JP2020055726A - Spinel-magnesia-carbon brick for vacuum degassing apparatus, and vacuum degassing apparatus having the same lined on sidewall of lower vessel thereof - Google Patents

Spinel-magnesia-carbon brick for vacuum degassing apparatus, and vacuum degassing apparatus having the same lined on sidewall of lower vessel thereof Download PDF

Info

Publication number
JP2020055726A
JP2020055726A JP2018189435A JP2018189435A JP2020055726A JP 2020055726 A JP2020055726 A JP 2020055726A JP 2018189435 A JP2018189435 A JP 2018189435A JP 2018189435 A JP2018189435 A JP 2018189435A JP 2020055726 A JP2020055726 A JP 2020055726A
Authority
JP
Japan
Prior art keywords
mass
magnesia
spinel
vacuum degassing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189435A
Other languages
Japanese (ja)
Other versions
JP6600729B1 (en
Inventor
雄也 冨田
Yuya Tomita
雄也 冨田
田中 雅人
Masahito Tanaka
雅人 田中
後藤 潔
Kiyoshi Goto
潔 後藤
成史 松本
Shigefumi Matsumoto
成史 松本
原田 淳史
Junji Harada
淳史 原田
加藤 雄一
Yuichi Kato
雄一 加藤
犬塚 孝之
Takayuki Inuzuka
孝之 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2018189435A priority Critical patent/JP6600729B1/en
Application granted granted Critical
Publication of JP6600729B1 publication Critical patent/JP6600729B1/en
Publication of JP2020055726A publication Critical patent/JP2020055726A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

To provide a spinel-magnesia-carbon brick excellent in anticorrosive resistance to FeO generated by blowing oxygen into a vacuum degassing apparatus or to a slag having a content of FeO, and to provide the vacuum degassing apparatus using the same on a sidewall of a lower vessel thereof.SOLUTION: In a vacuum degassing apparatus, a spinel-magnesia-carbon brick is lined on a sidewall of a lower vessel of the vacuum degassing apparatus, wherein the spinel-magnesia-carbon brick comprises: 65 mass% or more and 98 mass% or less of spinel; 1 mass% or more and 30 mass% or less of magnesia; 0.1 mass% or more and 15 mass% or less of graphite; and 0.1 mass% or more and 2.0 mass% or less of aluminum and/or aluminum alloy.SELECTED DRAWING: Figure 1

Description

本発明は、DHや、RH等の真空脱ガス装置、特に酸素を吹き込む処理を行う真空脱ガス装置の内張りに適したスピネル−マグネシア−カーボンれんが、及びこのれんがを下部槽側壁に使用した真空脱ガス装置に関する。   The present invention relates to a spinel-magnesia-carbon brick suitable for lining a vacuum degassing device such as DH or RH, particularly a vacuum degassing device for performing a process of blowing oxygen, and a vacuum degassing device using this brick for a lower tank side wall. It relates to a gas device.

DHや、RHのような真空脱ガス装置は、耐火物への負荷が大きく、耐火物損傷を著しく増大させるため、耐用性に優れた材料の供給が望まれてきた。従来、真空脱ガス装置用耐火物としては耐食性に優れるマグネシア−クロムれんがが使用されてきたが、マグネシア−クロムれんがは耐熱衝撃性に劣り、温度変化の大きいところでは寿命が著しく低下するという問題点があった。また、マグネシア−クロムれんがは使用後、6価クロムが生成するなどの環境問題を抱えていた。   Since vacuum degassing devices such as DH and RH have a large load on refractories and significantly increase damage to refractories, it has been desired to supply materials having excellent durability. Conventionally, magnesia-chromium brick having excellent corrosion resistance has been used as a refractory for a vacuum degassing apparatus. was there. In addition, magnesia-chrome bricks have environmental problems such as generation of hexavalent chromium after use.

このようなマグネシア−クロムれんがに対し、転炉などに使用されてきたマグネシア−カーボンれんがを真空脱ガス装置用耐火物として使用する試みも併せて行われてきた。マグネシア−カーボンれんがにおいても、スラグによる溶損が損傷の主因であると考えられており、また、併せて高温において、マグネシア−カーボン反応(下記(1)の反応)が起こるものと考えられてきた。
MgO(固体) + C(固体)→ Mg(ガス)+ CO(ガス) (1)
このマグネシア−カーボン反応は、高温ほど起こりやすく、処理中に脱ガス、脱炭のために減圧を伴う真空脱ガス装置では、生成したMg(ガス)やCO(ガス)が真空引きによって系外に取り出されるため、(1)の反応は進みやすいと考えられる。このため、マグネシア−カーボンれんがの耐用性が向上しない一つの理由は、スラグに対する耐食性と共にマグネシア−カーボン反応にあると考えられた。
For such magnesia-chromium bricks, attempts have been made to use magnesia-carbon bricks used in converters and the like as refractories for vacuum degassing equipment. In magnesia-carbon bricks as well, erosion by slag is considered to be the main cause of damage, and at the same time, magnesia-carbon reaction (reaction (1) below) has been considered to occur at high temperatures. .
MgO (solid) + C (solid) → Mg (gas) + CO (gas) (1)
This magnesia-carbon reaction is more likely to occur at higher temperatures, and in a vacuum degassing apparatus that involves decompression and degassing during processing, generated Mg (gas) and CO (gas) are exhausted out of the system by evacuation. Since the reaction is taken out, it is considered that the reaction (1) proceeds easily. Therefore, it is considered that one reason why the durability of magnesia-carbon brick is not improved is the magnesia-carbon reaction together with the corrosion resistance to slag.

このようなマグネシア−カーボン反応を抑制するために、いくつかの手法が提案されている。例えば特許文献1には、スピネル75〜99.5質量%及びカーボン0.5〜25質量%を含有するスピネル−カーボンれんがが開示されている。特許文献1によれば、スピネル固溶体を用いてMgO含有量を低下させることで、マグネシア−カーボン反応抑制に効果が得られることが示されている。
しかしながら、本発明者等がこのスピネル−カーボンれんがを実際の真空脱ガス装置で使用したところ、下部槽側壁においては従来のマグネシア−カーボンれんがよりも耐用性に劣っていることがわかった。つまり、真空脱ガス装置においては脱炭又は溶鋼昇熱のために、真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行う場合があるが、このような場合には酸素によって酸化されたFeOあるいはFeOの含有率が高いスラグが真空槽内に発生し、特に真空槽の下部槽側壁に内張りされた耐火物の溶損を大きくすることが知られている(特許文献2)。すなわち、スピネルはマグネシアよりもFeOと反応して低融点物質を生成しやすいため、スピネル−カーボンれんがを下部槽側壁にライニングした場合には耐用性の低下が問題となるのである。
Several methods have been proposed to suppress such a magnesia-carbon reaction. For example, Patent Literature 1 discloses a spinel-carbon brick containing 75 to 99.5% by mass of spinel and 0.5 to 25% by mass of carbon. According to Patent Literature 1, it is shown that the effect of suppressing the magnesia-carbon reaction can be obtained by reducing the MgO content using a spinel solid solution.
However, when the present inventors used this spinel-carbon brick in an actual vacuum degassing apparatus, it was found that the durability of the lower magnesia-carbon brick was inferior to that of the conventional magnesia-carbon brick. In other words, in a vacuum degassing apparatus, oxygen treatment may be performed in which oxygen gas is blown to molten steel in a vacuum chamber in order to decarburize or heat up molten steel.In such a case, FeO oxidized by oxygen or It is known that slag having a high FeO content is generated in a vacuum chamber, and particularly increases the erosion of a refractory lining a lower tank side wall of the vacuum chamber (Patent Document 2). That is, spinel reacts with FeO more easily than magnesia to produce a low-melting-point substance, so that when spinel-carbon brick is lined on the lower tank side wall, the durability is a problem.

また、特許文献3には、カーボン原料を3質量%以上かつ17質量%以下含有するスピネル−マグネシア−カーボンれんがであって、スピネル原料とマグネシア原料との和を100質量%とした場合、スピネル原料の含有量が50質量%以上かつ95質量%以下であり、マグネシア原料の含有量が5質量%以上かつ50質量%以下である羽口周辺用のスピネル−マグネシア−カーボンれんがが開示されている。特許文献3によれば、熱膨張を抑制するために、スピネルを添加することが好ましいされているが、開示されているマグネシア−スピネル−カーボンれんがを真空脱ガス装置の内張り耐火物として使用しても良好な結果は得られなかった。   Patent Document 3 discloses a spinel-magnesia-carbon brick containing a carbon material in an amount of 3% by mass or more and 17% by mass or less, where the sum of the spinel material and the magnesia material is 100% by mass. Is a spinel-magnesia-carbon brick for tuyere periphery having a content of 50% by mass or more and 95% by mass or less and a magnesia raw material content of 5% by mass or more and 50% by mass or less. According to Patent Document 3, in order to suppress thermal expansion, it is preferable to add spinel. However, the disclosed magnesia-spinel-carbon brick is used as a lining refractory for a vacuum degassing apparatus. No good results were obtained.

特開2016−60651号公報JP-A-2006-60651 特開2017−110280号公報JP 2017-110280 A 特開2017−7901号公報JP 2017-7901 A

本発明の目的は、真空脱ガス装置内への酸素吹き込みによって発生するFeOあるいはFeOの含有率が高いスラグに対して耐食性に優れるスピネル−マグネシア−カーボンれんが及びこれを下部槽側壁に使用した真空脱ガス装置を提供することである。   An object of the present invention is to provide a spinel-magnesia-carbon brick having excellent corrosion resistance to FeO or a slag having a high FeO content generated by blowing oxygen into a vacuum degassing apparatus, and a vacuum degassing method using the same on a lower tank side wall. It is to provide a gas device.

本発明者等は、真空脱ガス装置、特に下部槽側壁の内張り材としてスピネル−カーボンれんがの耐用性の改善について種々検討したところ、スピネル−カーボンれんがに0.1質量%以上2質量%以下のアルミニウム及び/又はアルミニウム合金、並びにマグネシアを1質量%以上30質量%以下含有することで、耐FeO性に優れた真空脱ガス装置用れんがが得られることを知見した。しかもこのれんがを真空脱ガス装置の下部槽側壁に使用することで下部槽側壁の寿命が格段に向上することも知見した。   The present inventors have conducted various studies on improving the durability of a spinel-carbon brick as a lining material of a vacuum degassing apparatus, particularly a lower tank side wall, and found that the spinel-carbon brick has a content of 0.1% by mass or more and 2% by mass or less. It has been found that by containing aluminum and / or an aluminum alloy and magnesia in an amount of 1% by mass or more and 30% by mass or less, a brick for a vacuum degassing device having excellent FeO resistance can be obtained. In addition, it has been found that the use of the brick for the lower tank side wall of the vacuum degassing apparatus significantly improves the life of the lower tank side wall.

すなわち、本発明によれば、次の(1)から(4)のスピネル−マグネシア−カーボンれんが、及びこのれんがを下部槽側壁にライニングした次の(5)の真空脱ガス装置が提供される。
(1)スピネルを65質量%以上98質量%以下、マグネシアを1質量%以上30質量%以下、黒鉛を0.1質量%以上15質量%以下、かつスピネル、マグネシア及び黒鉛を合量で92質量%以上、並びにアルミニウム及び/又はアルミニウム合金を0.1質量%以上2.0質量%以下含有する真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(2)黒鉛の含有量が0.5質量%以上10質量%以下である(1)に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(3)マグネシアの含有量が1質量%以上10質量%以下である(1)又は(2)に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(4)粒径1mm未満のマグネシアの含有量が1質量%以上10質量%以下である(1)〜(3)のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(5)(1)〜(4)のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんがを真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行うRHの下部槽側壁にライニングした真空脱ガス装置。
That is, according to the present invention, there is provided the following spinel-magnesia-carbon brick (1) to (4) and a vacuum degassing apparatus (5) in which this brick is lined with the lower tank side wall.
(1) 65% by mass to 98% by mass of spinel, 1% by mass to 30% by mass of magnesia, 0.1% by mass to 15% by mass of graphite, and 92% by mass of spinel, magnesia and graphite % Or more, and 0.1% to 2.0% by mass of aluminum and / or aluminum alloy, for spinel-magnesia-carbon bricks for vacuum degassing equipment.
(2) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to (1), wherein the graphite content is 0.5% by mass or more and 10% by mass or less.
(3) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to (1) or (2), wherein the content of magnesia is 1% by mass or more and 10% by mass or less.
(4) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to any one of (1) to (3), wherein the content of magnesia having a particle size of less than 1 mm is 1% by mass or more and 10% by mass or less.
(5) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to any one of (1) to (4) is applied to a lower tank side wall of an RH for performing an oxygen treatment of blowing oxygen gas to molten steel in a vacuum tank. Lined vacuum degasser.

本発明のスピネル−マグネシア−カーボンれんがは熱間の拘束下でマグネシアとアルミニウム及び/又はアルミニウム合金とが反応することでスピネルを生成することによるれんがの緻密化と、スピネルを適用することによるマグネシア−カーボン反応の抑制によって、酸素吹き込み処理を行いFeOが生成する真空脱ガス装置の内張り耐火物として耐食性が格段に優れるスピネル−マグネシア−カーボンれんがとなる。しかもこのれんがを使用した真空脱ガス装置の下部槽側壁の寿命を各段に向上することができる。   The spinel-magnesia-carbon brick of the present invention densifies the brick by producing spinel by reacting magnesia with aluminum and / or an aluminum alloy under the constraint of heat and magnesia by applying spinel. By suppressing the carbon reaction, a spinel-magnesia-carbon brick having extremely excellent corrosion resistance as a refractory lining of a vacuum degassing apparatus in which oxygen is blown and FeO is generated. In addition, the life of the lower tank side wall of the vacuum degassing apparatus using the brick can be improved in each step.

RHの真空槽の断面図。Sectional drawing of the vacuum tank of RH.

以下、本発明の特徴であるスピネル−マグネシア−カーボンれんがの構成について説明する。   Hereinafter, the configuration of the spinel-magnesia-carbon brick which is a feature of the present invention will be described.

マグネシアは、アルミニウム及び/又はアルミニウム合金が使用中に酸化して生成するアルミナと反応してスピネルを生成する。その際に体積が膨張し、実際の使用中ではれんがの膨張が拘束されているため、れんが組織を緻密化することができる。これにより、使用中に生成するFeOのれんが中への浸透を抑制し、耐FeO性を向上することができる。マグネシアの含有量は少なくとも1質量%以上であり、スピネルによる緻密化効果のみであれば10質量%以下で十分であるが、特に下部槽側壁において、マグネシア−カーボン反応による耐用性低下よりもFeOに対する耐用性が優先される場合には、30質量%まで含有することができる。30質量%を超えると、耐FeO性向上による耐用性向上効果よりもマグネシア−カーボン反応による耐用性低下及び耐熱衝撃性の低下の影響が大きくなり、損耗が大きくなる。   Magnesia reacts with alumina, which is produced by oxidation of aluminum and / or aluminum alloy during use, to produce spinel. At that time, the volume expands, and the expansion of the brick is restricted during actual use, so that the brick tissue can be densified. Thereby, it is possible to suppress the permeation of FeO generated during use into the brick, and to improve FeO resistance. The content of magnesia is at least 1% by mass or more, and 10% by mass or less is sufficient if only the densification effect by the spinel is used. When durability is given priority, the content can be up to 30% by mass. If the content exceeds 30% by mass, the effect of reduced durability and reduced thermal shock resistance due to the magnesia-carbon reaction is greater than the effect of improved durability due to improved FeO resistance, resulting in increased wear.

本発明のれんがに含有するマグネシアは、耐火物に一般的に使用されているものを含有することができ、例えば電融マグネシア及び焼結マグネシアのいずれでも良く、これらを併用しても良い。その組成も特に限定されるものではないが、より高い耐食性を得るためにはMgO純度が高いマグネシアを含有することができ、例えばMgO純度96質量%以上、更には98質量%以上としても良い。   The magnesia contained in the brick of the present invention may include those generally used for refractories, and may be, for example, either fused magnesia or sintered magnesia, or may be used in combination. Although the composition is not particularly limited, magnesia having a high MgO purity can be contained in order to obtain higher corrosion resistance. For example, the MgO purity may be 96% by mass or more, and more preferably 98% by mass or more.

本発明のれんが中には、組織の緻密化効果を狙って含有するマグネシアのうちの一部もしくは全部を粒径1mm未満の粒子として1質量%以上10質量%以下で含有することができる。この粒径1mm未満のマグネシアの粒子は、粒径が小さいためアルミニウム及び/又はアルミニウム合金との反応性が高まり、組織の緻密化効果が一層顕著に発現される。この粒径1mm未満のマグネシアの粒子が1質量%未満ではその効果が十分得られず、10質量%を超えてもアルミニウム及び/又はアルミニウム合金の最大含有率2質量%に対して過剰となるため緻密化効果も向上しない。   In the brick of the present invention, magnesia contained for the purpose of densifying the structure may be partially or entirely contained as particles having a particle diameter of less than 1 mm in an amount of 1% by mass or more and 10% by mass or less. Since the magnesia particles having a particle size of less than 1 mm have a small particle size, reactivity with aluminum and / or an aluminum alloy is increased, and the effect of densifying the structure is more remarkably exhibited. If the amount of magnesia particles having a particle diameter of less than 1 mm is less than 1% by mass, the effect cannot be sufficiently obtained, and even if it exceeds 10% by mass, the maximum content of aluminum and / or aluminum alloy is excessive with respect to 2% by mass. The densification effect is not improved.

スピネルは真空脱ガス装置の内張り用耐火物としてマグネシアと比べて耐熱衝撃性に優れ、しかもマグネシア−カーボン反応を抑制できる点から使用し、65質量%以上98質量%以下、好ましくは70質量%以上95質量%以下でれんが中に含有する。
スピネルはAlとMgOを主体とし、AlとMgOを合量で95質量%以上含むものである。スピネルの理論組成は、質量%でAl:MgO=71.7:28.3であるが、種々の組成のものがあり、理論組成よりAlを多く含むものはアルミナリッチスピネル、MgOを多く含むものはマグネシアリッチスピネルと呼ばれる。本発明に用いられるスピネルは、いずれをも使用することができ、併用しても良い。
スピネルの製法は、焼結、電融の別を問わずこれらを併用しても良く、より高い耐食性を得るためにはCaOやSiOなどの不純物は少ないことが好ましく、例えば、不純物成分5質量%以下、更には2質量%以下としても良い。
Spinel is used as a refractory for lining of a vacuum degassing apparatus because it has better thermal shock resistance than magnesia and can suppress a magnesia-carbon reaction, and is 65% by mass or more and 98% by mass or less, preferably 70% by mass or more. It is contained in the brick at 95% by mass or less.
Spinel is mainly composed of Al 2 O 3 and MgO, those containing Al 2 O 3 and MgO and in total more than 95 wt%. The theoretical composition of the spinel is Al 2 O 3 : MgO = 71.7: 28.3 in mass%, but there are various compositions, and those containing more Al 2 O 3 than the theoretical composition are alumina-rich spinel. , MgO-rich spinel is called magnesia-rich spinel. Any of the spinels used in the present invention may be used, or may be used in combination.
Regarding the method for producing spinel, these may be used irrespective of sintering or electrofusion, and in order to obtain higher corrosion resistance, it is preferable that impurities such as CaO and SiO 2 are small. % Or less, or even 2% by mass or less.

本発明では耐熱衝撃性を確保するために黒鉛を含有するが、黒鉛の含有量が増加すると耐FeO性が低下してくる。このためFeOによる溶損が大きな操業条件では黒鉛の含有量は少ないほど良いが、真空脱ガス装置は間欠操業になるため耐熱衝撃性も重要であり、ある程度の黒鉛が必要となる。このため、本発明のれんが中には、黒鉛を0.1質量%以上15質量%以下で、好ましくは0.5質量%以上10質量%以下で含有する。黒鉛が0.1質量%未満になると耐熱衝撃性が低下して割れが発生し、15質量%を超えるとFeOによる溶損が大幅に増大し、真空脱ガス装置の寿命が低下する。
黒鉛は、例えば、鱗状黒鉛、土状黒鉛、人造黒鉛など市販されている固体状カーボンが使用可能であり、これらを単独、あるいは2種以上を組み合わせて使用できる。
In the present invention, graphite is contained in order to secure thermal shock resistance. However, as the content of graphite increases, FeO resistance decreases. For this reason, under operating conditions in which the erosion by FeO is large, the smaller the graphite content, the better. However, since the vacuum degassing device operates intermittently, the thermal shock resistance is also important, and a certain amount of graphite is required. Therefore, the brick of the present invention contains graphite in an amount of 0.1% by mass to 15% by mass, preferably 0.5% by mass to 10% by mass. If the graphite content is less than 0.1% by mass, the thermal shock resistance is reduced and cracks occur. If the content exceeds 15% by mass, erosion loss due to FeO is greatly increased, and the life of the vacuum degassing device is reduced.
As the graphite, for example, commercially available solid carbon such as scaly graphite, earthy graphite, and artificial graphite can be used, and these can be used alone or in combination of two or more.

本発明では、スピネル、マグネシア及び黒鉛を合量で92質量%以上含有する。92質量%未満では、FeOの含有率が高いスラグに対して耐食性が不十分となる。   In the present invention, the total content of spinel, magnesia and graphite is 92% by mass or more. If the content is less than 92% by mass, the slag having a high FeO content has insufficient corrosion resistance.

本発明のれんがはアルミニウム及び/又はアルミニウム合金を、組織の緻密化と酸化防止のために0.1質量%以上2.0質量%以下、好ましくは0.1質量%以上1.5質量%以下で含有する。アルミニウム及び/又はアルミニウム合金が2.0質量%を超えると、マグネシアとアルミニウム及び/又はアルミニウム合金とが反応して、組織中にスピネルが多量に生成し、過焼結を起こすことで耐熱衝撃性が大幅に低下する。アルミニウム及び/又はアルミニウム合金が0.1質量%未満では組織の緻密化効果が不十分となり、気孔率が上昇して耐FeO性が低下する。この組織の緻密化効果は、例えば粒径0.074mm未満の細かいアルミニウム及び/又はアルミニウム合金を適用することで一層顕著に発現される。
なお、本明細書において、粒子の粒径がd未満とは、その粒子がJIS−Z8801に規定する目開きdの篩を通過する粒度であることを意味し、粒子の粒径がd以上とは、その粒子が同篩上に残る粒度であることを意味する。
The brick of the present invention uses aluminum and / or an aluminum alloy in an amount of 0.1% by mass or more and 2.0% by mass or less, preferably 0.1% by mass or more and 1.5% by mass or less for densifying the structure and preventing oxidation. Contained in. If the content of aluminum and / or aluminum alloy exceeds 2.0% by mass, magnesia and aluminum and / or aluminum alloy react with each other to generate a large amount of spinel in the structure and cause oversintering, resulting in thermal shock resistance. Is greatly reduced. If the content of aluminum and / or aluminum alloy is less than 0.1% by mass, the effect of densifying the structure becomes insufficient, the porosity increases, and the FeO resistance decreases. The effect of densifying the structure is more remarkably exhibited by applying fine aluminum and / or aluminum alloy having a particle diameter of less than 0.074 mm, for example.
In the present specification, the particle size of the particles is smaller than d means that the particles have a particle size that passes through a sieve having an opening d defined in JIS-Z8801, and the particle size of the particles is d or more. Means that the particles have a size that remains on the sieve.

アルミニウム、アルミニウム合金は、耐酸化性を向上させしかも組織を緻密にするために使用するもので、マグネシア−カーボンれんがなどで一般的に使用されているものであれば問題なく使用可能である。   Aluminum and aluminum alloys are used for improving oxidation resistance and for making the structure denser, and can be used without any problem as long as they are commonly used for magnesia-carbon bricks.

本発明のれんがは、スピネル、マグネシア、黒鉛、並びにアルミニウム及び/又はアルミニウム合金以外に、通常のマグネシア−カーボンれんがに含有されている、炭素質原料、酸化防止材、及び/又は金属等を更に6質量%以下で含有することができ、例えばカーボンブラック、ピッチ、SiC、BC、及びSi等を含有することができる。また、結合組織を形成するための有機バインダー由来の非晶質カーボンも外掛けで3質量%以下含有することができる。このように本発明のれんがの組成において有機バインダー由来の結合組織(非晶質カーボン)の含有量は、有機バインダー由来の結合組織(非晶質カーボン)以外の組成物の合量100質量%に対する外掛けの割合で特定するものとする。言い換えれば、本発明のれんがの組成において有機バインダー由来の結合組織(非晶質カーボン)以外の組成物の含有量は、有機バインダー由来の結合組織(非晶質カーボン)以外の組成物の合量100質量%中に占める割合で特定するものとする。 The brick of the present invention further comprises, in addition to spinel, magnesia, graphite, and aluminum and / or an aluminum alloy, a carbonaceous raw material, an antioxidant, and / or a metal contained in ordinary magnesia-carbon brick. It can be contained in an amount of not more than mass%, for example, carbon black, pitch, SiC, B 4 C, and Si. In addition, amorphous carbon derived from an organic binder for forming a connective tissue can be contained in an amount of 3% by mass or less in an outer case. Thus, in the composition of the brick of the present invention, the content of the connective tissue (amorphous carbon) derived from the organic binder is based on the total amount of 100% by mass of the composition other than the connective tissue (amorphous carbon) derived from the organic binder. It shall be specified by the ratio of outside hanging. In other words, the content of the composition other than the connective tissue (amorphous carbon) derived from the organic binder in the composition of the brick of the present invention is the total amount of the composition other than the connective tissue (amorphous carbon) derived from the organic binder. It shall be specified by the ratio to 100% by mass.

本発明のスピネル−マグネシア−カーボンれんがは、一般的なマグネシア−カーボンれんがなどの製造方法によって製造することができる。すなわち、本発明のスピネル−マグネシア−カーボンれんがは、耐火原料配合物に有機バインダーを添加して混練し成形後、熱処理することで得ることができる。熱処理温度は200℃〜800℃の範囲とすることができる。   The spinel-magnesia-carbon brick of the present invention can be produced by a general method for producing magnesia-carbon brick. That is, the spinel-magnesia-carbon brick of the present invention can be obtained by adding an organic binder to a refractory raw material mixture, kneading, molding, and heat-treating. The heat treatment temperature can be in the range of 200C to 800C.

有機バインダーとしては、通常のマグネシア−カーボンれんがなどで使用されている有機バインダーを使用することができ、例えばフラン樹脂やフェノール樹脂等が使用可能である。また、有機バインダーは、粉末又は適当な溶剤に溶かした液状、更に液状と粉末の併用のいずれも形態でも使用可能である。混練、成形及び熱処理の方法及び条件も、一般的なマグネシア−カーボンれんがなどの製造方法に準じる。   As the organic binder, an organic binder used in ordinary magnesia-carbon bricks can be used, and for example, a furan resin, a phenol resin, and the like can be used. The organic binder can be used in the form of a powder or a liquid dissolved in an appropriate solvent, or a combination of a liquid and a powder. The methods and conditions for kneading, molding, and heat treatment also conform to general manufacturing methods for magnesia-carbon bricks and the like.

本発明のスピネル−マグネシア−カーボンれんがは、真空脱ガス装置の下部槽側壁にライニングすることができる。図1にRHの真空槽の断面図を示す。同図に示すように本発明でいう下部槽側壁とは、敷部よりも上で上部槽と接合するフランジ部までの耐火物で構成される側壁部(図1のハッチング部分)のことである。本発明のスピネル−マグネシア−カーボンれんがを下部槽側壁にライニングすることで、下部槽側壁の溶損が抑制され下部槽の寿命を延長することができる。特に、真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行うRHの下部槽側壁に適用することで溶損を抑制する効果が顕著に得られる。   The spinel-magnesia-carbon brick of the present invention can be lined on the lower tank side wall of the vacuum degassing device. FIG. 1 shows a sectional view of a vacuum chamber of the RH. As shown in the figure, the lower tank side wall referred to in the present invention is a side wall portion (hatched portion in FIG. 1) formed of a refractory material up to the flange portion above the floor portion and joined to the upper tank. . By lining the spinel-magnesia-carbon brick of the present invention on the lower tank side wall, erosion of the lower tank side wall is suppressed and the life of the lower tank can be extended. In particular, by applying the present invention to a lower tank side wall of an RH that performs an oxygen treatment in which oxygen gas is blown to molten steel in a vacuum tank, an effect of suppressing melting damage is remarkably obtained.

表1にスピネル−マグネシア−カーボンれんがの組成及び物性を示す。これらのれんがは、表1のれんがの組成と同じ割合の耐火原料配合物に有機バインダーとしてフェノール樹脂を適量添加して混練し、オイルプレスによって230mm×114mm×100mmの形状に成形後、最高温度250℃で5時間保持の熱処理を施すことで製造した。これから物性測定用試料を切り出して見掛気孔率を測定すると共に、耐食性、耐マグネシア−カーボン反応性及び耐熱衝撃性を評価した。なお、表1のれんがの中の有機バインダー由来の結合組織(非晶質カーボン)は、れんがの熱処理後の重量減少率から算出して全て外掛けで1質量%であった。   Table 1 shows the composition and physical properties of the spinel-magnesia-carbon brick. These bricks were prepared by adding an appropriate amount of a phenolic resin as an organic binder to a refractory raw material blend having the same composition as the composition of the bricks in Table 1, kneading the mixture, shaping it into a shape of 230 mm × 114 mm × 100 mm by an oil press, and then setting the maximum temperature to 250 mm. It was manufactured by performing a heat treatment of holding at 5 ° C. for 5 hours. From this, a sample for measuring physical properties was cut out, the apparent porosity was measured, and corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance were evaluated. In addition, all of the binder structures (amorphous carbon) derived from the organic binder in the bricks in Table 1 were 1% by mass on the outside as calculated from the weight loss rate after the heat treatment of the bricks.

Figure 2020055726
Figure 2020055726

見掛気孔率の測定においては形状50×50×50mmの試料をコークスブリーズ中に埋め、電気炉において1400℃まで昇温し、5時間保持して自然放冷した。その後、溶媒を白灯油としJIS R 2205に準拠して測定した。この見掛気孔率が低いほど、れんがは緻密であり、耐食性向上に有効と判断される。   In the measurement of the apparent porosity, a sample having a shape of 50 × 50 × 50 mm was buried in a coke breeze, heated to 1400 ° C. in an electric furnace, kept for 5 hours, and allowed to cool naturally. Thereafter, the measurement was carried out in accordance with JIS R 2205 using white kerosene as the solvent. The lower the apparent porosity, the denser the brick, and it is judged to be effective for improving corrosion resistance.

耐食性は、回転侵食試験にて評価した。回転侵食試験では、水平の回転軸を有するドラム内面を供試れんがでライニングし、スラグを投入、加熱して、供試れんが表面を侵食させた。
加熱源は酸素−プロパンバーナーとし、試験温度は1700℃、スラグ組成はCaO:20質量%、SiO:20質量%、Al:10質量%、鋼:50質量%とし、スラグの排出、投入を30分毎に10回繰り返した。鋼はバーナーで加熱される過程で溶融し、酸素と反応してFeOを生成することで供試れんがを溶損する。試験終了後、各供試れんがの最大溶損部の寸法(れんがの残寸)を測定し、表1に記載の「比較例1」のれんがの残寸を100とする耐食性指数で表示した。この耐食性指数は数値が大きいものほど耐食性が優れていることを示す。耐食性は、耐食性指数が比較例1に対して10%以上向上している場合、すなわち耐食性指数が110以上の場合に改善効果があると判断した。
The corrosion resistance was evaluated by a rotational erosion test. In the rotary erosion test, the inner surface of the drum having a horizontal rotation axis was lined with a test brick, slag was charged and heated, and the surface of the test brick was eroded.
The heating source was an oxygen-propane burner, the test temperature was 1700 ° C., the slag composition was 20% by mass of CaO, 20% by mass of SiO 2 , 10% by mass of Al 2 O 3 , and 50% by mass of steel. Was repeated 10 times every 30 minutes. The steel melts in the process of being heated by the burner and reacts with oxygen to form FeO, thereby eroding the test brick. After the test was completed, the size of the maximum erosion portion of each test brick (remaining size of the brick) was measured, and was indicated by a corrosion resistance index with the remaining size of the brick of “Comparative Example 1” described in Table 1 being 100. The larger the value of the corrosion resistance index, the better the corrosion resistance. The corrosion resistance was judged to be improved when the corrosion resistance index was improved by 10% or more compared to Comparative Example 1, that is, when the corrosion resistance index was 110 or more.

マグネシア−カーボン反応の程度は、「高温加熱試験(質量減少率)」で評価した。この高温加熱試験は、雰囲気調整可能な電気炉を用いて実施した。試験温度は1700℃に設定し、Ar雰囲気とすると共に、Arを吹き込むことでPMg(Mgガス分圧)やPCO(COガス分圧)を下げ、減圧下ないし真空下での処理と同様にマグネシア−カーボン反応を促進させた。マグネシア−カーボン反応は固体のマグネシアとカーボンがMgガスとCOガスとなる反応であり、反応の起こった試料は質量減少を伴うため、この質量減少率を用いて評価した。この質量減少率の数値が小さいほどマグネシア−カーボン反応が抑制されており、質量減少率が15質量%以上のものを不適と判断した。 The degree of magnesia-carbon reaction was evaluated by a "high temperature heating test (mass reduction rate)". This high-temperature heating test was performed using an electric furnace whose atmosphere can be adjusted. The test temperature was set to 1700 ° C., the atmosphere was Ar, and P Mg (partial pressure of Mg gas) and P CO (partial pressure of CO gas) were lowered by injecting Ar, similar to the treatment under reduced pressure or vacuum. Promoted the magnesia-carbon reaction. The magnesia-carbon reaction is a reaction in which solid magnesia and carbon are converted into Mg gas and CO gas, and the sample in which the reaction has occurred is accompanied by a decrease in mass. The smaller the numerical value of the mass reduction rate, the more the magnesia-carbon reaction was suppressed, and those having a mass reduction rate of 15% by mass or more were judged to be inappropriate.

耐熱衝撃性は、40×40×190mmの試料を1400℃で5時間還元雰囲気下において焼成し、この試料を1600℃に昇温した溶銑中に90秒間浸漬後、30秒水冷するサイクルを3回繰り返した。試験終了後、試料を切断し断面を観察して評価した。表1において、◎のものは亀裂が見られなかった試料であり、○のものは使用上問題無い程度の微亀裂が発生した試料、×のものは亀裂が観察された試料で実炉使用には適さないと判断した。   The thermal shock resistance was determined by firing a sample of 40 × 40 × 190 mm at 1400 ° C. for 5 hours in a reducing atmosphere, immersing the sample in hot metal heated to 1600 ° C. for 90 seconds, and water cooling for 30 seconds three times. Repeated. After the test, the sample was cut and the cross section was observed for evaluation. In Table 1, ◎ indicates a sample in which no cracks were observed, ○ indicates a sample in which microcracks were generated to the extent that there was no problem in use, and × indicates a sample in which cracks were observed in actual furnace use. Is not suitable.

実施例1から実施例4はマグネシアの含有量を本発明の範囲内で変化させたものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。
これに対して、比較例1はマグネシアを含まないため、アルミニウムと反応してスピネルを生成せず、組織が緻密にならなかったため、耐食性が低下した。比較例2はマグネシアの含有量が35質量%で上限値を超えており、耐マグネシア−カーボン反応性に劣る結果となった。
In Examples 1 to 4, the content of magnesia was changed within the range of the present invention, and good results were obtained in all of corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance.
On the other hand, Comparative Example 1 did not contain magnesia, did not react with aluminum to produce spinel, and did not have a fine structure, so that the corrosion resistance was reduced. In Comparative Example 2, the magnesia content exceeded the upper limit at 35% by mass, and resulted in poor magnesia-carbon reactivity.

実施例5から実施例9は黒鉛として鱗状黒鉛の含有量を本発明の範囲内で変化させたものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。
これに対して、比較例3は鱗状黒鉛の配合量が0質量%と下限値を下回っており、耐熱衝撃性が低下した。比較例4及び比較例5は鱗状黒鉛の配合量が18質量%と24.5質量%と上限値を超えており耐食性、及び耐マグネシア−カーボン反応性が低下した。
In Examples 5 to 9, the content of scaly graphite as graphite was changed within the range of the present invention, and good results were obtained in all of corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance.
On the other hand, in Comparative Example 3, the blending amount of the flake graphite was 0% by mass, which was lower than the lower limit, and the thermal shock resistance was reduced. In Comparative Examples 4 and 5, the blending amounts of the flake graphite exceeded the upper limit of 18% by mass and 24.5% by mass, and the corrosion resistance and the magnesia-carbon reactivity decreased.

実施例10から実施例13はアルミニウムの含有量を本発明の範囲内で変化させたものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。
これに対して、アルミニウムを含有しない比較例6は、組織が緻密化されないために耐食性が低下した。比較例7と比較例8はアルミニウムの含有量が2.5質量%と3.0質量%と上限値を超えており、耐熱衝撃性が大幅に低下した。
In Examples 10 to 13, the content of aluminum was changed within the range of the present invention, and all of the corrosion resistance, the magnesia-carbon reactivity, and the thermal shock resistance resulted in good results.
On the other hand, in Comparative Example 6 containing no aluminum, the corrosion resistance was reduced because the structure was not densified. In Comparative Examples 7 and 8, the content of aluminum exceeded the upper limit of 2.5% by mass and 3.0% by mass, and the thermal shock resistance was significantly reduced.

実施例14から実施例16は、粒径が1mm未満のマグネシアの含有量を本発明の好ましい範囲内で変化させたものであり、実施例1及び2と比較してより組織が緻密化し耐食性も向上した。   In Examples 14 to 16, the content of magnesia having a particle size of less than 1 mm was changed within a preferable range of the present invention, and the structure was more dense and the corrosion resistance was higher than in Examples 1 and 2. Improved.

実施例17は、酸化防止剤として金属シリコンを0.2質量%含有したもので、実施例18はAl−Mg合金(Al含有量50質量%)を0.5質量%含有したものであり、実施例2と比較して一層の耐食性の向上が見られた。   Example 17 contains 0.2% by mass of metallic silicon as an antioxidant, and Example 18 contains 0.5% by mass of an Al—Mg alloy (50% by mass of Al content). Further improvement in corrosion resistance was observed as compared with Example 2.

実施例19及び20はSiCとBCをそれぞれ0.2質量%ずつ含有したものであり、実施例2と比較して一層の耐食性の向上が見られた。 Examples 19 and 20 each contained 0.2% by mass of SiC and B 4 C, and further improved corrosion resistance as compared with Example 2.

実施例21及び22はカーボンブラックとピッチをそれぞれ1質量%ずつ含有したものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。   Examples 21 and 22 each contained 1% by mass of carbon black and 1% by pitch, and all of the corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance were good.

実施例23はマグネシアを本発明の範囲内の上限値で、スピネルを本発明の範囲内の下限値で含有したものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。
これに対して、スピネルを含有しない比較例9は、耐マグネシア−カーボン反応性及び耐熱衝撃性が低下した。
Example 23 contains magnesia at the upper limit of the range of the present invention and spinel at the lower limit of the range of the present invention, and shows good results in corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance. It became.
On the other hand, Comparative Example 9 containing no spinel had reduced magnesia-carbon reactivity and thermal shock resistance.

実施例24は、スピネル、マグネシア、黒鉛の合量を本発明の下限値で含有したものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。   In Example 24, the total amount of spinel, magnesia, and graphite was contained at the lower limit of the present invention, and all of the corrosion resistance, the magnesia-carbon reactivity, and the thermal shock resistance resulted in good results.

実施例2のれんが、比較例1のれんが、及び比較例9のれんがを真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行うRHの下部槽側壁にライニングして350回(ch)使用し、使用後のれんがを回収し観察した。実施例2のれんがは割れることなく良好に使用され、溶損速度は1.1mm/chであった。比較例1のれんがはFeOによって溶損し、溶損速度は2.3mm/chであり、比較例9のれんがはマグネシア−カーボン反応が進行して溶損し、溶損速度は2.5mm/chであった。   The bricks of Example 2, the bricks of Comparative Example 1 and the bricks of Comparative Example 9 were lined with 350 times (ch) by lining the lower tank side wall of an RH for performing oxygen treatment by blowing oxygen gas to molten steel in a vacuum tank, The used brick was collected and observed. Example 2 The brick was used favorably without cracking, and the erosion rate was 1.1 mm / ch. The brick of Comparative Example 1 was eroded by FeO, and the erosion rate was 2.3 mm / ch. The brick of Comparative Example 9 was eroded by the progress of the magnesia-carbon reaction, and the erosion rate was 2.5 mm / ch. there were.

本発明者等は、真空脱ガス装置、特に下部槽側壁の内張り材としてスピネル−カーボンれんがの耐用性の改善について種々検討したところ、スピネル−カーボンれんがに0.1質量%以上1.5質量%以下のアルミニウム及び/又はアルミニウム合金、並びにマグネシアを1質量%以上30質量%以下含有することで、耐FeO性に優れた真空脱ガス装置用れんがが得られることを知見した。しかもこのれんがを真空脱ガス装置の下部槽側壁に使用することで下部槽側壁の寿命が格段に向上することも知見した。 The present inventors have conducted various studies on improving the durability of a spinel-carbon brick as a lining material of a vacuum degassing apparatus, particularly a lower tank side wall, and found that the spinel-carbon brick has a mass of 0.1% by mass to 1.5 % by mass. It has been found that by containing the following aluminum and / or aluminum alloy and magnesia in an amount of 1% by mass or more and 30% by mass or less, a brick for a vacuum degassing device having excellent FeO resistance can be obtained. In addition, it has been found that the use of the brick for the lower tank side wall of the vacuum degassing apparatus significantly improves the life of the lower tank side wall.

すなわち、本発明によれば、次の(1)から(4)のスピネル−マグネシア−カーボンれんが、及びこのれんがを下部槽側壁にライニングした次の(5)の真空脱ガス装置が提供される。
(1)スピネルを65質量%以上98質量%以下、マグネシアを1質量%以上30質量%以下、黒鉛を0.1質量%以上15質量%以下、かつスピネル、マグネシア及び黒鉛を合量で92質量%以上、並びにアルミニウム及び/又はアルミニウム合金を0.1質量%以上1.5質量%以下含有する真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(2)黒鉛の含有量が0.5質量%以上10質量%以下である(1)に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(3)マグネシアの含有量が1質量%以上10質量%以下である(1)又は(2)に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(4)粒径1mm未満のマグネシアの含有量が1質量%以上10質量%以下である(1)〜(3)のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。
(5)(1)〜(4)のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんがを真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行うRHの下部槽側壁にライニングした真空脱ガス装置。
That is, according to the present invention, there is provided the following spinel-magnesia-carbon brick (1) to (4) and a vacuum degassing apparatus (5) in which this brick is lined with the lower tank side wall.
(1) 65% by mass to 98% by mass of spinel, 1% by mass to 30% by mass of magnesia, 0.1% by mass to 15% by mass of graphite, and 92% by mass of spinel, magnesia and graphite %, And 0.1% to 1.5 % by mass of aluminum and / or an aluminum alloy, for spinel-magnesia-carbon bricks for vacuum degassing equipment.
(2) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to (1), wherein the graphite content is 0.5% by mass or more and 10% by mass or less.
(3) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to (1) or (2), wherein the content of magnesia is 1% by mass or more and 10% by mass or less.
(4) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to any one of (1) to (3), wherein the content of magnesia having a particle size of less than 1 mm is 1% by mass or more and 10% by mass or less.
(5) The spinel-magnesia-carbon brick for vacuum degassing apparatus according to any one of (1) to (4) is applied to a lower tank side wall of an RH for performing an oxygen treatment of blowing oxygen gas to molten steel in a vacuum tank. Lined vacuum degasser.

Figure 2020055726
Figure 2020055726

実施例10から実施例12はアルミニウムの含有量を本発明の範囲内で変化させたものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。
これに対して、アルミニウムを含有しない比較例6は、組織が緻密化されないために耐食性が低下した。比較例7と比較例8はアルミニウムの含有量が2.5質量%と3.0質量%と上限値を超えており、耐熱衝撃性が大幅に低下した。
In Examples 10 to 12, the aluminum content was changed within the range of the present invention, and all of the corrosion resistance, the magnesia-carbon reactivity, and the thermal shock resistance resulted in good results.
On the other hand, in Comparative Example 6 containing no aluminum, the corrosion resistance was reduced because the structure was not densified. In Comparative Examples 7 and 8, the content of aluminum exceeded the upper limit of 2.5% by mass and 3.0% by mass, and the thermal shock resistance was significantly reduced.

参考例24は、スピネル、マグネシア、黒鉛の合量を本発明の下限値で含有したものであり、耐食性、耐マグネシア−カーボン反応性、耐熱衝撃性いずれも良好な結果となった。 In Reference Example 24, the total content of spinel, magnesia, and graphite was contained at the lower limit of the present invention, and all of the corrosion resistance, magnesia-carbon reactivity, and thermal shock resistance resulted in good results.

Claims (5)

スピネルを65質量%以上98質量%以下、マグネシアを1質量%以上30質量%以下、黒鉛を0.1質量%以上15質量%以下、かつスピネル、マグネシア及び黒鉛を合量で92質量%以上、並びにアルミニウム及び/又はアルミニウム合金を0.1質量%以上2.0質量%以下含有する真空脱ガス装置用スピネル−マグネシア−カーボンれんが。   65% to 98% by mass of spinel, 1% to 30% by mass of magnesia, 0.1% to 15% by mass of graphite, and 92% by mass or more of spinel, magnesia and graphite in total, And a spinel-magnesia-carbon brick for a vacuum degassing device containing aluminum and / or an aluminum alloy in an amount of 0.1% by mass or more and 2.0% by mass or less. 黒鉛の含有量が0.5質量%以上10質量%以下である請求項1に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。   The spinel-magnesia-carbon brick for vacuum degassing apparatus according to claim 1, wherein the graphite content is 0.5% by mass or more and 10% by mass or less. マグネシアの含有量が1質量%以上10質量%以下である請求項1又は請求項2に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。   The spinel-magnesia-carbon brick for a vacuum degassing device according to claim 1 or 2, wherein the content of magnesia is 1% by mass or more and 10% by mass or less. 粒径1mm未満のマグネシアの含有量が1質量%以上10質量%以下である請求項1〜3のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんが。   The spinel-magnesia-carbon brick for vacuum degassing equipment according to any one of claims 1 to 3, wherein the content of magnesia having a particle size of less than 1 mm is 1% by mass or more and 10% by mass or less. 請求項1〜4のいずれか1項に記載の真空脱ガス装置用スピネル−マグネシア−カーボンれんがを真空槽内の溶鋼へ酸素ガスを吹き付ける酸素処理を行うRHの下部槽側壁にライニングした真空脱ガス装置。   Vacuum degassing, wherein the spinel-magnesia-carbon brick for a vacuum degassing device according to any one of claims 1 to 4 is lined on a lower tank side wall of an RH for performing an oxygen treatment for blowing oxygen gas onto molten steel in a vacuum tank. apparatus.
JP2018189435A 2018-10-04 2018-10-04 Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank Active JP6600729B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189435A JP6600729B1 (en) 2018-10-04 2018-10-04 Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189435A JP6600729B1 (en) 2018-10-04 2018-10-04 Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank

Publications (2)

Publication Number Publication Date
JP6600729B1 JP6600729B1 (en) 2019-10-30
JP2020055726A true JP2020055726A (en) 2020-04-09

Family

ID=68383364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189435A Active JP6600729B1 (en) 2018-10-04 2018-10-04 Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank

Country Status (1)

Country Link
JP (1) JP6600729B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200530A (en) * 2019-06-13 2020-12-17 黒崎播磨株式会社 Brick for vacuum degassing apparatus and rh immersion tube using the same
JP7469667B2 (en) 2020-09-18 2024-04-17 日本製鉄株式会社 Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185485A (en) * 1982-04-22 1983-10-29 アイコ−株式会社 Coating or filling formless refractory composition
JPS6177662A (en) * 1984-09-25 1986-04-21 川崎炉材株式会社 Magnesia-spinel refractories
JPH05262559A (en) * 1992-03-18 1993-10-12 Harima Ceramic Co Ltd Unburned carbon-containing brick
JPH09255439A (en) * 1996-03-21 1997-09-30 Yotai Refractories Co Ltd Carbon-containing basic castable refractory
JP2001316170A (en) * 2000-05-08 2001-11-13 Nippon Steel Corp Carbon containing refractory and kiln using the same
JP2002080272A (en) * 2000-09-05 2002-03-19 Nkk Corp Magnesia-spinel-carbonaceous brick
JP2014169214A (en) * 2013-03-05 2014-09-18 Kurosaki Harima Corp Refractory and refractory structure
JP2017007901A (en) * 2015-06-24 2017-01-12 品川リフラクトリーズ株式会社 Spinel-magnesia-carbonaceous brick
CN106747490A (en) * 2016-11-22 2017-05-31 湖南湘钢瑞泰科技有限公司 A kind of magnesia carbon brick and preparation method thereof
JP2017149596A (en) * 2016-02-23 2017-08-31 品川リフラクトリーズ株式会社 Slide plate refractory
JP2017155256A (en) * 2016-02-29 2017-09-07 Jfeスチール株式会社 Refractory for converter bottom blowing tuyere
JP2018070406A (en) * 2016-10-27 2018-05-10 黒崎播磨株式会社 Magnesia-carbon brick and method for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185485A (en) * 1982-04-22 1983-10-29 アイコ−株式会社 Coating or filling formless refractory composition
JPS6177662A (en) * 1984-09-25 1986-04-21 川崎炉材株式会社 Magnesia-spinel refractories
JPH05262559A (en) * 1992-03-18 1993-10-12 Harima Ceramic Co Ltd Unburned carbon-containing brick
JPH09255439A (en) * 1996-03-21 1997-09-30 Yotai Refractories Co Ltd Carbon-containing basic castable refractory
JP2001316170A (en) * 2000-05-08 2001-11-13 Nippon Steel Corp Carbon containing refractory and kiln using the same
JP2002080272A (en) * 2000-09-05 2002-03-19 Nkk Corp Magnesia-spinel-carbonaceous brick
JP2014169214A (en) * 2013-03-05 2014-09-18 Kurosaki Harima Corp Refractory and refractory structure
JP2017007901A (en) * 2015-06-24 2017-01-12 品川リフラクトリーズ株式会社 Spinel-magnesia-carbonaceous brick
JP2017149596A (en) * 2016-02-23 2017-08-31 品川リフラクトリーズ株式会社 Slide plate refractory
JP2017155256A (en) * 2016-02-29 2017-09-07 Jfeスチール株式会社 Refractory for converter bottom blowing tuyere
JP2018070406A (en) * 2016-10-27 2018-05-10 黒崎播磨株式会社 Magnesia-carbon brick and method for producing the same
CN106747490A (en) * 2016-11-22 2017-05-31 湖南湘钢瑞泰科技有限公司 A kind of magnesia carbon brick and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020200530A (en) * 2019-06-13 2020-12-17 黒崎播磨株式会社 Brick for vacuum degassing apparatus and rh immersion tube using the same
JP7242437B2 (en) 2019-06-13 2023-03-20 黒崎播磨株式会社 Bricks for vacuum degassing equipment and RH immersion pipes using the same
JP7469667B2 (en) 2020-09-18 2024-04-17 日本製鉄株式会社 Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment

Also Published As

Publication number Publication date
JP6600729B1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
TWI558683B (en) Magnesium oxide carbon brick
WO2014112493A1 (en) Magnesia-carbon brick
JP6546687B1 (en) Method of manufacturing magnesia carbon brick
JP6215109B2 (en) Magnesia carbon brick
JP3593101B2 (en) Carbonaceous refractory and method for producing the same
WO2010071196A1 (en) Process for producing plate brick, and plate brick
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
JP6353284B2 (en) Magnesia carbon brick
JP6215409B1 (en) Mug carbon brick and molten steel pan using this
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP6219729B2 (en) Magnesia carbon brick
JP6194257B2 (en) Magnesia carbon brick
JP6190730B2 (en) Magnesia carbon brick
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP7389352B2 (en) Spinel-magnesia-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
JP2006021972A (en) Magnesia-carbon brick
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP7228733B1 (en) Magnesia carbon brick and its manufacturing method
JP5578680B2 (en) Carbon-containing refractories
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP2024059450A (en) Manufacturing method of magnesia carbon bricks for vacuum degassing furnace
JP2022051079A (en) Spinel-alumina-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190423

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250