JP7286362B2 - Header plateless heat exchanger - Google Patents

Header plateless heat exchanger Download PDF

Info

Publication number
JP7286362B2
JP7286362B2 JP2019052842A JP2019052842A JP7286362B2 JP 7286362 B2 JP7286362 B2 JP 7286362B2 JP 2019052842 A JP2019052842 A JP 2019052842A JP 2019052842 A JP2019052842 A JP 2019052842A JP 7286362 B2 JP7286362 B2 JP 7286362B2
Authority
JP
Japan
Prior art keywords
core
inlet
heat exchanger
outlet
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019052842A
Other languages
Japanese (ja)
Other versions
JP2020153591A (en
Inventor
卓也 岩本
勝則 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2019052842A priority Critical patent/JP7286362B2/en
Publication of JP2020153591A publication Critical patent/JP2020153591A/en
Application granted granted Critical
Publication of JP7286362B2 publication Critical patent/JP7286362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、両端部が厚み方向に膨出した偏平チューブを積層してなる熱交換器であって、そのヘッダープレートを不要とする熱交換器に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger formed by stacking flat tubes with both ends bulging in the thickness direction, and to a heat exchanger that does not require a header plate.

下記特許文献1には、両端部の溝底高さが厚み方向に膨出した一対の溝型プレートを組み合わせて偏平チューブを形成し、各偏平チューブを膨出部で積層してコアを形成し、そのコアの外周にケーシングを被嵌し、偏平チューブ内に高温の排ガスを流通させると共に、偏平チューブの外周に冷却水を流通して、両流体間熱交換を行ったものが知られている。
即ち、図5に示す如く、偏平チューブ1の積層体によりコア3を形成し、その外周にケーシング5を被嵌すると共に、コア3の両側とケーシング5との間に排ガス7の出入口タンクを設け、コア3の長手方向の両端部に一対の冷却水パイプを設け、ケーシング5の入口2から排ガス7をコア3の各偏平チューブ1内に導く。それと共に、ケーシング5のコア3の両端から冷却水8を各偏平チューブ1の外面側に流通させ、排ガス7と冷却水8との間に熱交換を行わせたものである。
In Patent Document 1 below, a flat tube is formed by combining a pair of grooved plates with groove bottom heights at both ends bulging in the thickness direction, and the flat tubes are laminated at the bulging portion to form a core. , is known in which a casing is fitted around the outer periphery of the core, high-temperature exhaust gas is circulated in the flat tube, and cooling water is circulated around the outer periphery of the flat tube to perform heat exchange between the two fluids. .
That is, as shown in FIG. 5, a core 3 is formed by a laminated body of flat tubes 1, a casing 5 is fitted around the core 3, and an inlet/outlet tank for exhaust gas 7 is provided between both sides of the core 3 and the casing 5. A pair of cooling water pipes are provided at both ends of the core 3 in the longitudinal direction, and the exhaust gas 7 is led from the inlet 2 of the casing 5 into each flat tube 1 of the core 3 . At the same time, cooling water 8 is circulated from both ends of the core 3 of the casing 5 to the outer surface side of each flat tube 1 so that heat exchange is performed between the exhaust gas 7 and the cooling water 8 .

特開2015-78823号公報JP 2015-78823 A

熱交換器の冷却水8として水道水を用いると、それに殺菌剤として、残留塩素、及び塩化物イオンが含まれている。すると、偏平チューブ1にステンレス鋼を用いても、該残留塩素の影響でステンレス鋼の自然電位が上昇し、一方、該塩化物イオンの影響でステンレス鋼の腐食電位は低減することから、特に高温域(一般的に70℃以上)においては、腐食環境(自然電位>腐食電位)に至る。
そのため、熱交換材料には特に質の高い高耐食性のステンレス材料を使用する必要があった。すると、熱交換器の価格が高価にならざるを得ない欠点があった。
そこで、本発明は係る問題点を解決することを課題とする。
When tap water is used as the cooling water 8 for the heat exchanger, it contains residual chlorine and chloride ions as a disinfectant. Then, even if stainless steel is used for the flat tube 1, the natural potential of the stainless steel increases due to the residual chlorine, while the corrosion potential of the stainless steel decreases due to the chloride ions. In the region (generally 70° C. or higher), it reaches a corrosive environment (natural potential>corrosive potential).
Therefore, it has been necessary to use a particularly high-quality, highly corrosion-resistant stainless steel material for the heat exchange material. Then, there was a drawback that the price of the heat exchanger was inevitably high.
Then, this invention makes it a subject to solve the problem which concerns.

請求項1に記載の本発明は、それぞれ、長手方向の両端部の溝底1aの高さが、中間部のそれより高く厚み方向に膨出された膨出部1dを有する第1の溝型プレート1bと第2の溝形プレート1cとを有し、第1の溝形プレート1bの溝底と第2の溝型プレート1cの溝底とを、互いに対向させて嵌着して偏平チューブ1が構成され、複数の偏平チューブ1を前記膨出部1dで積層してコア3が形成され、コア3の外周にケーシング5が被嵌され、コア3の各偏平チューブ1内に高温の排ガス7が流通すると共に、各偏平チューブ1の外周に冷却水8が流通するヘッダープレートレス型熱交換器において、
排ガス7の入口2側に配置され、高耐蝕性材料からなる前記偏平チューブ1の積層体からなる入口コア3aと、その入口コア3aに直列して前記排ガス7の出口側に配置され、前記高耐蝕性材料に比べて耐蝕性の低い材料からなる偏平チューブ1の積層体からなる出口コア3bとを有し、
両コア3a,3bの外周が前記ケーシング5で被嵌されており、
前記入口コア3aと出口コア3bとの境において、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成したヘッダープレートレス型熱交換器である。
According to the first aspect of the present invention, the height of the groove bottoms 1a at both ends in the longitudinal direction is higher than that of the intermediate portion, and the bulging portion 1d bulges in the thickness direction. It has a plate 1b and a second grooved plate 1c, and the flattened tube 1 is formed by fitting the groove bottom of the first grooved plate 1b and the grooved bottom of the second grooved plate 1c so as to face each other. A core 3 is formed by stacking a plurality of flat tubes 1 at the bulging portion 1d, a casing 5 is fitted around the outer periphery of the core 3, and high-temperature exhaust gas 7 is placed in each flat tube 1 of the core 3. circulates and the cooling water 8 circulates around the outer circumference of each flat tube 1,
An inlet core 3a, which is arranged on the inlet 2 side of the exhaust gas 7 and is made of a laminate of the flat tubes 1 made of a highly corrosion-resistant material, and an inlet core 3a arranged in series with the inlet core 3a on the outlet side of the exhaust gas 7, an outlet core 3b consisting of a laminate of flat tubes 1 made of a material having a lower corrosion resistance than the corrosion-resistant material;
The outer circumferences of both cores 3a and 3b are covered with the casing 5,
At the boundary between the inlet core 3a and the outlet core 3b, the self-potential of the material of the outlet core 3b having low corrosion resistance generated by contact with the supplied cooling water is configured to be a temperature T1 lower than the corrosion potential. This is a header plateless type heat exchanger.

請求項2に記載の本発明は、請求項1に記載のヘッダープレートレス型熱交換器において、
前記入口コア3a、出口コア3bの端どうしが前記長手方向に互いに離間し、少なくとも一方側のコアの偏平チューブ1の前記膨出部1dの側壁1fが前記長手方向に延長されて延長部1eを構成し、その延長部1eが他方のコアの偏平チューブ1の端部に接合されたヘッダープレートレス型熱交換器である。
The present invention according to claim 2 is the header plateless heat exchanger according to claim 1,
The ends of the inlet core 3a and the outlet core 3b are separated from each other in the longitudinal direction, and the side wall 1f of the bulging portion 1d of the flat tube 1 of at least one side of the core is extended in the longitudinal direction to form the extended portion 1e. It is a header plateless type heat exchanger in which the extension 1e is joined to the end of the flat tube 1 of the other core.

請求項1に記載の熱交換器は、排ガス7の入口2側に配置された入口コア3aが高耐蝕性材料の偏平チューブ1の積層体からなり、その入口コア3aに直列して排ガス7の出口側に配置され出口コア3bが比較的、耐蝕性の低い材料の偏平チューブ1の積層体からなり、両コア3a,3bの外周がケーシング5に被嵌され、各偏平チューブ1内に排ガス7が流通し、各偏平チューブ1の外周に冷却水8が流通するものである。
即ち、上流側で、より高温の排ガス7が内部を流通する入口コア3aの偏平チューブ1が高耐蝕性材料で形成され、その劣化を効果的に防止し、比較的低温の排ガス7が内部を流通する出口コア3bの偏平チューブ1を低耐蝕性材料で形成したので、少ない高耐蝕材料を用いつつ全体として、耐蝕性の高い経済的なヘッダープレートレス型熱交換器を提供できる。
また、前記入口コア3aと出口コア3bとの境において、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成したものである。
これにより、出口コア3bがその全長で腐食発生温度以下となるため、出口コア3bに廉価材の使用が可能となる効果がある。
In the heat exchanger according to claim 1, the inlet core 3a arranged on the side of the inlet 2 of the exhaust gas 7 is made of a laminate of flat tubes 1 made of a highly corrosion-resistant material, and the inlet core 3a is connected in series with the inlet core 3a of the exhaust gas 7 An outlet core 3b disposed on the outlet side is composed of a laminate of flat tubes 1 made of a material with relatively low corrosion resistance. circulates, and the cooling water 8 circulates around the outer periphery of each flat tube 1 .
That is, on the upstream side, the flat tube 1 of the inlet core 3a, through which the higher temperature exhaust gas 7 flows, is formed of a highly corrosion-resistant material, effectively preventing its deterioration and allowing the relatively low temperature exhaust gas 7 to pass through the inside. Since the flat tube 1 of the outlet core 3b through which the heat flows is formed of a low corrosion-resistant material, it is possible to provide an economical header plateless heat exchanger with high corrosion resistance as a whole while using a small amount of the high corrosion-resistant material.
Further, at the boundary between the inlet core 3a and the outlet core 3b, the self-potential of the material of the outlet core 3b having low corrosion resistance generated by contact with the supplied cooling water is set to a temperature T1 at which the corrosion potential is lower than the corrosion potential. It is configured to
As a result, the temperature of the outlet core 3b is lower than the corrosion generation temperature over the entire length of the outlet core 3b, so that an inexpensive material can be used for the outlet core 3b.

請求項2に記載の熱交換器は、前記入口コア3a、出口コア3bの端どうしが離間し、一方の偏平チューブ1の延長部1eが他方の偏平チューブ1の端部に接合されたものである。
このように、入口コア3aと出口コア3bとが離間することにより、互いの熱的影響を可及的に少なくすると共に、境目で排ガスを攪拌して温度を均一にし、下流側の出口コア3bの耐久性を向上できる。
In the heat exchanger according to claim 2, the ends of the inlet core 3a and the outlet core 3b are separated from each other, and the extended portion 1e of one flat tube 1 is joined to the end of the other flat tube 1. be.
By separating the inlet core 3a and the outlet core 3b in this way, the mutual thermal influence is reduced as much as possible, the exhaust gas is stirred at the boundary to make the temperature uniform, and the outlet core 3b on the downstream side is can improve the durability of

本発明のヘッダープレートレス型熱交換器の要部平面図。FIG. 2 is a plan view of the main part of the header plateless heat exchanger of the present invention; 同熱交換器の分解斜視図。FIG. 2 is an exploded perspective view of the same heat exchanger; 同熱交換器を構成する偏平チューブ1の説明図であって、(A)はその要部分解図、(B)は同接続説明図、(C)は一対の偏平チューブ1の接続状態を示す要部斜視図である。FIG. 2 is an explanatory view of the flat tubes 1 constituting the same heat exchanger, (A) is an exploded view of the main parts, (B) is an explanatory view of the connection, and (C) shows the connection state of the pair of flat tubes 1. It is a principal part perspective view. 熱交換器の冷却水に水道水を用いる場合の腐食電位/自然電位と温度との関係を示す説明図。FIG. 4 is an explanatory diagram showing the relationship between corrosion potential/spontaneous potential and temperature when tap water is used as cooling water for a heat exchanger. 従来型ヘッダープレートレス型熱交換器の要部平面図。FIG. 2 is a plan view of a main part of a conventional header-plateless heat exchanger;

次に、図面に基づいて本発明の実施の形態につき説明する。
この熱交換器は、図2に示す如く、入口コア3aとそれに連結された出口コア3bとを有し、それらがケーシング5に被嵌される。
このケーシング5は、ケーシング本体5aとその上端を被嵌する蓋材5bとからなる。 そして入口コア3a及び出口コア3bは、図1に示す如く、ケーシング5内に直列的に収納されて、その長手方向の両端部にガスタンク部9が設けられる。この例では、入口コア3a及び出口コア3bの境は、それらコアの向かい合う端どうしが長手方向に互いに離間して空間部14が設けられる。
また、入口コア3aと出口コア3bとからなるコア3の長手方向の一側には、夫々水タンク13(図1)を介して水パイプ6が突設されている。さらに、ケーシング5はその他側に入口コア3aと出口コア3bの水の流路をつなぐ水側連結部5cが設けられ、その水側連結部5cとコア3との間に水タンク13が形成されている。水側連結部5cを構成する水タンク13の位置は、空間部14の位置に整合する。
Next, an embodiment of the present invention will be described based on the drawings.
As shown in FIG. 2, this heat exchanger has an inlet core 3a and an outlet core 3b connected thereto, which are fitted in a casing 5.
The casing 5 is composed of a casing body 5a and a lid member 5b on which the upper end is fitted. As shown in FIG. 1, the inlet core 3a and the outlet core 3b are housed in series in a casing 5, and gas tank portions 9 are provided at both ends in the longitudinal direction. In this example, the boundary between the inlet core 3a and the outlet core 3b is provided with a space 14 in which the facing ends of the cores are separated from each other in the longitudinal direction.
A water pipe 6 projects through a water tank 13 (FIG. 1) from one longitudinal side of the core 3 consisting of the inlet core 3a and the outlet core 3b. Furthermore, the other side of the casing 5 is provided with a water side connecting portion 5c that connects the water flow paths of the inlet core 3a and the outlet core 3b, and a water tank 13 is formed between the water side connecting portion 5c and the core 3. ing. The position of the water tank 13 forming the water side connecting portion 5c matches the position of the space portion 14. As shown in FIG.

入口コア3a,出口コア3bは、夫々偏平チューブ1の積層体からなる。
各偏平チューブ1は、図3に示す如く、第1の溝型プレート1bと第2の溝型プレート1cとの嵌着体からなる。それらは、長手方向の両端部に溝底1aの高さが中間部のそれより高く厚み方向に膨出された膨出部1dを有する。そして、それらは互いに溝底1aを対向させて嵌着したものからなる。そして、複数の偏平チューブ1を膨出部1dで積層して、入口コア3a,出口コア3bが形成される。
なお、この例では図3(A)~(C)に示す如く、偏平チューブ1の第2の溝型プレート1cの端部に延長部1eが突設され、それが互いに図3(C)の如く接続される。それにより、入口コア3a,出口コア3bは、図1に示す如く、空間部14を介して連結される。
これにより、入口コア3a及び出口コア3bの排ガス7流通側は、積層された前記延長部1eとケーシング5とのろう付接合により、ケーシング5の長手方向の中間の水タンク13を流通する冷却水を封止する構成をとっている。
The inlet core 3a and the outlet core 3b are each composed of a laminate of flat tubes 1. As shown in FIG.
Each flat tube 1, as shown in FIG. 3, consists of a fitted body of a first grooved plate 1b and a second grooved plate 1c. They have bulging portions 1d at both ends in the longitudinal direction where the height of the groove bottom 1a is higher than that of the intermediate portion and bulges in the thickness direction. They are fitted with the groove bottoms 1a opposed to each other. Then, a plurality of flat tubes 1 are laminated at the bulging portion 1d to form an inlet core 3a and an outlet core 3b.
In this example, as shown in FIGS. 3(A) to 3(C), an extension 1e is protruded from the end of the second grooved plate 1c of the flat tube 1, and the extensions 1e are connected to each other as shown in FIG. 3(C). are connected as follows. Thereby, the inlet core 3a and the outlet core 3b are connected through the space 14 as shown in FIG.
As a result, the exhaust gas 7 circulation side of the inlet core 3a and the outlet core 3b is connected to the casing 5 by brazing the extension 1e and the casing 5, thereby cooling water flowing through the water tank 13 in the middle of the casing 5 in the longitudinal direction. is sealed.

このようなヘッダープレートレス型熱交換器において、入口コア3a,出口コア3bの端部に形成されたガスタンク部9には、夫々ガスパイプ10が設けられる。そして、入口2側のガスパイプ10から排ガス7が各偏平チューブ1の内部に導かれる。
そして、排ガス7はケーシング5の入口2からガスタンク部9を介して、入口コア3aの各偏平チューブ1の内部に流入し、ついで出口コア3bの各偏平チューブ1内部を流通し、出口側のガスパイプ10に流出する。
In such a header plateless heat exchanger, gas pipes 10 are provided in the gas tank portions 9 formed at the ends of the inlet core 3a and the outlet core 3b, respectively. Exhaust gas 7 is led into each flat tube 1 from a gas pipe 10 on the inlet 2 side.
The exhaust gas 7 flows from the inlet 2 of the casing 5 through the gas tank portion 9 into the flat tubes 1 of the inlet core 3a, then flows through the flat tubes 1 of the outlet core 3b, and reaches the gas pipe on the outlet side. Drain to 10.

また、冷却水8は、水道水が一方の水パイプ6から出口コア3bの各偏平チューブ1の外周を流通して、ケーシング5の長手方向の中間の水側連結部5cを構成する水タンク13を迂回し、入口コア3aの各偏平チューブ1の外周を流通し、他方の水パイプ6より流出する。そして、排ガス7と冷却水8との間に熱交換が行われるものである。 In addition, the cooling water 8 is a water tank 13 in which tap water flows from one water pipe 6 to the outer periphery of each flat tube 1 of the outlet core 3b, and constitutes the middle water side connecting portion 5c in the longitudinal direction of the casing 5. , circulates around the outer periphery of each flat tube 1 of the inlet core 3a, and flows out from the other water pipe 6. Then, heat exchange is performed between the exhaust gas 7 and the cooling water 8 .

入口コア3aを構成する偏平チューブ1は、高耐食性を有するステンレス鋼からなり、出口コア3bはそれに比べて耐食性の低いステンレス鋼からなる偏平チューブ1の積層体からなる。
一例として、高耐食性を有するステンレス鋼(価格は廉価ステンレス鋼に比べ高価である)として、Cr10.5%以上、C1.2%以下を含むSUS445J2、所謂スーパーステンレス等を用いることができる。耐食性の低い廉価なステンレス鋼として、SUS316L等を用いることができる。
入口コア3aは排ガス7の上流側にあり、その入口コア3aの内部に高温の排ガス7が流通する。これに対して、出口コア3bは排ガス7の下流側に位置して、排ガス7の温度が低下している。排ガス7は、上流側から下流側に流通するにつれて、熱交換されているため、排ガス7の温度が徐々に下がる。言い換えると、コア3全体の長手方向における温度分布は上流側が高くなり、下流側は低くなる。
耐食性の低い廉価ステンレス材を使用した出口コア3bの腐食発生境界の温度T1の位置は、コア3全体を廉価ステンレス材とした時の長手方向における温度分布の熱解析結果と、後述のように導出する温度T1から、把握することができる。
The flat tube 1 forming the inlet core 3a is made of stainless steel having high corrosion resistance, and the outlet core 3b is made of a laminate of flat tubes 1 made of stainless steel having relatively low corrosion resistance.
As an example of stainless steel with high corrosion resistance (which is more expensive than inexpensive stainless steel), SUS445J2 containing 10.5% or more and 1.2% or less of C, so-called super stainless steel, or the like can be used. SUS316L or the like can be used as inexpensive stainless steel with low corrosion resistance.
The inlet core 3a is on the upstream side of the exhaust gas 7, and the hot exhaust gas 7 flows inside the inlet core 3a. On the other hand, the outlet core 3b is positioned downstream of the exhaust gas 7, and the temperature of the exhaust gas 7 is lowered. Since the exhaust gas 7 undergoes heat exchange as it flows from the upstream side to the downstream side, the temperature of the exhaust gas 7 gradually decreases. In other words, the temperature distribution in the longitudinal direction of the entire core 3 is higher on the upstream side and lower on the downstream side.
The position of the temperature T1 at the corrosion initiation boundary of the exit core 3b, which uses low-cost stainless steel with low corrosion resistance, is derived as described below from the results of thermal analysis of the temperature distribution in the longitudinal direction when the entire core 3 is made of low-cost stainless steel. It can be grasped from the temperature T1.

図4は、出口コア3bを構成する耐食性の低いステンレス材料に対し、冷却水として水道水を用いた場合の温度と腐食電位及び自然電位の関係を示したものである。
水道水の残留塩素濃度に伴い、前記ステンレス材料の自然電位は上昇するが、一方、温度上昇に伴い、その自然電位は低減する。従って、例えば残留塩素濃度を1ppm(水質管理目標の最大値)と固定した場合の自然電位は、図4に示す通り、温度上昇に伴って、次第に低下する。
また、同様に、水道水中の塩化物イオン濃度に伴い、前記ステンレス材料の腐食電位は上昇するが、一方、温度上昇に伴い、その腐食電位は低減する。従って、例えば、塩化物イオン濃度200ppm(省令水質基準の最大値)と固定した場合の腐食電位は、図4に示す通り、温度上昇に伴って、次第に低下する。
以上の関係より、出口コア3bを構成する耐食性の低いステンレス材料自体の温度を、所定の水道水環境で上昇させていくと、(自然電位>腐食電位)の関係となるT1が導出される。温度T1よりも高温になると腐食が進行し、腐食発生の温度域となる。
FIG. 4 shows the relationship between temperature, corrosion potential, and self-potential when tap water is used as cooling water for a stainless steel material with low corrosion resistance forming the outlet core 3b.
The natural potential of the stainless steel material increases as the residual chlorine concentration of the tap water increases, while the natural potential decreases as the temperature rises. Therefore, for example, when the residual chlorine concentration is fixed at 1 ppm (the maximum value of the water quality control target), the natural potential gradually decreases as the temperature rises, as shown in FIG.
Similarly, the corrosion potential of the stainless steel material increases as the chloride ion concentration in the tap water increases, while the corrosion potential decreases as the temperature rises. Therefore, for example, when the chloride ion concentration is fixed at 200 ppm (the maximum value of the ordinance water quality standard), the corrosion potential gradually decreases as the temperature rises, as shown in FIG.
From the above relationship, when the temperature of the stainless steel material itself with low corrosion resistance constituting the outlet core 3b is increased in a predetermined tap water environment, T1 having a relationship of (natural potential>corrosion potential) is derived. When the temperature becomes higher than the temperature T1, corrosion progresses and becomes a temperature range in which corrosion occurs.

そこで、本発明では図1に示す如く、供給する冷却水と接触して発生する前記出口コア3bの耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1の位置を入口コア3aと出口コア3bとの境の空間部14に位置させる。
一方、入口コア3aのステンレス材料は、所定の水道水環境下で、想定される最大温度においても、(自然電位<腐食電位)の関係を維持できる高耐食性ステンレス材料を選定することとなる。
即ち、入口コア3a及び出口コア3bは、共にステンレス鋼板を用いると共に、廉価ステンレス材の腐食発生の温度域に配置される入口コア3aは、より耐食性の高い高価な素材を用いる。そして、廉価ステンレス材の腐食が生じ難い温度領域に配置される出口コア3bは入口コア3aの材料よりも廉価な素材を用いることができる。それにより、全体として熱交換器を安価に形成できるとともに、腐食の生じ難い信頼性の高い熱交換器を形成することができる。
本願発明は、排熱回収用の熱交換器として利用できる。
Therefore, in the present invention, as shown in FIG. 1, the position of temperature T1 at which the natural potential of the material of the outlet core 3b having low corrosion resistance generated in contact with the supplied cooling water becomes lower than the corrosion potential is defined as the inlet core 3a. It is positioned in the space 14 on the boundary with the outlet core 3b.
On the other hand, for the stainless steel material of the inlet core 3a, a highly corrosion-resistant stainless steel material that can maintain the relationship of (natural potential<corrosion potential) even at the maximum assumed temperature under a predetermined tap water environment is selected.
That is, the inlet core 3a and the outlet core 3b are both made of stainless steel plate, and the inlet core 3a, which is located in a temperature range where corrosion of inexpensive stainless steel occurs, is made of an expensive material with higher corrosion resistance. In addition, the outlet core 3b, which is arranged in a temperature range in which inexpensive stainless steel is unlikely to corrode, can be made of a material that is cheaper than the material of the inlet core 3a. As a result, the heat exchanger can be formed at low cost as a whole, and a highly reliable heat exchanger that is resistant to corrosion can be formed.
INDUSTRIAL APPLICABILITY The present invention can be used as a heat exchanger for exhaust heat recovery.

1 偏平チューブ
1a 溝底
1b 第1の溝型プレート
1c 第2の溝型プレート
1d 膨出部
1e 延長部
1f 側壁
2 入口
3 コア
3a 入口コア
3b 出口コア
REFERENCE SIGNS LIST 1 flat tube 1a groove bottom 1b first groove plate 1c second groove plate 1d bulge 1e extension 1f side wall 2 inlet 3 core 3a inlet core 3b outlet core

5 ケーシング
5a ケーシング本体
5b 蓋材
5c 水側連結部
6 水パイプ
7 排ガス
8 冷却水
9 ガスタンク部
10 ガスパイプ
11 インナーフィン
12 ディンプル
13 水タンク
14 空間部
T1 温度
5 casing 5a casing main body 5b cover material 5c water side connecting portion 6 water pipe 7 exhaust gas 8 cooling water 9 gas tank portion 10 gas pipe 11 inner fin 12 dimple 13 water tank 14 space portion T1 temperature

Claims (2)

それぞれ、長手方向の両端部の溝底(1a)の高さが、中間部のそれより高く厚み方向に膨出された膨出部(1d)を有する第1の溝型プレート(1b)と第2の溝形プレート(1c)とを有し、第1の溝形プレート(1b)の溝底と第2の溝型プレート(1c)の溝底とを、互いに対向させて嵌着して偏平チューブ(1)が構成され、複数の偏平チューブ(1)を前記膨出部(1d)で積層してコア(3)が形成され、コア(3)の外周にケーシング(5)が被嵌され、コア(3)の各偏平チューブ(1)内に高温の排ガス(7)が流通すると共に、各偏平チューブ(1)の外周に冷却水(8)が流通するヘッダープレートレス型熱交換器において、
排ガス(7)の入口(2)側に配置され、高耐蝕性材料からなる前記偏平チューブ(1)の積層体からなる入口コア(3a)と、その入口コア(3a)に直列して前記排ガス(7)の出口側に配置され、前記高耐蝕性材料に比べて耐蝕性の低い材料からなる偏平チューブ(1)の積層体からなる出口コア(3b)とを有し、
両コア(3a)(3b)の外周が前記ケーシング(5)で被嵌されており、
前記入口コア(3a)と出口コア(3b)との境において、供給する冷却水と接触して発生する前記出口コア(3b)の耐食性の低い材料の自然電位が、その腐食電位より低くなる温度T1となるように構成したヘッダープレートレス型熱交換器。
A first grooved plate (1b) and a first grooved plate (1b) respectively having groove bottoms (1a) at both ends in the longitudinal direction and having bulging portions (1d) bulging in the thickness direction, the height of which is higher than that of the intermediate portion. 2 groove-shaped plates (1c), wherein the groove bottom of the first groove-shaped plate (1b) and the groove bottom of the second groove-shaped plate (1c) are opposed to each other and fitted to flatten A tube (1) is constructed, a plurality of flat tubes (1) are laminated at the bulging portion (1d) to form a core (3), and a casing (5) is fitted around the outer circumference of the core (3). , in a header plateless heat exchanger in which high-temperature exhaust gas (7) circulates in each flat tube (1) of the core (3) and cooling water (8) circulates around the outer circumference of each flat tube (1) ,
An inlet core (3a) arranged on the inlet (2) side of the exhaust gas (7) and made of a laminate of the flat tubes (1) made of a highly corrosion-resistant material, and the exhaust gas in series with the inlet core (3a). an outlet core (3b) arranged on the outlet side of (7) and made of a laminate of flat tubes (1) made of a material having lower corrosion resistance than the highly corrosion-resistant material;
The outer circumferences of both cores (3a) and (3b) are covered with the casing (5),
A temperature at which the self-potential of the low corrosion-resistant material of the outlet core (3b) generated in contact with the supplied cooling water at the boundary between the inlet core (3a) and the outlet core (3b) is lower than the corrosion potential. Header plateless heat exchanger configured to be T1 .
請求項1に記載のヘッダープレートレス型熱交換器において、
前記入口コア(3a)、出口コア(3b)の端どうしが前記長手方向に互いに離間し、少なくとも一方側のコアの偏平チューブ(1)の前記膨出部(1d)の側壁(1f)が前記長手方向に延長されて延長部(1e)を構成し、その延長部(1e)が他方のコアの偏平チューブ(1)の端部に接合されたヘッダープレートレス型熱交換器。
The header plateless heat exchanger of claim 1, wherein
The ends of the inlet core (3a) and the outlet core (3b) are separated from each other in the longitudinal direction, and the sidewall (1f) of the bulging portion (1d) of the flat tube (1) of at least one side of the core is the A header-plateless heat exchanger that extends longitudinally to form an extension (1e) that is joined to the end of the flat tube (1) of the other core.
JP2019052842A 2019-03-20 2019-03-20 Header plateless heat exchanger Active JP7286362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019052842A JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019052842A JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Publications (2)

Publication Number Publication Date
JP2020153591A JP2020153591A (en) 2020-09-24
JP7286362B2 true JP7286362B2 (en) 2023-06-05

Family

ID=72558427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019052842A Active JP7286362B2 (en) 2019-03-20 2019-03-20 Header plateless heat exchanger

Country Status (1)

Country Link
JP (1) JP7286362B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132470A (en) 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr device
JP2006207887A (en) 2005-01-26 2006-08-10 T Rad Co Ltd Heat exchanger
JP2014081175A (en) 2012-10-18 2014-05-08 T Rad Co Ltd Casing connection structure of exhaust heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769671B2 (en) * 1993-11-15 1998-06-25 日立造船株式会社 High-temperature corrosion prevention method for boiler high-temperature and high-pressure superheater
JPH10122761A (en) * 1996-10-18 1998-05-15 Chiyoda Corp System and method for heat recovery of exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132470A (en) 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Egr device
JP2006207887A (en) 2005-01-26 2006-08-10 T Rad Co Ltd Heat exchanger
JP2014081175A (en) 2012-10-18 2014-05-08 T Rad Co Ltd Casing connection structure of exhaust heat exchanger

Also Published As

Publication number Publication date
JP2020153591A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
EP2660530B1 (en) Latent heat exchanger and hot water supply device
EP2766685B1 (en) Combined gas-water tube hybrid heat exchanger
JP4916857B2 (en) Pressure resistant heat exchanger
JP2015194324A (en) Header plate-less heat exchanger
JP5835569B2 (en) Heat exchanger and hot water device provided with the same
JP2006342997A (en) Heat exchanger
JP7286362B2 (en) Header plateless heat exchanger
JP5796222B2 (en) Heat exchanger
JP5467037B2 (en) Latent heat exchanger and hot water supply device
JP7244440B2 (en) Header plateless heat exchanger
JP2016205718A (en) Heat exchanger
JP2014081175A (en) Casing connection structure of exhaust heat exchanger
JP2018063076A (en) Heat exchanger
JP2005121297A (en) Heat exchanger
US10876796B2 (en) Heat exchanger
JP2005351520A (en) Heat exchanger
JP2005274044A (en) Heat source device
JP6689109B2 (en) Gas water heater
JPH0566517B2 (en)
JPWO2019131569A1 (en) Header plateless heat exchanger
JP7456801B2 (en) Laminated heat exchanger
JP2008107025A (en) Water-refrigerant heat exchanger
JP4211688B2 (en) Heat exchanger
JP2009139026A (en) Heat exchanger
JP4134520B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230524

R150 Certificate of patent or registration of utility model

Ref document number: 7286362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150