JPH065604B2 - Superconducting stranded wire - Google Patents

Superconducting stranded wire

Info

Publication number
JPH065604B2
JPH065604B2 JP61015712A JP1571286A JPH065604B2 JP H065604 B2 JPH065604 B2 JP H065604B2 JP 61015712 A JP61015712 A JP 61015712A JP 1571286 A JP1571286 A JP 1571286A JP H065604 B2 JPH065604 B2 JP H065604B2
Authority
JP
Japan
Prior art keywords
superconducting
stranded wire
substance
wire
superconducting composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61015712A
Other languages
Japanese (ja)
Other versions
JPS62176007A (en
Inventor
勝藏 相原
邦茂 黒田
直文 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61015712A priority Critical patent/JPH065604B2/en
Publication of JPS62176007A publication Critical patent/JPS62176007A/en
Publication of JPH065604B2 publication Critical patent/JPH065604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導撚線に係り、特に、パルス運転、あるい
は交流運転に使用するに好適な超電導撚線に関する。
TECHNICAL FIELD The present invention relates to a superconducting stranded wire, and more particularly to a superconducting stranded wire suitable for use in pulse operation or AC operation.

〔従来の技術〕[Conventional technology]

従来のパルス運転用、あるいは交流運転用の超電導線に
ついては、スーパーコンダクテイング・マグネツト,エ
ム・エヌ・ウイルソン著,クラレンドン・プレス・オツ
クスフオード発行(1983年)第307頁から第309頁
(SuperconductingMagnets,M.N.Wilson,CLARENDON PRES
SOXFORD,(1983)pp307〜309)において論じられている。
Regarding conventional superconducting wires for pulse operation or AC operation, Superconducting Magnet, M. N. Wilson, Clarendon Press Oxford published (1983), pages 307 to 309 (SuperconductingMagnets, MNWilson). , CLARENDON PRES
SOXFORD, (1983) pp307-309).

一般に超電導撚線はCu、あるいはCu−Niなどの常
電導性基材中に、たとえばNb−Tiなどの超電導フイ
ラメントの複数本を内蔵した超電導複合素線の複数本を
撚り合せた構造を持つ。撚線構造とする最大の目的は、
通常電流を大きくし、かつ交流損失を低減させることに
ある。撚線構造を大別すると、数本の素線を撚り合せた
ものをさらに多数組撚り合せたいわゆるリツツワイヤー
タイプ、多数本の素線を編み組みしたいわゆるブレード
タプ、及び複数本の素線を撚り合せた後平角状に成形し
たいわゆる成形撚線タイプの3種類がある。交流損失の
低減だけを考えれば、各々の素線を完全に電気絶縁すれ
ば良いが、この場合、各素線間での分流現象が阻害され
ることから各素線の安定性が悪くなり、本来の臨界電流
まで通電できなくなる。したがつて、交流の印加状態に
応じて、交流損失の許容される範囲内での各素線間の導
電性を確保することになる。従来、このような目的で、
Pb−Sn,Sn−Agなどの半田を素線に被覆した
り、あるいは素線表面に酸化皮膜を形成させたりしてい
た。
In general, a superconducting stranded wire has a structure in which a plurality of superconducting composite strands having a plurality of superconducting filaments such as Nb-Ti incorporated therein are twisted together in a normal-conducting substrate such as Cu or Cu-Ni. The biggest purpose of making a stranded wire structure is
It is to increase the normal current and reduce the AC loss. The stranded wire structure is roughly classified into a so-called Ritsu wire type in which a large number of sets of several strands are twisted together, a so-called blade tap in which a large number of strands are braided, and a plurality of strands are twisted together. There are three types of so-called formed stranded wire types which are formed into a rectangular shape after being combined. Considering only the reduction of AC loss, it is sufficient to completely electrically insulate each strand, but in this case, the shunting phenomenon between each strand is hindered and the stability of each strand deteriorates. It will not be possible to energize to the original critical current. Therefore, according to the applied state of the alternating current, the conductivity between the individual wires is secured within the range where the AC loss is allowed. Conventionally, for this purpose,
The solder has been coated with solder such as Pb-Sn or Sn-Ag, or an oxide film has been formed on the surface of the strand.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、従来の撚線では、各素線にPb−SnあるいはS
n−Ag等の半田被覆を行つた場合には、これら半田の
電気比抵抗は10-7Ωcmオーダであり、高速パルス運
転、あるいは商用周波数で用いるには電気比抵抗が小さ
く、十分に交流損失を低減させることができない。ま
た、特にPb−Sn半田は臨界温度が7K程度の超電導
体であり、4.2Kの液体ヘリウム中で用いると半田材
そのもののヒステリシス損失も余分に加わることにな
る。さらに、半田被覆をする場合に200〜300℃ま
で温度を上げる必要があり、そのために超電導特性が低
下する懸念もある。また、素線表面に酸化皮膜を形成さ
せた場合には、半田に比し電気比抵抗の大きな皮膜とす
ることが可能であるが、必ずしも所望の電気比抵抗値を
得られるとは限らない。また、均一な皮膜を得ることが
難かしく、撚線時に皮膜が破損したりして性能の良い撚
線が得られない。
By the way, in the conventional stranded wire, Pb-Sn or S
When a solder coating such as n-Ag is applied, the electrical resistivity of these solders is on the order of 10 -7 Ωcm, and the electrical resistivity is small and AC loss is sufficient for use in high-speed pulse operation or commercial frequency. Cannot be reduced. Further, especially Pb-Sn solder is a superconductor having a critical temperature of about 7K, and when it is used in liquid helium at 4.2K, hysteresis loss of the solder material itself is additionally added. Further, when the solder coating is performed, it is necessary to raise the temperature to 200 to 300 ° C., which may cause deterioration of superconducting characteristics. Further, when an oxide film is formed on the surface of the wire, it is possible to obtain a film having a larger electrical resistivity than solder, but it is not always possible to obtain a desired electrical resistivity value. In addition, it is difficult to obtain a uniform film, and the film is damaged during twisting, so that a twisted wire with good performance cannot be obtained.

したがつて、本発明の目的は、上記従来の欠点を無くし
パルス運転、あるいは交流運転に好適な超電導撚線を提
供するにある。
Therefore, it is an object of the present invention to provide a superconducting stranded wire suitable for pulse operation or AC operation without the above-mentioned conventional drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、導電性基材中に複数の超電導フイラメント
を内蔵した超電導複合素線の複数本が、導電性微粉体と
絶縁性有機物とからなる電気抵抗性物質を介して相互に
接続された超電導撚線とすることにより達成される。
A plurality of superconducting composite strands having a plurality of superconducting filaments in a conductive base material are connected to each other through an electrically resistive substance composed of a conductive fine powder and an insulating organic substance. This is achieved by using a stranded wire.

〔作用〕[Action]

導電性微粉体と絶縁性有機物とからなる電気抵抗性物質
は、導電性微粉体の種類、あるいは導電性微粉体と絶縁
性有機物との配合割合を変えることにより、電気抵抗性
物質の電気比抵抗を所望の値にすることが容易である。
ここで、導電性微粉体としては、銀、銅、アルミニウ
ム、ニツケルなどの金属、酸化スズ、酸化インジウムな
どの金属酸化物、あるいはその他の金属間化合物などが
使用でき、その粒径は数十μm以下の微粒である。絶縁
性有機物としてはエポキシ系樹脂、ポリエステル系樹
脂、ウレタン系樹脂、アクリル系樹脂などが使用でき
る。導電性微粉体が絶縁性有機物質の中で互いに接触す
ることにより全体として導電性が得られる。また、絶縁
性有機物は硬化前は液体状であり、導電性微粒体は容易
に混合される。超導電素線への被覆は容易であり、室温
で硬化させることも、あるいは加熱して硬化させること
もできる。これら絶縁性有機物は接着性に優れており、
硬化後も安定した機械的強度が保たれる。
The electric resistance substance consisting of conductive fine powder and insulating organic substance is the electrical resistivity of the electric resistance substance by changing the kind of conductive fine powder or the mixing ratio of conductive fine powder and insulating organic substance. Can be easily set to a desired value.
Here, as the conductive fine powder, a metal such as silver, copper, aluminum, nickel, a metal oxide such as tin oxide or indium oxide, or another intermetallic compound can be used, and the particle size thereof is several tens of μm. The following fine particles. As the insulating organic material, epoxy resin, polyester resin, urethane resin, acrylic resin and the like can be used. When the conductive fine particles are in contact with each other in the insulating organic substance, conductivity is obtained as a whole. Moreover, the insulating organic material is in a liquid state before being cured, and the conductive fine particles are easily mixed. The coating on the superconducting wire is easy and can be cured at room temperature or by heating. These insulating organic materials have excellent adhesiveness,
Stable mechanical strength is maintained even after curing.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。該図
に示す本実施例の超電導撚線は、電気抵抗性物質2で表
面を被覆した超導電複合素線1の7本が撚り合わされて
構成されている超伝導複合素線1は、外径寸法がφ0.
5mmで、直径0.74μmのNb−Ti超導電フイラメ
ント94,686本が、導電性基材としてのCuとCu−Ni
合金複合マトリツクス中に埋込まれた構造である。C
u、およびCu−NiとNb−Tiとの断面積比は、各
々、1.45で、Cu−NiはCu、およびNb−Ti
を分割するように配置されている。そして、この超導電
複合素線1は、ピツチ6.4mmでツイストされている。
この超導電複合素線1は、従来から行われている複合加
工法により容易に作ることができた。
An embodiment of the present invention will be described below with reference to FIG. The superconducting stranded wire of the present embodiment shown in the figure has a superconducting composite element wire 1 formed by twisting seven superconducting composite element wires 1 whose surface is coated with an electric resistance substance 2 and having an outer diameter. The size is φ0.
94,686 Nb-Ti superconducting filaments with a diameter of 5 mm and a diameter of 0.74 μm were made of Cu and Cu-Ni as conductive base materials.
It is a structure embedded in an alloy composite matrix. C
The cross-sectional area ratios of u and Cu-Ni and Nb-Ti are 1.45, respectively, and Cu-Ni is Cu and Nb-Ti.
Are arranged to divide. The superconducting composite wire 1 is twisted with a pitch of 6.4 mm.
The superconducting composite element wire 1 could be easily manufactured by the composite processing method which has been conventionally performed.

つぎに、導電性微粉体としてのCu微粉を70%の体積
割合となるようにエポキシ系樹脂に撹拌混合し、その中
に上記で得られた超電導複合素線1を浸漬し、ダイスを
通して10μm厚さの被膜を形成させた。熱硬化型の樹
脂を使用したので、130℃で30分間の加温をを行い
被覆を接着硬化させ電気抵抗性物質2の被膜を形成させ
た。
Next, Cu fine powder as conductive fine powder is mixed by stirring in an epoxy resin so as to have a volume ratio of 70%, and the superconducting composite element wire 1 obtained above is immersed therein and passed through a die to obtain a thickness of 10 μm. A coating film was formed. Since a thermosetting resin was used, heating was performed at 130 ° C. for 30 minutes to bond and cure the coating to form a film of the electric resistance substance 2.

ついで、電気抵抗性物質2の被膜を形成させた超電導複
合素線1の7本を撚線機にて撚線ピツチ15mmで撚り合
せ、本発明の超電導撚線10を得た。
Then, seven superconducting composite strands 1 on which the coating of the electric resistance substance 2 was formed were twisted together with a twisting machine at a twisting pitch of 15 mm to obtain a superconducting twisted wire 10 of the present invention.

得られた超電導撚線10の臨界電流を測定したところ、
4.2Kの液体ヘリウム中、5Tの磁界中で675Aで
あつた。超電導複合素線の同様な条件下での臨界電流が
96Aであつたので、本発明の撚線では安定性が確保さ
れていることが示された。
When the critical current of the obtained superconducting stranded wire 10 was measured,
It was 675 A in 4.2 K liquid helium in a 5 T magnetic field. Since the critical current of the superconducting composite element wire under the same condition was 96 A, it was shown that the stranded wire of the present invention ensured the stability.

また、別途、厚さ10μm、幅2mm、長さ10cmの電気
抵抗性物質被膜を作製し、4.2Kの液体ヘリウム中で
電気抵抗測定を行つたところ、4.2×10-5Ωcmの値
を得た。この値は、Pb−Sn半田に比し約2桁大きい
値であつた。また、得られた超電導撚線10の外観検
査、断面の顕微鏡観察の結果、超電導複合素線1と電気
抵抗性物質2の被膜との密着性は良好で、電気抵抗性物
質2の被膜の欠落は見られなかつた。
Separately, an electric resistance material film having a thickness of 10 μm, a width of 2 mm and a length of 10 cm was prepared, and the electric resistance was measured in liquid helium at 4.2 K. The value was 4.2 × 10 −5 Ωcm. Got This value was about two orders of magnitude higher than that of Pb-Sn solder. Further, as a result of the appearance inspection of the obtained superconducting twisted wire 10 and the microscopic observation of the cross section, the adhesion between the superconducting composite element wire 1 and the coating of the electric resistance substance 2 is good, and the coating of the electric resistance substance 2 is missing. Was never seen.

なお、本実施例においては超電導複合素線を7本用いた
が、本数には特にこだわらない。また、超電導複合素線
の1部をたとえばスレンテスステール線などの機械強度
部材と取り替えたり、たとえばCu、あるいはAlなど
の電気伝導性の良好な安定化部材と取り替えてもさしつ
かえない。
In this embodiment, seven superconducting composite wires were used, but the number is not particularly limited. It is also possible to replace a part of the superconducting composite element wire with a mechanical strength member such as a Srentes stale wire or a stabilizing member having a good electric conductivity such as Cu or Al.

このように、本実施例の超電導撚線とすれば、電気抵抗
性物質2の電気比抵抗を所望の値にすることが容易であ
り、電気抵抗性物質2と超電導複合素線1との密着性が
良好で機械的にもすぐれており、パルス運転、あるいは
交流運転に好適な超電導撚線が得られる。
As described above, with the superconducting stranded wire of the present embodiment, it is easy to set the electric resistivity of the electric resistance substance 2 to a desired value, and the electric resistance substance 2 and the superconducting composite element wire 1 adhere to each other. The superconducting stranded wire is excellent in mechanical properties and mechanically excellent, and is suitable for pulse operation or AC operation.

第2図は本発明による他の実施例である。第1図に示し
た実施例では、撚線間に隙間3を有していたが、実施例
2ではこの隙間も電気抵抗性物質2で充填したものであ
る。
FIG. 2 shows another embodiment according to the present invention. In the embodiment shown in FIG. 1, the gap 3 was provided between the twisted wires, but in the embodiment 2, this gap is also filled with the electric resistance substance 2.

実施例1では相互の電気抵抗性物質2は互いに機械的な
接触状態であつたが、この場合には、各超電導複合素線
1は相互に接着され、全体としての超電導撚線10の機
械的強度を大きくする効果がある。
In Example 1, the mutually electrically resistive substances 2 were in mechanical contact with each other, but in this case, the respective superconducting composite wires 1 are adhered to each other, and the mechanical properties of the superconducting stranded wire 10 as a whole. It has the effect of increasing the strength.

〔発明の効果〕〔The invention's effect〕

以上説明した本発明の超電導撚線によれば、常電性基材
中に複数の超電導フイラメントを内蔵した超電導複合素
線の表面に、導電性微粉体と絶縁性有機物とからなる電
気抵抗性物質を被覆し、該電気抵抗性物質を介して前記
超電導複合素線を相互に接続したものであるから、所望
の電気比抵抗値を有する電気抵抗性物質が容易に得ら
れ、かつ超電導複合素線との接着性が優れていることか
ら、パルス運転あるいは交流運転に好適な超電導撚線が
容易に得られる。
According to the superconducting stranded wire of the present invention described above, the surface of the superconducting composite element wire containing a plurality of superconducting filaments in the normal-electric substrate has an electrically resistive substance composed of conductive fine powder and an insulating organic substance. And the superconducting composite wires are connected to each other through the electric resistance substance, an electric resistance substance having a desired electric resistivity value can be easily obtained, and the superconducting composite wires The superconducting stranded wire suitable for pulse operation or AC operation can be easily obtained because of its excellent adhesiveness with.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の超電導撚線の一実施例を示す断面図、
第2図は本発明の超電導撚線の他の実施例を示す断面図
である。 1…超電導複合素線、2…電気抵抗性物質、3…隙間、
10…超電導撚線。
FIG. 1 is a sectional view showing an embodiment of the superconducting stranded wire of the present invention,
FIG. 2 is a sectional view showing another embodiment of the superconducting stranded wire of the present invention. 1 ... Superconducting composite wire, 2 ... Electrically resistive material, 3 ... Gap,
10 ... Superconducting stranded wire.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭48−52395(JP,A) 特開 昭53−56997(JP,A) 特開 昭58−150215(JP,A) 特開 昭59−136711(JP,A) 特開 昭60−130007(JP,A) 実開 昭49−74477(JP,U) 実開 昭52−27787(JP,U) 特公 昭43−8308(JP,B1) 特公 昭43−27027(JP,B1) 特公 昭43−28227(JP,B1) 特公 昭50−21840(JP,B1) ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-48-52395 (JP, A) JP-A-53-56997 (JP, A) JP-A-58-150215 (JP, A) JP-A-59- 136711 (JP, A) JP 60-130007 (JP, A) Actually open 49-74477 (JP, U) Actually open 52-27787 (JP, U) JP 43-8308 (JP, B1) JP-B-43-27027 (JP, B1) JP-B-43-28227 (JP, B1) JP-B-50-21840 (JP, B1)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】常電性基材中に複数の超電導フイラメント
を内蔵した超電導複合素線の複数本を撚り合せて形成さ
れる超電導撚線において、前記各超電導複合素線の表面
に導電性微粉体と絶縁性有機物とからなる電気抵抗性物
質を被覆し、該電気抵抗性物質を介して前記超電導複合
素線が相互に接続されていることを特徴とする超電導撚
線。
1. A superconducting stranded wire formed by twisting a plurality of superconducting composite strands containing a plurality of superconducting filaments in a normal-electric substrate, wherein conductive fine powder is provided on the surface of each superconducting composite strand. A superconducting stranded wire, characterized in that the superconducting composite element wire is covered with an electrically resistive substance composed of a body and an insulating organic substance, and the superconducting composite element wires are mutually connected via the electrically resistive substance.
【請求項2】前記超電導複合素線が相互に接続された際
に生ずる隙間にも前記電気抵抗性物質を充填したことを
特徴とする特許請求の範囲第1項記載の超電導撚線。
2. The superconducting stranded wire according to claim 1, wherein a gap generated when the superconducting composite wires are connected to each other is also filled with the electrically resistive substance.
【請求項3】前記導電性微粉体として銀、銅、アルミニ
ウム、ニツケルなどの金属、酸化スズ、酸化インジウム
などの金属酸化物、あるいはその他の金属間化合物など
を用い、一方、前記絶縁性有機物としてエポキシ系樹
脂、ポリエステル系樹脂、ウレタン系樹脂、アクリル系
樹脂などを用いたことを特徴とする特許請求の範囲第1
項記載の超電導撚線。
3. A metal such as silver, copper, aluminum or nickel, a metal oxide such as tin oxide or indium oxide, or another intermetallic compound is used as the conductive fine powder, while the insulating organic substance is used. Claim 1 characterized by using epoxy resin, polyester resin, urethane resin, acrylic resin, etc.
Superconducting stranded wire according to the item.
JP61015712A 1986-01-29 1986-01-29 Superconducting stranded wire Expired - Fee Related JPH065604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015712A JPH065604B2 (en) 1986-01-29 1986-01-29 Superconducting stranded wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015712A JPH065604B2 (en) 1986-01-29 1986-01-29 Superconducting stranded wire

Publications (2)

Publication Number Publication Date
JPS62176007A JPS62176007A (en) 1987-08-01
JPH065604B2 true JPH065604B2 (en) 1994-01-19

Family

ID=11896377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015712A Expired - Fee Related JPH065604B2 (en) 1986-01-29 1986-01-29 Superconducting stranded wire

Country Status (1)

Country Link
JP (1) JPH065604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665038B1 (en) * 2016-01-11 2016-10-13 한국기초과학지원연구원 electrically conductive material impregnated no-insulation superconducting coil and manufacturing apparatus of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316506A (en) * 1986-07-07 1988-01-23 古河電気工業株式会社 Ac superconductive cable conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665038B1 (en) * 2016-01-11 2016-10-13 한국기초과학지원연구원 electrically conductive material impregnated no-insulation superconducting coil and manufacturing apparatus of the same
WO2017122947A1 (en) * 2016-01-11 2017-07-20 한국기초과학지원연구원 Non-insulated superconducting coil impregnated with conductive material and device for manufacturing same

Also Published As

Publication number Publication date
JPS62176007A (en) 1987-08-01

Similar Documents

Publication Publication Date Title
US3767842A (en) Super conducting cable of elemental conductors in a metal matrix within a metallic jacket
JPH05144322A (en) Conductor core element for product of electric wire and cable and manufacture thereof
US3796553A (en) High field composite superconductive material
DE19746976C2 (en) High temperature superconductor arrangement
JPS6028210A (en) Superconductor for pulse magnet
JPH065604B2 (en) Superconducting stranded wire
US3440336A (en) Web-shaped superconductor
JP4414617B2 (en) Low resistance conductor, its manufacturing method, current lead, power supply cable, coil, magnetic field generator, transformer and AC power supply
JPS60250506A (en) Compound superconductive wire blank
JP2876667B2 (en) Aluminum stabilized superconducting wire
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JPS58188005A (en) Shielding wire
JP7395413B2 (en) Superconducting coil manufacturing method and electrical equipment manufacturing method
JP2020149863A (en) Conductive resin and superconducting coil using the same
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
McInturff Conductor fabrication for Isabelle dipole magnets
JP3324288B2 (en) Method for producing Al-stabilized Nb-Ti superconductor
JP2862874B2 (en) Superconducting molded stranded wire
JP3363164B2 (en) Superconducting conductor
JPH07272555A (en) Niobium-titanium-based (nb-ti) superconductive wire
JPH05182536A (en) Superconductor and stabilizing member used therein
JPH0146963B2 (en)
JPS63237314A (en) Manufacture of superconductive compound material
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JP2003173718A (en) Low resistance compound conductor and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees