する充電制御ユニット121Cと充電電力変換回路310とを含む前記補助電気機器105とが合体されて電気自動車用の複合電子制御装置107を構成し、
前記複合電子制御装置107は、地上設備である急速充電器109aから第1充電ケーブルを介して昇圧直流電圧が印加される急速充電コネクタ170を備え、
前記起動処理部130Cには、前記起動指令信号S3nとして前記急速充電コネクタ170の接続状態において発生する第1起動指令信号S31が入力されるとともに、前記急速充電コネクタ170の電源端子の受電状態に応動する第2起動指令信号S32が入力されて前記合成起動信号STCを発生するようになっている。
そして、前記演算制御部120Cは、前記第1起動指令信号S31が、前記急速充電コネクタ170の接続状態を検出しているときであって、前記第2起動指令信号S32が前記急速充電コネクタ170の受電状態を検出しているときに、前記電源スイッチ102の開路状態であっても、前記充電制御ユニット121Cを介して前記主バッテリ300及び前記車載バッテリ101に対する充電制御を行うとともに、
前記起動処理部130Cは、前記急速充電コネクタ170の接続状態を検出されているときであっても、前記急速充電コネクタ170が受電状態となっていないときには前記演算制御部120Cに対する給電を停止し、前記急速充電コネクタ170が受電状態と判定されたときに前記演算制御部120Cに対する給電を開始するようになっている。
以上のとおり、この発明の請求項6に関連し、車載電子制御装置は電気自動車における走行用モータの駆動制御と、モータ駆動用の主バッテリ及び制御用の補助バッテリとして搭載されている車載バッテリに対する充電制御を行う複合電子制御装置を構成し、
電源スイッチが閉路されているときには駆動制御が行われ、電源スイッチが開路されているときには充電制御を行うように機能分担されている。
但し、主バッテリから制御用の車載バッテリに対する充電は、例外として電源スイッチの閉路中に行うことが可能である。
従って、充電ケーブルが接続されてから地上電源の供給が開始されるまでに発生する不特定の待機期間と、充電中に発生する停電又は一時的な給電停止による不特定の待機期間と、充電完了後に充電ケーブルが取外されてリッドが閉鎖されるまでの不特定の待機期間において、演算制御部に対する給電を停止して、非充電中における無駄な消費電力の発生を抑制することができる特徴がある。
これは、実施の形態2の場合と同様である。
前記急速充電コネクタ170に接続される前記第1充電ケーブル側に設けられた相手コネクタには、前記急速充電器109aと前記演算制御部120Cとの間でシリアル信号の交信を行う通信回線が設けられているとともに、
前記演算制御部120Cは、前記急速充電器109aから送信された通信開始指令信号fとなる前記第1起動指令信号S31に応動して、前記起動信号処理部130Cを介して給電駆動されて、前記シリアル信号によって前記主バッテリ300に関する充電仕様を送信し、前記急速充電器109aからの確認応答に基づいて充電許可信号kとなる制御出力信号CNT40を発生し、
前記急速充電器109aは、受信した前記充電許可信号kに応動して充電開始信号gを送信することによって前記第2起動指令信号S32が発生して、前記起動信号処理部130Cと、前記演算制御部120C及び前記充電制御ユニット121Cを介して前記主バッテリ300に対する充電が開始し、
前記主バッテリ300に対する充電の進行状態は前記シリアル信号によって前記急速充電器109aに送信され、充電完了に伴って前記制御出力信号CNT40を停止すると、前記通信開始指令信号fと前記充電許可信号kが停止されるようになっている。
以上のとおり、この発明の請求項10に関連し、急速充電コネクタに接続される第1充電ケーブルは、通信開始指令信号fによって主バッテリの充電仕様を急速充電器に送信するシリアル信号回線を備え、充電開始指令信号gによって充電開始されてその進捗状況を急速充電器に返信するようになっている。
従って、演算制御部は停電又は充電異常、或いは充電完了に伴って給電停止され、不特定時間である停電回復や異常状態回復期間における消費電力の発生が防止される特徴がある。
131,132,138,13n 個別起動処理部、13ns 個別バッファ素子、21a,22a,23a,24a,25a,26a,27a,28a,2na 起動指令素子、21b,22b,23b,24b,25b,26b,27b,28b,2nb 天絡限流抵抗、28 補助起動指令回路、28c ロックスイッチ、28p 並列抵抗、28s 直列抵抗、61 入力素子、61a ベース抵抗、61c フィルタ回路、61d 直列抵抗、61e 第1起動素子、62 起動ラッチ部、64 遮断ラッチ部、65a 前段信号遮断素子、65b 後段信号遮断素子、66b 遮断状態解除素子、67 回復判定部、67a 開路判定素子、67c 開路時駆動抵抗、68 強制閉路素子、69a 第1逆流防止素子、69b 電流検出抵抗、100A,100B,100C 車載電子制御装置、101 車載バッテリ、102 電源スイッチ、103A,103B,103C 電源リレー、104 主電気機器、105 補助電気機器、106A,106B,106C 起動補助信号群、107 複合電子制御装置、108 補助入出力部、109a 急速充電器、109b 商用交流電源、110 安定化電源、114 バックアップ電源CVRa、115 補助制御電源、120A,120B,120C 演算制御部(メインCPU)、121B,121C 充電制御ユニット、122B,122C モータ制御ユニット、130A,130B,130C 起動信号処理部、160 入力インタフェース回路、170 急速充電コネクタ、190 普通充電コネクタ、200 走行用モータ、210 駆動電力変換回路、300 主バッテリ、310 充電電力変換回路OBC、321 バッテリマネージメントユニット、322 セルマネージメントユニット、500 主制御運転手段、520 制御停止処理手段、530 補助制御手段、533 起動信号異常判定手段、AD1 第1アナログ信号、AD2 第2アナログ信号、CNT3n1 ラッチクリア指令、CNT3n2 起動信号遮断指令、CNT3n3 遮断状態解除指令、CNT3n4 異常診断指令、RUN 正常運転信号、S3n 起動指令信号、S31 第1起動指令信号、S32 第2起動指令信号、S34 第4起動指令信号、S35 第5起動指令信号、S36 第6起動指令信号、S37 第7起動指令信号、S38 第8起動指令信号、S61e 平滑入力信号(前段)、S61f 平滑入力信号(後段)、SCPU 補助マイクロプロセッサ、SIG3n 個別起動信号、STA,STB,STC 合成起動信号、STn 合成用起動信号、V1 上流側電圧、V2 下流側電圧、Va バックアップ電圧、Vc 補助電圧、Vcc 安定化電圧。

Claims (10)

  1. 車載バッテリから電源スイッチの閉路動作に応動する電源リレーと安定化電源とを介して安定化電圧Vccが印加されたことにより制御動作を開始して正常運転信号RUNが発生し、前記電源リレーの閉路動作を維持するとともに、主電気機器の駆動制御と当該駆動制御に対する反応状態を監視する主制御運転手段となる制御プログラムを実行する演算制御部を備え、当該演算制御部は、前記電源スイッチが開路されると、少なくとも、最新の現在情報の一部を不揮発性メモリに転送退避してから前記正常運転信号RUNを停止して、前記電源リレーを消勢停止し、前記電源スイッチが開路されているときであっても、複数の起動指令素子の閉路動作に応動して、前記演算制御部を起動して、補助電気機器の駆動制御と当該駆動制御に対する反応状態を監視する補助制御手段となる制御プログラムを実行するための起動信号処理部を有する車載電子制御装置であって、
    前記起動信号処理部は、前記起動指令素子の開閉状態に応動する起動指令信号が入力される複数の個別起動処理部によって構成され、
    複数の前記起動指令素子の一部は、押しボタンスイッチで代表される不確定短時間の前記起動指令信号を発生するものであるのに対し、他の一部は人為操作によって閉路状態又は開路状態に変更されるトグルスイッチ又は挿抜プラグで代表される不確定長時間の前記起動指令信号を発生するものであり、
    複数の前記個別起動処理部は、それぞれ前記起動指令信号の発生を記憶する起動ラッチ部を備え、当該起動ラッチ部の出力信号である合成用起動信号STnをそれぞれ論理和結合して合成起動信号を発生するとともに、前記起動指令信号の発生状態を個別に前記演算制御部に入力する個別起動信号SIG3nを発生し、
    前記演算制御部は、前記合成起動信号に応動して閉路駆動される前記電源リレーを介して前記安定化電圧Vccが印可されて制御動作を開始し、前記正常運転信号RUNによって前記電源リレーの動作状態を維持するとともに、
    前記個別起動信号SIG3nを読出して、前記補助電気機器の駆動制御を行い、当該駆動制御に伴う動作確認又は所定時間の経過判定により、前記正常運転信号RUNの発生を停止するまでに、前記起動ラッチ部の出力を停止する起動信号遮断指令CNT3n2を発生し、
    前記個別起動処理部は更に、遮断ラッチ部と回復判定部を備え、
    前記遮断ラッチ部は、前記起動信号遮断指令CNT3n2によってセット駆動されて、複数の前記起動指令素子が正常閉路又は異常閉路しているときに前記合成用起動信号STnの発生を停止し、
    前記回復判定部は、前記複数の起動指令素子が正常開路又は開路復帰したときに前記遮断ラッチ部をリセットして、複数の前記起動指令素子が閉路したときに前記合成用起動信号STnの発生が有効となる、
    車載電子制御装置。
  2. 前記起動ラッチ部のセット入力信号は、前記起動指令信号によって通電駆動される入力素子と、フィルタ回路と直列抵抗を介して得られる後段平滑入力信号であり、
    前記起動指令素子が前記不確定短時間動作又は前記不確定長時間動作のいずれの場合であっても、前記個別起動信号SIG3nは、前記合成用起動信号STnを個別バッファ素子によって論理変換して系電圧の変更を行ったものであるか、
    前記起動指令素子が、前記不確定長時間動作のものであって、前記起動ラッチ部を経由しなくとも安定して合成用起動信号STnを発生することができるものにおいて、前記個別起動信号SIG3nは前記平滑フィルタ回路の出力信号である前段平滑入力信号を個別バッファ素子によって論理変換して系電の変更を行ったものであり、
    前記演算制御部は、前記補助制御手段の一部として、複数の前記個別起動処理部のそれぞれに設けられた前記起動ラッチ部に対して個別又は一斉にラッチクリア信号CNT3n1を発生する制御プログラムである起動信号異常判定手段を備え、
    前記起動ラッチ部は、前記起動指令素子の閉路時に前記合成用起動信号STnを発生記憶して、その後に前記起動指令素子が開路しても前記合成用起動信号STnの発生状態を維持するとともに、前記ラッチクリア信号CNT3n1が発生すると前記合成用起動信号STnの記憶はリセットされるが、前記起動指令素子が継続して閉路しているときには、前記合成用起動信号STnは発生状態を持続するセット優先形の記憶部であって、
    前記起動信号異常判定手段は、前記起動ラッチ部に対するラッチクリア信号CNT3n1を断続発生したときの、前記個別起動信号SIG3nによって前記起動指令素子の開閉状態を監視し、
    前記起動指令素子が不確定短時間の閉路信号を発生するものであれば、所定回数の前記ラッチクリア信号CNT3n1の発生期間において前記個別起動信号SIGnが前記起動指令素子の閉路状態を検出している場合には当該起動指令素子の短絡異常であると判定し、
    前記起動指令素子が不確定長時間の閉路信号を発生するものであれば、所定回数の前記ラッチクリア信号CNT3n1の発生期間において、一旦は前記個別起動信号SIGnが前記起動指令素子の閉路状態を検出し、その後に所定時間内に開路状態に変化した場合には、当該起動指令素子の断線異常であると判定する
    請求項1に記載の車載電子制御装置。
  3. 前記遮断ラッチ部は、前記起動信号遮断指令CNT3n2が発生したときに、前記起動ラッチ部のセット入力と、リセット入力又は前記合成用起動信号STnを遮断する前段信号遮断素子と後段信号遮断素子を閉路駆動することによって、前記合成用起動信号STnを停止するものであり、
    前記回復判定部は、前記遮断ラッチ部をリセットするための電界効果型のトランジスタである開路判定素子を備え、当該開路判定素子は前記起動指令信号が発生しているときに導通する第1起動素子によって導通遮断され、前記起動指令信号が停止して前記第1起動素子が開路しているときに、開路時駆動抵抗によるゲート電圧が印加されて導通閉路し、
    前記ゲート電圧は、前記車載バッテリから常時給電されているバックアップ電源が発生する安定化電圧であるバックアップ電圧Vaが適用されている、
    請求項1または2に記載の車載電子制御装置。
  4. 前記演算制御部は、前記主制御運転手段の一部として、前記電源スイッチが開路されたときに実行される制御プログラムである制御停止処理手段を備え、当該制御停止処理手段は前記起動処理部に含まれる構成要素の診断を行うための遮断状態解除指令CNT3n3と異常診断指令CNTn4を発生し、
    前記異常診断指令CNT3n4は、前記起動指令素子が閉路動作していない通常状態において、前記起動指令素子と並列接続されている強制閉路素子を個別又は一斉に開閉制御し、前記ラッチクリア信号CNT3n1と協働して、前記起動ラッチ部の挙動を監視し、適正な個別起動信号SIG3nが発生しているかどうかを点検し、
    前記遮断状態解除指令CNT3n3は、前記起動信号遮断指令CNT3n2によってセット駆動された前記遮断ラッチ部をリセットするための遮断状態解除素子を個別又は一斉に駆動して、前記遮断ラッチ部の解除状態を前記異常診断指令CNT3n4と前記個別起動信号SIG3nによって点検するとともに、前記起動信号遮断指令CNT3n2によってセット駆動された前記遮断ラッチ部が前記回復判定部によって解除されるかどうかを前記異常診断指令CNT3n4の発生と停止によって点検する、
    請求項2または3に記載の車載電子制御装置。
  5. 前記起動信号処理部は、前記車載バッテリ101から常時給電されて、補助電圧Vcを発生する補助制御電源、又はバックアップ電圧Vaを発生するバックアップ電源から給電されている補助マイクロプロセッサSCPUによって構成され、
    複数の前記補助起動指令回路を含む起動補助信号群と前記補助マイクロプロセッサSCPUとの間には、フィルタ回路であるインタフェース回路が設けられており、
    前記補助マイクロプロセッサSCPUは、複数の前記個別起動処理部を構成し、当該個別起動処理部は前記起動ラッチ部と前記遮断ラッチ部と前記回復判定部を構成する制御プログラムを包含しているとともに、複数の前記個別起動処理部はそれぞれが前記合成用起動信号STnを発生して、前記合成起動信号によって前記電源リレーを付勢し、
    複数の前記個別起動処理部はまた、それぞれが前記演算制御部に対して前記個別起動信号SIG3nを発生し、前記演算制御回路部からは、少なくとも前記起動信号遮指令CNT3n2wo含む前記ラッチクリア指令CNT3n1と遮断状態解除指令CNT3n3と異常診断指令CNT3n4を受信する、
    請求項1から4までのいずれか1項に記載の車載電子制御装置。
  6. 前記車載電子制御装置は、車載の主バッテリから給電駆動される走行用モータに対するモータ制御ユニットと駆動電力変換回路とを含む前記主電気機器、及び、前記主バッテリと前記車載バッテリに対する充電制御ユニットと充電電力変換回路とを含む前記補助電気機器とが合体されて電気自動車用の複合電子制御装置を構成し、
    前記複合電子制御装置は、地上設備である急速充電器から第1充電ケーブルを介して昇圧直流電圧が印加される急速充電コネクタ、又は、一般家庭の商用交流電源から第2充電ケーブルを介して交流電圧が印加される普通充電コネクタを備え、
    前記起動処理部には、前記起動指令信号として前記急速充電コネクタの接続状態において発生する第1起動指令信号S31と、前記普通充電コネクタの接続状態を検出する第8起動指令信号S38が入力されるとともに、前記急速充電コネクタの電源端子の受電状態に応動する第2起動指令信号S32と、前記普通充電コネクタの電源端子の受電状態を検出する第5起動指令信号S35が入力されて前記合成起動信号を発生し、
    前記演算制御部は、前記第1起動指令信号S31又は前記第8起動指令信号S38のいずれか一方が、前記急速充電コネクタ又は前記普通充電コネクタの接続状態を検出しているときであって、前記第2起動指令信号S32又は前記第5起動指令信号S35が前記急速充電コネクタ又は前記普通充電コネクタの受電状態を検出しているときに、前記電源スイッチの開路状態であっても、前記充電制御ユニットを介して前記主バッテリ及び前記車載バッテリに対する充電制御を行うとともに、
    前記起動処理部は、前記急速充電コネクタ又は前記普通充電コネクタの接続状態を検出されているときであっても、前記急速充電コネクタ又は前記普通充電コネクタが受電状態となっていないときには前記演算制御部に対する給電を停止し、前記急速充電コネクタ又は前記普通充電コネクタが受電状態と判定されたときに前記演算制御部に対する給電を開始する、
    請求項1から5までのいずれか1項に記載の車載電子制御装置。
  7. 前記起動処理部には、前記起動指令信号として、前記急速充電コネクタ及び前記普通充電コネクタの全体を覆う開閉扉であるリッドに対するリッド開放指令である第6起動指令信号S36と、リッド閉鎖指令である第7起動指令信号S37が入力されて、前記合成起動信号を発生し、
    前記演算制御部には、前記リッドの開閉駆動機構と開閉状態の検出センサとを含む補助入出力部が接続され、
    前記演算制御部は更に、前記第6起動指令信号S36、又は前記第7起動指令信号S37の発生に伴って起動された前記電源リレーの動作状態を維持しながら、前記開閉駆動機構に対する制御出力を発生し、前記検出センサの状態に応動して制御動作を完了して、所定の停止処理を行ってから前記電源リレーが消勢される、
    請求項6に記載の車載電子制御装置。
  8. 前記起動処理部には、前記起動指令信号としてバッテリマネージメントユニットが発生する定期パルス信号である第4起動指令信号S34が入力されて前記合成起動信号を発生し、
    前記演算制御部は、前記第4起動指令信号S34によって定期的に起動されて、セルマネージメントユニットに定期給電し、当該セルマネージメントユニットはリチウムイオン電池である前記主バッテリの環境温度と充電電圧及び充電率を含む監視診断情報を前記演算制御部に送信する、
    請求項6または7に記載の車載電子制御装置。
  9. 前記普通充電コネクタに接続される前記第2充電ケーブル側に設けられた相手コネクタには、充電ガンの挿抜時に押圧開閉されるロックスイッチと、当該ロックスイッチに接続された並列抵抗と、前記ロックスイッチと前記並列抵抗との並列回路に対して直列接続された直列抵抗によって構成された抵抗回路が接続されて、前記起動信号処理部に対して前記第8起動指令信号S38を発生する補助起動指令回路を構成し、
    前記直列抵抗の抵抗値R28sと、前記並列抵抗の抵抗値R28pとの加算値である直列合成抵抗R28=R28s+R28pの値、及び前記抵抗値R28sの値は、前記第2充電ケーブルに許容される最大充電電流の値によって異なっており、
    前記第8起動指令信号S38によって通電駆動されて、前記起動ラッチ部のセット入力信号を生成するトランジスタである入力素子は、ベース抵抗と第1逆流防止素子と電流検出抵抗と前記直列合成抵抗R28との直列回路によって導通駆動されるとともに、
    前記電流検出抵抗の抵抗値である基準抵抗R69の上流側電圧V1と下流側電圧V2は、それぞれ第1アナログ信号AD1、第2アナログ信号AD2として前記演算制御部に設けられて多チャンネルAD変換器に入力されており、
    前記入力素子が閉路したことに応動して、前記起動信号処理部が合成起動信号を発生し、前記演算制御部が起動されると、当該演算制御部は算式(1)(2)によって前記直列合成抵抗R28又は前記直列抵抗28sの抵抗値R28sを算出し、予めデータメモリに格納されている換算データによって前記充電制御ユニットに対する最大充電電流の設定が行われ、検出される抵抗値は前記ロックスイッチの開閉状態によって異なっている、
    (V1−V2)/R69=V2/(R28又はR28s) ・・・・・(1)
    ∴R28又はR28s=R69×V2/(V1−V2) ・・・・・(2)
    請求項6から8までのいずれか1項に記載の車載電子制御装置。
  10. 前記急速充電コネクタに接続される前記第1充電ケーブル側に設けられた相手コネクタには、前記急速充電器と前記演算制御部との間でシリアル信号の交信を行う通信回線が設けられているとともに、
    前記演算制御部は、前記急速充電器から送信された通信開始指令信号fとなる前記第1起動指令信号S31に応動して、前記起動信号処理部を介して給電駆動されて、前記シリアル信号によって前記主バッテリに関する充電仕様を送信し、前記急速充電器からの確認応答に基づいて充電許可信号kとなる制御出力信号CNT40を発生し、
    前記急速充電器は、受信した前記充電許可信号kに応動して充電開始信号gを送信することによって前記第2起動指令信号S32が発生して、前記起動信号処理部と、前記演算制御部及び前記充電制御ユニットを介して前記主バッテリに対する充電が開始し、
    前記主バッテリに対する充電の進行状態は前記シリアル信号によって前記急速充電器に送信され、充電完了に伴って前記制御出力信号CNT40を停止すると、前記通信開始指令信号fと前記充電許可信号kが停止される、
    請求項6から8までのいずれか1項に記載の車載電子制御装置。
JP2019073854A 2019-04-09 2019-04-09 車載電子制御装置 Active JP6698909B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019073854A JP6698909B1 (ja) 2019-04-09 2019-04-09 車載電子制御装置
US16/798,988 US11465523B2 (en) 2019-04-09 2020-02-24 Vehicle electronic control device
CN202010254102.1A CN111791815B (zh) 2019-04-09 2020-04-02 车载电子控制装置
DE102020204373.6A DE102020204373A1 (de) 2019-04-09 2020-04-03 Bord-Fahrzeug-Elektrosteuervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073854A JP6698909B1 (ja) 2019-04-09 2019-04-09 車載電子制御装置

Publications (2)

Publication Number Publication Date
JP6698909B1 JP6698909B1 (ja) 2020-05-27
JP2020174438A true JP2020174438A (ja) 2020-10-22

Family

ID=70776013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073854A Active JP6698909B1 (ja) 2019-04-09 2019-04-09 車載電子制御装置

Country Status (4)

Country Link
US (1) US11465523B2 (ja)
JP (1) JP6698909B1 (ja)
CN (1) CN111791815B (ja)
DE (1) DE102020204373A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10933893B2 (en) * 2011-06-13 2021-03-02 Transportation Ip Holdings, Llc Vehicle electric supply system
KR20200090508A (ko) * 2019-01-21 2020-07-29 엘지이노텍 주식회사 고장 검출 장치 및 그 방법
JP6698909B1 (ja) * 2019-04-09 2020-05-27 三菱電機株式会社 車載電子制御装置
KR102305054B1 (ko) * 2020-01-30 2021-09-27 (주)미섬시스텍 배터리관리시스템(bms)의 전원공급 자동 제어 장치 및 방법
CN112416460B (zh) * 2020-11-23 2023-03-24 厦门紫光展锐科技有限公司 硬件类型自适应方法及装置、存储介质、终端
EP4033587B1 (en) * 2020-11-30 2023-10-11 Jiangsu Contemporary Amperex Technology Limited Current modulation module, parameter determination module, battery heating system, as well as control method and control device therefor
US11582590B2 (en) * 2020-12-15 2023-02-14 Qualcomm Incorporated Vehicle communications system with vehicle controller and set of wireless relay devices
CN114815675B (zh) * 2021-01-29 2023-10-20 成都鼎桥通信技术有限公司 微控制单元唤醒***、方法、智能座舱及汽车
KR20230001719A (ko) * 2021-06-29 2023-01-05 현대자동차주식회사 래치 릴레이를 이용한 전력망 분리 장치 및 그 방법
CN114954309B (zh) * 2022-03-11 2024-05-14 重庆长安汽车股份有限公司 汽车静态电源管理***、方法、防亏电装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108519A (ja) * 2000-09-26 2002-04-12 Alps Electric Co Ltd ウェイクアップ起動回路
JP2004197585A (ja) * 2002-12-17 2004-07-15 Hitachi Ltd 自動車用電子制御装置
JP2007133729A (ja) * 2005-11-11 2007-05-31 Nec Electronics Corp 電子制御装置とその制御方法
JP2014058290A (ja) * 2012-09-19 2014-04-03 Denso Corp 組電池制御装置
JP2015089206A (ja) * 2013-10-30 2015-05-07 株式会社デンソー 車載充電システム
JP2015160489A (ja) * 2014-02-26 2015-09-07 株式会社デンソー 車両用電子制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742291A (en) * 1985-11-21 1988-05-03 Bobier Electronics, Inc. Interface control for storage battery based alternate energy systems
US5462439A (en) * 1993-04-19 1995-10-31 Keith; Arlie L. Charging batteries of electric vehicles
JP3623310B2 (ja) * 1996-05-07 2005-02-23 カルソニックカンセイ株式会社 多重通信装置
JP2001086762A (ja) * 1999-09-13 2001-03-30 Toshiba Corp 電源装置
JP2011114962A (ja) 2009-11-27 2011-06-09 Tokyo Electric Power Co Inc:The 充電システム、充電器、電動移動体、および電動移動体用バッテリの充電方法
JP5100804B2 (ja) * 2010-09-13 2012-12-19 三菱電機株式会社 始動制御ユニット、及びそれに対する始動指令信号発生装置
JP5533799B2 (ja) * 2011-07-11 2014-06-25 株式会社デンソー 車載用電子制御装置
EP2767430A4 (en) 2011-10-11 2015-12-30 Toyota Motor Co Ltd CHARGING DEVICE FOR A VEHICLE AND VEHICLE THEREFOR
JP6031695B2 (ja) 2012-07-31 2016-11-24 三菱自動車工業株式会社 電動車両の外部給電装置
JP5715107B2 (ja) * 2012-10-29 2015-05-07 富士通テン株式会社 制御システム
CN104584377A (zh) * 2012-11-07 2015-04-29 三洋电机株式会社 充电器
JP6223171B2 (ja) * 2012-12-28 2017-11-01 株式会社半導体エネルギー研究所 蓄電装置の制御システム、蓄電システム、及び電気機器
US9614258B2 (en) * 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
JP5462387B1 (ja) * 2013-04-18 2014-04-02 三菱電機株式会社 車載エンジン制御装置及びその制御方法
JP5846259B2 (ja) * 2013-09-20 2016-01-20 株式会社デンソー 車両用充電制御装置
JP6015626B2 (ja) 2013-10-28 2016-10-26 トヨタ自動車株式会社 蓄電システム
JP6354769B2 (ja) * 2016-02-16 2018-07-11 トヨタ自動車株式会社 ハイブリッド車両
JP6460049B2 (ja) * 2016-05-31 2019-01-30 株式会社デンソー リンギング抑制回路
CN109086236A (zh) * 2017-06-14 2018-12-25 国基电子(上海)有限公司 电源充电路径切换电路及其电子设备
JP6407381B1 (ja) * 2017-09-21 2018-10-17 三菱電機株式会社 停電後処理機能を有する車載電子制御装置
DE102017222192A1 (de) * 2017-12-07 2019-06-13 Audi Ag HV-Batterieanordnung für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer HV-Batterieanordnung
JP6698909B1 (ja) * 2019-04-09 2020-05-27 三菱電機株式会社 車載電子制御装置
TWI744721B (zh) * 2019-11-19 2021-11-01 廣達電腦股份有限公司 電池裝置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002108519A (ja) * 2000-09-26 2002-04-12 Alps Electric Co Ltd ウェイクアップ起動回路
JP2004197585A (ja) * 2002-12-17 2004-07-15 Hitachi Ltd 自動車用電子制御装置
JP2007133729A (ja) * 2005-11-11 2007-05-31 Nec Electronics Corp 電子制御装置とその制御方法
JP2014058290A (ja) * 2012-09-19 2014-04-03 Denso Corp 組電池制御装置
JP2015089206A (ja) * 2013-10-30 2015-05-07 株式会社デンソー 車載充電システム
JP2015160489A (ja) * 2014-02-26 2015-09-07 株式会社デンソー 車両用電子制御装置

Also Published As

Publication number Publication date
CN111791815A (zh) 2020-10-20
US20200324664A1 (en) 2020-10-15
US11465523B2 (en) 2022-10-11
JP6698909B1 (ja) 2020-05-27
CN111791815B (zh) 2023-09-12
DE102020204373A1 (de) 2020-10-15

Similar Documents

Publication Publication Date Title
JP2020174438A (ja) 車載電子制御装置
JP4518150B2 (ja) 車両用電子制御装置
US8587257B2 (en) Secondary battery device and vehicle
CN113212240B (zh) 车辆控制装置、方法、存储介质和车辆
KR102529509B1 (ko) 차량용 예약충전 장치 및 이의 제어 방법
CN107306043B (zh) 充电唤醒装置及充电唤醒装置的控制方法
US20160001719A1 (en) Charging Method
US8513836B2 (en) Drive control device for an electric load
US20130116875A1 (en) Electric vehicle and method for controlling same
US9372216B2 (en) Electric power supply controller for vehicle
US8305033B2 (en) Proximity detection circuit for on-board vehicle charger
US20070239374A1 (en) System and Method for Monitroing a Vehicle Battery
CN102270866A (zh) 交通工具电源管理***
JP5825236B2 (ja) 組電池制御装置
JP2019521323A (ja) 常時電源供給のための並列回路を用いてバッテリーのリレーの故障を診断する装置及び方法
JP2014227123A (ja) 異常診断システム
WO2021218744A1 (zh) 一种obd电源控制管理***和obd监控终端
US9519337B2 (en) Circuitry for controlling an output from an electronic control unit including two processors mutually monitoring each other
US11148533B2 (en) Vehicle activation system
WO2020153199A1 (ja) 電源システム
KR20180037814A (ko) 배터리 보호 시스템 및 방법
CN212364815U (zh) 一种obd电源控制管理***和obd监控终端
JP6468148B2 (ja) 電子制御装置
US20200180603A1 (en) Charging control method and system for battery of vehicle
US20230411986A1 (en) Control device, control method, and control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111