JP2001192223A - Method for manufacturing high purity synthetic quartz powder - Google Patents

Method for manufacturing high purity synthetic quartz powder

Info

Publication number
JP2001192223A
JP2001192223A JP37520699A JP37520699A JP2001192223A JP 2001192223 A JP2001192223 A JP 2001192223A JP 37520699 A JP37520699 A JP 37520699A JP 37520699 A JP37520699 A JP 37520699A JP 2001192223 A JP2001192223 A JP 2001192223A
Authority
JP
Japan
Prior art keywords
silica
quartz powder
synthetic quartz
water glass
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37520699A
Other languages
Japanese (ja)
Other versions
JP4504491B2 (en
Inventor
Kunio Sugiyama
邦夫 杉山
Shuichi Tada
修一 多田
Jinichi Omi
仁一 尾見
Tadahiro Nakada
忠洋 仲田
Hiroshi Morita
博 森田
Masaki Kusuhara
昌樹 楠原
Hiroyuki Watabe
弘行 渡部
Hiroshi Uehara
啓史 上原
Keiko Sanpei
桂子 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Watanabe Shoko KK
M Watanabe and Co Ltd
Original Assignee
Watanabe Shoko KK
M Watanabe and Co Ltd
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP37520699A priority Critical patent/JP4504491B2/en
Application filed by Watanabe Shoko KK, M Watanabe and Co Ltd, Asahi Denka Kogyo KK filed Critical Watanabe Shoko KK
Priority to EP00987771A priority patent/EP1256547A4/en
Priority to CNB008176086A priority patent/CN1315725C/en
Priority to KR1020027008282A priority patent/KR100720016B1/en
Priority to TW089128352A priority patent/TWI221149B/en
Priority to PCT/JP2000/009357 priority patent/WO2001047808A1/en
Priority to US10/169,191 priority patent/US7140201B2/en
Publication of JP2001192223A publication Critical patent/JP2001192223A/en
Application granted granted Critical
Publication of JP4504491B2 publication Critical patent/JP4504491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing high purity synthetic quartz powder by which high purity synthetic quartz powder extremely low in titanium content can be obtained even when inexpensive water glass is used as a starting material. SOLUTION: This method for manufacturing high purity synthetic quartz powder comprises the first step to subject the water glass to alkali removing treatment to obtain a silica aqueous solution, the second step to add an oxidizing agent and an acid to the silica aqueous solution obtained at the first step, which is then made to pass through a hydrogen type cation exchange resin, the third step to gelate the silica aqueous solution obtained at the second step to obtain silica particles, the fourth step to wash the gelated silica and the fifth step to sinter the washed silica.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高純度合成石英粉の
製造方法に関し、特に半導体用熱処理部材、半導体単結
晶引き上げ用坩堝、光学用部材、石英ランプ、炉心材、
治工具、洗浄槽材などの原料として使用される高純度合
成石英粉の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity synthetic quartz powder, and more particularly to a heat treatment member for semiconductors, a crucible for pulling up a semiconductor single crystal, an optical member, a quartz lamp, a core material,
The present invention relates to a method for producing high-purity synthetic quartz powder used as a raw material for jigs, cleaning tank materials, and the like.

【0002】[0002]

【従来の技術】石英原料は長く天然石英を使用していた
が、純度のバラつき、資源の枯渇、開発による環境汚染
問題などから、今日では合成石英を使用するようになっ
てきている。
2. Description of the Related Art Natural quartz has long been used as a raw material for quartz. However, synthetic quartz is nowadays used due to variations in purity, depletion of resources, and environmental pollution caused by development.

【0003】従来、合成石英粉はテトラメトキシシラ
ン、テトラエトキシシラン、四塩化珪素等を原料として
いたため、高純度ではあるが高価であり、これらを使用
して合成石英ガラスを製造すると高コストとなり、工業
的に適性の高いものではなかった。
Conventionally, synthetic quartz powder is made of tetramethoxysilane, tetraethoxysilane, silicon tetrachloride or the like, so that it is high in purity but expensive. It was not industrially suitable.

【0004】一方、半導体製品の高集積化が進んでお
り、特に半導体単結晶引き上げ用坩堝部材では不純物の
極めて少ない高純度合成石英ガラスが求められている。
こうした要求から、低コストで高純度の合成石英ガラス
粉を得る試みがなされてきており、原料として安価な水
ガラスを使用する方法が、特開昭59−54632号公
報、特開平4−349126号公報、特開平11−11
929号公報等に記載されている。
On the other hand, semiconductor products have been highly integrated, and high purity synthetic quartz glass with extremely few impurities has been demanded especially for crucible members for pulling up semiconductor single crystals.
In response to such demands, attempts have been made to obtain low-cost, high-purity synthetic quartz glass powder. A method using inexpensive water glass as a raw material has been disclosed in JP-A-59-54632 and JP-A-4-349126. Gazette, JP-A-11-11
929, etc.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法で得られる合成石英粉は微量な重金属を十分に取
り除くことができず、特にチタンを十分に取り除くこと
はできなかった。そこで、本発明の目的は、低コストな
水ガラスを原料としても、高純度で極めてチタン含量の
少ない合成石英粉を得ることのできる高純度合成石英粉
の製造方法を提供することにある。
However, the synthetic quartz powder obtained by these methods cannot sufficiently remove trace amounts of heavy metals, and in particular, titanium. Therefore, an object of the present invention is to provide a method for producing a high-purity synthetic quartz powder capable of obtaining a high-purity synthetic quartz powder having extremely low titanium content even when using low-cost water glass as a raw material.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究した結果、以下の工程を経ることに
より上記目的を達成し得ることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above objects can be achieved through the following steps, and have completed the present invention. .

【0007】即ち、本発明の高純度合成石英粉の製造方
法は、水ガラスを脱アルカリ処理してシリカ水溶液を得
る第1工程と、第1工程で得られたシリカ水溶液に酸化
剤と酸とを加えた後、水素型陽イオン交換樹脂に通す第
2工程と、第2工程で得られたシリカ水溶液をゲル化さ
せゲル化させシリカ粒子を得る第3工程と、ゲル化した
シリカを洗浄する第4工程と、洗浄したシリカを焼成す
る第5工程と、を包含することを特徴とするものであ
る。
That is, according to the method for producing a high-purity synthetic quartz powder of the present invention, a first step of obtaining a silica aqueous solution by subjecting water glass to a dealkalization treatment, and adding an oxidizing agent and an acid to the aqueous silica solution obtained in the first step. , A second step of passing through a hydrogen-type cation exchange resin, a third step of gelling and gelling the aqueous silica solution obtained in the second step to obtain silica particles, and washing the gelled silica. The method is characterized by including a fourth step and a fifth step of firing the washed silica.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につき
具体的に説明する。本発明の第1工程に使用する水ガラ
スは特に限定されず、どのような水ガラスでも使用する
ことができるが、好ましくはSiO2/M2O(MはN
a、K、Liであり、工業的には入手の容易なNaが好
ましい)のモル比が0.4〜10.0、好ましくは0.
5〜8.0である水ガラスを使用する。モル比が0.4
未満であると脱アルカリしてシリカ溶液を得るために過
大な設備が必要であり、一方、10.0を超えると工業
的に安定な水ガラスとなり得ず、水ガラスの入手が困難
となり、いずれも工業的な適性を欠くこととなりやす
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. The water glass used in the first step of the present invention is not particularly limited, and any water glass can be used. Preferably, SiO 2 / M 2 O (M is N
a, K, and Li, preferably Na, which is industrially easily available).
Use a water glass that is between 5 and 8.0. 0.4 molar ratio
If it is less than 10, an excessive facility is required to obtain a silica solution by dealkalization.On the other hand, if it exceeds 10.0, industrially stable water glass cannot be obtained, and it becomes difficult to obtain water glass. Also tends to lack industrial suitability.

【0009】また、水ガラスにおけるSiO2の濃度
は、好ましくは2〜30重量%、より好ましくは3〜1
5重量%である。この濃度が2重量%未満であると後述
の第3工程でのゲル化が困難であるとともに脱水時に多
くのエネルギーが必要となり、工業化適性の低いものと
なる。一方、30重量%を超えると第1工程で得られる
シリカ水溶液が不安定となりやすい。
The concentration of SiO 2 in the water glass is preferably 2 to 30% by weight, more preferably 3 to 1% by weight.
5% by weight. If the concentration is less than 2% by weight, it is difficult to gel in the third step described later, and a large amount of energy is required at the time of dehydration, resulting in low industrial suitability. On the other hand, if it exceeds 30% by weight, the aqueous silica solution obtained in the first step tends to be unstable.

【0010】上記範囲の濃度の水ガラスを得るには、幾
つか方法があるが、最も簡便なのは上記濃度の水ガラス
をそのまま使用する方法である。これは水ガラスの製造
にあたって濃度を調製しておけばよいだけである。次に
は上記濃度よりも高濃度の水ガラスを水(好ましくは純
水)で希釈する方法である。また、粉末の水溶性珪酸ア
ルカリも市販されており、これを水(好ましくは純水)
に溶解して上記濃度とすることでも得ることができる。
There are several methods for obtaining water glass having a concentration in the above range, but the simplest method is to use water glass having the above concentration as it is. It is only necessary to adjust the concentration in the production of water glass. Next, there is a method of diluting water glass having a higher concentration than the above concentration with water (preferably pure water). In addition, powdered water-soluble alkali silicate is also commercially available, and is made of water (preferably pure water).
To obtain the above concentration.

【0011】本発明の第1工程は水ガラスを脱アルカリ
処理してシリカ水溶液を得るものであるが、ここで用い
られる脱アルカリ処理としては特に限定されるものでは
なく、例えば、陽イオン交換樹脂法、電気泳動法、電解
透析法等を用いることができる。ここでの脱アルカリ処
理により殆どのアルカリを除去するが、好ましくは概ね
Na2O濃度1%以下程度まで、より好ましくはpH
5.0以下まで脱アルカリ処理する。
The first step of the present invention is to remove the alkali glass from the water glass to obtain an aqueous silica solution. The dealkalization treatment used herein is not particularly limited. Method, electrophoresis, electrodialysis and the like can be used. Most of the alkali is removed by the dealkalization treatment here, but preferably the Na 2 O concentration is about 1% or less, more preferably the pH is about 1% or less.
De-alkali treatment to 5.0 or less.

【0012】上記脱アルカリ処理として好ましいのは水
素型陽イオン交換樹脂法である。ここで使用される水素
型陽イオン交換樹脂は、特に限定されるものではなく、
市販の強酸性型のビーズ状、繊維状、クロス状等の水素
型陽イオン交換樹脂を使用することができる。
A preferred type of the alkali removal treatment is a hydrogen-type cation exchange resin method. The hydrogen-type cation exchange resin used here is not particularly limited,
A commercially available hydrogen-type cation exchange resin such as a strongly acidic bead, fiber, cloth or the like can be used.

【0013】これら水素型陽イオン交換樹脂に対する上
記水ガラスの通液方法もなんら限定されるものではな
く、例えばカラムに上記水素型陽イオン交換樹脂を充填
して通液する方法や、水ガラスと水素型陽イオン交換樹
脂をバッチ方式で処理するなどの周知の方法を用いるこ
とができる。尚、使用済みの水素型陽イオン交換樹脂は
通常の方法、即ち、塩酸、硫酸、硝酸等の酸を使用して
水素型に再生することができる。
The method of passing the water glass through the hydrogen-type cation exchange resin is not limited at all. For example, a method in which a column is filled with the hydrogen-type cation exchange resin and the liquid is passed therethrough, A known method such as treating the hydrogen-type cation exchange resin in a batch system can be used. The used hydrogen-type cation exchange resin can be regenerated to a hydrogen-type using a conventional method, that is, using an acid such as hydrochloric acid, sulfuric acid, or nitric acid.

【0014】本発明の第2工程は、上記で得られたシリ
カ水溶液に酸化剤と酸とを加えた後、水素型陽イオン交
換樹脂に通すものである。
In the second step of the present invention, an oxidizing agent and an acid are added to the aqueous silica solution obtained above, and the resultant is passed through a hydrogen-type cation exchange resin.

【0015】本発明の第2工程で使用される酸化剤は特
に限定されるものではないが、例えば、過酸化水素、過
酸化ナトリウム、過炭酸ナトリウム、過酢酸、過ホウ酸
ナトリウム、過マンガン酸カリウム、過マンガン酸ナト
リウム、過ヨウ素酸カリウム、過ヨウ素酸ナトリウム、
過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウ
ム、亜硝酸ナトリウム等を例示することができ、これら
を単独若しくは複数の組み合わせで使用することができ
る。これらの酸化剤のなかでも過酸化水素を用いると残
留物が水だけであるので後処理が全く不要であるので、
作業性と効率性の点で好ましい。
The oxidizing agent used in the second step of the present invention is not particularly limited. Examples thereof include hydrogen peroxide, sodium peroxide, sodium percarbonate, peracetic acid, sodium perborate, and permanganate. Potassium, sodium permanganate, potassium periodate, sodium periodate,
Examples thereof include ammonium persulfate, potassium persulfate, sodium persulfate, sodium nitrite, and the like, and these can be used alone or in combination of two or more. When hydrogen peroxide is used among these oxidizing agents, the only residue is water, and no post-treatment is required.
It is preferable in terms of workability and efficiency.

【0016】かかる酸化剤の添加は、シリカ水溶液に含
まれる微量の重金属のイオン化を促し、次の第3工程に
おける重金属の除去率を向上させる機能を有する。この
ため、上記酸化剤の好ましい使用量の下限値は該微量な
重金属の量に依存するが、微量な重金属量測定を頻繁に
行うことは工業的に不利である。しかし、該微量な重金
属は原料となる水ガラスに由来するものであるので、S
iO2の量を基準にして酸化剤の使用量を決めることが
できる。即ち、上記酸化剤の好ましい使用量は、シリカ
水溶液中のSiO2重量に対して0.5ppm以上、よ
り好ましくは1.0ppm以上である。上記酸化剤の使
用量の上限は特にないが、SiO2重量に対して300
0ppm以上使用しても効果に差はないので、工業的合
理性の点からSiO2重量に対して3000ppm以下
とするのがよい。
The addition of the oxidizing agent has a function of promoting ionization of a trace amount of heavy metals contained in the aqueous silica solution and improving the removal rate of heavy metals in the next third step. For this reason, the lower limit of the preferable amount of the oxidizing agent depends on the amount of the heavy metal, but it is industrially disadvantageous to frequently measure the amount of the heavy metal. However, since the trace heavy metal is derived from water glass as a raw material,
The amount of the oxidizing agent can be determined based on the amount of iO 2 . That is, the preferable use amount of the oxidizing agent is 0.5 ppm or more, more preferably 1.0 ppm or more based on the weight of SiO 2 in the aqueous silica solution. Although there is no particular upper limit on the amount of the oxidizing agent, 300 to the weight of SiO 2
Since there is no difference in effect even when 0 ppm or more is used, it is preferable to use 3000 ppm or less based on the weight of SiO 2 from the viewpoint of industrial rationality.

【0017】本発明の第2工程で使用される酸も特に限
定されるものではなく、例えば、塩酸、硫酸、硝酸等を
使用すればよく、これらは単独でも複数を組み合わせて
使用してもよい。第1工程を経たシリカ水溶液は一旦酸
性になるが、経時的にpHは上昇し、そのままでは中性
域においてゲル化を起こしてしまうので、本第2工程に
おいて酸を添加することによりシリカ水溶液を安定化さ
せるものである。従ってこれら酸の使用量は、該シリカ
水溶液のpHを0.1〜3.0、好ましくは0.2〜
2.0となるような量で使用する。
The acid used in the second step of the present invention is not particularly limited. For example, hydrochloric acid, sulfuric acid, nitric acid and the like may be used, and these may be used alone or in combination of two or more. . Although the aqueous silica solution that has passed through the first step once becomes acidic, the pH rises over time, and gelation occurs in a neutral region as it is. Therefore, by adding an acid in the second step, the aqueous silica solution is converted to an aqueous solution. It is to stabilize. Therefore, the amount of these acids used is such that the pH of the aqueous silica solution is 0.1 to 3.0, preferably 0.2 to 3.0.
Use in such an amount as to be 2.0.

【0018】本発明の第2工程は、上記のように酸化剤
及び酸を加えたシリカ水溶液を水素型陽イオン交換樹脂
に通すものである。ここで使用される水素型陽イオン交
換樹脂は、特に限定されるものではなく、市販の強酸性
型のビーズ状、繊維状、クロス状等の水素型陽イオン交
換樹脂を使用することができる。
In the second step of the present invention, the aqueous silica solution to which the oxidizing agent and the acid have been added as described above is passed through a hydrogen-type cation exchange resin. The hydrogen-type cation exchange resin used here is not particularly limited, and a commercially available hydrogen-type cation exchange resin such as a strongly acidic bead, fiber, cloth or the like can be used.

【0019】これら水素型陽イオン交換樹脂に対する上
記シリカ水溶液の通液方法はなんら限定されるものでは
なく、例えばカラムに上記水素型陽イオン交換樹脂を充
填して通液する方法や、シリカ水溶液と水素型陽イオン
交換樹脂をバッチ方式で処理するなどの周知の方法を用
いることができる。尚、使用済みの水素型陽イオン交換
樹脂は通常の方法、即ち、塩酸、硫酸、硝酸等の酸を使
用して水素型に再生することができる。
The method of passing the aqueous silica solution through the hydrogen-type cation exchange resin is not limited at all. For example, a method in which the column is filled with the hydrogen-type cation exchange resin and the silica aqueous solution is passed through the column is used. A known method such as treating the hydrogen-type cation exchange resin in a batch system can be used. The used hydrogen-type cation exchange resin can be regenerated to a hydrogen-type using a conventional method, that is, using an acid such as hydrochloric acid, sulfuric acid, or nitric acid.

【0020】上記シリカ水溶液を水素型陽イオン交換樹
脂に通す処理によりシリカ水溶液中の微量な重金属、特
にチタンを殆ど除去することができる。この処理の程度
としては、例えば、シリカ水溶液1リットル当たり20
g〜200gの水素型陽イオン交換樹脂への通液とする
ことが好ましい。
By passing the aqueous silica solution through a hydrogen-type cation exchange resin, trace amounts of heavy metals, particularly titanium, in the aqueous silica solution can be almost completely removed. The degree of this treatment is, for example, 20 per liter of aqueous silica solution.
g to 200 g of the hydrogen-type cation exchange resin.

【0021】本発明の第3工程は、上述の第2工程で得
られたシリカ水溶液をゲル化させシリカ粒子を得るもの
である。かかるゲル化方法は特に限定されるものではな
く、通常の方法を使用すればよい。即ち、シリカ水溶液
を脱水させる方法、シリカ水溶液を加熱する方法(例え
ば、pH0.1〜2.0の通常使用の範囲では安定であ
るシリカ水溶液も加熱することによりゲル化させること
ができる)、シリカ水溶液のpHを2.0〜8.0、好
ましくはpH4.0〜8.0に調整することによりゲル
化させる方法(pH4.0未満、特にpH3.0以下で
あると上述のように通常使用の範囲では安定であるが長
時間放置することによりこの範囲のpHでもゲル化させ
ることができる)等を使用すればよいが、より短時間に
ゲル化できるという点からpHを4.0〜8.0に調整
することによりゲル化させる方法が好ましい。
The third step of the present invention is to gel the aqueous silica solution obtained in the second step to obtain silica particles. The gelation method is not particularly limited, and a usual method may be used. That is, a method of dehydrating the aqueous silica solution, a method of heating the aqueous silica solution (for example, a silica aqueous solution which is stable in a range of pH 0.1 to 2.0 which is stable in a normal use can be gelled by heating), A method of gelling by adjusting the pH of the aqueous solution to 2.0 to 8.0, preferably to 4.0 to 8.0 (usually used as described above when the pH is less than 4.0, particularly when the pH is 3.0 or less) Is stable in the range described above, but it is possible to gel at a pH in this range by standing for a long period of time). It is preferred that the gelation is performed by adjusting the pH to 0.0.

【0022】本発明の第3工程に使用するシリカ水溶液
は酸性であるので、pHを上記に調整するにはアルカリ
剤を使用することになるが、高純度品を得る観点からア
ルカリ剤としてはアンモニア若しくはアンモニア水を用
いることが好ましい。
Since the aqueous silica solution used in the third step of the present invention is acidic, an alkaline agent is used to adjust the pH to the above value. From the viewpoint of obtaining a high-purity product, the alkaline agent is ammonia. Alternatively, it is preferable to use aqueous ammonia.

【0023】ゲル化させたシリカは通常の方法で、例え
ば40〜200℃の温度で乾燥し、必要に応じて粉砕す
ることによりシリカ粒子を得ることができる。
The gelled silica is dried by a usual method, for example, at a temperature of 40 to 200 ° C., and if necessary, pulverized to obtain silica particles.

【0024】本発明の第4工程は、上述の第3工程で得
られたシリカを洗浄することにより、シリカに付着して
いる不純分を除去するものである。洗浄に先立ち、シリ
カ粒子を粉砕して微粒子化することが洗浄効果を向上さ
せる上で好ましい。粉砕方法は特に限定されず、通常シ
リカ粒子の粉砕に用いられる方法を使用できる。尚、粉
砕のために必要であれば、シリカ粒子を乾燥させること
ができる。乾燥方法は特に限定されないが、例えば40
〜200℃の温度で乾燥させることができる。
The fourth step of the present invention is to remove the impurities adhering to the silica by washing the silica obtained in the third step. Prior to washing, it is preferable to pulverize the silica particles into fine particles in order to improve the washing effect. The grinding method is not particularly limited, and a method usually used for grinding silica particles can be used. The silica particles can be dried if necessary for pulverization. The drying method is not particularly limited.
It can be dried at a temperature of 200200 ° C.

【0025】洗浄は、水洗等通常行われている方法を用
いることができるが、シリカ粒子の粉砕時に鉄分が混入
することがあるので、好ましくは酸の水溶液で洗浄する
のがよい。尚、この場合、酸の水溶液による洗浄後、水
(好ましくは超純水)ですすぎを行うことが好ましい。
The washing may be carried out by a commonly used method such as washing with water. However, iron may be mixed in at the time of crushing the silica particles. Therefore, washing is preferably carried out with an aqueous acid solution. In this case, it is preferable to rinse with water (preferably ultrapure water) after washing with an aqueous solution of an acid.

【0026】酸の水溶液としては特に限定されるもので
はないが、例えば、塩酸、硫酸、硝酸等を使用すればよ
く、これらは単独でも複数を組み合わせて使用してもよ
い。酸の濃度も特に限定されるものではないが、好まし
くは2〜20重量%とする。2重量%以上であれば効果
的であるが、20重量%を超えてもそれ以上効果は向上
せず、かえって酸洗浄後のすすぎのための水洗時間や水
洗水の浪費となりやすい。
The aqueous solution of the acid is not particularly limited. For example, hydrochloric acid, sulfuric acid, nitric acid and the like may be used, and these may be used alone or in combination of two or more. The concentration of the acid is not particularly limited, but is preferably 2 to 20% by weight. If the content is more than 2% by weight, the effect is effective. However, if the content exceeds 20% by weight, the effect is not further improved, and the washing time and the washing water for rinsing after the acid washing are rather wasteful.

【0027】また、洗浄用の酸の水溶液に過酸化水素を
添加すると、僅かに残存している金属分も除去すること
ができるので、好ましい。過酸化水素は2%以上添加し
てもそれ以上効果は向上せず、かえって排水の処分等の
問題となりやすい。尚、過酸化水素の添加効果は極微量
でも生ずるが、好ましくは100ppm以上であるとそ
の効果が顕著である。
Further, it is preferable to add hydrogen peroxide to an aqueous solution of an acid for washing, since a small amount of remaining metal can be removed. Even if hydrogen peroxide is added in an amount of 2% or more, the effect is not improved any more, and it is rather easy to cause a problem such as disposal of wastewater. Although the effect of adding hydrogen peroxide is produced even in a very small amount, the effect is remarkable when it is preferably at least 100 ppm.

【0028】上記シリカの洗浄は、通常行われる洗浄と
同程度で十分に行われればよいが、好ましくは40℃以
上沸点以下の温度で10分〜4時間程度の時間行う。
The washing of the silica may be sufficiently carried out at the same level as the usual washing, but is preferably carried out at a temperature of from 40 ° C. to the boiling point for about 10 minutes to 4 hours.

【0029】本発明の第5工程は、第4工程で得られた
シリカを焼成することにより、OH含量の極めて少ない
高純度の石英粉を得るものである。
In the fifth step of the present invention, the silica obtained in the fourth step is calcined to obtain high-purity quartz powder having an extremely small OH content.

【0030】焼成温度及び時間は、従来高純度の石英を
得る場合に行われる焼成と同程度の温度及び時間で行え
ばよい。高純度の石英は極力OH含量の少ないことが好
ましく、より高温でより長時間の焼成を行えばそれだけ
OH含量の少ない石英を得ることができるので、所望と
するOH含量となるよう適宜条件を設定すればよい。
The sintering temperature and time may be the same as those for sintering conventionally performed to obtain high-purity quartz. It is preferable that high-purity quartz has as little OH content as possible, and if calcination is carried out at a higher temperature for a longer period of time, quartz having less OH content can be obtained, so conditions are appropriately set so that the desired OH content is obtained. do it.

【0031】尚、第4工程で得られたシリカが水分を含
んでいる場合は、一旦通常の方法で乾燥させてから焼成
を行うことが効率的であり、工業的に好ましい。
When the silica obtained in the fourth step contains moisture, it is efficient and industrially preferable to dry the silica by a usual method and then perform calcination.

【0032】[0032]

【実施例】以下に実施例をあげて本発明をさらに説明す
るが、本発明はこれらの実施例に限定されるものではな
い。実施例1 第1工程として、SiO2/Na2O=3.2のモル比の
原料水ガラス(SiO 2濃度29重量%)を純水で希釈
してSiO2濃度6重量%の水ガラスとした。この水ガ
ラス1000gを、水素型陽イオン交換樹脂(オルガノ
(株)製アーバンライトIR−120B)を充填したカ
ラムに通液して脱アルカリし、SiO2濃度5.0重量
%、pH2.5のシリカ水溶液1150gを得た。
The present invention will be further described with reference to the following examples.
However, the present invention is not limited to these examples.
No.Example 1 As a first step, SiO 2Two/ NaTwoO = 3.2 molar ratio
Raw water glass (SiO Two(Concentration 29% by weight) diluted with pure water
And SiOTwoWater glass having a concentration of 6% by weight was obtained. This water moth
1000 g of lath is charged with a hydrogen-type cation exchange resin (organo
Capsule filled with Urbanlite IR-120B)
Pass through a ram to remove alkali,Two5.0 weight
%, An aqueous silica solution having a pH of 2.5 was obtained.

【0033】第2工程として、第1工程で得られたシリ
カ水溶液に塩酸を加えpHを1.0に調整し、酸化剤と
して過酸化水素をシリカ水溶液中のSiO2重量に対し
て2000ppm添加した。その後、このシリカ水溶液
を水素型陽イオン交換樹脂(オルガノ(株)製アーバン
ライトIR−120B)100mlを充填したカラムに
通液して、微量の金属イオンの除去された高純度のシリ
カ水溶液を得た。
In the second step, hydrochloric acid was added to the aqueous silica solution obtained in the first step to adjust the pH to 1.0, and 2,000 ppm of hydrogen peroxide was added as an oxidizing agent based on the weight of SiO 2 in the aqueous silica solution. . Thereafter, this silica aqueous solution is passed through a column filled with 100 ml of a hydrogen-type cation exchange resin (Urban Light IR-120B manufactured by Organo Corporation) to obtain a high-purity aqueous silica solution from which trace amounts of metal ions have been removed. Was.

【0034】第3工程として、第2工程で得られたシリ
カ水溶液にアンモニア水を添加してシリカ水溶液のpH
を6.0として室温放置し、シリカ水溶液全体をゲル化
させ、シリカゲル体920gを得た。これを90℃で1
0時間乾燥し、575gのシリカ粒子を得た。
In the third step, ammonia water is added to the aqueous silica solution obtained in the second step to adjust the pH of the aqueous silica solution.
Was set to 6.0 and left at room temperature to gel the entire aqueous silica solution to obtain 920 g of a silica gel body. This at 90 ° C for 1
After drying for 0 hour, 575 g of silica particles were obtained.

【0035】第4工程として、第3工程で得られたシリ
カ粒子を石英乳鉢で粉砕し、概ねシリカ粒子径を0.1
mm〜1mm とし、これを過酸化水素1重量%を添加
した90℃の10重量%塩酸1リットルに60分間浸漬
洗浄し、超純水ですすぎ洗浄して、575gの高純度シ
リカを得た。
In the fourth step, the silica particles obtained in the third step are crushed in a quartz mortar to reduce the silica particle diameter to about 0.1.
This was immersed and washed in 1 liter of 10% by weight hydrochloric acid at 90 ° C. added with 1% by weight of hydrogen peroxide for 60 minutes, and rinsed with ultrapure water to obtain 575 g of high-purity silica.

【0036】第5工程として、第4工程で得られた高純
度シリカを150℃で乾燥させた後、1200℃で20
時間焼成して高純度石英粉を得た。得られた高純度石英
粉の分析値を下記の表1に示す。
In the fifth step, the high-purity silica obtained in the fourth step is dried at 150 ° C.
After firing for a long time, high-purity quartz powder was obtained. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0037】実施例2 第1工程で原料水ガラスの希釈率を変え、脱アルカリす
る水ガラスのSiO2濃度を3.5重量%とした他は実
施例1と同様にして高純度石英粉を得た。得られた高純
度石英粉の分析値を下記の表1に示す。
Example 2 A high-purity quartz powder was prepared in the same manner as in Example 1 except that the dilution ratio of the raw water glass was changed in the first step and the SiO 2 concentration of the water glass to be dealkalized was changed to 3.5% by weight. Obtained. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0038】実施例3 第1工程で原料水ガラスの希釈率を変え、脱アルカリす
る水ガラスのSiO2濃度を7.5重量%とした他は実
施例1と同様にして高純度石英粉を得た。得られた高純
度石英粉の分析値を下記の表1に示す。
Example 3 A high-purity quartz powder was prepared in the same manner as in Example 1 except that the dilution ratio of the raw water glass was changed in the first step and the SiO 2 concentration of the water glass to be dealkalized was 7.5% by weight. Obtained. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0039】実施例4 第1工程での脱アルカリで、イオン交換樹脂の量を変
え、得られるシリカ水溶液のpHを4.0とした他は実
施例1と同様にして高純度石英粉を得た。得られた高純
度石英粉の分析値を下記の表1に示す。
Example 4 A high-purity quartz powder was obtained in the same manner as in Example 1 except that the amount of the ion exchange resin was changed by the dealkalization in the first step, and the pH of the obtained aqueous silica solution was changed to 4.0. Was. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0040】実施例5 第1工程での脱アルカリをバッチ式に換えた他は実施例
1と同様にして高純度石英粉を得た。得られた高純度石
英粉の分析値を下記の表1に示す。
Example 5 A high-purity quartz powder was obtained in the same manner as in Example 1 except that the dealkalization in the first step was changed to a batch method. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0041】実施例6 第1工程の脱アルカリ処理を、陰陽両イオン交換膜を4
枚づつ交互に配置した電解透析槽を用い、水ガラスに3
A/dm2の直流電流を通電してpH8.0となるよう
に透析を行って脱アルカリした他は実施例1と同様にし
て高純度石英粉を得た。得られた高純度石英粉の分析値
を下記の表1に示す。
Example 6 The alkali removal treatment of the first step was carried out by using
Using electrodialysis tanks alternately arranged one by one, 3
A high-purity quartz powder was obtained in the same manner as in Example 1 except that dialysis was performed by applying a DC current of A / dm 2 to adjust the pH to 8.0, and the alkali was removed. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0042】実施例7 第2工程で用いる酸化剤としての過酸化水素をSiO2
重量に対して100ppmとした他は実施例1と同様に
して高純度石英粉を得た。得られた高純度石英粉の分析
値を下記の表1に示す。
Example 7 Hydrogen peroxide as an oxidizing agent used in the second step was SiO 2
A high-purity quartz powder was obtained in the same manner as in Example 1 except that the amount was changed to 100 ppm based on the weight. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0043】実施例8 第2工程で用いる酸化剤としての過酸化水素をSiO2
重量に対して10ppmとした他は実施例1と同様にし
て高純度石英粉を得た。得られた高純度石英粉の分析値
を下記の表1に示す。
Example 8 Hydrogen peroxide as an oxidizing agent used in the second step was SiO 2
A high-purity quartz powder was obtained in the same manner as in Example 1 except that the content was 10 ppm based on the weight. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0044】実施例9 第2工程で用いる酸化剤として過酸化水素に換えて過酢
酸を2000ppm使用した他は実施例1と同様にして
高純度石英粉を得た。得られた高純度石英粉の分析値を
下記の表1に示す。
Example 9 A high-purity quartz powder was obtained in the same manner as in Example 1, except that 2000 ppm of peracetic acid was used instead of hydrogen peroxide as the oxidizing agent used in the second step. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0045】実施例10 第2工程でpH調整用の塩酸を硝酸に換えた他は実施例
1と同様にして高純度石英粉を得た。得られた高純度石
英粉の分析値を下記の表1に示す。
Example 10 A high-purity quartz powder was obtained in the same manner as in Example 1 except that the hydrochloric acid for pH adjustment was changed to nitric acid in the second step. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0046】実施例11 第2工程でpH調整用の塩酸を硫酸に換えた他は実施例
1と同様にして高純度石英粉を得た。得られた高純度石
英粉の分析値を下記の表1に示す。
Example 11 A high-purity quartz powder was obtained in the same manner as in Example 1 except that the hydrochloric acid for pH adjustment was changed to sulfuric acid in the second step. The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0047】実施例12 第2工程での水素型陽イオン交換樹脂処理をバッチ式に
換えた他は実施例1と同様にして高純度石英粉を得た。
得られた高純度石英粉の分析値を下記の表1に示す。
Example 12 A high-purity quartz powder was obtained in the same manner as in Example 1 except that the hydrogen-type cation exchange resin treatment in the second step was changed to a batch method.
The analytical values of the obtained high-purity quartz powder are shown in Table 1 below.

【0048】比較例1 第2工程において過酸化水素を使用しなかった他は実施
例1と同様にして石英粉を得た。得られた石英粉の分析
値を下記の表1に示す。
Comparative Example 1 Quartz powder was obtained in the same manner as in Example 1 except that hydrogen peroxide was not used in the second step. The analytical values of the obtained quartz powder are shown in Table 1 below.

【0049】比較例2 第2工程において塩酸を使用しなかった他は実施例1と
同様にして石英粉を得た。得られた石英粉の分析値を下
記の表1に示す。
Comparative Example 2 A quartz powder was obtained in the same manner as in Example 1 except that hydrochloric acid was not used in the second step. The analytical values of the obtained quartz powder are shown in Table 1 below.

【0050】比較例3 第2工程を行わなかった他は実施例1と同様にして石英
粉を得た。得られた石英粉の分析値を下記の表1に示
す。
Comparative Example 3 A quartz powder was obtained in the same manner as in Example 1 except that the second step was not performed. The analytical values of the obtained quartz powder are shown in Table 1 below.

【0051】比較例4 天然石英(不純物の極めて少ない、所謂半導体グレード
とよばれるもの)の分析値を下記の表1に示す。
Comparative Example 4 Table 1 below shows the analysis values of natural quartz (which has very few impurities and is called a so-called semiconductor grade).

【0052】[0052]

【表1】 表中の数値はいずれも重量ppmである。[Table 1] All numerical values in the table are ppm by weight.

【0053】[0053]

【発明の効果】本発明によれば、低コストな水ガラスを
原料として用いても、高純度で極めてチタン含量の少な
い合成石英粉を得ることができる。
According to the present invention, a synthetic quartz powder having a high purity and an extremely small titanium content can be obtained even if low-cost water glass is used as a raw material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 修一 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 尾見 仁一 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 仲田 忠洋 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 森田 博 東京都荒川区東尾久七丁目2番35号 旭電 化工業株式会社内 (72)発明者 楠原 昌樹 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 渡部 弘行 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 上原 啓史 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 (72)発明者 三瓶 桂子 東京都中央区日本橋室町4−2−16 株式 会社渡邊商行内 Fターム(参考) 4G014 AH02 4G072 AA30 BB05 GG01 GG03 HH21 KK01 MM14 MM23 MM36 PP03 PP17 RR05 TT19 UU01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuichi Tada 7-35 Higashiogu, Arakawa-ku, Tokyo Asahi Denka Kako Kogyo Co., Ltd. (72) Inventor Jinichi Omi 7-2 Higashiogu, Arakawa-ku, Tokyo 35 Asahi Denka Kogyo Co., Ltd. (72) Inventor Tadahiro Nakata 2-3-2 Higashio Higashio, Arakawa-ku, Tokyo (35) Inventor Asahi Denka Kogyo Co., Ltd. No. 35 Asahi Denka Kogyo Co., Ltd. (72) Inventor Masaki Kusuhara 4-2-16 Nihonbashi Muromachi, Chuo-ku, Tokyo Intranet Co., Ltd. (72) Inventor Hiroyuki Watanabe 4-2-16 Nihonbashi Muromachi, Chuo-ku, Tokyo Watanabe Shogyo Co., Ltd. (72) Inventor Hiroshi Uehara 4-2-16 Nihonbashi Muromachi, Chuo-ku, Tokyo 4-2. -2-16 F-term in Watanabe Trading Co., Ltd. (reference) 4G014 AH02 4G072 AA30 BB05 GG01 GG03 HH21 KK01 MM14 MM23 MM36 PP03 PP17 RR05 TT19 UU01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水ガラスを脱アルカリ処理してシリカ水
溶液を得る第1工程と、第1工程で得られたシリカ水溶
液に酸化剤と酸とを加えた後、水素型陽イオン交換樹脂
に通す第2工程と、第2工程で得られたシリカ水溶液を
ゲル化させシリカ粒子を得る第3工程と、ゲル化したシ
リカを洗浄する第4工程と、洗浄したシリカを焼成する
第5工程と、を包含することを特徴とする高純度合成石
英粉の製造方法。
1. A first step in which a water glass is dealkalized to obtain a silica aqueous solution, and an oxidizing agent and an acid are added to the silica aqueous solution obtained in the first step, and then the mixture is passed through a hydrogen-type cation exchange resin. A second step, a third step of gelling the aqueous silica solution obtained in the second step to obtain silica particles, a fourth step of washing the gelled silica, and a fifth step of firing the washed silica; A method for producing a high-purity synthetic quartz powder, comprising:
JP37520699A 1999-12-28 1999-12-28 Manufacturing method of high purity synthetic quartz powder Expired - Fee Related JP4504491B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP37520699A JP4504491B2 (en) 1999-12-28 1999-12-28 Manufacturing method of high purity synthetic quartz powder
CNB008176086A CN1315725C (en) 1999-12-28 2000-12-28 Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
KR1020027008282A KR100720016B1 (en) 1999-12-28 2000-12-28 Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
TW089128352A TWI221149B (en) 1999-12-28 2000-12-28 Method for producing synthetic quartz glass
EP00987771A EP1256547A4 (en) 1999-12-28 2000-12-28 Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
PCT/JP2000/009357 WO2001047808A1 (en) 1999-12-28 2000-12-28 Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
US10/169,191 US7140201B2 (en) 1999-12-28 2000-12-28 Method for producing silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37520699A JP4504491B2 (en) 1999-12-28 1999-12-28 Manufacturing method of high purity synthetic quartz powder

Publications (2)

Publication Number Publication Date
JP2001192223A true JP2001192223A (en) 2001-07-17
JP4504491B2 JP4504491B2 (en) 2010-07-14

Family

ID=18505151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37520699A Expired - Fee Related JP4504491B2 (en) 1999-12-28 1999-12-28 Manufacturing method of high purity synthetic quartz powder

Country Status (1)

Country Link
JP (1) JP4504491B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104747A (en) * 2001-09-28 2003-04-09 Watanabe Shoko:Kk Synthetic quartz crucible
JP2015020916A (en) * 2013-07-16 2015-02-02 ケイ・エス・ティ・ワ−ルド株式会社 Method for manufacturing high-purity synthetic silica powder
JP2020063172A (en) * 2018-10-17 2020-04-23 太平洋セメント株式会社 Silica purification method and silica particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321212A (en) * 1986-07-14 1988-01-28 Jgc Corp Production of high purity silica
JPH0717370B2 (en) * 1989-11-30 1995-03-01 イー・アイ・デュポン・ドゥ・メムール・アンド・カンパニー Method for producing high-purity silicic acid aqueous solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104747A (en) * 2001-09-28 2003-04-09 Watanabe Shoko:Kk Synthetic quartz crucible
JP2015020916A (en) * 2013-07-16 2015-02-02 ケイ・エス・ティ・ワ−ルド株式会社 Method for manufacturing high-purity synthetic silica powder
JP2020063172A (en) * 2018-10-17 2020-04-23 太平洋セメント株式会社 Silica purification method and silica particle
JP7174483B2 (en) 2018-10-17 2022-11-17 太平洋セメント株式会社 Silica purification method and silica particles

Also Published As

Publication number Publication date
JP4504491B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US7140201B2 (en) Method for producing silica particles
CN107473231B (en) A kind of processing purifying technique of pair of glass sand tailing
JPS6283313A (en) Method for highly purifying silica
JP2001192223A (en) Method for manufacturing high purity synthetic quartz powder
JPH0717370B2 (en) Method for producing high-purity silicic acid aqueous solution
JP3362793B2 (en) Method for producing silica sol
JP2001072409A (en) Production of high-purity silica gel and its use
CN104860322B (en) A kind of preparation method of low sodium ions content high-purity silicasol
JP4041918B2 (en) Method for producing fumed silica aqueous dispersion
JP4649677B2 (en) Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
JP2003012321A (en) Method for producing high purity silica particles and high purity silica particles and method for producing high purity quartz glass particles using them
JP2002241122A (en) Method for manufacturing high-purity silica
JP5057622B2 (en) Method for producing low boron silica particles, low boron silica particles obtained by this method, and method for producing low boron silica glass particles using the same
JPH0457606B2 (en)
JP2001233628A (en) Method of producing synthetic quartz glass powder
JPS61178414A (en) High-purity silica and production thereof
JP2002173314A (en) Method for manufacturing high purity colloidal silica and high purity synthetic quartz powder
KR101570273B1 (en) Recycling method of aqueous hydrochloric acid generated in silica sol manufacturing process using ion exchange method
JP3478394B2 (en) Silica sol and silica powder
JPH0465311A (en) Method for removing radioactive element from metallic silicon
JPH075289B2 (en) Method for producing low-thorium high-purity silica
JPH08169711A (en) Production of high purity silica
JP3478395B2 (en) Silica sol and silica powder
JPH0121091B2 (en)
JPH05294611A (en) Silica sol and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Ref document number: 4504491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees