JP6991767B2 - Multi-tube waste heat recovery heat exchanger - Google Patents

Multi-tube waste heat recovery heat exchanger Download PDF

Info

Publication number
JP6991767B2
JP6991767B2 JP2017144768A JP2017144768A JP6991767B2 JP 6991767 B2 JP6991767 B2 JP 6991767B2 JP 2017144768 A JP2017144768 A JP 2017144768A JP 2017144768 A JP2017144768 A JP 2017144768A JP 6991767 B2 JP6991767 B2 JP 6991767B2
Authority
JP
Japan
Prior art keywords
flow path
tube
heat transfer
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017144768A
Other languages
Japanese (ja)
Other versions
JP2019027624A (en
Inventor
徹也 鈴木
晶寛 澤村
康文 榊原
Original Assignee
マルヤス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルヤス工業株式会社 filed Critical マルヤス工業株式会社
Priority to JP2017144768A priority Critical patent/JP6991767B2/en
Publication of JP2019027624A publication Critical patent/JP2019027624A/en
Application granted granted Critical
Publication of JP6991767B2 publication Critical patent/JP6991767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、排気ガスから熱を回収する多管式の排熱回収熱交換器に関するものである。 The present invention relates to a multi-tube exhaust heat recovery heat exchanger that recovers heat from exhaust gas.

従来より、排気ガス(流体)から熱を回収する多管式の排熱回収熱交換器としては、熱交換器内に冷却水(冷却液)を流入させ、排気ガスの熱を吸収して温水として排出することにより、排気ガスを冷却させるものが知られている(特許文献1)。 Conventionally, as a multi-tube type exhaust heat recovery heat exchanger that recovers heat from exhaust gas (fluid), cooling water (cooling liquid) is made to flow into the heat exchanger to absorb the heat of the exhaust gas and hot water. It is known that the exhaust gas is cooled by discharging the gas (Patent Document 1).

特開2010-243125号公報Japanese Unexamined Patent Publication No. 2010-243125

しかしながら、このような多管式の排熱回収熱交換器では、排気ガスの熱を吸収する冷却液が冷却水流通路内に停留すると、この冷却液がその位置で沸騰して気泡が発生し、気泡の周囲にスケールやすきま腐食を発生させるという問題があった。 However, in such a multi-tube type exhaust heat recovery heat exchanger, when the coolant that absorbs the heat of the exhaust gas stays in the cooling water flow passage, the coolant boils at that position and bubbles are generated. There was a problem of causing scale and crevice corrosion around the bubbles.

そこで、本発明の目的は、上記従来の熱交換器の問題を解消し、排気ガスの熱を吸収する冷却液が通路内に停留せず、スケールやすきま腐食を発生させることがなく、安定して熱交換を行うことが可能な多管式の排熱回収熱交換器を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problem of the conventional heat exchanger, and the coolant that absorbs the heat of the exhaust gas does not stay in the passage, does not cause scale or crevice corrosion, and is stable. It is an object of the present invention to provide a multi-tube type exhaust heat recovery heat exchanger capable of performing heat exchange.

本発明のうち、請求項1 に記載された発明は、長尺で半筒状に形成した2 つのケースを放熱フィンを介して組み付けてなり、偏平な中空角柱状に形成される伝熱管と、その伝熱管を複数平行に積層させた状態で収納する外管とを備え、
前記伝熱管内を流れる流体と、前記伝熱管と前記外管との隙間及び隣接する前記伝熱管同士の間を流れる冷却液との間で熱交換を行わせる多管式の排熱回収熱交換器であって、
前記ケース表面の短手方向に、根元となる一方の端から先端となる他方にかけて幅がテーパ状に変化する先細り形状の突条を、互い違いに突設して前記突条間に冷却液の流路を蛇行状に形成し、
下流側の前記流路が、上流側の前記流路よりも幅が狭く形成されることを特徴とするものである。
請求項2に記載された発明は、請求項1に加え、前記突条の先細り形状の拡がり角度が、3°以上5°以下であることを特徴とするものである。
請求項3に記載の発明は、請求項1又は2に記載の発明に加え、前記突条には、平坦な頂上部と、その頂上部から裾拡がり状に連設される傾斜側面と、が形成され、
隣接する前記伝熱管の前記頂上部同士が当接して、隣接する前記傾斜側面同士が繋がることで流路外縁部を形成し、
前記流路外縁部を形成する前記傾斜側面間に形成される角度が鈍角であることを特徴とするものである。
請求項4に記載の発明は、請求項3に記載の発明に加え、前記角度が、90°以上150°以下であることを特徴とするものである。
Among the present inventions, the invention according to claim 1 comprises a heat transfer tube formed into a flat hollow prismatic shape by assembling two long and semi-cylindrical cases via heat radiation fins. It is equipped with an outer tube that stores the heat transfer tubes in a state of being stacked in parallel.
Multi-tube type exhaust heat recovery heat exchange that exchanges heat between the fluid flowing in the heat transfer tube and the cooling liquid flowing between the gap between the heat transfer tube and the outer tube and between the adjacent heat transfer tubes. It ’s a vessel,
In the lateral direction of the case surface, tapered ridges whose width changes in a tapered shape from one end at the base to the other at the tip are alternately projected to cool liquid between the ridges. The flow path of is formed in a meandering shape,
The flow path on the downstream side is formed to have a narrower width than the flow path on the upstream side.
The invention according to claim 2 is characterized in that, in addition to claim 1, the divergence angle of the tapered shape of the ridge is 3 ° or more and 5 ° or less.
The invention according to claim 3 has, in addition to the invention according to claim 1 or 2, a flat top portion and an inclined side surface continuously provided from the top portion in a hem-extended shape. Formed,
The tops of the adjacent heat transfer tubes are in contact with each other, and the adjacent inclined side surfaces are connected to each other to form the outer edge of the flow path.
It is characterized in that the angle formed between the inclined side surfaces forming the outer edge of the flow path is an obtuse angle.
The invention according to claim 4 is characterized in that, in addition to the invention according to claim 3, the angle is 90 ° or more and 150 ° or less.

請求項1に記載された発明は、冷却液の流れが加速されて流路内に停滞しないことから、スケールやすきま腐食の発生を防止し、安定した熱交換が可能である。更に、空気が混入した場合でも、冷却液と同様に流路内に停滞することがない。
請求項2に記載された発明は、更に冷却液の流れが加速され、より一層安定した熱交換が可能となる。
請求項3に記載された発明は、冷却液が流路内に停滞しないことから、スケールやすきま腐食の発生を防止し、安定した熱交換が可能である。他にも、流路外縁部に形成される角度が鋭角の場合に比べて熱交換量が減少し、流路内で沸騰しにくくなる。
請求項4に記載された発明は、更に冷却液が流路内に停滞しにくくなり、より一層安定した熱交換が可能となる。
According to the first aspect of the present invention, since the flow of the coolant is accelerated and does not stagnate in the flow path, the occurrence of scale and crevice corrosion can be prevented and stable heat exchange can be performed. Further, even if air is mixed in, it does not stay in the flow path like the coolant.
According to the second aspect of the present invention, the flow of the coolant is further accelerated, and more stable heat exchange becomes possible.
According to the third aspect of the present invention, since the coolant does not stay in the flow path, it is possible to prevent the occurrence of scale and crevice corrosion and to perform stable heat exchange. In addition, the amount of heat exchange is reduced as compared with the case where the angle formed at the outer edge of the flow path is an acute angle, and boiling is less likely to occur in the flow path.
According to the fourth aspect of the present invention, the coolant is less likely to stay in the flow path, and more stable heat exchange is possible.

多管式の排熱回収熱交換器を示す説明図である。It is explanatory drawing which shows the exhaust heat recovery heat exchanger of a multi-tube type. 図1における縦中心断面を示す説明図である。It is explanatory drawing which shows the vertical center cross section in FIG. (a)は図2の流路を拡大した状態を、(b)は集合部を拡大した状態を示す説明図である。(A) is an explanatory diagram showing a state in which the flow path of FIG. 2 is enlarged, and (b) is an explanatory diagram showing a state in which the gathering portion is enlarged. 外管を取り外した状態を示す説明図である。It is explanatory drawing which shows the state which removed the outer tube. 伝熱管の表面を示す説明図である。It is explanatory drawing which shows the surface of a heat transfer tube. 図5における伝熱管のB-B線断面図を示す説明図である。It is explanatory drawing which shows the BB line sectional drawing of the heat transfer tube in FIG.

以下、本発明の多管式の排熱回収熱交換器(以下、熱交換器とする)の一実施形態について、図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the multi-tube exhaust heat recovery heat exchanger (hereinafter referred to as a heat exchanger) of the present invention will be described in detail with reference to the drawings.

<熱交換器の構造>
図1は、熱交換器を示す説明図である。図2は、図1における縦中心断面を示す説明図である。図3は、図2の流路と集合部の拡大した状態を示す説明図である。図4は、外管を取り外した状態を示す説明図である。図5は、伝熱管の表面を示す説明図である。図6は、図5におけるB-B線断面を示す説明図である。
<Structure of heat exchanger>
FIG. 1 is an explanatory diagram showing a heat exchanger. FIG. 2 is an explanatory view showing a vertical center cross section in FIG. FIG. 3 is an explanatory diagram showing an enlarged state of the flow path and the gathering portion of FIG. FIG. 4 is an explanatory diagram showing a state in which the outer tube is removed. FIG. 5 is an explanatory diagram showing the surface of the heat transfer tube. FIG. 6 is an explanatory view showing a cross section taken along line BB in FIG.

図1に示す熱交換器1は、排気ガスGの熱を冷却液に吸収させて熱交換を行い、排気ガスGを冷却させるものである。この熱交換器1は、図示しない配管の上流側に取り付けられる吸気側フランジ20と、下流側に取り付けられる排出側フランジ22と、これらの間に設けられ熱交換を行う本体部2とで構成される。
本体部2は、図2や図4に示すように、内部に複数の伝熱管5,5・・を積層した伝熱積層体4を、その外管3内に収納させて溶接(ロウ付)することによって形成したものである。
The heat exchanger 1 shown in FIG. 1 absorbs the heat of the exhaust gas G into a coolant to exchange heat and cool the exhaust gas G. The heat exchanger 1 is composed of an intake side flange 20 attached to the upstream side of a pipe (not shown), a discharge side flange 22 attached to the downstream side, and a main body portion 2 provided between them for heat exchange. To.
As shown in FIGS. 2 and 4, the main body 2 is welded (with brazing) by accommodating a heat transfer laminate 4 in which a plurality of heat transfer tubes 5, 5, ... Are laminated inside, in the outer tube 3 thereof. It was formed by doing.

伝熱管5は、排気ガスGの熱を冷却液に伝熱させるために、長尺で半筒状(コ字状)に折り曲げ形成した金属製の左ケース6,右ケース7に、放熱フィン24を介して組み付け、偏平な中空角柱状に形成したものである。そして、図5に示すように、伝熱管5は、上端に吸気口18を、下端に排出口19を形成し、排気ガスGが吸気口18側から内部へと流れ込み、排出口19側から外部へ流下する一方、左ケース6の表面を矢印の示す方向に冷却液Wが流れ、反対側の右ケース7の表面も、同様に冷却液Wが流れる構造である。 The heat transfer tube 5 is formed by bending a long, semi-cylindrical (U-shaped) metal left case 6 and right case 7 in order to transfer the heat of the exhaust gas G to the coolant. It is assembled into a flat hollow prismatic shape. Then, as shown in FIG. 5, the heat transfer tube 5 forms an intake port 18 at the upper end and an exhaust port 19 at the lower end, and the exhaust gas G flows from the intake port 18 side to the inside and from the exhaust port 19 side to the outside. On the other hand, the cooling liquid W flows on the surface of the left case 6 in the direction indicated by the arrow, and the cooling liquid W also flows on the surface of the right case 7 on the opposite side.

左ケース6の表面には、排出口19側に下段溝30が形成されており、この下段溝30内には複数の突起部16,16・・が突設されている。
下段溝30の上方には、左ケース6表面の短手方向に、左端から右方に向けて先細り形状の第1突条8が突設されている。この第1突条8は、左端から右端に亘って左ケース6の短手方向に対して右上がりに約2°で傾斜する手前側の第1傾斜側面9と、左端から右端に亘って左ケース6の短手方向に対して右下がりに約2°で傾斜する奥側の第2傾斜側面10とで構成される。第1突条8の先細り形状の拡がり角度Cは、約4°である。また、第1突条8には、平坦な頂上部50と、その頂上部50から裾拡がり状に第1傾斜側面9と第2傾斜側面10とが連設されている。
On the surface of the left case 6, a lower groove 30 is formed on the discharge port 19 side, and a plurality of protrusions 16, 16 ... Are projected in the lower groove 30.
Above the lower groove 30, a first ridge 8 having a tapered shape is projected from the left end to the right in the lateral direction of the surface of the left case 6. The first ridge 8 has a first inclined side surface 9 on the front side that inclines upward to the right by about 2 ° with respect to the lateral direction of the left case 6 from the left end to the right end, and left from the left end to the right end. It is composed of a second inclined side surface 10 on the back side, which is inclined downward to the right by about 2 ° with respect to the lateral direction of the case 6. The spreading angle C of the tapered shape of the first ridge 8 is about 4 °. Further, in the first ridge 8, a flat top portion 50 and a first inclined side surface 9 and a second inclined side surface 10 are continuously provided from the top portion 50 in a hem-extended shape.

第1突条8の上方には、この第1突条8とは反対に右端から左方に向けて先細り形状の第2突条11が突設されている。この第2突条11は、下端に左端から右端に亘って左ケース6の短手方向に対して右下がりに約2°で傾斜する第3傾斜側面12と、上端に左端から右端に亘って左ケース6の短手方向に対して右上がりに約2°傾斜する第4傾斜側面13とで構成される。第2突条11の先細り形状の拡がり角度Dは約4°である。また、第2突条11には、平坦な頂上部51と、その頂上部51から裾拡がり状に第3傾斜側面12と第4傾斜側面13とが連設されている。 Opposite to the first ridge 8, a second ridge 11 having a tapered shape is projected above the first ridge 8 from the right end to the left. The second ridge 11 has a third inclined side surface 12 that inclines from the left end to the right end at the lower end and tilts downward to the right at about 2 ° with respect to the lateral direction of the left case 6, and extends from the left end to the right end at the upper end. It is composed of a fourth inclined side surface 13 which is inclined upward by about 2 ° to the right with respect to the lateral direction of the left case 6. The spreading angle D of the tapered shape of the second ridge 11 is about 4 °. Further, in the second ridge 11, a flat top portion 51 and a third inclined side surface 12 and a fourth inclined side surface 13 are continuously provided from the top portion 51 in a hem-extended shape.

他にも、第2突条11の上方で上端の吸気口18側には、段状の壁部14が形成されている。この壁部14の下端には、左端から右端に亘って左ケース6の短手方向に対して右上がりに約2°で傾斜する第5傾斜側面15が形成されている。また、壁部14には、平坦な頂上部52と、その頂上部52に第5傾斜側面15が連設されている。 In addition, a stepped wall portion 14 is formed on the intake port 18 side at the upper end above the second ridge 11. At the lower end of the wall portion 14, a fifth inclined side surface 15 is formed, which is inclined upward to the right by about 2 ° from the left end to the right end in the lateral direction of the left case 6. Further, the wall portion 14 is provided with a flat top portion 52 and a fifth inclined side surface 15 connected to the top portion 52.

これらの構成により、第1突条8と第2突条11との間には、幅Eが約8mmの中段溝31が形成され、第2突条11と壁部14との間には、幅Fが約5mmで中段溝31より幅の狭い上段溝32が形成されている。下段溝30と中段溝31とは逆L字形に湾曲するように繋がっており、中段溝31と上段溝32とは倒U字状に繋がって、矢印が示す方向に蛇行状に冷却液Wが流れることを可能としている。 With these configurations, a middle groove 31 having a width E of about 8 mm is formed between the first ridge 8 and the second ridge 11, and between the second ridge 11 and the wall portion 14, a middle groove 31 is formed. An upper groove 32 having a width F of about 5 mm and a width narrower than that of the middle groove 31 is formed. The lower groove 30 and the middle groove 31 are connected so as to be curved in an inverted L shape, and the middle groove 31 and the upper groove 32 are connected in an inverted U shape, and the coolant W meanders in the direction indicated by the arrow. It is possible to flow.

そして、図2,3(a)に示すように、複数の伝熱管5,5・・を積層すると、最も左側に位置する伝熱管5の右ケース7側に形成される下段溝30に、隣接する伝熱管5の左ケース6側に形成される下段溝30が重なることにより、第1流路40が形成される。
この時、図3(b)に示すように、最も左側に位置する伝熱管5の第1傾斜側面9と、隣接する伝熱管5の第1傾斜側面9とで形成される流路外縁部41は、図3(b)に示す角度Aが約120°の鈍角に形成されており、第1流路40内に気泡が発生しても、この角度Aが鋭角でないことから、気泡が停留しない構造である。
Then, as shown in FIGS. The first flow path 40 is formed by overlapping the lower groove 30 formed on the left case 6 side of the heat transfer tube 5.
At this time, as shown in FIG. 3B, the flow path outer edge portion 41 formed by the first inclined side surface 9 of the heat transfer tube 5 located on the leftmost side and the first inclined side surface 9 of the adjacent heat transfer tube 5 3 (b) shows that the angle A is formed at an obtuse angle of about 120 °, and even if bubbles are generated in the first flow path 40, the bubbles do not stay because the angle A is not an acute angle. It is a structure.

また、中段溝31,31についても同様に重なることで、第2流路42が形成され、この時も、第2傾斜側面10,10で形成される流路外縁部43の角度と、第3傾斜側面12,12で形成する流路外縁部44の角度とが、角度Aと同様に約120°の鈍角に形成される。 Further, the second flow path 42 is formed by overlapping the middle-stage grooves 31 and 31 in the same manner, and also at this time, the angle of the flow path outer edge portion 43 formed by the second inclined side surfaces 10 and 10 and the third flow path. The angle of the flow path outer edge portion 44 formed by the inclined side surfaces 12 and 12 is formed to be an obtuse angle of about 120 °, similarly to the angle A.

更に、上段溝32,32についても同様に重なることで、第3流路45が形成される。この第3流路45においても、流路外縁部43や流路外縁部44の場合と同様に、第4傾斜側面13,13で形成する流路外縁部46の角度と、第5傾斜側面15,15で形成する流路外縁部47の角度とが、角度Aと同様に約120°の鈍角に形成される。
以降、他の伝熱管5を重ね合わせることで第1流路40、第2流路42、第3流路45の各流路が同様に形成される。
Further, the upper grooves 32 and 32 are similarly overlapped to form the third flow path 45. Also in the third flow path 45, as in the case of the flow path outer edge portion 43 and the flow path outer edge portion 44, the angle of the flow path outer edge portion 46 formed by the fourth inclined side surfaces 13 and 13 and the fifth inclined side surface 15 , 15 is formed at an obtuse angle of about 120 ° with respect to the angle of the flow path outer edge portion 47, which is the same as the angle A.
After that, by superimposing the other heat transfer tubes 5, each flow path of the first flow path 40, the second flow path 42, and the third flow path 45 is formed in the same manner.

<熱交換器の組み付け>
熱交換器1は、左ケース6,右ケース7に放熱フィン24を組み付けることによって各伝熱管5,5・・を形成し、これらを積層して仮止めすることによって、図4に示す伝熱積層体4を形成する。そして、上側アウターケースと下側アウターケースとを溶接(ロウ付)して外管3を形成する際に、伝熱積層体4を、その外管3内に収納させて溶接(ロウ付)することによって形成される。
<Assembly of heat exchanger>
The heat exchanger 1 forms heat transfer tubes 5, 5, ... By assembling the heat transfer fins 24 to the left case 6 and the right case 7, and by laminating and temporarily fixing these, the heat transfer shown in FIG. 4 is performed. The laminate 4 is formed. Then, when the upper outer case and the lower outer case are welded (with brazing) to form the outer pipe 3, the heat transfer laminate 4 is housed in the outer pipe 3 and welded (with brazing). Formed by

次に、熱交換器1による排気ガスGと冷却液Wとの熱交換は、以下のようにして行われる。
図1に示す高温(約150~300℃)の排気ガスGが配管から吸気側フランジ20内に流入すると、図2に示すように、本体部2の各伝熱管5,5・・に分流することとなる。そして、図3,5に示すように、各伝熱管5,5・・の吸気口18,18・・からそれぞれの内部に流れ込む。
Next, the heat exchange between the exhaust gas G and the coolant W by the heat exchanger 1 is performed as follows.
When the high-temperature (about 150 to 300 ° C.) exhaust gas G shown in FIG. 1 flows into the intake side flange 20 from the pipe, it is diverted to the heat transfer tubes 5, 5, ... Of the main body 2 as shown in FIG. It will be. Then, as shown in FIGS. 3 and 5, the heat transfer tubes 5, 5 ... Flow into the inside of each of the intake ports 18, 18 ...

この時、外管3の入水側ポート25から約25℃の冷却液Wが本体部2内に供給されており、外管3と各伝熱管5,5・・との間に流れ込む構造となっている。
このうち、図4に示すように、伝熱管5の左ケース6の表面では、冷却液Wの一部が下段溝30上の排出口19付近に流れ込む。図5に示すように、下段溝30上では、突起部16,16・・の間を流れると、第1突条8の第1傾斜側面9に当接し、この第1傾斜側面9に沿って左端から右端手前に向かって流れた後、中段溝31に流れ込むこととなる。そして、中段溝31に流れ込んだ冷却液Wが、中段溝31内を第2傾斜側面10と第3傾斜側面12とに沿って流れた後、第2突条11の左先端部を通過して向きを変えると、上段溝32に流れ込むこととなる。この時の流速は、0.05m/s以上であり、流路の途中で淀むことはない。
次に、上段溝32では、第4傾斜側面13と第5傾斜側面15とに沿って流れ、流出口17側に排出されることとなる。この冷却液Wは、左ケース6の表面上を流れる間に排気ガスGの熱を左ケース6を介して吸収することとなる。
At this time, the cooling liquid W at about 25 ° C. is supplied from the water inlet side port 25 of the outer pipe 3 into the main body 2, and has a structure that flows between the outer pipe 3 and the heat transfer tubes 5, 5, ... ing.
Of these, as shown in FIG. 4, on the surface of the left case 6 of the heat transfer tube 5, a part of the coolant W flows into the vicinity of the discharge port 19 on the lower groove 30. As shown in FIG. 5, on the lower groove 30, when flowing between the protrusions 16, 16 ..., it abuts on the first inclined side surface 9 of the first ridge 8 and is along the first inclined side surface 9. After flowing from the left end to the front of the right end, it will flow into the middle groove 31. Then, the coolant W that has flowed into the middle stage groove 31 flows through the middle stage groove 31 along the second inclined side surface 10 and the third inclined side surface 12, and then passes through the left tip portion of the second ridge 11. When the direction is changed, it will flow into the upper groove 32. The flow velocity at this time is 0.05 m / s or more, and there is no stagnation in the middle of the flow path.
Next, in the upper groove 32, the flow flows along the fourth inclined side surface 13 and the fifth inclined side surface 15, and is discharged to the outlet 17 side. The coolant W absorbs the heat of the exhaust gas G through the left case 6 while flowing on the surface of the left case 6.

また、伝熱管5の右ケース7側と、隣接する伝熱管5の左ケース6側とで構成される第1流路40、第2流路42、第3流路45を流れる冷却液Wでも同様に、排気ガスGの熱を右ケース7と左ケース6とを介して吸収した後、約60~80℃で流出口17、17側に排出されることとなる。他の伝熱管5,5・・でも同様に、排気ガスGの熱を冷却液Wが吸収することとなる。
そして、各流出口17,17・・から出て合流した冷却液Wは、出水側ポート26から本体部2の外部へと流れ出ることとなる。一方、冷却液Wによって冷却された排気ガスGが排出口19,19・・から出て合流し、約25~35℃で排出側フランジ22の排出口23へ流れることとなる。
Further, even with the coolant W flowing through the first flow path 40, the second flow path 42, and the third flow path 45, which are composed of the right case 7 side of the heat transfer tube 5 and the left case 6 side of the adjacent heat transfer tube 5. Similarly, after the heat of the exhaust gas G is absorbed through the right case 7 and the left case 6, it is discharged to the outlets 17 and 17 at about 60 to 80 ° C. Similarly, in the other heat transfer tubes 5, 5, ..., The coolant W absorbs the heat of the exhaust gas G.
Then, the coolant W that has come out and merged from each of the outlets 17, 17 ... Will flow out from the water outlet side port 26 to the outside of the main body 2. On the other hand, the exhaust gas G cooled by the coolant W exits from the exhaust ports 19, 19 ... And merges with each other, and flows to the exhaust port 23 of the discharge side flange 22 at about 25 to 35 ° C.

上記の如く構成される熱交換器1は、左ケース6表面の短手方向に、一方の端から他方に向けて先細り形状の第1突条8,第2突条11を、互い違いに突設して第1突条8,第2突条11間に冷却液Wの第2流路42、第3流路45を蛇行状に形成し、下流側の第2流路42が、上流側の第3流路45よりも幅が狭く形成されることにより、冷却液Wの流れが加速されて第2流路42、第3流路45内に停滞しないことから、スケールやすきま腐食の発生を防止し、安定した熱交換が可能である。更に、空気が混入した場合でも、冷却液Wと同様に第2流路42、第3流路45内に停滞することがない。 In the heat exchanger 1 configured as described above, the first ridges 8 and the second ridges 11 having a tapered shape are alternately projected from one end toward the other in the lateral direction of the surface of the left case 6. Then, the second flow path 42 and the third flow path 45 of the coolant W are formed in a meandering shape between the first ridges 8 and the second ridges 11, and the second flow path 42 on the downstream side is on the upstream side. Since the width is narrower than that of the third flow path 45, the flow of the coolant W is accelerated and does not stagnate in the second flow path 42 and the third flow path 45, so that scale and crevice corrosion occur. It prevents and enables stable heat exchange. Further, even if air is mixed in, it does not stagnate in the second flow path 42 and the third flow path 45 like the coolant W.

更に、第1突条8の先細り形状の拡がり角度Cと、第2突条11の先細り形状の拡がり角度Dとが、3°以上5°以下であることにより、更に冷却液Wの流れが加速され、より一層安定した熱交換が可能となる。 Further, when the spreading angle C of the tapered shape of the first ridge 8 and the spreading angle D of the tapered shape of the second ridge 11 are 3 ° or more and 5 ° or less, the flow of the coolant W is further accelerated. Therefore, more stable heat exchange becomes possible.

また、第1突条8には、平坦な頂上部50と、その頂上部50から裾拡がり状に連設される第1傾斜側面9と第2傾斜側面10と、が形成され、隣接する伝熱管5の頂上部50,50同士が当接して、隣接する第1傾斜側面9,9同士が繋がることで流路外縁部41を形成し、流路外縁部41を形成する第1傾斜側面9,9間に形成される角度Aが鈍角であることにより、冷却液Wが第1流路40内に停滞しないことから、スケールやすきま腐食の発生を防止し、安定した熱交換が可能である。他にも、流路外縁部41に形成される角度Aが鋭角の場合に比べて熱交換量が減少し、第1流路40内で沸騰しにくくなる。 Further, the first ridge 8 is formed with a flat top 50 and a first inclined side surface 9 and a second inclined side surface 10 which are continuously provided from the top 50 in a hem-extended shape, and are adjacent to each other. The tops 50, 50 of the heat tube 5 are in contact with each other, and the adjacent first inclined side surfaces 9 and 9 are connected to each other to form the flow path outer edge portion 41, and the first inclined side surface 9 forming the flow path outer edge portion 41. Since the angle A formed between the 9th and 9th is an obtuse angle, the coolant W does not stagnate in the first flow path 40, so that the occurrence of scale and crevice corrosion is prevented and stable heat exchange is possible. .. In addition, the amount of heat exchange is reduced as compared with the case where the angle A formed on the outer edge portion 41 of the flow path is an acute angle, and boiling is less likely to occur in the first flow path 40.

更に、角度Aが、90°以上150°以下であることにより、更に冷却液Wが第1流路40内に停滞しにくくなり、より一層安定した熱交換が可能となる。 Further, when the angle A is 90 ° or more and 150 ° or less, the coolant W is less likely to stay in the first flow path 40, and more stable heat exchange becomes possible.

なお、本発明にかかる熱交換器は、上記した実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、突条や壁部、流路の形状や大きさを適宜変更することができる。 The heat exchanger according to the present invention is not limited to the above-described embodiment, and the shapes and sizes of the ridges, walls, and flow paths are appropriately adjusted without departing from the spirit of the present invention. Can be changed.

他にも、冷却液Wとしては、一般的には水が用いられるが、他に吸熱性に優れた液体であっても良い。また、本発明の流体である排気ガスGは、気体であるが、液体であっても良く、伝熱管を介して熱交換の可能なものであれば適宜変更可能である。 In addition, water is generally used as the coolant W, but other liquids having excellent endothermic properties may be used. The exhaust gas G, which is the fluid of the present invention, is a gas, but may be a liquid, and can be appropriately changed as long as heat can be exchanged via a heat transfer tube.

具体的な使用例としては、例えば自動車のEGR(Exhaust Gas Recirculation)システムに用いることにより、燃焼期間の排気マニホールドから排気ガスの一部を導入して所定の温度まで冷却し、冷却後の排気ガス(所謂、EGRガス)を、EGR弁を介して吸気マニホールドに排出させることができる。 As a specific example of use, for example, by using it in an automobile EGR (Exhaust Gas Recirculation) system, a part of the exhaust gas is introduced from the exhaust manifold during the combustion period and cooled to a predetermined temperature, and the exhaust gas after cooling is cooled. (So-called EGR gas) can be discharged to the intake manifold via the EGR valve.

1・・熱交換器(排熱回収熱交換器)、2・・本体部、3・・外管、4・・伝熱積層体、5・・伝熱管、6・・左ケース、7・・右ケース、8・・第1突条、9・・第1傾斜側面、10・・第2傾斜側面、11・・第2突条、12・・第3傾斜側面、13・・第4傾斜側面、14・・壁部、15・・第5傾斜側面、16・・突起部、17・・流出口、18・・吸気口、20・・吸気側フランジ、22・・排気側フランジ、24・・放熱フィン、25・・入水側ポート、26・・出水側ポート、30・・下段溝、31・・中段溝、32・・上段溝、40・・第1流路、41・・流路外縁部、42・・第2流路、43・・流路外縁部、44・・流路外縁部、45・・第3流路、46・・流路外縁部、47・・流路外縁部、50・・頂上部、51・・頂上部、52・・頂上部、G・・排気ガス、W・・冷却液。 1 ... Heat exchanger (exhaust heat recovery heat exchanger), 2 ... Main body, 3 ... Outer tube, 4 ... Heat transfer laminate, 5 ... Heat transfer tube, 6 ... Left case, 7 ... Right case, 8 ... 1st ridge, 9 ... 1st sloping side, 10 ... 2nd sloping side, 11 ... 2nd ridge, 12 ... 3rd sloping side, 13 ... 4th sloping side , 14 ... wall part, 15 ... 5th inclined side surface, 16 ... protrusion, 17 ... outlet, 18 ... intake port, 20 ... intake side flange, 22 ... exhaust side flange, 24 ... Heat dissipation fins, 25 ... water inlet side port, 26 ... water outlet side port, 30 ... lower groove, 31 ... middle groove, 32 ... upper groove, 40 ... first flow path, 41 ... flow path outer edge , 42 ... 2nd flow path, 43 ... flow path outer edge, 44 ... flow path outer edge, 45 ... third flow path, 46 ... flow path outer edge, 47 ... flow path outer edge, 50・ ・ Top, 51 ・ ・ Top, 52 ・ ・ Top, G ・ ・ Exhaust gas, W ・ ・ Coolant.

Claims (4)

長尺で半筒状に形成した2つのケースを放熱フィンを介して組み付けてなり、偏平な中空角柱状に形成される伝熱管と、その伝熱管を複数平行に積層させた状態で収納する外管とを備え、
前記伝熱管内を流れる流体と、前記伝熱管と前記外管との隙間及び隣接する前記伝熱管同士の間を流れる冷却液との間で熱交換を行わせる多管式の排熱回収熱交換器であって、
前記ケース表面の短手方向に、根元となる一方の端から先端となる他方にかけて幅がテーパ状に変化する先細り形状の突条を、互い違いに突設して前記突条間に冷却液の流路を蛇行状に形成し、
下流側の前記流路が、上流側の前記流路よりも幅が狭く形成されることを特徴とする多管式の排熱回収熱交換器。
Two long, semi-cylindrical cases are assembled via heat radiation fins, and the heat transfer tube formed in a flat hollow prismatic shape and the heat transfer tube are stored in a state of being laminated in parallel. Equipped with a tube,
Multi-tube type exhaust heat recovery heat exchange that exchanges heat between the fluid flowing in the heat transfer tube and the cooling liquid flowing between the gap between the heat transfer tube and the outer tube and between the adjacent heat transfer tubes. It ’s a vessel,
In the lateral direction of the case surface, tapered ridges whose width changes in a tapered shape from one end at the base to the other at the tip are alternately projected to cool liquid between the ridges. The flow path of is formed in a meandering shape,
A multi-tube exhaust heat recovery heat exchanger characterized in that the flow path on the downstream side is formed to be narrower than the flow path on the upstream side.
前記突条の先細り形状の拡がり角度が、3°以上5°以下であることを特徴とする請求項1に記載の多管式の排熱回収熱交換器。 The multi-tube exhaust heat recovery heat exchanger according to claim 1, wherein the bulging angle of the tapered shape of the ridge is 3 ° or more and 5 ° or less. 前記突条には、平坦な頂上部と、その頂上部から裾拡がり状に連設される傾斜側面と、が形成され、
隣接する前記伝熱管の前記頂上部同士が当接して、隣接する前記傾斜側面同士が繋がることで流路外縁部を形成し、
前記流路外縁部を形成する前記傾斜側面間に形成される角度が鈍角であることを特徴とする請求項1又は2に記載の多管式の排熱回収熱交換器。
The ridge is formed with a flat top and an inclined side surface that is continuous from the top in a hem-extending shape.
The tops of the adjacent heat transfer tubes are in contact with each other, and the adjacent inclined side surfaces are connected to each other to form the outer edge of the flow path.
The multi-tube exhaust heat recovery heat exchanger according to claim 1 or 2, wherein the angle formed between the inclined side surfaces forming the outer edge of the flow path is an obtuse angle.
前記角度が、90°以上150°以下であることを特徴とする請求項3に記載の多管式の排熱回収熱交換器。 The multi-tube exhaust heat recovery heat exchanger according to claim 3, wherein the angle is 90 ° or more and 150 ° or less.
JP2017144768A 2017-07-26 2017-07-26 Multi-tube waste heat recovery heat exchanger Active JP6991767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017144768A JP6991767B2 (en) 2017-07-26 2017-07-26 Multi-tube waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017144768A JP6991767B2 (en) 2017-07-26 2017-07-26 Multi-tube waste heat recovery heat exchanger

Publications (2)

Publication Number Publication Date
JP2019027624A JP2019027624A (en) 2019-02-21
JP6991767B2 true JP6991767B2 (en) 2022-01-13

Family

ID=65476067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017144768A Active JP6991767B2 (en) 2017-07-26 2017-07-26 Multi-tube waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JP6991767B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052495A (en) 2007-08-28 2009-03-12 Aisan Ind Co Ltd Egr cooler bypass changeover system
JP2014181855A (en) 2013-03-19 2014-09-29 T Rad Co Ltd Header plate-less heat exchanger
JP2015194324A (en) 2014-03-27 2015-11-05 株式会社ティラド Header plate-less heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052495A (en) 2007-08-28 2009-03-12 Aisan Ind Co Ltd Egr cooler bypass changeover system
JP2014181855A (en) 2013-03-19 2014-09-29 T Rad Co Ltd Header plate-less heat exchanger
JP2015194324A (en) 2014-03-27 2015-11-05 株式会社ティラド Header plate-less heat exchanger

Also Published As

Publication number Publication date
JP2019027624A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
JP5145718B2 (en) Heat exchanger
US20060137867A1 (en) Exhaust gas heat exchanger
CN107401939A (en) Heat-exchange device
US20140060789A1 (en) Heat exchanger and method of operating the same
JP2009091948A (en) Egr cooler
US20190331067A1 (en) Heat exchanger
JP7256951B2 (en) Plate heat exchanger and water heater equipped with same
JP6116951B2 (en) Header plateless heat exchanger
JP2007170733A (en) Latent heat recovery type heat exchanger
JP5585558B2 (en) Exhaust heat exchanger
JP3956097B2 (en) Exhaust heat exchanger
JP6413814B2 (en) Water-cooled cooler
JP2019015200A (en) Intercooler
US20200333089A1 (en) A heat exchanger and an additive manufacturing method for manufacturing a heat exchanger
JP6991767B2 (en) Multi-tube waste heat recovery heat exchanger
JP6256807B2 (en) Heat exchanger and hot water device provided with the same
JP5071181B2 (en) Heat exchanger
JP5764535B2 (en) Heat exchanger
JP4160576B2 (en) Combined heat source machine
JP5900731B2 (en) Water heater
JP3958302B2 (en) Heat exchanger
JP6197715B2 (en) Heat exchanger
JP6409793B2 (en) Intercooler
KR101155463B1 (en) A heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6991767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150