JP2020171118A - 交流回転電機の制御装置 - Google Patents

交流回転電機の制御装置 Download PDF

Info

Publication number
JP2020171118A
JP2020171118A JP2019070963A JP2019070963A JP2020171118A JP 2020171118 A JP2020171118 A JP 2020171118A JP 2019070963 A JP2019070963 A JP 2019070963A JP 2019070963 A JP2019070963 A JP 2019070963A JP 2020171118 A JP2020171118 A JP 2020171118A
Authority
JP
Japan
Prior art keywords
temperature
unit
electric machine
value
rotary electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019070963A
Other languages
English (en)
Other versions
JP6965303B2 (ja
Inventor
信吾 原田
Shingo Harada
信吾 原田
圭一 榎木
Keiichi Enoki
圭一 榎木
智久 正田
Tomohisa Shoda
智久 正田
望 上岡
Nozomi Kamioka
望 上岡
良輔 重松
Yoshisuke Shigematsu
良輔 重松
大塚 和彦
Kazuhiko Otsuka
和彦 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019070963A priority Critical patent/JP6965303B2/ja
Priority to US16/794,488 priority patent/US11183964B2/en
Priority to CN202010223753.4A priority patent/CN111817646B/zh
Priority to DE102020204025.7A priority patent/DE102020204025A1/de
Publication of JP2020171118A publication Critical patent/JP2020171118A/ja
Application granted granted Critical
Publication of JP6965303B2 publication Critical patent/JP6965303B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】交流回転電機の駆動時、保護対象の過熱による破損をより防止することが可能な、交流回転電機の制御装置を提供する。【解決手段】交流回転電機の制御装置は、スイッチング素子(21a〜21c、22a〜22c)を備えた電力変換回路(20)から交流回転電機(30)に電流を供給する場合の保護対象に設けられた保護部(70)の温度を検出し、温度、及び温度から推定される保護対象の温度のうちの一方を検出温度として出力する温度検出部(50)と、温度検出部が出力する検出温度を用いて、検出温度以上である補償後温度を算出する温度補償部(51)と、温度補償部が算出した補償後温度を用いて、入力されたトルク指令値を制限するトルク制限部(80)と、を備えている。【選択図】図1

Description

本発明は、交流回転電機の制御装置に関する。
一般に、電気自動車、ハイブリッド自動車等の電動車両には、電動車両の駆動源として、交流回転電機が搭載されている。この交流回転電機に接続される電力変換装置は、直流電源からの直流電力を交流電力に変換する電力変換機能を有している。直流電力を交流電力に変換するために、電力変換装置には、MOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)等のスイッチング素子を複数、備えた構成の電力変換回路が設けられている。
MOSFET等のスイッチング素子は、予め定められたジャンクション温度Tjを超える温度に達すると、ジャンクション破壊を起こして破損する恐れがある。また、交流回転電機も、一定の温度を超えることにより破損する恐れがある。従って、このようなスイッチング素子を有する電力変換回路により交流回転電機を駆動させる場合、スイッチング素子、及び交流回転電機のそれぞれに定められた温度を超えないように、温度上昇を抑制する必要がある。このことから、従来、スイッチング素子の温度を検出し、検出した温度と設定温度との間の偏差をなくすように、トルク指令値を補正することが行われている(例えば、特許文献1参照)。
特許第6107936号公報
電力変換回路により駆動される交流回転電機としては、永久磁石同期電動機が広く用いられている。永久磁石同期電動機の制御方法としては、最大トルク制御と弱め磁束制御との2つの制御法が知られている。最大トルク制御では、加速初期に最大のトルクが得られるようにトルクを制御することができる。弱め磁束制御では、界磁磁束を減少させることによって、誘起電圧の上昇を抑制することができる。
永久磁石同期電動機の角速度が上昇するのに従い、永久磁石同期電動機が発生する誘起電圧も上昇する。誘起電圧は、永久磁石同期電動機が接続された直流電源の両端に印加される。このことから、誘起電圧が直流電源の両端電圧の制限値に達すると、制御方法を最大トルク制御から弱め磁束制御に移行させることが行われている。永久磁石同期電動機の界磁を直接弱めることはできないため、弱め磁束制御では、d軸電機子に負の電流を流すことにより、d軸電機子反作用によって減磁作用を発生させる。
トルク指令値の補正により、d軸電機子に流れる電流量、つまりスイッチング素子に流れる電流量が変化する。しかし、スイッチング素子の検出温度から算出した偏差をトルク指令値の補正に用いる場合、スイッチング素子の温度を設定温度以下に維持させられない過度な電流をスイッチング素子に流す恐れが高い。例えばスイッチング素子の温度が設定温度に達した後にも電流を流すような恐れがある。そのため、スイッチング素子の温度が設定温度より大きく上昇し、スイッチング素子が破損する恐れも高くなる。なお、過熱による破損から保護すべき保護対象は、スイッチング素子に限定されない。
本発明は、かかる問題点を解決するためになされたもので、交流回転電機の駆動時、保護対象の過熱による破損をより防止することが可能な、交流回転電機の制御装置を提供することを目的とする。
本発明に係る交流回転電機の制御装置は、スイッチング素子を備えた電力変換回路から交流回転電機に電流を供給する場合の保護対象に設けられた保護部の温度を検出し、温度、及び温度から推定される保護対象の温度のうちの一方を検出温度として出力する温度検出部と、温度検出部が出力する検出温度を用いて、検出温度以上である補償後温度を算出する温度補償部と、温度補償部が算出した補償後温度を用いて、入力されたトルク指令値を制限するトルク制限部と、を備えている。
本発明によれば、交流回転電機の駆動時、保護対象の過熱による破損をより防止することができる。
本発明の実施の形態1に係る交流回転電機の制御装置を示す構成図である。 温度補償部の構成例を示す図である。 補償量算出部に採用された伝達関数G(s)の周波数特性の例を説明する図である。 温度補償部の変形例を示す図である。 最大電流調整部の構成例を示す図である。 最大電流調整部の第1の変形例を示す図である。 最大電流調整部の第2の変形例を示す図である。 最大電流調整部の第3の変形例を示す図である。 最大電流調整部の第4の変形例を示す図である。 最大電流調整部の第5の変形例を示す図である。 許容トルクCtrq_alwの上限値Ctrq_alw_upperを求めるためのテーブルの内容例を説明する図である。 許容トルクCtrq_alwの下限値Ctrq_alw_lowerを求めるためのテーブルの内容例を説明する図である。 本発明の実施の形態1に係る交流回転電機の制御装置に交流回転電機を制御させた場合の保護対象の温度の時間変化例を示す図である。 本発明の実施の形態1に係る交流回転電機の制御装置に交流回転電機を制御させた場合に保護対象に流れる最大電流量の時間変化例を示す図である。 従来の交流回転電機の制御装置に交流回転電機を制御させた場合の保護対象の温度の時間変化例を示す図である。 従来の交流回転電機の制御装置に交流回転電機を制御させた場合に保護対象に流れる最大電流量の時間変化例を示す図である。 本発明の実施の形態1に係る交流回転電機の制御装置の一連の動作の流れの例を示すフローチャートである。
以下、本発明に係る交流回転電機の制御装置の各実施の形態を、図を参照して説明する。各図では、同一の要素、同一と見なせる要素、または対応する要素には、同一符号を付している。
実施の形態1.
図1は、本発明の実施の形態1に係る交流回転電機の制御装置を示す構成図である。当該制御装置は、直流電源10から印加される直流電圧を電力変換回路であるインバータ20により交流電圧に変換し、変換後の交流電圧を交流回転電機30に印加させて、交流回転電機30を駆動制御する。交流回転電機30は、例えば電動車両の駆動源である。
当該制御装置は、図1に示すように、電圧検出部11、磁極位置検出部31、電気角速度検出部32、電流センサ33a〜33c、インバータ制御部40、温度検出部50、温度補償部51、最大電流調整部52、許容トルク算出部53、トルク指令調整部54、及び減算器55を備えている。最大電流調整部52、許容トルク算出部53、トルク指令調整部54、及び減算器55は、入力されたトルク指令値の制限を行うトルク制限部80の構成要素である。減算部55は、本実施の形態における演算部に相当する。
直流電源10は、例えば充放電可能な二次電池である。直流電源10は、DC(Direct Current)/AC(Alternating Current)変換のためのインバータ20を介して、交流回転電機30に交流電力を供給する。直流電源10は、高電圧側ノードPと低電圧側ノードNとの間に接続されている。直流電源10とインバータ20とは、高電圧側ノードPと低電圧側ノードNとを介して接続されている。なお、直流電源10とインバータ20との間に、昇圧コンバータを設けて、直流電源10から供給される直流電圧を、DC/DC変換により昇圧してもよい。このことから、直流電源10は、DC/DC変換を行う電力変換回路であってもよい。また、直流電圧を平滑化する平滑コンデンサを、高電圧側ノードPと低電圧側ノードNとの間に接続してもよい。
電圧検出部11は、直流電源10の直流電圧Vdcを検出する。具体的には、電圧検出部11は、高電圧側ノードPと低電圧側ノードNとの間の端子間電圧を計測し、計測した端子間電圧を示す信号を出力する。ここでは、その信号が示す端子間電圧を直流電圧値Vdcと表記する。
インバータ20は、図1に示すように、6個のスイッチング素子21a〜21c、22a〜22cを備えた電力変換回路である。3個のスイッチング素子21a〜21cは、上アームとして、3個のスイッチング素子22a〜22cは、下アームとして、それぞれ接続されている。それにより、インバータ20は、1個の上アーム、1個の下アームを直列に接続したハーフブリッジ回路を3つ備えている。インバータ20は、上アーム側のスイッチング素子21a〜21c、および、下アーム側のスイッチング素子22a〜22cのオン/オフ駆動により、直流電源10からの直流電圧を交流電圧に変換する。得られた交流電圧は、交流回転電機30に印加される。
本実施の形態では、スイッチング素子21a〜21c、22a〜22cとして、IGBT(Insulated Gate Bipolar Transistor)を採用している。しかし、採用の対象となるスイッチング素子は、IGBTに限定されない。スイッチング素子として、MOSFET等を採用しても良い。以降、便宜的に、上アームのスイッチング素子21a〜21cのうちの任意の1個以上のスイッチング素子を指す場合、符号として「21」を付すこととする。同様に、下アームのスイッチング素子22a〜22cのうちの任意の1個以上のスイッチング素子を指す場合、符号として「22」を付すこととする。任意のスイッチング素子、或いは全てのスイッチング素子を指すような場合、符号は付さないこととする。
IGBTであるスイッチング素子には、コレクタ電極とエミッタ電極との間に半導体整流素子が接続されている。その半導体整流素子は、例えばダイオードである。半導体整流素子のアノード電極は、エミッタ電極に接続され、半導体整流素子のカソード電極は、コレクタ電極に接続されている。それにより、半導体整流素子は、スイッチング素子とは逆向きに電流が流れる逆並列に、そのスイッチング素子と接続されている。ここでは、特に断らない限り、スイッチング素子は、逆並列に接続された半導体整流素子を含む意味で用いる。
交流回転電機30は、インバータ20が変換した交流電圧が印加されることにより、電動車両の駆動力および制動力のうちの一方を発生させる。交流回転電機30は、例えば永久磁石同期電動機である。本実施の形態では、交流回転電機30として、3相の電機子巻線を備えた交流回転電機が採用されている。そのため、インバータ20は、3つのハーフブリッジ回路を備えている。しかしながら、交流回転電機30の相数は、3相に限定されない。すなわち、交流回転電機の制御装置が制御対象とする交流回転電機30は、多相電機子巻線を備えた交流回転電機であればよい。
磁極位置検出部31は、交流回転電機30の磁極位置を検出する。磁極位置検出部31は、ホール素子またはエンコーダを備えている。磁極位置検出部31は、交流回転電機30の回転子の基準回転位置に対する磁極の回転角度を検出し、検出した回転角度の検出値を示す信号を出力する。この検出された回転角度は、以降「磁極位置θ」と表記する。この磁極位置θは、q軸の回転角度を示す値である。また、回転子の基準回転位置は、任意の位置に予め適宜設定されている。
電気角速度検出部32は、交流回転電機30の電気角速度ωを検出し、検出した電気角速度ωを示す信号を出力する。電気角速度検出部32は、磁極位置検出部31と同様に、ホール素子またはエンコーダを備えているものであってもよいが、磁極位置検出部31が検出した磁極位置θを用いて、演算により、電気角速度ωを求める構成であってもよい。
電流センサ33a〜33cは、交流回転電機30のU相、V相、W相を流れる電流量iU、iV、iWをそれぞれ検出し、検出した電流量iU、iV、iWをそれぞれ示す信号を電流座標変換器47へ出力する。図1では、3つの電流センサ33a〜33cを設けて、U相、V相、W相それぞれの電流量iU、iV、iWを検出しているが、必ずしもそうしなくともよい。つまり、電流センサは2つにして、電流量の検出は2相のみ行い、残りの1相の電流量は、検出した2相の電流量から演算により求めるようにしてもよい。
インバータ制御部40は、インバータ20に含まれる上アーム側のスイッチング素子21a〜21cおよび下アーム側のスイッチング素子22a〜22cの各ゲートに接続されている。それにより、インバータ制御部40は、各スイッチング素子のゲートに供給する信号を通して、各スイッチング素子のオン/オフ駆動を制御して、インバータ20と交流回転電機30との接続ノードUac、Vac、Wacの各電位を調整する。インバータ制御部40は、接続ノードUac、Vac、Wacの各電位を調整することにより、交流回転電機30の各相に流れる電流量を制御する。以下、インバータ制御部40の構成について、より詳細に説明する。
インバータ制御部40は、図1に示すように、電流指令演算部41、d軸電流調整器42、q軸電流調整器43、電圧座標変換器44、PWM(Pulse Width Modulation)回路45、ゲートドライバ46、および、電流座標変換器47を備えている。インバータ制御部40は、dqベクトル制御によってインバータ20を駆動することにより、交流回転電機30の回転制御を行う。以下、インバータ制御部40を構成する各部について説明する。
電流指令演算部41には、交流回転電機30に発生させるトルクを指令する調整後のトルク指令値Ctrq_adjが、トルク指令調整部54から入力される。また、電流指令演算部41には、電圧検出部11から、直流電圧値Vdcを示す信号が入力される。電流指令演算部41は、トルク指令値Ctrq_adj、及び直流電圧値Vdcを用いて、d軸電流指令値Cid及びq軸電流指令値Ciqを演算し、演算により得られたd軸電流指令値Cid及びq軸電流指令値Ciqを示す2つの信号を減算器48、9にそれぞれ出力する。以降、説明上、便宜的に、電流指令演算部41は、d軸電流指令値Cid及びq軸電流指令値Ciqを直接、出力すると想定する。これは、他の構成要素でも同様である。
電流座標変換器47は、電流センサ33a〜33cからの信号が示す3相の電流量iU、iV、iWを、2相の電流量、すなわち、d軸電流値id及びq軸電流値iqに変換する。電流座標変換器47は、d軸電流値id及びq軸電流値iqをそれぞれ減算器48、49に出力する。
減算器48は、入力したd軸電流指令値Cidから、入力したd軸電流値idを減算し、その減算によって得られるd軸電流指令値Cidとd軸電流値idとの間の偏差をd軸電流調整器42に出力する。同様に、減算器49は、入力したq軸電流指令値Ciqから、入力したq軸電流値iqを減算し、その減算によって得られるq軸電流指令値Ciqとq軸電流値iqとの間の偏差をq軸電流調整器43に出力する。
d軸電流調整器42は、減算器48から入力する偏差が0となるように、直流のd軸電圧指令値Cvdを演算し、d軸電圧指令値Cvdを電圧座標変換器44に出力する。q軸電流調整器43は、減算器49から入力する偏差が0となるように、直流のq軸電圧指令値Cvqを演算し、q軸電圧指令値Cvq電圧座標変換器44に出力する。
電圧座標変換器44は、磁極位置検出部31からの磁極位置θに基づいて、2相直流のd軸電圧指令値Cvdおよびq軸電圧指令値Cvqを、3相交流電圧指令値Cvu、Cvv、Cvwに変換し、3相交流電圧指令値Cvu、Cvv、CvwをPWM回路45に出力する。
PWM回路45は、3相交流電圧指令値Cvu、Cvv、Cvw、直流電圧値Vdcを用いて、インバータ20に含まれる各スイッチング素子をそれぞれオン/オフ駆動するための制御信号を生成し、生成した制御信号をゲートドライバ46に出力する。
ゲートドライバ46は、上アーム側のスイッチング素子21a〜21cおよび下アーム側のスイッチング素子22a〜22cの各ゲートと接続されている。ゲートドライバ46は、PWM回路45からの各制御信号を用いて、各スイッチング素子のゲートに出力する信号を生成し、生成した信号を各スイッチング素子のゲートに出力することにより、各スイッチング素子のスイッチング動作を制御する。その結果、インバータ20は、ゲートドライバ46によって駆動され、直流電源10から印加された直流電圧を交流電圧に変換するDC/AC変換を行う。
上記のように、インバータ制御部40は、トルク指令値Ctrq_adjを入力し、インバータ20を駆動する。次に、インバータ制御部40に入力されるトルク指令値Ctrq_adj、及びその生成について詳細に説明する。
温度検出部50は、保護部70の温度を検出する。保護部70は、過熱による破損を防止すべき対象である保護対象の温度を直接的に、或いは間接的に検出するための温度検出用部材であり、保護対象の温度に応じて、温度が変化するように設けられている。
保護対象は、例えばインバータ20を構成するスイッチング素子、或いは交流回転電機30である。交流回転電機30の検出すべき温度は、例えば電機子巻線、或いは永久磁石の温度である。
保護部70は、スイッチング素子の温度の検出を想定する場合、例えば、スイッチング素子が搭載された同一基板上に設けられる。同一基板上に設けられた保護部70は、スイッチング素子と同じ環境下にあるため、それらのスイッチング素子の温度上昇に比例して、温度が上昇すると見做すことができる。従って、保護部70の検出温度が、予め設定された設定温度71を超えないように制御すれば、スイッチング素子の過熱による破損を防止することができる。同様に、交流回転電機30の温度の検出を想定する場合、保護部70は、電機子巻線、或いは永久磁石と熱的に接続された箇所に設けることが考えられる。
このように、保護部70は、基本的に、保護対象と同じ環境下、言い換えれば保護対象と同じように温度変化する場所に設置するのが望ましい。しかし、保護部70の設置場所は、保護対象の温度を直接的に計測できる場所に限定されない。つまり、保護部70の設置場所は、保護対象の温度を高精度に間接的に推定できる場所であってもよい。それにより、スイッチング素子では、保護部70の温度から、ジャンクション温度を推定するようにしてもよい。ジャンクション温度を推定する推定アルゴリズムについては、公知のものを採用することができる。推定アルゴリズムは、保護部70の設置場所、保護対象の種類等に応じて、選択すればよい。
温度検出部50は、温度センサ等を備え、保護部70の温度を直接検出する。保護部70の温度が保護対象の検出すべき温度を直接的に示していない場合、温度検出部50には、検出した保護部70の温度から保護対象の検出すべき温度を推定する推定部が更に含まれる。検出された温度、或いは推定された温度は、保護対象の検出温度として、温度検出部50から温度補償部51に出力される。ここでは、混乱を避けるために、保護部70の温度は、保護対象の検出すべき温度と想定する。検出された温度は、他の温度と区別するために、以降「保護部温度」と表記する。この保護部温度は、本実施の形態における検出温度に相当する。
図2は、温度補償部の構成例を示す図である。この温度補償部51は、温度検出部50からの検出温度である保護部温度を用いて、補償後温度を算出する。そのために、温度補償部51は、図2に示すように、補償量算出部511、及び加算器512を備えている。
温度検出部50からの保護部温度は、補償量算出部511、及び加算器512にそれぞれ入力される。補償量算出部511は、検出温度に加算すべき温度分を補償量として算出し、算出した補償量を加算器512に出力する。それにより、加算器512は、検出温度に補償量を加算し、その加算結果を補償後温度として出力する。補償後温度と保護部温度との間の大小関係は、保護部温度≦補償後温度、である。加算器512は、本実施の形態における加算部に相当する。
補償量算出部511は、増幅器、低域通過フィルタ、及び高域通過フィルタとしての機能を備える。補償量算出部511が補償量を算出するための伝達関数G(s)は、下式(1)により示される。
Figure 2020171118
ここで、Kは増幅率、GLPF(s)は低域通過フィルタとしての伝達関数、GHPF(s)は高域通過フィルタの伝達関数である。
また、下式(2)は、一次低域通過フィルタとしての伝達関数、下式(3)は、一次高域通過フィルタとしての伝達関数を示している。下式(2)および下式(3)は、伝達関数の一例として示しており、それに限定されない。
Figure 2020171118
Figure 2020171118
式(2)および式(3)において、sはラプラス演算子、ωLPFは低域通過フィルタとしてのカットオフ周波数、ωHPFは高域通過フィルタとしてのカットオフ周波数である。
図3は、補償量算出部に採用された伝達関数G(s)の周波数特性の例を説明する図である。図3では、低域通過フィルタのカットオフ周波数ωLPFを、高域通過フィルタのカットオフ周波数ωHPFより小さい値に設定し、増幅率を正の値に設定した場合の例を示している。それにより、伝達関数G(s)は、バンドパスフィルタとしての特性を備えている。つまり、伝達関数G(s)の通過帯域は、図3に示すように、カットオフ周波数ωLPFより大きく、且つカットオフ周波数ωHPFより小さい範囲である。その通過帯域には、保護部70の熱応答の帯域を含める必要がある。
補償量算出部511が算出する補償量は、保護部70の検出温度である保護部温度の変化量が大きくなるほど、大きくなる。そのため、補償後温度は、保護部温度以上の値となる。この結果、スイッチング素子、及び交流回転電機30の過熱による破損がより確実に回避できるように、スイッチング素子、及び交流回転電機30に供給される電流量はより抑えられる。詳細は後述する。
なお、温度補償部51の構成は、図2に示すようなものに限定されない。例えば図4に示すように、補償量算出部511の後段にリミッタ515を配置し、補償量算出部511が出力する補償量の範囲をリミッタ515により制限するようにしてもよい。そのリミッタ515としては、0より小さい補償量を0にさせるものが考えられる。そのようなリミッタ515を配置した場合、補償後温度が検出温度未満となるのを確実に回避させることができる。このリミッタは、本実施の形態における補償量制限部に相当する。
最大電流調整部52は、温度補償部51により算出された補償後温度が、予め設定された設定温度71を超えないように、最大電流量Imaxの値を調整する。最大電流調整部52は、調整後の最大電流量Imaxを最大電流量Imax_adjとして許容トルク算出部53に出力する。設定温度71は、例えばレジスタ等の記憶装置に格納されたデータである。
許容トルク算出部53は、最大電流調整部52から出力される最大電流量Imax_adj、電気角速度検出部32からの電気角速度ωおよび電圧検出部11から出力される直流電圧Vdcを用いて、許容トルクCtrq_alwを算出する。算出された許容トルクCtrq_alwは、トルク指令調整部54に出力される。
トルク指令調整部54は、許容トルク算出部53から出力される許容トルクCtrq_alwの範囲内になるように、入力した交流回転電機30のトルク指令値Ctrqを調整する。範囲を示すために、許容トルクCtrq_alwには、上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerが存在する。それにより、ここでは、許容トルクCtrq_alwは、上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerを含むパラメータの総称として用いている。調整後のトルク指令値Ctrqがトルク指令値Ctrq_adjとして、トルク指令調整部54から電流指令演算部41に出力される。
ここで、最大電流調整部52が出力する最大電流量Imax_adjについて、より詳細に説明する。この最大電流量Imax_adjは、下式(4)で示される相電流絶対値に対して現時点で許容される最大値である。
Figure 2020171118
例えば、最大電流調整部52から出力される調整後の最大電流量Imax_adjが500Aの時、許容トルク算出部53は、相電流絶対値が500A以下となる条件で、交流回転電機30に発生させることが可能な最大のトルクを算出する。従って、許容トルク内のトルク指令値Ctrq_adjが入力された場合は、電流指令演算部41から出力されるd軸電流指令値Cid及びq軸電流指令値Ciqは、基本的に、下式(5)の条件を満たす。
Figure 2020171118
d軸電流値idおよびq軸電流値iqは、それぞれ、d軸電流指令値Cidおよびq軸電流値Ciqに対してフィードバック制御される。そのため、d軸電流指令値Cidおよびq軸電流値Ciqの各絶対値を最大電流量Imax_adj以下にすることで、相電流絶対値も最大電流量Imax_adj以下にすることができる。
図5は、最大電流調整部の構成例を示す図である。ここで図5を参照し、最大電流調整部52についてより具体的に説明する。
図5に示すように、最大電流調整部52は、比例調整器60、乗算器66、積分器61、上下限制限部62、および加算器63を備えている。減算器55が出力する偏差、つまり設定温度71から温度補償部51が出力する補償後温度を減算した値は比例調整器60に入力される。この偏差は、設定温度71<補償後温度、の大小関係が満たされる場合、負の値となる。従って、その大小関係が満たされる場合、補償後温度が高くなるほど、偏差はより小さい値となる。
比例調整器60は、入力された偏差に、比例ゲインKpを乗算し、その乗算結果を乗算器66および加算器63にそれぞれ出力する。比例ゲインKpは、正の定数である。
乗算器66は、比例調整器60が出力する乗算結果に対し、設定された係数を乗算する。この乗算結果は、乗算器66から積分器61に出力される。なお、図5中に表記の「Ti」は積分時間を示している。
積分器61は、乗算器66から入力した乗算結果を積分する。積分器61は、乗算器66から乗算結果を入力した場合に、現在の積分値にその乗算結果を加算する。積分器61には、初期値として、例えば最大電流量Imaxの上限値が設定される。この上限値は、非制限時の値、言い換えれば上記式(4)に示す「相電流絶対値」の設計上の上限値である。設計上の上限値は、主にスイッチング素子で発生する損失、及び冷却性能により定められる値であり、基本的に定数である。そのため、通常、いかなる条件下であっても、設計上の上限値よりも大きい電流をスイッチング素子に流すことはない。一方、最大電流量Imax_adjは、調整後の値であり、その値は変化する。最大電流量Imax_adjは、0から相電流絶対値の設計上の上限値までの間の値となる。
図5に示す構成例では、フィードバック制御で最大電流量Imax_adjを調整するために、起動後、交流回転電機30に適切な値の電流が供給されるようになるまでにはある程度の時間が必要である。従って、例えば積分器61の初期値を0にした場合、温度検出部50からの検出温度が低く保護が不要であったとしても、起動直後の最大電流量Imax_adjは小さい値であるため、交流回転電機30に十分なトルクを発生させることができない。これは、例えば交流回転電機30を用いてエンジンを始動させる場合に問題となる。一方、積分器61の初期値を最大電流量Imaxの上限値に設定した場合、インバータ20の起動後に、交流回転電機30に必要なトルクを確実に発生させることができる。インバータ20の起動時、例え温度検出部50からの検出温度が設定温度71を上回っている状態でインバータ20を起動させたとしても、スイッチング素子および交流回転電機を確実に保護することもできる。積分器61の初期値を最大電流量Imaxの上限値に設定するのは、このような利点が得られるからである。
図5に示す構成例では、温度補償部51からの補償後温度が設定温度71よりも高い場合、減算器55が出力する偏差が負の値となって、比例調整器60が出力する乗算結果も負の値となる。そのため、積分器61が出力する積分結果は小さくなる。一方、温度補償部51からの補償後温度が設定温度71未満の場合、減算器55が出力する偏差が正の値となって、比例調整器60が出力する乗算結果も正の値となる。そのため、積分器61が出力する積分結果は大きくなる。その積分結果は、加算器63に出力される。それにより、加算器63は、積分結果と、比例調整器60が出力する乗算結果とを加算し、その加算結果を上下限制限部62に出力する。
上記のように、比例調整器60が出力する乗算結果、および積分器61が出力する積分結果は、減算器55から入力する偏差に応じて変化する。加算器63が出力する加算結果は、最大電流量Imaxの上限値より大きくなることがあり得る。また、その加算結果は、0より小さくなることもあり得る。このことから、上下限制限部62は、加算器63が出力する加算結果の範囲を制限する。そのために、上下限制限部62には、上限値として、例えば最大電流量Imaxの上限値が設定され、下限値として、例えば0が設定されている。それにより、上下限制限部62は、例えば上限値より大きい加算結果は上限値とし、下限値より小さい加算結果は下限値とする。それ以外の加算結果は、そのままとされる。そのようにして制限された加算結果が、最大電流量Imax_adjとして、上下限制限部62から許容トルク算出部53に出力される。このように、最大電流調整部52は、比例調整器60、乗算器66および積分器61により、減算器55から出力される偏差に対する比例・積分補償を行い、その結果として、最大電流量Imax_adjを出力する。
最大電流調整部52は、図5に示す構成に限定されない。ここで、図6〜図10を参照し、最大電流調整部52の構成の変形例について具体的に説明する。図6〜図10では、図5に示す構成要素と同じ、或いは基本的に同じ構成要素には同一の符号を付している。それにより、変形例は、異なる部分に着目して説明する。
図6は、最大電流調整部の第1の変形例を示す図である。図6に示すように、第1の変形例の最大電流調整部52は、更に乗算器64を備える。この乗算器64は、最大電流量Imaxの上限値に、上下限制限部62が出力する値を乗算する。この乗算結果が最大電流量Imax_adjとして、最大電流調整部52から出力される。
第1の変形例では、上下限制限部62は、図5に示す構成例とは異なり、加算器63から入力する加算結果を、例えば0〜1の範囲内に制限する。これは、出力する値が最大電流量Imax_adjと乗算器64によって乗算されるからである。出力値の0〜1の範囲内の制限は、例えば入力した加算結果を最大電流量Imaxの上限値で除算し、その除算結果が1より大きければ1とし、その除算結果が0より小さければ0とすることで行えばよい。このような上下限制限部62、及び乗算器64を備えることから、積分器61に設定する初期値は1とすればよい。
このような構成であっても、図5に示す構成例と同様な最大電流量Imax_adjを最大電流調節部52に出力させることができる。最大電流量Imax_adjは、最大電流量Imaxの上限値を超えることはなく、負の値にもならない。
図7は、最大電流調整部の第2の変形例を示す図である。図7に示すように、第2の変形例の最大電流調整部52は、更に加算器65を備える。この加算器65は、最大電流量Imaxの上限値に、上下限制限部62が出力する値を加算する。この加算結果が最大電流量Imax_adjとして、最大電流調整部52から出力される。
第2の変形例では、上下限制限部62は、上記第1の変形例とは異なり、加算器63から入力する加算結果を、例えば0を上限値とする範囲内に制限する。これは、出力する値が最大電流量Imax_adjと加算器65によって加算されるからである。出力値の0を上限とする制限は、例えば入力した加算結果に−1を乗算し、その乗算結果が0より大きければ0とし、その乗算結果が0より小さければ乗算結果をそのままとすることで行えばよい。このような上下限制限部62、及び加算器65を備えることから、積分器61に設定する初期値は0とすればよい。
このような構成であっても、図5に示す構成例、及び図6に示す第1の変形例と同様な最大電流量Imax_adjを最大電流調節部52に出力させることができる。最大電流量Imax_adjは、最大電流量Imaxの上限値を超えることはなく、負の値にもならない。
図8は、最大電流調整部の第3の変形例を示す図である。図1に示す構成例では、保護部70は一つのみ示している。しかし、保護部70は、複数、設けてもよい。第3の構成例は、保護部70を複数、設けることを想定した例である。図8に示すように、第3の変形例では、保護部70毎に、比例調整器60、乗算器66、積分器61、および加算器63を備えている。そのために、温度補償部51および加算器55も保護部70毎に設けられている。
乗算器66は、比例調整器60が出力する乗算結果に対し、設定された係数を乗算する。積分器61は、乗算器66が出力する乗算結果を積分する。加算器63は、比例調整器60が出力する乗算結果に、積分器61が出力する積分結果を加算する。この加算結果は、加算器63から選択部67に出力される。
選択部67は、各加算器63から加算結果を入力し、入力した加算結果のうちの最小の加算結果を選択して上下限制限部62に出力する。選択部67に最小の加算結果を選択させるのは、最小の加算結果が得られた保護対象が最も危険な状態、つまり温度が最も高くなっているためである。
上下限制限部62は、図5と同じ機能であり、設定された上限値と下限値との間の範囲内に、入力した加算結果を制限する。上下限制限部62によって制限された加算結果が最大電流量Imax_adjとなる。
保護部70を一つのみとする場合、保護対象のうちで最も高温となる保護対象に保護部70を設ければよい。そのような保護対象に保護部70を設けることにより、保護対象の全てを保護することができる。しかし、何らかの理由により、保護部70を設けていない保護対象が最も高温となる恐れがある。例えそのような可能性が考えられたとしても、保護対象毎に、或いは最も高温となる可能性がある複数の保護対象に保護部70を設けることにより、第3の変形例では、最悪な状態の保護対象にとって望ましい最大電流量Imax_adjを出力させることができる。このことから、第3の変形例では、図5〜図7に示す各構成例と比較し、保護対象の全てをより確実に保護することができ、より高い安全性を実現できる。
図9は、最大電流調整部の第4の変形例を示す図である。第4の変形例も、第3の変形例と同じく、保護部70を複数、設けることを想定した例である。図9に示すように、第4の変形例では、保護部70毎に、比例調整器60、及び乗算器66を備えている。各比例調整器60が出力する乗算結果、及び各乗算器66が出力する乗算結果は、共に選択部67に出力される。
選択部67は、入力する2つの乗算結果ともに、そのうちの最小値を選択して出力する。これは、第3の変形例と同じく、保護対象を保護するうえで最小値が最悪の値だからである。各比例調整器60から入力された乗算結果のうちから選択された乗算結果は、加算器63に出力され、各乗算器66から入力された乗算結果のうちから選択された乗算結果は、積分器61に出力される。
積分器61は、選択部67から入力した乗算結果を積分し、積分結果を加算器63に出力する。加算器63は、選択部67から入力した乗算結果に、積分器61から入力した積分結果を加算し、加算結果を上下限制限部62に出力する。上下限制限部62は、第3の変形例と同じく、設定された上限値と下限値との間の範囲内に、入力した加算結果を制限する。上下限制限部62によって制限された加算結果が最大電流量Imax_adjとなる。
このように、第4の変形例では、加算器63が出力する加算結果、つまり制限するまえの最大電流量Imaxは、各比例調整器60が出力する乗算結果のうちの最悪値、及び各乗算器66が出力する乗算結果のうちの最悪値を用いて求められる。そのため、第4の変形例では、第3の変形例と比較して、保護対象の全てを更に確実に保護することができ、更に高い安全性が実現される。
図10は、最大電流調整部の第5の変形例を示す図である。第5の変形例も、第3および第4の変形例と同じく、保護部70を複数、設けることを想定した例である。図10に示すように、第5の変形例では、各減算器55が偏差として出力する減算結果が選択部67に入力される。それにより、選択部67は、入力した偏差のうちの最小値を選択して出力する。選択部67が出力する偏差は、比例調整器60および乗算器66にそれぞれ入力される。
比例調整器60は、入力された偏差に、比例ゲインKpを乗算し、その乗算結果を加算器63に出力する。乗算器66は、選択部67から入力した偏差に対し、設定された係数を乗算する。積分器61は、乗算器66が出力する乗算結果を積分し、積分結果を加算器63に出力する。加算器63は、比例調整器60からの乗算結果に、積分器61からの積分結果を加算し、加算結果を上下限制限部62に出力する。この上下限制限部62は、第4の変形例と同じ機能である。
この第5の変形例では、上記第3の変形例と同様の効果が得られる。しかし、必要な比例調整器60、乗算器66、及び積分器61の各数は、第3の変形例よりも少なくてすむ。そのため、第5の変形例をハードウェアにより実現させる場合、回路規模が抑えられ、製造コストもより抑えられる。第5の変形例をソフトウェアにより実現させる場合、制御内容をより簡単化させることができ、開発コストもより抑えることができる。
図1の説明に戻る。許容トルク算出部53は、上記のように、最大電流調整部52から出力される最大電流量Imax_adj、および電圧検出部11から出力される直流電圧Vdcを用いて、許容トルクCtrq_alwを算出する。許容トルクCtrq_alwの算出は、例えば以下のようにして行われる。
許容トルク算出部53は、まず、電圧検出部11から出力された直流電圧Vdcと、予め設定された最大変調率MFmaxとを用いて、最大電圧値Vmaxを演算する。この最大電圧値Vmaxは、直流電源10から印加されると推測される最大電圧であり、例えば下式(6)により算出される。
Vmax=sqrt(3/2)×Vdc×(1/2)×MFmax ・・・ (6)
次に、許容トルク算出部53は、最大電圧値Vmaxと、電気角速度検出部32からの電気角速度ωとを用いて、最大鎖交磁束FLmaxを演算する。この最大鎖交磁束FLmaxは、交流回転電機30が発生させる最大鎖交磁束であり、例えば下式(7)により算出される。
FLmax=Vmax÷ω ・・・ (7)
その後、許容トルク算出部53は、最大鎖交磁束FLmaxと、最大電流調整部52からの最大電流量Imax_adjとに基づいて、許容トルクCtrq_alwの上限値Ctrq_alw_upperとその下限値Ctrq_alw_lowerとを求める。上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerは、許容トルク算出部53からトルク指令調整部54に出力される。
本実施の形態では、許容トルクCtrq_alwの上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerは、それぞれテーブルを用いて求めている。これら上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerは、上記のように、トルク指令調整部54が出力するトルク指令値Ctrq_adjの範囲を制限するパラメータである。
上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerを求めるための各テーブルは、何れも、例えば交流回転電機30に供給する電流を変化させて、鎖交磁束、および保護対象の温度を確認する実験、或いはシミュレーションにより作成したものである。ここで、図11および図12を参照し、それらテーブルの内容例について具体的に説明する。図11は、許容トルクCtrq_alwの上限値Ctrq_alw_upperを求めるためのテーブルの内容例を説明する図である。図12は、許容トルクCtrq_alwの下限値Ctrq_alw_lowerを求めるためのテーブルの内容例を説明する図である。
図11および図12において、縦軸に電流量、横軸にFluxと表記の鎖交磁束をそれぞれ取っている。そのグラフ内に示す複数の曲線は、それぞれ、許容可能とする許容トルク別に、電流量の鎖交磁束による変化を示している。このことから、各テーブルは、電流量と鎖交磁束とにより許容トルクを示す2次元テーブルとなっている。それにより、許容トルク算出部53は、最大鎖交磁束FLmaxと、最大電流量Imax_adjとを用いて各テーブルを参照することにより、上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerを求める。図11中に表記の「40」「80」「120」等は、何れも許容トルク値を示している。同様に、図12中に表記の「−40」「−80」「−120」等は、何れも許容トルク値を示している。
図11および図12は、トルクは、電流量、および鎖交磁束によって変化することを示している。上記のように、最大鎖交磁束FLmaxは、最大電圧値Vmax、および電気角速度ωによって変化する。このことから、最大電流調整部52から最大電流量Imax_adjを入力すると共に、最大電圧値Vmaxを算出し、その最大電圧値Vmaxから更に最大鎖交磁束FLmaxを算出することにより、上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerを求めることができる。
トルク指令調整部54は、入力したトルク指令値Ctrqを、許容トルク算出部53から入力した上限値Ctrq_alw_upperおよび下限値Ctrq_alw_lowerとそれぞれ比較し、その比較結果に応じて、トルク指令値Ctrqを操作する。それにより、トルク指令調整部54は、トルク指令値Ctrqが上限値Ctrq_alw_upperより大きい場合、つまりトルク指令値Ctrq>上限値Ctrq_alw_upper、の大小関係が満たされている場合、上限値Ctrq_alw_upperをトルク指令値Ctrqとする操作、つまり、トルク指令値Ctrq=上限値Ctrq_alw_upper、とする操作を行う。この操作後のトルク指令値Ctrqがトルク指令値Ctrq_adjとして、トルク指令調整部54から出力される。
トルク指令値Ctrqが下限値Ctrq_alw_lowerより小さい場合、つまりトルク指令値Ctrq<下限値Ctrq_alw_lower、の大小関係が満たされている場合、トルク指令調整部54は、下限値Ctrq_alw_lowerをトルク指令値Ctrqとする操作、つまり、トルク指令値Ctrq=下限値Ctrq_alw_lower、とする操作を行う。この操作後のトルク指令値Ctrqがトルク指令値Ctrq_adjとして、トルク指令調整部54から出力される。トルク指令値Ctrqが下限値Ctrq_alw_lower以上、上限値Ctrq_alw_upper以下の範囲内であった場合、つまり下限値Ctrq_alw_lower≦トルク指令値Ctrq≦上限値Ctrq_alw_upper、の大小関係が満たされている場合、トルク指令調整部54は、トルク指令値Ctrqをそのままトルク指令値Ctrq_adjとして出力する。
このようなことから、トルク指令調整部54が出力するトルク指令値Ctrq_adjは、以下のようになる。
(1)トルク指令値Ctrq>上限値Ctrq_alw_upperの場合:
トルク指令値Ctrq_adj=上限値Ctrq_alw_upper
(2)下限値Ctrq_alw_lower≦トルク指令値Ctrq≦上限値Ctrq_alw_upperの場合:
トルク指令値Ctrq_adj=トルク指令値Ctrq
(3)トルク指令値Ctrq<下限値Ctrq_alw_lowerの場合:
トルク指令値Ctrq_adj=下限値Ctrq_alw_lower
このように、本実施の形態では、下限値Ctrq_alw_lower≦トルク指令値Ctrq_adj≦下限値Ctrq_alw_upper、の範囲内にトルク指令値Ctrq_adjを制限し、交流回転電機30を駆動させる。次に、このようなトルク指令値Ctrq_adjの制限により可能となる保護対象の過熱からの保護について、図13〜図16を参照して具体的に説明する。
図13は、本発明の実施の形態1に係る交流回転電機の制御装置に交流回転電機を制御させた場合の保護対象の温度の時間変化例を示す図である。図14は、本発明の実施の形態1に係る交流回転電機の制御装置に交流回転電機を制御させた場合に保護対象に流れる最大電流量の時間変化例を示す図である。図15は、従来の交流回転電機の制御装置に交流回転電機を制御させた場合の保護対象の温度の時間変化例を示す図である。図16は、従来の交流回転電機の制御装置に交流回転電機を制御させた場合に保護対象に流れる最大電流量の時間変化例を示す図である。それにより、図13および図15では、縦軸に温度、横軸に時間をそれぞれ取っている。図14および図16では、縦軸に電流、横軸に時間をそれぞれ取っている。
図13〜図16にそれぞれ示す例は何れも、交流回転電機の制御装置に関係しない部分の条件は同じとしたシミュレーションにより得られた結果である。ここでは、従来例と比較し、本実施の形態によって実現される効果について具体的に説明する。その従来例は、保護部70の検出した温度、或いは保護部70の推定した温度と設定温度71との間の偏差をトルク指令値の操作に用いるものである(例えば、特許文献1参照)。図13および図15の「保護部温度」は、上記のように、保護部70の検出した温度、及び保護部70の推定した温度の総称である。
まず、図15および図16を参照し、従来例でのシミュレーション結果について具体的に説明する。
シミュレーションでは、最大トルク制御を想定している。そのため、シミュレーション開始直後に、交流回転電機30のトルクは最大となる。また、図15に示すように、上限値の最大電流がスイッチング素子、及び交流回転電機30に流れる。この結果、図15に示すように、保護部温度は急激に上昇する。
その後、保護部温度は設定温度71に達して、それらの間の偏差がなくなり、トルク指令値=0となる。この結果、図16に示すように、最大電流量も急激に減少して、0となる。しかしながら、最大電流量が上限値から0となるまでには遷移時間が必要である。図15に示すように、その遷移時間に流れる電流により、保護部温度は更に上昇し、設定温度71を大きく超えることになる。このことから、従来例では、保護部温度が設定温度71を越えた分の温度であるオーバーシュート分が比較的に大きくなって、保護対象が過熱により破損し易い。
図15に示す例では、保護部温度は、最大電流量が0となった後、緩やかに下がっている。保護部温度が設定温度71より低くなると、最大電流量は増加を開始し、保護部温度は、その開始に遅れて、上昇を開始する。その後、再び、保護部温度が設定温度71に達すると、最大電流量が減少して、保護部温度が設定温度71より低くなる。保護部温度と設定温度71との間の大小関係により、このような動作が繰り返される。この結果、保護部温度は、設定温度71に収束する。
これに対して、本実施の形態では、図13に示すように、保護部温度以上である補償後温度を制御に用いている。そのため、補償後温度は、従来例と比較し、より早いタイミングで設定温度71に達する。図14に示すように、最大電流量も従来例と比較し、より早いタイミングで減少する。この結果、図13に示すように、保護部温度を設定温度71以下に抑えることができる。例え保護部温度を設定温度71以下に抑えられなくとも、従来例と比較し、オーバーシュート分、及びオーバーシュートしている時間を大幅に抑えることができる。従って、本実施の形態では、保護対象の過熱による破損を確実に回避することができる。例え保護対象の過熱による破損が発生するとしても、その発生確率は非常に小さいレベルに抑えることができる。
図17は、本発明の実施の形態1に係る交流回転電機の制御装置の一連の動作の流れの例を示すフローチャートである。この制御装置は、上記のように、温度検出部50による保護部温度の検出により、データの流れ上、後段に位置する各部51〜54がそれぞれの処理を行うことになる。このことから、図17では、温度検出部50による保護部温度の検出を起点と想定し、一連の動作の流れの例を示している。最後に図17を参照し、この制御装置の動作について更に説明する。
温度検出部50は、例えば予め定められた時間が経過する度に、保護部70の温度検出を行い、保護部温度を温度補償部51に出力する(S101)。一方、トルク指令調整部54は、トルク指令値Ctrqが入力される毎に、入力されたトルク指令値Ctrqを取得する(S102)。それにより、トルク指令調整部54には、調整対象となるトルク指令値Ctrqが常に存在する。
温度補償部51は、温度検出部50からの保護部温度の入力により、上記のようにして、補償後温度を算出し、算出した補償後温度を減算器55に出力する(S103)。それにより、減算器55は、データとして設定された設定温度71から補償後温度を引く減算を行い、その減算結果である差分を偏差として最大電流調整部52に出力する(S104)。
最大電流調整部52は、入力した偏差を用いて、最大電流量Imax_adjを算出し、算出した最大電流量Imax_adjを許容トルク算出部53に出力する(S105)。許容トルク算出部53は、最大電流量Imax_adjの入力により、入力した最大電流量Imax_adjを用いて、許容トルクCtrq_alwの上限値Ctrq_alw_upperとその下限値Ctrq_alw_lowerとを求め、トルク指令調整部54に出力する(S106)。
トルク指令調整部54は、取得済みのトルク指令値Ctrqが許容トルクCtrq_alwの上限値Ctrq_alw_upperより大きいか否か判定する(S107)。トルク指令値Ctrqが許容トルクCtrq_alwの上限値Ctrq_alw_upperより大きい場合、S107の判定はYesとなる。そのため、トルク指令調整部54は、トルク指令値Ctrq_adjを上限値Ctrq_alw_upperとし、電流指令演算部41に出力する(S108)。その出力により、温度検出部50による保護部温度の検出を起点と想定する一連の動作が終了する。
一方、トルク指令値Ctrqが許容トルクCtrq_alwの上限値Ctrq_alw_upper以下の場合、判定はNoとなる。そのため、トルク指令調整部54は、トルク指令値Ctrqが許容トルクCtrq_alwの下限値Ctrq_alw_lowerより小さいか否か判定する(S109)。トルク指令値Ctrqが許容トルクCtrq_alwの下限値Ctrq_alw_lowerより小さい場合、S108の判定はYesとなる。そのため、トルク指令調整部54は、トルク指令値Ctrq_adjを下限値Ctrq_alw_lowerとし、電流指令演算部41に出力する(S108)。その出力により、温度検出部50による保護部温度の検出を起点と想定する一連の動作が終了する。
トルク指令値Ctrqが許容トルクCtrq_alwの下限値Ctrq_alw_lower以上の場合、S109の判定はNoとなる。そのため、トルク指令調整部54は、トルク指令値Ctrqをトルク指令値Ctrq_adjとし、電流指令演算部41に出力する(S110)。その出力により、温度検出部50による保護部温度の検出を起点と想定する一連の動作が終了する。
上記の説明では、交流回転電機の制御装置を構成する温度検出部50、温度補償部51、減算器55、最大電流調整部52、許容トルク算出部53、および、トルク指令調整部54は、それぞれ異なるハードウェアを用いた構成要素と想定している。しかし、温度検出部50の一部、温度補償部51、減算器55、最大電流調整部52、許容トルク算出部53、および、トルク指令調整部54は、情報処理装置上に実現させることができる。情報処理装置は、必要な情報の入出力が行えるハードウェア構成であればよく、その構成は特に限定されない。それにより、情報処理装置は、情報処理装置として機能する処理回路であってもよい。その処理回路は、メモリに格納されるプログラムを実行するプロセッサを含んでいてもよく、専用のハードウェアであってもよい。
処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものであってもよい。処理回路は一つではなく、複数であってもよい。
一方、処理回路がプロセッサを含む場合、温度検出部50の一部、温度補償部51、減算器55、最大電流調整部52、許容トルク算出部53、および、トルク指令調整部54は、プロセッサに実行させるプログラムにより実現させることができる。プロセッサにプログラムを実行させるために、処理回路には、プログラムを格納するためのメモリが含まれる。それら、或いは一部の実現には、更にファームウェアが必要であってもよい。
プロセッサに実行させる一つ以上のプログラムは、上述した各部の実現のための手順を処理回路に実行させるものであるともいえる。そのプログラムを格納させるメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性メモリを挙げることができる。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等も、メモリとして用いることができる。
なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部を処理回路上に実現させるようにしてもよい。このことから、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部を実現させるものであってもよい。
10 直流電源、11 電圧検出部、20 インバータ、21a、21b、21c 上アーム側スイッチング素子、22a、22b、22c 下アーム側スイッチング素子、30 交流回転電機、31 磁極位置検出部、32 電気角速度検出部、33a、33b、33c 電流センサ、40 インバータ制御部、41 電流指令演算部、42 d軸電流調整器、43 q軸電流調整器、44 電圧座標変換器、45 PWM回路、46 ゲートドライバ、47 電流座標変換器、50 温度検出部、51 温度補償部、52 最大電流調整部、53 許容トルク算出部、54 トルク指令調整部、55 減算器(演算部)、60 比例調整器、61 積分器、62 上下限制限部、63 加算器、64 乗算器、65 加算器、66 乗算器、67 選択部、70 保護部、511 補償量算出部、512 加算器(加算部)、515 リミッタ(補償量制限部)。
本発明に係る交流回転電機の制御装置は、スイッチング素子を備えた電力変換回路から交流回転電機に電流を供給する場合の保護対象の温度を直接的に、或いは間接的に検出するための保護部の温度を検出し、温度、及び温度から推定される保護対象の温度のうちの一方を検出温度として出力する温度検出部と、温度検出部が出力する検出温度を用いて、検出温度以上であり、且つ検出温度の変化量が大きくなるほど大きくなる補償後温度を算出する温度補償部と、温度補償部が算出した補償後温度を用いて、入力されたトルク指令値を制限するトルク制限部と、を備えている。
本発明に係る交流回転電機の制御装置は、スイッチング素子を備えた電力変換回路から交流回転電機に電流を供給する場合の保護対象の温度を直接的に、或いは間接的に検出するための保護部の温度を検出し、保護部の温度が保護対象の検出すべき温度を直接的に示している場合には検出した温度、保護部の温度が保護対象の検出すべき温度を直接的に示していない場合には検出した温度から推定される保護対象の温度を検出温度として出力する温度検出部と、温度検出部が出力する検出温度を用いて、検出温度以上であり、且つ検出温度の上昇時には検出温度の変化量が大きくなるほど大きくなる補償後温度を算出する温度補償部と、温度補償部が算出した補償後温度を用いて、入力されたトルク指令値を制限するトルク制限部と、を備えている。

Claims (8)

  1. スイッチング素子を備えた電力変換回路から交流回転電機に電流を供給する場合の保護対象に設けられた保護部の温度を検出し、前記温度、及び前記温度から推定される前記保護対象の温度のうちの一方を検出温度として出力する温度検出部と、
    前記温度検出部が出力する前記検出温度を用いて、前記検出温度以上である補償後温度を算出する温度補償部と、
    前記温度補償部が算出した前記補償後温度を用いて、入力されたトルク指令値を制限するトルク制限部と、
    を有する交流回転電機の制御装置。
  2. 前記トルク制限部は、
    前記温度補償部が算出した前記補償後温度と、予め設定された設定温度との間の差分を算出する演算部と、
    前記差分を用いて、前記補償後温度が前記設定温度を超えないように、前記電力変換回路から前記交流回転電機に供給される最大電流量を調整する最大電流調整部と、
    前記最大電流調整部による調整後の最大電流量に基づいて、前記トルク指令値の上限値、および下限値を算出する許容トルク算出部と、
    前記上限値、および前記下限値に基づいて、前記トルク指令値を調整するトルク指令調整部と、を備える、
    請求項1に記載の交流回転電機の制御装置。
  3. 前記温度補償部は、
    前記検出温度を用いて、補償量を算出する補償量算出部と、
    前記検出温度に前記補償量を加算することにより、前記補償後温度を算出する加算部と、を備える、
    請求項1または2に記載の交流回転電機の制御装置。
  4. 前記温度補償部は、
    前記補償量の範囲を制限する補償量制限部、を更に備え、
    前記加算部は、前記検出温度に、前記補償量制限部により制限される補償量を加算することにより、前記補償後温度を算出する、
    請求項3に記載の交流回転電機の制御装置。
  5. 前記補償量算出部は、増幅器、低域通過フィルタ、及び高域通過フィルタの機能を備え、前記温度検出部が検出した前記温度に対し、増幅率、前記低域通過フィルタの伝達関数、及び前記高域通過フィルタの伝達関数を用いた操作を行うことにより、前記補償量を算出する、
    請求項3または4に記載の交流回転電機の制御装置。
  6. 直流電源の直流電圧値を検出する電圧検出部と、
    前記交流回転電機の電気角速度を検出する電気角速度検出部と
    を更に備え、
    前記許容トルク算出部は、
    前記電圧検出部が検出した前記直流電圧値、及び予め設定された最大変調率に基づいて、前記交流回転電機に印加される最大電圧値を算出し、
    前記最大電圧値、及び前記電気角速度に基づいて、前記交流回転電機の最大鎖交磁束を算出し、
    前記最大鎖交磁束、及び前記調整後の最大電流量に基づいて、前記上限値、および前記下限値を算出する、
    請求項2に記載の交流回転電機の制御装置。
  7. 前記トルク指令調整部は、
    前記トルク指令値が前記上限値より大きい場合は、前記トルク指令値を前記上限値に操作し、
    前記トルク指令値が前記下限値より小さい場合は、前記トルク指令値を前記下限値に操作し、
    前記トルク指令値が、前記上限値以下、前記下限値以上の範囲内の場合は、前記トルク指令値を操作せず、同じ値を維持させる、
    ことにより前記トルク指令値を調整する、
    請求項2に記載の交流回転電機の制御装置。
  8. 前記保護部は、異なる複数の保護対象に設けられている場合に、前記温度補償部は、前記保護部毎に複数、設けられ、
    前記トルク制限部は、前記温度補償部毎に、前記演算部を備え、
    前記トルク制限部に含まれる前記最大電流調整部は、前記演算部がそれぞれ算出する差分のうちの最小の差分を用いて、前記電力変換回路から前記交流回転電機に供給される最大電流量を調整する、
    請求項2に記載の交流回転電機の制御装置。
JP2019070963A 2019-04-03 2019-04-03 交流回転電機の制御装置 Active JP6965303B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019070963A JP6965303B2 (ja) 2019-04-03 2019-04-03 交流回転電機の制御装置
US16/794,488 US11183964B2 (en) 2019-04-03 2020-02-19 Control device for an AC rotating electric machine
CN202010223753.4A CN111817646B (zh) 2019-04-03 2020-03-26 交流旋转电机的控制装置
DE102020204025.7A DE102020204025A1 (de) 2019-04-03 2020-03-27 Steuervorrichtung für eine elektrische Wechselstromrotationsmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019070963A JP6965303B2 (ja) 2019-04-03 2019-04-03 交流回転電機の制御装置

Publications (2)

Publication Number Publication Date
JP2020171118A true JP2020171118A (ja) 2020-10-15
JP6965303B2 JP6965303B2 (ja) 2021-11-10

Family

ID=72518163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019070963A Active JP6965303B2 (ja) 2019-04-03 2019-04-03 交流回転電機の制御装置

Country Status (4)

Country Link
US (1) US11183964B2 (ja)
JP (1) JP6965303B2 (ja)
CN (1) CN111817646B (ja)
DE (1) DE102020204025A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112874318A (zh) * 2021-01-28 2021-06-01 奇瑞新能源汽车股份有限公司 驱动电机的控制方法、装置及车辆
JP2021197753A (ja) * 2020-06-10 2021-12-27 三菱電機株式会社 インバータ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923721B (zh) * 2018-08-20 2020-09-25 广东美的暖通设备有限公司 电机变频驱动***与多联机中央空调器
US20220357223A1 (en) * 2021-05-07 2022-11-10 Bourns, Inc. Torque and angle sensing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195343A (ja) * 2006-01-19 2007-08-02 Nissan Motor Co Ltd インバータ装置
JP2009158540A (ja) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp 温度検出システム
JP2010051040A (ja) * 2008-08-19 2010-03-04 Toyota Motor Corp 車両駆動用モータ制御装置
JP2010111265A (ja) * 2008-11-06 2010-05-20 Hitachi Automotive Systems Ltd 操舵制御装置
WO2014162755A1 (ja) * 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
JP2016092944A (ja) * 2014-11-04 2016-05-23 株式会社デンソー モータ制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289799A (ja) * 1996-04-19 1997-11-04 Toyota Motor Corp 永久磁石モータの制御装置
JP4042848B2 (ja) * 2002-11-14 2008-02-06 株式会社ジェイテクト 電動式ステアリングの制御装置
JP2008168669A (ja) * 2007-01-09 2008-07-24 Jtekt Corp 電動パワーステアリング装置
JP5473399B2 (ja) * 2009-05-15 2014-04-16 三菱電機株式会社 過熱保護装置
US9431946B2 (en) * 2013-02-26 2016-08-30 Nissan Motor Co., Ltd. Motor control device and motor control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195343A (ja) * 2006-01-19 2007-08-02 Nissan Motor Co Ltd インバータ装置
JP2009158540A (ja) * 2007-12-25 2009-07-16 Mitsubishi Electric Corp 温度検出システム
JP2010051040A (ja) * 2008-08-19 2010-03-04 Toyota Motor Corp 車両駆動用モータ制御装置
JP2010111265A (ja) * 2008-11-06 2010-05-20 Hitachi Automotive Systems Ltd 操舵制御装置
WO2014162755A1 (ja) * 2013-04-01 2014-10-09 富士電機株式会社 電力変換装置
JP2016092944A (ja) * 2014-11-04 2016-05-23 株式会社デンソー モータ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197753A (ja) * 2020-06-10 2021-12-27 三菱電機株式会社 インバータ装置
CN112874318A (zh) * 2021-01-28 2021-06-01 奇瑞新能源汽车股份有限公司 驱动电机的控制方法、装置及车辆

Also Published As

Publication number Publication date
US20200321903A1 (en) 2020-10-08
CN111817646A (zh) 2020-10-23
CN111817646B (zh) 2024-04-26
DE102020204025A1 (de) 2020-10-08
JP6965303B2 (ja) 2021-11-10
US11183964B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6965303B2 (ja) 交流回転電機の制御装置
JP6274077B2 (ja) モータ制御装置
US6992448B2 (en) Motor control apparatus
JP2007159368A (ja) モータ駆動システムの制御装置
JP6107936B2 (ja) 電力変換装置
US10715077B2 (en) Method of controlling motor and device of controlling motor
JP7151872B2 (ja) 永久磁石同期機の制御装置
JP2006141095A (ja) 永久磁石型同期モータを駆動制御する装置
JP4897521B2 (ja) 交流電動機の駆動制御装置
JP7385538B2 (ja) 電力変換装置、温度推定方法及びプログラム
JP2009284598A (ja) 交流電動機の制御装置
JP6949242B2 (ja) 交流回転電機の制御装置
JP5262267B2 (ja) 三相交流モータの駆動装置
JP2013188074A (ja) 誘導モータの制御装置および制御方法
JP6680104B2 (ja) モータの制御装置、及び、制御方法
JP2021048740A (ja) インバータ装置及びインバータ装置の制御方法
JP6873293B1 (ja) 交流回転電機の制御装置
JP7444001B2 (ja) モータの制御装置
WO2024034113A1 (ja) インバータ制御装置
WO2023170740A1 (ja) 電力変換器の過熱保護制御装置
JP7213448B2 (ja) 電動機の制御装置
JP7172910B2 (ja) 電動機の制御装置
AU2021428033A1 (en) Control device, drive device for motor, control method, and program
JP2024039777A (ja) 電力変換器の過熱保護制御装置
JP2022068658A (ja) モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200817

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200818

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201030

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201110

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210112

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210907

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211019

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6965303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111