JP2020153591A - Header plate-less type heat exchanger - Google Patents

Header plate-less type heat exchanger Download PDF

Info

Publication number
JP2020153591A
JP2020153591A JP2019052842A JP2019052842A JP2020153591A JP 2020153591 A JP2020153591 A JP 2020153591A JP 2019052842 A JP2019052842 A JP 2019052842A JP 2019052842 A JP2019052842 A JP 2019052842A JP 2020153591 A JP2020153591 A JP 2020153591A
Authority
JP
Japan
Prior art keywords
core
inlet
outlet
heat exchanger
flat tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019052842A
Other languages
Japanese (ja)
Other versions
JP7286362B2 (en
Inventor
卓也 岩本
Takuya Iwamoto
卓也 岩本
勝則 酒井
Katsunori Sakai
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2019052842A priority Critical patent/JP7286362B2/en
Publication of JP2020153591A publication Critical patent/JP2020153591A/en
Application granted granted Critical
Publication of JP7286362B2 publication Critical patent/JP7286362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a header plate-less type heat exchanger which has high temperature corrosion resistance and can be inexpensively manufactured.SOLUTION: An inlet core 3a arranged in a side of an inlet 2 of an exhaust gas 7 is composed of a laminate of a flat tube 1 of a high temperature corrosion resistant material, while an outlet core 3b arranged in a side of an outlet of the exhaust gas 7 is composed of a laminate of a flat tube 1 of a material less resistant to high temperature corrosion than the high temperature corrosion resistant material.SELECTED DRAWING: Figure 1

Description

本発明は、両端部が厚み方向に膨出した偏平チューブを積層してなる熱交換器であって、そのヘッダープレートを不要とする熱交換器に関する。 The present invention relates to a heat exchanger in which flat tubes having both ends bulging in the thickness direction are laminated, and the header plate thereof is not required.

下記特許文献1には、両端部の溝底高さが厚み方向に膨出した一対の溝型プレートを組み合わせて偏平チューブを形成し、各偏平チューブを膨出部で積層してコアを形成し、そのコアの外周にケーシングを被嵌し、偏平チューブ内に高温の排ガスを流通させると共に、偏平チューブの外周に冷却水を流通して、両流体間熱交換を行ったものが知られている。
即ち、図5に示す如く、偏平チューブ1の積層体によりコア3を形成し、その外周にケーシング5を被嵌すると共に、コア3の両側とケーシング5との間に排ガス7の出入口タンクを設け、コア3の長手方向の両端部に一対の冷却水パイプを設け、ケーシング5の入口2から排ガス7をコア3の各偏平チューブ1内に導く。それと共に、ケーシング5のコア3の両端から冷却水8を各偏平チューブ1の外面側に流通させ、排ガス7と冷却水8との間に熱交換を行わせたものである。
In Patent Document 1 below, a flat tube is formed by combining a pair of groove-shaped plates whose groove bottom heights at both ends bulge in the thickness direction, and each flat tube is laminated at the bulge to form a core. It is known that a casing is fitted on the outer circumference of the core, high-temperature exhaust gas is circulated in the flat tube, and cooling water is circulated on the outer circumference of the flat tube to exchange heat between the two fluids. ..
That is, as shown in FIG. 5, the core 3 is formed from the laminated body of the flat tubes 1, the casing 5 is fitted on the outer periphery thereof, and the inlet / outlet tanks for the exhaust gas 7 are provided between both sides of the core 3 and the casing 5. A pair of cooling water pipes are provided at both ends in the longitudinal direction of the core 3, and the exhaust gas 7 is guided into each flat tube 1 of the core 3 from the inlet 2 of the casing 5. At the same time, the cooling water 8 is circulated from both ends of the core 3 of the casing 5 to the outer surface side of each flat tube 1, and heat exchange is performed between the exhaust gas 7 and the cooling water 8.

特開2015−78823号公報Japanese Unexamined Patent Publication No. 2015-78823

熱交換器の冷却水8として水道水を用いると、それに殺菌剤として、残留塩素、及び塩化物イオンが含まれている。すると、偏平チューブ1にステンレス鋼を用いても、該残留塩素の影響でステンレス鋼の自然電位が上昇し、一方、該塩化物イオンの影響でステンレス鋼の腐食電位は低減することから、特に高温域(一般的に70℃以上)においては、腐食環境(自然電位>腐食電位)に至る。
そのため、熱交換材料には特に質の高い高耐食性のステンレス材料を使用する必要があった。すると、熱交換器の価格が高価にならざるを得ない欠点があった。
そこで、本発明は係る問題点を解決することを課題とする。
When tap water is used as the cooling water 8 of the heat exchanger, residual chlorine and chloride ions are contained as a bactericidal agent. Then, even if stainless steel is used for the flat tube 1, the natural potential of the stainless steel rises due to the influence of the residual chlorine, while the corrosion potential of the stainless steel decreases due to the influence of the chloride ions. In the region (generally 70 ° C. or higher), a corrosive environment (natural potential> corrosive potential) is reached.
Therefore, it is necessary to use a particularly high quality and highly corrosion resistant stainless steel material as the heat exchange material. Then, there is a drawback that the price of the heat exchanger has to be high.
Therefore, it is an object of the present invention to solve such a problem.

請求項1に記載の本発明は、それぞれ、長手方向の両端部の溝底1aの高さが、中間部のそれより高く厚み方向に膨出された膨出部1dを有する第1の溝型プレート1bと、第2の溝形プレート1cとを有し、第1の溝形プレート1bの溝底と第2の溝型プレート1cの溝底とを、互いに対向させて嵌着して偏平チューブ1が構成され、複数の偏平チューブ1を前記膨出部1dで積層してコア3が形成され、コア3の外周にケーシング5が被嵌され、コア3の各偏平チューブ1内に高温の排ガス7が流通すると共に、各偏平チューブ1の外周に冷却水8が流通するヘッダープレートレス型熱交換器において、
排ガス7の入口2側に配置され、高耐蝕性材料からなる前記偏平チューブ1の積層体からなる入口コア3aと、その入口コア3aに直列して前記排ガス7の出口側に配置され、前記高耐蝕性材料に比べて耐蝕性の低い材料からなる偏平チューブ1の積層体からなる出口コア3bとを有し、
両コア3a,3bの外周が前記ケーシング5で被嵌されたヘッダープレートレス型熱交換器である。
The present invention according to claim 1 is a first groove type having a bulging portion 1d in which the height of the groove bottoms 1a at both ends in the longitudinal direction is higher than that in the intermediate portion and bulges in the thickness direction. A flat tube having a plate 1b and a second grooved plate 1c, and the groove bottom of the first grooved plate 1b and the groove bottom of the second grooved plate 1c are fitted so as to face each other. 1 is configured, a plurality of flat tubes 1 are laminated at the bulging portion 1d to form a core 3, a casing 5 is fitted on the outer periphery of the core 3, and high-temperature exhaust gas is contained in each flat tube 1 of the core 3. In a header plateless heat exchanger in which cooling water 8 circulates around the outer periphery of each flat tube 1 as well as 7 circulates.
An inlet core 3a made of a laminated body of the flat tube 1 made of a highly corrosion-resistant material and arranged on the inlet 2 side of the exhaust gas 7 and an inlet core 3a arranged in series with the inlet core 3a on the outlet side of the exhaust gas 7 and having the height. It has an outlet core 3b made of a laminated body of flat tubes 1 made of a material having lower corrosion resistance than a corrosion resistant material.
This is a header plateless heat exchanger in which the outer circumferences of both cores 3a and 3b are fitted with the casing 5.

請求項2に記載の本発明は、前記入口コア3a,出口コア3bの端どうしが前記長手方向に互いに離間し、少なくとも一方側のコアの偏平チューブ1の前記膨出部1dの側壁1fが前記長手方向に延長されて延長部1eを構成し、その延長部1eが他方のコアの偏平チューブ1の端部に接合された請求項1に記載のヘッダープレートレス型熱交換器である。 According to the second aspect of the present invention, the ends of the inlet core 3a and the outlet core 3b are separated from each other in the longitudinal direction, and the side wall 1f of the bulging portion 1d of the flat tube 1 of the core on at least one side is said. The header plateless heat exchanger according to claim 1, wherein the extension portion 1e is extended in the longitudinal direction, and the extension portion 1e is joined to the end portion of the flat tube 1 of the other core.

請求項3に記載の本発明は、前記入口コア3aと出口コア3bとの境において、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成した請求項1又は請求項2のいずれかに記載のヘッダープレートレス型熱交換器である。 According to the third aspect of the present invention, the natural potential of the material having low corrosion resistance of the outlet core 3b generated in contact with the supplied cooling water at the boundary between the inlet core 3a and the outlet core 3b is the corrosion potential thereof. The header plateless heat exchanger according to any one of claims 1 or 2, which is configured to have a lower temperature T1.

請求項1に記載の熱交換器は、排ガス7の入口2側に配置された入口コア3aが高耐蝕性材料の偏平チューブ1の積層体からなり、その入口コア3aに直列して排ガス7の出口側に配置され出口コア3bが比較的、耐蝕性の低い材料の偏平チューブ1の積層体からなり、両コア3a,3bの外周がケーシング5に被嵌され、各偏平チューブ1内に排ガス7が流通し、各偏平チューブ1の外周に冷却水8が流通するものである。
即ち、上流側で、より高温の排ガス7が内部を流通する入口コア3aの偏平チューブ1が高耐蝕性材料で形成され、その劣化を効果的に防止し、比較的低温の排ガス7が内部を流通する出口コア3bの偏平チューブ1を低耐蝕性材料で形成したので、少ない高耐蝕材料を用いつつ全体として、耐蝕性の高い経済的なヘッダープレートレス型熱交換器を提供できる。
In the heat exchanger according to claim 1, the inlet core 3a arranged on the inlet 2 side of the exhaust gas 7 is made of a laminated body of flat tubes 1 made of a highly corrosion-resistant material, and the exhaust gas 7 is connected in series with the inlet core 3a. The outlet core 3b arranged on the outlet side is made of a laminated body of flat tubes 1 made of a material having relatively low corrosion resistance, the outer circumferences of both cores 3a and 3b are fitted to the casing 5, and the exhaust gas 7 is contained in each flat tube 1. Is circulated, and the cooling water 8 is circulated on the outer periphery of each flat tube 1.
That is, on the upstream side, the flat tube 1 of the inlet core 3a through which the higher temperature exhaust gas 7 flows is formed of a highly corrosion resistant material, its deterioration is effectively prevented, and the relatively low temperature exhaust gas 7 passes through the inside. Since the flat tube 1 of the outlet core 3b to be distributed is made of a low corrosion resistant material, it is possible to provide an economical header plateless heat exchanger having high corrosion resistance as a whole while using a small amount of high corrosion resistant material.

請求項2に記載の熱交換器は、前記入口コア3a、出口コア3bの端どうしが離間し、一方の偏平チューブ1の延長部1eが他方の偏平チューブ1の端部に接合されたものである。
このように、入口コア3aと出口コア3bとが離間することにより、互いの熱的影響を可及的に少なくすると共に、境目で排ガスを攪拌して温度を均一にし、下流側の出口コア3bの耐久性を向上できる。
In the heat exchanger according to claim 2, the ends of the inlet core 3a and the outlet core 3b are separated from each other, and the extension portion 1e of one flat tube 1 is joined to the end of the other flat tube 1. is there.
By separating the inlet core 3a and the outlet core 3b in this way, the thermal influence of each other is reduced as much as possible, and the exhaust gas is agitated at the boundary to make the temperature uniform, and the outlet core 3b on the downstream side is used. Durability can be improved.

請求項3に記載の発明は、前記入口コア3aと出口コア3bとの境において、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成したものである。
これにより、出口コア3bがその全長で腐食発生温度以下となるため、出口コア3bに廉価材の使用が可能となる効果がある。
In the invention according to claim 3, the natural potential of the material having low corrosion resistance of the outlet core 3b generated in contact with the supplied cooling water at the boundary between the inlet core 3a and the outlet core 3b is higher than the corrosion potential thereof. It is configured so that the temperature becomes lower T1.
As a result, the total length of the outlet core 3b is below the corrosion occurrence temperature, so that there is an effect that a low-priced material can be used for the outlet core 3b.

本発明のヘッダープレートレス型熱交換器の要部平面図。Top view of the main part of the header plateless heat exchanger of the present invention. 同熱交換器の分解斜視図。An exploded perspective view of the heat exchanger. 同熱交換器を構成する偏平チューブ1の説明図であって、(A)はその要部分解図、(B)は同接続説明図、(C)は一対の偏平チューブ1の接続状態を示す要部斜視図である。It is explanatory drawing of the flat tube 1 which constitutes the same heat exchanger, (A) is the main part exploded view, (B) is the connection explanatory view, (C) shows the connection state of a pair of flat tubes 1. It is a perspective view of a main part. 熱交換器の冷却水に水道水を用いる場合の腐食電位/自然電位と温度との関係を示す説明図。Explanatory drawing which shows the relationship between the corrosion potential / natural potential and temperature when tap water is used as the cooling water of a heat exchanger. 従来型ヘッダープレートレス型熱交換器の要部平面図。Top view of the main part of the conventional header plateless heat exchanger.

次に、図面に基づいて本発明の実施の形態につき説明する。
この熱交換器は、図2に示す如く、入口コア3aとそれに連結された出口コア3bとを有し、それらがケーシング5に被嵌される。
このケーシング5は、ケーシング本体5aとその上端を被嵌する蓋材5bとからなる。 そして入口コア3a及び出口コア3bは、図1に示す如く、ケーシング5内に直列的に収納されて、その長手方向の両端部にガスタンク部9が設けられる。この例では、入口コア3a及び出口コア3bの境は、それらコアの向かい合う端どうしが長手方向に互いに離間して空間部14が設けられる。
また、入口コア3aと出口コア3bとからなるコア3の長手方向の一側には、夫々水タンク13(図1)を介して水パイプ6が突設されている。さらに、ケーシング5はその他側に入口コア3aと出口コア3bの水の流路をつなぐ水側連結部5cが設けられ、その水側連結部5cとコア3との間に水タンク13が形成されている。水側連結部5cを構成する水タンク13の位置は、空間部14の位置に整合する。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 2, this heat exchanger has an inlet core 3a and an outlet core 3b connected to the inlet core 3a, which are fitted in the casing 5.
The casing 5 is composed of a casing main body 5a and a lid material 5b that fits the upper end thereof. As shown in FIG. 1, the inlet core 3a and the outlet core 3b are housed in series in the casing 5, and gas tank portions 9 are provided at both ends in the longitudinal direction thereof. In this example, the boundary between the inlet core 3a and the outlet core 3b is provided with a space 14 in which the opposite ends of the cores are separated from each other in the longitudinal direction.
Further, a water pipe 6 is projected from each side of the core 3 including the inlet core 3a and the outlet core 3b in the longitudinal direction via the water tank 13 (FIG. 1). Further, the casing 5 is provided with a water-side connecting portion 5c connecting the water flow paths of the inlet core 3a and the outlet core 3b on the other side, and a water tank 13 is formed between the water-side connecting portion 5c and the core 3. ing. The position of the water tank 13 constituting the water side connecting portion 5c is aligned with the position of the space portion 14.

入口コア3a,出口コア3bは、夫々偏平チューブ1の積層体からなる。
各偏平チューブ1は、図3に示す如く、第1の溝型プレート1bと第2の溝型プレート1cとの嵌着体からなる。それらは、長手方向の両端部に溝底1aの高さが中間部のそれより高く厚み方向に膨出された膨出部1dを有する。そして、それらは互いに溝底1aを対向させて嵌着したものからなる。そして、複数の偏平チューブ1を膨出部1dで積層して、入口コア3a,出口コア3bが形成される。
なお、この例では図3(A)〜(C)に示す如く、偏平チューブ1の第2の溝型プレート1cの端部に延長部1eが突設され、それが互いに図3(C)の如く接続される。それにより、入口コア3a,出口コア3bは、図1に示す如く、空間部14を介して連結される。
これにより、入口コア3a及び出口コア3bの排ガス7流通側は、積層された前記延長部1eとケーシング5とのろう付接合により、ケーシング5の長手方向の中間の水タンク13を流通する冷却水を封止する構成をとっている。
The inlet core 3a and the outlet core 3b are each made of a laminate of flat tubes 1.
As shown in FIG. 3, each flat tube 1 is composed of a fitting body of a first grooved plate 1b and a second grooved plate 1c. They have bulging portions 1d at both ends in the longitudinal direction, in which the height of the groove bottom 1a is higher than that of the intermediate portion and bulges in the thickness direction. Then, they are made of those fitted with the groove bottoms 1a facing each other. Then, a plurality of flat tubes 1 are laminated at the bulging portion 1d to form an inlet core 3a and an outlet core 3b.
In this example, as shown in FIGS. 3 (A) to 3 (C), an extension portion 1e is projected from the end of the second groove-shaped plate 1c of the flat tube 1, and the extension portions 1e project from each other in FIG. 3 (C). Connected like this. As a result, the inlet core 3a and the outlet core 3b are connected via the space portion 14 as shown in FIG.
As a result, the exhaust gas 7 flow side of the inlet core 3a and the outlet core 3b is the cooling water that flows through the water tank 13 in the middle in the longitudinal direction of the casing 5 by the brazed joint between the laminated extension portion 1e and the casing 5. It has a structure to seal.

このようなヘッダープレートレス型熱交換器において、入口コア3a,出口コア3bの端部に形成されたガスタンク部9には、夫々ガスパイプ10が設けられる。そして、入口2側のガスパイプ10から排ガス7が各偏平チューブ1の内部に導かれる。
そして、排ガス7はケーシング5の入口2からガスタンク部9を介して、入口コア3aの各偏平チューブ1の内部に流入し、ついで出口コア3bの各偏平チューブ1内部を流通し、出口側のガスパイプ10に流出する。
In such a header plateless heat exchanger, gas pipes 10 are provided in gas tank portions 9 formed at the ends of the inlet core 3a and the outlet core 3b, respectively. Then, the exhaust gas 7 is guided to the inside of each flat tube 1 from the gas pipe 10 on the inlet 2 side.
Then, the exhaust gas 7 flows from the inlet 2 of the casing 5 through the gas tank portion 9 into the inside of each flat tube 1 of the inlet core 3a, and then flows through the inside of each flat tube 1 of the outlet core 3b, and the gas pipe on the outlet side. It flows out to 10.

また、冷却水8は、水道水が一方の水パイプ6から出口コア3bの各偏平チューブ1の外周を流通して、ケーシング5の長手方向の中間の水側連結部5cを構成する水タンク13を迂回し、入口コア3aの各偏平チューブ1の外周を流通し、他方の水パイプ6より流出する。そして、排ガス7と冷却水8との間に熱交換が行われるものである。 Further, the cooling water 8 is a water tank 13 in which tap water flows from one water pipe 6 to the outer periphery of each flat tube 1 of the outlet core 3b to form an intermediate water-side connecting portion 5c in the longitudinal direction of the casing 5. It circulates around the outer periphery of each flat tube 1 of the inlet core 3a, and flows out from the other water pipe 6. Then, heat exchange is performed between the exhaust gas 7 and the cooling water 8.

入口コア3aを構成する偏平チューブ1は、高耐食性を有するステンレス鋼からなり、出口コア3bはそれに比べて耐食性の低いステンレス鋼からなる偏平チューブ1の積層体からなる。
一例として、高耐食性を有するステンレス鋼(価格は廉価ステンレス鋼に比べ高価である)として、Cr10.5%以上、C1.2%以下を含むSUS445J2、所謂スーパーステンレス等を用いることができる。耐食性の低い廉価なステンレス鋼として、SUS316L等を用いることができる。
入口コア3aは排ガス7の上流側にあり、その入口コア3aの内部に高温の排ガス7が流通する。これに対して、出口コア3bは排ガス7の下流側に位置して、排ガス7の温度が低下している。排ガス7は、上流側から下流側に流通するにつれて、熱交換されているため、排ガス7の温度が徐々に下がる。言い換えると、コア3全体の長手方向における温度分布は上流側が高くなり、下流側は低くなる。
耐食性の低い廉価ステンレス材を使用した出口コア3bの腐食発生境界の温度T1の位置は、コア3全体を廉価ステンレス材とした時の長手方向における温度分布の熱解析結果と、後述のように導出する温度T1から、把握することができる。
The flat tube 1 constituting the inlet core 3a is made of stainless steel having high corrosion resistance, and the outlet core 3b is made of a laminated body of flat tubes 1 made of stainless steel having lower corrosion resistance.
As an example, as a stainless steel having high corrosion resistance (the price is higher than that of low-priced stainless steel), SUS445J2 containing Cr 10.5% or more and C 1.2% or less, so-called super stainless steel, or the like can be used. SUS316L or the like can be used as an inexpensive stainless steel having low corrosion resistance.
The inlet core 3a is on the upstream side of the exhaust gas 7, and the high-temperature exhaust gas 7 circulates inside the inlet core 3a. On the other hand, the outlet core 3b is located on the downstream side of the exhaust gas 7, and the temperature of the exhaust gas 7 is lowered. As the exhaust gas 7 flows from the upstream side to the downstream side, heat is exchanged, so that the temperature of the exhaust gas 7 gradually decreases. In other words, the temperature distribution in the longitudinal direction of the entire core 3 is higher on the upstream side and lower on the downstream side.
The position of the temperature T1 at the corrosion occurrence boundary of the outlet core 3b using a low-priced stainless steel material with low corrosion resistance is derived from the thermal analysis result of the temperature distribution in the longitudinal direction when the entire core 3 is made of a low-priced stainless steel material and as described later. It can be grasped from the temperature T1.

図4は、出口コア3bを構成する耐食性の低いステンレス材料に対し、冷却水として水道水を用いた場合の温度と腐食電位及び自然電位の関係を示したものである。
水道水の残留塩素濃度に伴い、前記ステンレス材料の自然電位は上昇するが、一方、温度上昇に伴い、その自然電位は低減する。従って、例えば残留塩素濃度を1ppm(水質管理目標の最大値)と固定した場合の自然電位は、図4に示す通り、温度上昇に伴って、次第に低下する。
また、同様に、水道水中の塩化物イオン濃度に伴い、前記ステンレス材料の腐食電位は上昇するが、一方、温度上昇に伴い、その腐食電位は低減する。従って、例えば、塩化物イオン濃度200ppm(省令水質基準の最大値)と固定した場合の腐食電位は、図4に示す通り、温度上昇に伴って、次第に低下する。
以上の関係より、出口コア3bを構成する耐食性の低いステンレス材料自体の温度を、所定の水道水環境で上昇させていくと、(自然電位>腐食電位)の関係となるT1が導出される。温度T1よりも高温になると腐食が進行し、腐食発生の温度域となる。
FIG. 4 shows the relationship between the temperature, the corrosion potential, and the natural potential when tap water is used as the cooling water for the stainless steel material having low corrosion resistance constituting the outlet core 3b.
The natural potential of the stainless steel material increases with the residual chlorine concentration of tap water, while the natural potential decreases with the temperature increase. Therefore, for example, when the residual chlorine concentration is fixed at 1 ppm (the maximum value of the water quality control target), the natural potential gradually decreases as the temperature rises, as shown in FIG.
Similarly, the corrosion potential of the stainless steel material increases with the chloride ion concentration in tap water, while the corrosion potential decreases with the temperature increase. Therefore, for example, the corrosion potential when the chloride ion concentration is fixed at 200 ppm (the maximum value of the ministerial ordinance water quality standard) gradually decreases as the temperature rises, as shown in FIG.
From the above relationship, when the temperature of the stainless steel material itself having low corrosion resistance constituting the outlet core 3b is raised in a predetermined tap water environment, T1 having a relationship of (natural potential> corrosion potential) is derived. When the temperature becomes higher than the temperature T1, corrosion progresses, and the temperature is in the temperature range where corrosion occurs.

そこで、本発明では図1に示す如く、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1の位置を入口コア3aと出口コア3bとの境の空間部14に位置させる。
一方、入口コア3aのステンレス材料は、所定の水道水環境下で、想定される最大温度においても、(自然電位<腐食電位)の関係を維持できる高耐食性ステンレス材料を選定することとなる。
即ち、入口コア3a及び出口コア3bは、共にステンレス鋼板を用いると共に、廉価ステンレス材の腐食発生の温度域に配置される入口コア3aは、より耐食性の高い高価な素材を用いる。そして、廉価ステンレス材の腐食が生じ難い温度領域に配置される出口コア3bは入口コア3aの材料よりも廉価な素材を用いることができる。それにより、全体として熱交換器を安価に形成できるとともに、腐食の生じ難い信頼性の高い熱交換器を形成することができる。
本願発明は、排熱回収用の熱交換器として利用できる。
Therefore, in the present invention, as shown in FIG. 1, the position of the temperature T1 at which the natural potential of the material having low corrosion resistance of the outlet core 3b generated in contact with the supplied cooling water becomes lower than the corrosion potential is referred to as the inlet core 3a. It is located in the space 14 at the boundary with the exit core 3b.
On the other hand, as the stainless steel material of the inlet core 3a, a highly corrosion-resistant stainless steel material capable of maintaining the relationship of (natural potential <corrosion potential) even at the assumed maximum temperature under a predetermined tap water environment is selected.
That is, the inlet core 3a and the outlet core 3b both use stainless steel plates, and the inlet core 3a arranged in the temperature range where corrosion of low-priced stainless steel is generated uses an expensive material having higher corrosion resistance. As the outlet core 3b arranged in a temperature region where corrosion of the low-priced stainless steel is unlikely to occur, a material that is cheaper than the material of the inlet core 3a can be used. As a result, the heat exchanger can be formed at low cost as a whole, and a highly reliable heat exchanger that is less likely to cause corrosion can be formed.
The present invention can be used as a heat exchanger for recovering exhaust heat.

1 偏平チューブ
1a 溝底
1b 第1の溝型プレート
1c 第2の溝型プレート
1d 膨出部
1e 延長部
1f 側壁
2 入口
3 コア
3a 入口コア
3b 出口コア
1 Flat tube 1a Groove bottom 1b 1st groove plate 1c 2nd groove plate 1d bulge 1e extension 1f side wall 2 inlet 3 core 3a inlet core 3b outlet core

5 ケーシング
5a ケーシング本体
5b 蓋材
5c 水側連結部
6 水パイプ
7 排ガス
8 冷却水
9 ガスタンク部
10 ガスパイプ
11 インナーフィン
12 ディンプル
13 水タンク
14 空間部
T1 温度
5 Casing 5a Casing body 5b Lid material 5c Water side connection part 6 Water pipe 7 Exhaust gas 8 Cooling water 9 Gas tank part 10 Gas pipe 11 Inner fin 12 Dimple 13 Water tank 14 Space part T1 Temperature

Claims (3)

それぞれ、長手方向の両端部の溝底(1a)の高さが、中間部のそれより高く厚み方向に膨出された膨出部(1d)を有する第1の溝型プレート(1b)と第2の溝形プレート(1c)とを有し、第1の溝形プレート(1b)の溝底と第2の溝型プレート(1c)の溝底とを、互いに対向させて嵌着して偏平チューブ(1)が構成され、複数の偏平チューブ(1)を前記膨出部(1d)で積層してコア(3)が形成され、コア(3)の外周にケーシング(5)が被嵌され、コア(3)の各偏平チューブ(1)内に高温の排ガス(7)が流通すると共に、各偏平チューブ(1)の外周に冷却水(8)が流通するヘッダープレートレス型熱交換器において、
排ガス(7)の入口(2)側に配置され、高耐蝕性材料からなる前記偏平チューブ(1)の積層体からなる入口コア(3a)と、その入口コア(3a)に直列して前記排ガス(7)の出口側に配置され、前記高耐蝕性材料に比べて耐蝕性の低い材料からなる偏平チューブ(1)の積層体からなる出口コア(3b)とを有し、
両コア(3a)(3b)の外周が前記ケーシング(5)で被嵌されたヘッダープレートレス型熱交換器。
The first groove-shaped plate (1b) and the first groove-shaped plate (1b) having a bulging portion (1d) in which the height of the groove bottoms (1a) at both ends in the longitudinal direction is higher than that of the intermediate portion and bulging in the thickness direction, respectively. It has two grooved plates (1c), and the groove bottom of the first grooved plate (1b) and the groove bottom of the second grooved plate (1c) are fitted so as to face each other and flattened. A tube (1) is formed, a plurality of flat tubes (1) are laminated at the bulging portion (1d) to form a core (3), and a casing (5) is fitted on the outer periphery of the core (3). In a header plateless heat exchanger in which high-temperature exhaust gas (7) circulates in each flat tube (1) of the core (3) and cooling water (8) circulates on the outer circumference of each flat tube (1). ,
The exhaust gas is arranged on the inlet (2) side of the exhaust gas (7) and is connected to the inlet core (3a) made of a laminate of the flat tubes (1) made of a highly corrosion-resistant material and the inlet core (3a). It has an outlet core (3b) which is arranged on the outlet side of (7) and is made of a laminate of flat tubes (1) made of a material having lower corrosion resistance than the high corrosion resistant material.
A header plateless heat exchanger in which the outer circumferences of both cores (3a) and (3b) are fitted with the casing (5).
前記入口コア(3a)、出口コア(3b)の端どうしが前記長手方向に互いに離間し、少なくとも一方側のコアの偏平チューブ(1)の前記膨出部(1d)の側壁(1f)が前記長手方向に延長されて延長部(1e)を構成し、その延長部(1e)が他方のコアの偏平チューブ(1)の端部に接合された請求項1に記載のヘッダープレートレス型熱交換器。 The ends of the inlet core (3a) and the outlet core (3b) are separated from each other in the longitudinal direction, and the side wall (1f) of the bulging portion (1d) of the flat tube (1) of the core on at least one side is said. The header plateless heat exchange according to claim 1, wherein an extension portion (1e) is formed by being extended in the longitudinal direction, and the extension portion (1e) is joined to an end portion of a flat tube (1) of the other core. vessel. 前記入口コア(3a)と出口コア(3b)との境において、供給する冷却水と接触して発生する前記出口コア(3b)の耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成した請求項1又は請求項2のいずれかに記載のヘッダープレートレス型熱交換器。 At the boundary between the inlet core (3a) and the outlet core (3b), the temperature at which the natural potential of the material having low corrosion resistance of the outlet core (3b) generated in contact with the supplied cooling water becomes lower than the corrosion potential thereof. The header plateless heat exchanger according to claim 1 or 2, which is configured to be T1.
JP2019052842A 2019-03-20 2019-03-20 Header plateless heat exchanger Active JP7286362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019052842A JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019052842A JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Publications (2)

Publication Number Publication Date
JP2020153591A true JP2020153591A (en) 2020-09-24
JP7286362B2 JP7286362B2 (en) 2023-06-05

Family

ID=72558427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019052842A Active JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Country Status (1)

Country Link
JP (1) JP7286362B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139706A (en) * 1993-11-15 1995-05-30 Hitachi Zosen Corp High-temperature anticorrosion method of superheater for increasing temperature and pressure of boiler
JPH10122761A (en) * 1996-10-18 1998-05-15 Chiyoda Corp System and method for heat recovery of exhaust gas
JP2006132470A (en) * 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr device
JP2006207887A (en) * 2005-01-26 2006-08-10 T Rad Co Ltd Heat exchanger
JP2014081175A (en) * 2012-10-18 2014-05-08 T Rad Co Ltd Casing connection structure of exhaust heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139706A (en) * 1993-11-15 1995-05-30 Hitachi Zosen Corp High-temperature anticorrosion method of superheater for increasing temperature and pressure of boiler
JPH10122761A (en) * 1996-10-18 1998-05-15 Chiyoda Corp System and method for heat recovery of exhaust gas
JP2006132470A (en) * 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr device
JP2006207887A (en) * 2005-01-26 2006-08-10 T Rad Co Ltd Heat exchanger
JP2014081175A (en) * 2012-10-18 2014-05-08 T Rad Co Ltd Casing connection structure of exhaust heat exchanger

Also Published As

Publication number Publication date
JP7286362B2 (en) 2023-06-05

Similar Documents

Publication Publication Date Title
JP5145718B2 (en) Heat exchanger
JP6302395B2 (en) Header plateless heat exchanger
US20140305620A1 (en) Plate heat exchanger and method for manufacturing of a plate heat exchanger
EP2981780A1 (en) Plate heat exchanger and method for constructing multiple passes in the plate heat exchanger
US6325139B1 (en) Heat-exchange coil assembly
JP4916857B2 (en) Pressure resistant heat exchanger
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
JP6116951B2 (en) Header plateless heat exchanger
JP2006342997A (en) Heat exchanger
JP5796222B2 (en) Heat exchanger
JP2020153591A (en) Header plate-less type heat exchanger
JP6037235B2 (en) Heat exchanger and heat pump using the same
JP7244440B2 (en) Header plateless heat exchanger
JP2007298266A (en) Water heat exchanger for water heater
JP2014081175A (en) Casing connection structure of exhaust heat exchanger
JP2012117723A (en) Heat exchanger for hot-water supply
JP2018063076A (en) Heat exchanger
JP2005351520A (en) Heat exchanger
JP2005121297A (en) Heat exchanger
JP2005274044A (en) Heat source device
JP6819199B2 (en) Pressure vessel
JP4079115B2 (en) Heat exchanger
JP6991767B2 (en) Multi-tube waste heat recovery heat exchanger
JP2009139026A (en) Heat exchanger
JP2008107025A (en) Water-refrigerant heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230524

R150 Certificate of patent or registration of utility model

Ref document number: 7286362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150