JP2020041346A - Seismic strengthening method and bridge - Google Patents

Seismic strengthening method and bridge Download PDF

Info

Publication number
JP2020041346A
JP2020041346A JP2018170236A JP2018170236A JP2020041346A JP 2020041346 A JP2020041346 A JP 2020041346A JP 2018170236 A JP2018170236 A JP 2018170236A JP 2018170236 A JP2018170236 A JP 2018170236A JP 2020041346 A JP2020041346 A JP 2020041346A
Authority
JP
Japan
Prior art keywords
bridge
girder
pier
bearing
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018170236A
Other languages
Japanese (ja)
Other versions
JP7116644B2 (en
Inventor
石橋 忠良
Tadayoshi Ishibashi
忠良 石橋
光商 大庭
Kosho Oba
光商 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR East Consultants Co
Original Assignee
JR East Consultants Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR East Consultants Co filed Critical JR East Consultants Co
Priority to JP2018170236A priority Critical patent/JP7116644B2/en
Publication of JP2020041346A publication Critical patent/JP2020041346A/en
Application granted granted Critical
Publication of JP7116644B2 publication Critical patent/JP7116644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

To provide seismic strengthening technology that can be easily constructed even when there are factors specific to existing bridges in bridges with continuous girders.SOLUTION: The degree of horizontal restraint of bearings B2, B3, B4 installed on piers P1 to P3 is adjusted for abutments A1, A2 and the piers P1 to P3 that support a continuous girder G. The bearings B2, B3, B4 continue to transmit the weight of a connection girder to the piers P1 to P3. Further, the bearings B1, B5 installed on the abutments A1, A2 are left as they are (except for the degree of horizontal restraint adjustment). For bridge piers P1 to P3 where construction conditions are severe, seismic strengthening will not be performed, and seismic strengthening will be performed for abutments A1, A2, where construction conditions are less restrictive.SELECTED DRAWING: Figure 3

Description

本発明は、橋梁の耐震補強技術に関し、特に連続桁を有する橋梁の耐震補強技術に関する。   TECHNICAL FIELD The present invention relates to a technology for seismic reinforcement of a bridge, and more particularly to a technology for seismic reinforcement of a bridge having a continuous girder.

近年の大規模な地震被害を踏まえて耐震設計基準が見直されている。一方で既設の橋梁は古い耐震設計基準により設計されているものも多い。したがって、既設橋梁に対し耐震補強工事がなされる。   Seismic design standards have been revised in light of recent large-scale earthquake damage. On the other hand, many existing bridges are designed according to old seismic design standards. Therefore, seismic strengthening work will be performed on the existing bridge.

具体的には、橋脚や橋脚基礎の地震耐力を向上させる(例えば特許文献1)。耐震補強工事には種々の建設機械や資材が必要になる。   Specifically, the seismic resistance of a pier or a pier foundation is improved (for example, Patent Document 1). Various construction machines and materials are required for the seismic retrofitting work.

特開2015-203291号公報JP 2015-203291 A

しかしながら、橋梁の下には、鉄道や道路や河川が存在することが多い。このような個所は、建設機械の設置や資材の搬入が困難である。また、鉄道や道路が隣接している場合は、より慎重な安全対策が必要になる。河川内の橋脚工事では仮締切工が必要となる。   However, there are often railways, roads and rivers under the bridge. In such places, it is difficult to install construction machines and carry in materials. In addition, when railways and roads are adjacent, more careful safety measures are required. Temporary deadlines are required for pier construction in rivers.

さらに、鉄道に近接した構造物の補強を行う際には、安全上の観点から夜間に列車が走行しない時間帯のみでしか施工できない場合もある。道路に近接した構造物の補強を行う際には、車線を一部規制したり、通行止めを行って施工する等の制約がある。さらに上記の補強に際しては、鉄道事業者、道路管理者、河川管理との協議が必要であり、単に工事費が増大するのみでなく、工期が見通せないという課題がある。   Further, when reinforcing a structure close to the railway, there is a case where the construction can be performed only in a time zone when the train does not run at night from the viewpoint of safety. When reinforcing structures close to the road, there are restrictions such as restricting some lanes and closing roads for construction. Further, the above-mentioned reinforcement requires consultation with a railway company, a road manager, and river management, and thus has a problem that not only the construction cost is increased but also the construction period cannot be foreseen.

このような既設橋梁特有の要因が既設橋梁の耐震化を遅らせる一因となっている。   Such factors peculiar to the existing bridge are one of the factors that delay the earthquake resistance of the existing bridge.

また近年大規模地震の多発により、設計震度が大きくなり、その結果既設構造物の補強が大規模になってきている。   In recent years, the frequency of large-scale earthquakes has increased the design seismic intensity, and as a result, the reinforcement of existing structures has become large-scale.

本発明は上記課題を解決するものであり、特に連続桁を有する橋梁において、既設橋梁特有の要因がある場合でも、容易に施工可能な耐震補強技術を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and particularly to provide a seismic retrofitting technique that can be easily constructed even in a bridge having a continuous girder even when there are factors peculiar to an existing bridge.

上記課題を解決する本発明は、連続桁を有する橋梁の耐震補強方法である。前記連続桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する工程を含む。   The present invention that solves the above-mentioned problems is a method of reinforcing a bridge having a continuous girder. Adjusting the degree of horizontal restraint of a bearing installed on at least one pier or abutment supporting the continuous girder.

これにより、連続桁は長周期化し、入力地震動は低減する。さらに、水平方向拘束度合調整対象橋脚等の耐震補強は不要になる。これにより、既設橋梁特有の要因がある場合でも施工困難箇所を避けることができる。これらの相乗効果により、最小限の労力で耐震補強が容易に可能となる。   As a result, the continuous girder becomes longer, and the input ground motion is reduced. Furthermore, seismic reinforcement of the piers and the like for which the horizontal restraint degree is to be adjusted becomes unnecessary. Thereby, even if there is a factor peculiar to the existing bridge, it is possible to avoid difficult-to-construction points. Due to these synergistic effects, seismic retrofit can be easily performed with minimum effort.

上記発明において好ましくは、前記橋梁は、前記連続桁のみからなる。   In the above invention, preferably, the bridge comprises only the continuous girder.

連続桁の橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整することにより、連続桁は長周期化する。   By adjusting the degree of horizontal restraint of the bearings installed on the piers or abutments of the continuous girder, the continuous girder becomes longer.

上記発明において好ましくは、前記連続桁を支持する全ての橋脚に設置される支承の水平方向の拘束度合いを調整する。   In the above invention, preferably, the degree of horizontal restraint of the supports installed on all the piers supporting the continuous girder is adjusted.

これにより、連続桁は単純桁と類似する挙動をする。同スパンの単純桁と同程度に長周期となる。   As a result, continuous digits behave similarly to simple digits. The period is as long as a simple girder of the same span.

上記発明において好ましくは、前記橋梁は、前記連続桁と、前記連続桁と隣あう少なくとも1の橋桁を有し、前記連続桁と、前記連続桁と隣あう少なくとも1の橋桁を連結して連結桁とする工程と、前記連続桁と連結された橋桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する工程を含む。   In the above invention, preferably, the bridge has the continuous girder and at least one bridge girder adjacent to the continuous girder, and connects the continuous girder and at least one bridge girder adjacent to the continuous girder to form a connecting girder. And adjusting the degree of horizontal restraint of a bearing installed on at least one pier or abutment supporting the bridge girder connected to the continuous girder.

連結桁とすることにより、連続桁と同様に扱える。   By using concatenated digits, it can be handled in the same way as continuous digits.

上記発明において好ましくは、前記支承の水平方向の拘束度合いを調整する工程では、前記支承を介して橋脚又は橋台に伝達される断面力が、前記橋脚又は橋台の耐力以下となるようにする。   In the above invention, preferably, in the step of adjusting the degree of restraint of the bearing in the horizontal direction, a sectional force transmitted to the pier or abutment via the bearing is set to be equal to or less than the proof strength of the pier or abutment.

これにより、水平方向拘束度合調整対象橋脚等の耐震補強は不要になる。   This eliminates the need for seismic reinforcement of the piers and the like for which the degree of horizontal restraint is to be adjusted.

上記発明において好ましくは、前記水平方向の拘束度合いを調整された支承を支持する橋脚または橋台を補強しない。   In the above invention, preferably, a bridge pier or an abutment for supporting the bearing whose degree of restraint in the horizontal direction is adjusted is not reinforced.

これにより、既設橋梁特有の要因がある場合でも施工困難箇所を避けることができる。   Thereby, even if there is a factor peculiar to the existing bridge, it is possible to avoid difficult-to-construction points.

上記発明において好ましくは、前記水平方向の拘束度合いを調整された支承を支持する橋脚または橋台を含む全ての橋脚および橋台を補強しない。   In the above invention, preferably, all the piers and abutments including the piers or the abutments that support the bearing whose degree of horizontal restraint is adjusted are not reinforced.

入力地震動低減により、耐震補強の必要程度も低減される。その結果、全ての橋脚および橋台を補強しなくてもよい場合もある。   By reducing the input seismic motion, the required degree of seismic reinforcement is also reduced. As a result, it may not be necessary to reinforce all piers and abutments.

上記課題を解決する本発明の橋梁は、連続桁と、前記連続桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する水平方向拘束度合い調整手段と、を有する。   The bridge of the present invention that solves the above-mentioned problems, a continuous girder, and horizontal restraint degree adjusting means for adjusting a horizontal restraint degree of a bearing installed on at least one pier or abutment that supports the continuous girder, Have.

上記発明において好ましくは、前記水平方向拘束度合い調整手段は、前記橋脚又は橋台に連結される下部支承と、前記連続桁に連結され、前記下部支承に対し摺動可能な上部支承と、前記下部支承に対する前記上部支承の摺動を拘束するとともに、所定の摺動力以上により破壊される摺動拘束手段と、を有する。   In the above invention, preferably, the horizontal restraint degree adjusting means includes a lower support connected to the pier or abutment, an upper support connected to the continuous girder and slidable with respect to the lower support, And a sliding restraint means for restraining the sliding of the upper support with respect to the above, and being destroyed by a predetermined sliding force or more.

本発明に係る耐震補強方法および橋梁によれば、既設橋梁特有の要因がある場合でも、容易に施工できる。   ADVANTAGE OF THE INVENTION According to the seismic strengthening method and bridge which concern on this invention, even if there exists a factor peculiar to an existing bridge, it can be constructed easily.

既設橋梁例Existing bridge example 多径間橋梁に対する耐震補強例(参考例)Examples of seismic reinforcement for multi-span bridges (reference example) 適用例施工後(下部補強)After application (lower reinforcement) 断面力定義概念図Conceptual diagram of section force definition 水平方向拘束度合調整手段具体例Specific example of horizontal restraint degree adjustment means 適用例施工後(下部補強不要)After application (no lower reinforcement required) 連続桁の地震時挙動イメージSeismic behavior image of continuous girder 既設橋梁例 (変形例)Existing bridge example (Modified example) 変形例施工後After modification 変形例施工後After modification 変形例施工後After modification 変形例施工後After modification 連結例Consolidation example 連結例Consolidation example

〜概要〜
図1は、本発明が適用される既設橋梁の例である。特に、連続桁を有する橋梁において耐震補強をおこなう。
~Overview~
FIG. 1 is an example of an existing bridge to which the present invention is applied. In particular, seismic reinforcement will be provided for bridges with continuous girder.

図1では、連続桁を有する橋梁の例である。下部構造として、両端に橋台A1および橋台A2が設けられている。さらに、橋台A1,A2の間に3本の橋脚P1〜P3が設けられている。   FIG. 1 shows an example of a bridge having a continuous girder. As a lower structure, an abutment A1 and an abutment A2 are provided at both ends. Further, three piers P1 to P3 are provided between the abutments A1 and A2.

橋脚A1上には支承B1が、橋脚P1上には支承B2が、橋脚P2上には支承B3が、橋脚P3上には支承B4が、橋脚A2上には支承B5が設置されている。   A support B1 is provided on the pier A1, a support B2 is provided on the pier P1, a support B3 is provided on the pier P2, a support B4 is provided on the pier P3, and a support B5 is provided on the pier A2.

連続桁Gは、支承B1〜B5を介して、下部構造(橋脚A1、橋脚P1〜P3、橋台A2)に支持されている。   The continuous girder G is supported by lower structures (piers A1, piers P1 to P3, and abutments A2) via bearings B1 to B5.

支承B1〜B5では水平方向の変位が拘束されている。したがって、地震時に橋桁Gに水平方向の力(本明細書中では「水平力」と称する。)が発生すると、支承B1〜5を介して、橋台A1,A2および橋脚P1〜P3に伝達される。これに対する耐震補強が必要になる。なお、本明細書中の「水平方向」とは橋梁の橋軸直角方向を、「水平面」とは、橋梁の橋軸方向と橋軸直角方向を含む面に平行な面を、意味する。   In the supports B1 to B5, horizontal displacement is restricted. Therefore, when a horizontal force (referred to as “horizontal force” in this specification) is generated on the bridge girder G during an earthquake, it is transmitted to the abutments A1, A2 and the piers P1 to P3 via the bearings B1 to B5. . Seismic reinforcement is needed for this. In this specification, "horizontal direction" means a direction perpendicular to the bridge axis of the bridge, and "horizontal plane" means a plane parallel to a plane including the bridge axis direction of the bridge and the direction perpendicular to the bridge axis.

ところで、橋脚P3は河川の中に設けられており、さらに、鉄道や道路が河川と並行して走っているとする。橋脚P1と橋脚P2は、鉄道に隣接する。橋脚P2は、道路に隣接する。   By the way, it is assumed that the pier P3 is provided in a river, and a railroad or a road runs in parallel with the river. The piers P1 and P2 are adjacent to the railway. The pier P2 is adjacent to the road.

したがって、施工条件が厳しいため、橋脚P1〜P3に対する大規模な耐震補強は困難である。なお、橋台A1,A2付近では、施工条件の制約は緩い。例えば、補強工事のための充分な作業スペースを確保できる。このように、既設橋梁には既設橋梁特有の要因がある。   Therefore, since the construction conditions are severe, large-scale seismic reinforcement of the piers P1 to P3 is difficult. In the vicinity of the abutments A1 and A2, the restrictions on the construction conditions are loose. For example, a sufficient work space for reinforcement work can be secured. Thus, existing bridges have factors peculiar to existing bridges.

ところで、本願出願人は、多径間橋梁に対し、同様な条件下における耐震補強を検討した。図2は、多径間橋梁に対する耐震補強例(参考例)である。   By the way, the applicant of the present application examined seismic strengthening of a multi-span bridge under similar conditions. FIG. 2 is an example of seismic reinforcement for a multi-span bridge (reference example).

その結果、各橋桁を連結して、1つの連結桁とすることにより、水平面内の曲げモーメントが隣り合う橋桁同士に伝達され、さらに、連結桁を支持する支承のうち、水平方向拘束を低減する支承を設け、水平方向拘束低減対象以外の支承に対応する橋台や橋脚を耐震補強することを検討した。   As a result, by connecting each bridge girder to form one connection girder, the bending moment in the horizontal plane is transmitted to the adjacent bridge girder, and further, among the bearings supporting the connection girder, horizontal restraint is reduced. A study has been conducted on the provision of bearings and seismic reinforcement of abutments and piers corresponding to bearings other than those subject to horizontal restraint reduction.

これによれば、連結桁の水平方向の振動が長周期化し、連続桁への入力地震動が低減する。さらに、施工条件が厳しい橋台や橋脚の耐震補強をおこなわず(もしくは比較的軽微な耐震補強をおこなう)、施工条件の制約が緩い橋台や橋脚の耐震補強をおこなうことで、既設橋梁特有の要因がある場合でも、容易に施工できる。   According to this, the horizontal vibration of the connecting girder is lengthened and the input seismic motion to the continuous girder is reduced. In addition, the seismic retrofitting of abutments and piers where the construction conditions are strict, and the abutments and piers with less restrictive construction conditions are not performed (or comparatively slight seismic retrofitting of abutments or piers with severe construction conditions) Even in some cases, it can be easily constructed.

上記検討を経るうち、連続桁であれば、連結工程なしに、上記原理が適用できることに気が付いた。   In the course of the above study, it has been found that the above principle can be applied to a continuous girder without a connecting step.

〜本発明適用例〜
図3は、本発明の適用例である。図1に示す既設の連続桁Gを有する橋梁に対し、上記施工条件下(既設橋梁特有の要因)において、耐震補強をおこなう。
~ Example of application of the present invention ~
FIG. 3 is an application example of the present invention. The bridge having the existing continuous girder G shown in FIG. 1 is subjected to seismic reinforcement under the above construction conditions (factors specific to the existing bridge).

連続桁Gを支持する橋台A1,A2および橋脚P1〜P3のうち、橋脚P1〜P3に設置される支承B2,B3,B4について水平方向の拘束度合いを調整する(水平方向拘束度合調整について詳細については後述する)。なお、支承B2,B3,B4は引き続き連結桁の自重を橋脚P1〜P3に伝達する。また、橋台A1,A2に設置される支承B1,B5は既存のままとする(水平方向拘束度合調整対象外)。   Among the abutments A1, A2 and the piers P1 to P3 that support the continuous girder G, the degree of horizontal restraint is adjusted for the bearings B2, B3, and B4 installed on the piers P1 to P3. Will be described later). The bearings B2, B3, and B4 continue to transmit the weight of the connecting girder to the piers P1 to P3. Also, the bearings B1, B5 installed on the abutments A1, A2 are left as they are (except for the horizontal restraint degree adjustment).

図3における支承において、実線中塗の三角は水平方向拘束度合調整外(引き続き水平方向の移動を拘束する)を示し、点線中抜の三角は水平方向拘束度合調整対象を示す。   In the bearing in FIG. 3, the solid triangle in the solid line indicates that the degree of restriction in the horizontal direction is not adjusted (the horizontal movement is continuously restricted), and the triangle in the dotted line indicates the target of the degree of horizontal restriction adjustment.

一方で、連続桁Gを支持する橋脚P1〜P3および橋台A1,A2のうち、橋脚P1〜P3(水平方向拘束度合調整の支承B2,B3,B4を支持する橋脚)以外の橋台A1,A2において、耐震補強をおこなう。   On the other hand, among the piers P1 to P3 supporting the continuous girder G and the abutments A1 and A2, in the abutments A1 and A2 other than the piers P1 to P3 (the piers supporting the bearings B2, B3 and B4 for adjusting the degree of horizontal restraint). And seismic reinforcement.

すなわち、施工条件が厳しい橋脚P1〜P3においては、耐震補強を行わず(もしくは比較的軽微な耐震補強をおこなう)、施工条件の制約が緩い橋台A1,A2にて耐震補強をおこなう(耐震補強詳細については後述する)。   That is, in the case of the piers P1 to P3 in which the construction conditions are severe, the seismic reinforcement is not performed (or relatively small seismic reinforcement is performed), and the seismic reinforcement is performed in the abutments A1 and A2 whose construction conditions are loosely restricted (details of the seismic reinforcement). Will be described later).

図2における橋脚、橋台において、ハッチングは耐震補強対象を示し、中塗は耐震補強対象外を示す。   In the piers and abutments in FIG. 2, hatching indicates a target of seismic reinforcement, and middle coat indicates a target of non-seismic reinforcement.

〜水平方向拘束度合調整手段〜
図1において、既設橋梁では支承B1〜B5について水平方向の変位が拘束されている。図3において、支承B2,B3,B4ついて水平方向の拘束度合いを調整する。
~ Horizontal restraint degree adjustment means ~
In FIG. 1, in an existing bridge, horizontal displacements of the bearings B1 to B5 are restricted. In FIG. 3, the degree of horizontal restraint of the bearings B2, B3, and B4 is adjusted.

支承の水平方向の拘束度合いを調整する工程では、支承を介して橋脚又は橋台に伝達される断面力が、橋脚又は橋台の耐力以下となるようにする。   In the step of adjusting the degree of horizontal restraint of the bearing, the sectional force transmitted to the pier or abutment via the bearing is set to be equal to or less than the proof strength of the pier or abutment.

図4は、支承を介して橋脚に伝達される断面力の概念図である。   FIG. 4 is a conceptual diagram of a sectional force transmitted to a pier via a bearing.

地震時に連続桁Gに水平方向に慣性力Pが発生する。まず、支承が水平方向に拘束されている場合の橋脚に伝達される断面力について説明する。   An inertia force P is generated in the continuous girder G in the horizontal direction during an earthquake. First, the sectional force transmitted to the pier when the bearing is restrained in the horizontal direction will be described.

橋脚高さをlとすると橋脚基部に曲げモーメントM(=P×l)が発生する。また橋脚にはせん断力N(=P)が発生する。これらを断面力と称する。   Assuming that the pier height is 1, a bending moment M (= P × l) is generated at the pier base. Also, a shear force N (= P) is generated on the pier. These are called sectional forces.

なお、橋脚又は橋台の耐力は、耐震補強をしない限り、不変である。既存橋脚および既存橋台に固有の値である。   The strength of the pier or abutment remains unchanged unless seismic reinforcement is applied. This value is specific to existing piers and abutments.

支承の水平方向の拘束度合いを調整することで、支承を介して橋脚又は橋台に伝達される断面力が、橋脚又は橋台の耐力以下とすることができる。   By adjusting the degree of horizontal restraint of the bearing, the sectional force transmitted to the pier or abutment via the bearing can be less than or equal to the proof strength of the pier or abutment.

まず、入力地震力を想定し、連続桁Gに発生する水平方向慣性力Pを設定する。   First, assuming an input seismic force, a horizontal inertia force P generated in a continuous girder G is set.

このとき、支承の水平方向の拘束度合いを低減すると、支承を介して橋脚又は橋台に伝達される断面力も低減する。この検討を繰り返すことにより、支承を介して橋脚又は橋台に伝達される断面力が、橋脚又は橋台の耐力以下となるようにするには、どの程度、支承の水平方向の拘束度合いを低減すればよいかがわかる。   At this time, when the degree of horizontal restraint of the bearing is reduced, the sectional force transmitted to the pier or abutment via the bearing is also reduced. By repeating this study, in order to reduce the cross-sectional force transmitted to the pier or abutment via the bearing to the strength of the pier or abutment or less, how much the degree of horizontal restraint of the bearing should be reduced We know whether it is good.

なお、既設支承を介して橋脚又は橋台に伝達される断面力が、橋脚又は橋台の耐力以下である場合は、支承の水平方向の拘束度合いを低減しなくてもよい。この場合を含めて調整と称する。   If the cross-sectional force transmitted to the pier or abutment via the existing bearing is equal to or less than the proof strength of the pier or abutment, the horizontal restraint degree of the bearing need not be reduced. This case is referred to as adjustment.

支承の水平方向の拘束度合いを低減する具体例について説明する。例えば、既設支承を免震支承やすべり支承や、それ以外の既存の支承よりも拘束度合いが低い支承に取り換えてもよい。   A specific example in which the degree of horizontal restraint of the bearing is reduced will be described. For example, an existing bearing may be replaced with a seismic isolation bearing, a sliding bearing, or a bearing having a lower degree of restraint than other existing bearings.

免震支承であれば、橋桁の水平力の橋脚P1〜P3への伝達を大幅に低減できる。   With the seismic isolation bearing, the transmission of the horizontal force of the bridge girder to the piers P1 to P3 can be greatly reduced.

すべり支承であれば、当該すべり支承の摩擦係数をμ、当該支承が負担する鉛直力をVとすれば、橋桁から支承に働く水平力がμVを超えると当該支承は滑りμVを超える水平力は橋脚P1〜P3へ伝達されないようにできる。   In the case of a sliding bearing, if the friction coefficient of the sliding bearing is μ and the vertical force borne by the bearing is V, then if the horizontal force acting on the bearing from the bridge girder exceeds μV, the bearing will slip and the horizontal force exceeding μV will be It can be prevented from being transmitted to the piers P1 to P3.

この場合、μVの水平力が橋脚又は橋台に伝達されて生じる断面力が、橋脚又は橋台の耐力以下であれば、橋脚P1〜P3は大規模には損傷しない。   In this case, the bridge piers P1 to P3 are not damaged on a large scale if the cross-sectional force generated by transmitting the μV horizontal force to the pier or abutment is equal to or less than the proof strength of the pier or abutment.

通常、Vの値を大幅に調整することは困難であり、補強が困難な橋脚や橋台の強度に応じて取り替える支承の摩擦係数を適宜選定する。   Usually, it is difficult to greatly adjust the value of V, and the friction coefficient of the bearing to be replaced is appropriately selected according to the strength of the pier or abutment where reinforcement is difficult.

既設支承に簡単な施工をして、支承の水平方向の拘束度合いを低減してもよい。   A simple construction may be applied to the existing bearing to reduce the degree of horizontal constraint of the bearing.

図5に水平方向拘束度合調整手段の一例を示す。支承Bは、上部支承B−1と下部支承B−2とズレ止めとを備える。上部支承B−1は連続桁G下面に連結されている。下部支承B−2は橋脚P又は橋台Aの上面に連結されている。上部支承と下部支承とは摺動可能に接している。   FIG. 5 shows an example of the horizontal restraint degree adjusting means. The bearing B includes an upper bearing B-1, a lower bearing B-2, and a stopper. The upper bearing B-1 is connected to the lower surface of the continuous girder G. The lower bearing B-2 is connected to the upper surface of the pier P or the abutment A. The upper bearing and the lower bearing are in sliding contact with each other.

ズレ止めは、下部支承(または上部支承)に連設され、下部支承に対する上部支承の摺動を拘束する。この摺動拘束を介して、連続桁Gの水平慣性力は、橋脚Pや橋台Aに伝達される。   The shift stopper is connected to the lower bearing (or the upper bearing) and restrains the sliding of the upper bearing with respect to the lower bearing. Through this sliding constraint, the horizontal inertia force of the continuous girder G is transmitted to the pier P and the abutment A.

このとき、ズレ止めに切り欠けを施工することにより、所定以上の力が作用した場合に、ズレ止めが破損し、水平力が橋脚P1〜P3へ伝達されないようにできる。   At this time, by forming a notch in the shift stopper, when a force greater than a predetermined force acts, the shift stopper is broken, and the horizontal force can be prevented from being transmitted to the piers P1 to P3.

ところで、図1および図3の側面図では、1つ橋脚や橋台において橋桁を1つの支承により支持しているようにもみえるが、実際は、図示直交する方向に奥行きを有し、複数の支承が配置されている(例えば図4参照)。水平方向の拘束を低減する際は、同一橋脚(橋台)上の全ての支承を調整する。   By the way, in the side views of FIGS. 1 and 3, it seems that one bridge pier or abutment supports the bridge girder by one support, but in fact, it has a depth in a direction perpendicular to the drawing, and a plurality of supports are provided. (See, for example, FIG. 4). To reduce horizontal restraints, adjust all bearings on the same pier (abutment).

〜耐震補強手段〜
適用例において、図1における既設橋梁に対し、図3のように橋台A1,A2において、耐震補強をおこなう。適宜、橋脚において耐震補強をおこなってもよい。
~ Seismic reinforcement means ~
In the application example, the existing bridge in FIG. 1 is subjected to seismic reinforcement at the abutments A1 and A2 as shown in FIG. If necessary, seismic reinforcement may be provided at the pier.

橋脚の耐震補強の例として、RC巻き立て、鋼板巻き立て、樹脂シート巻き立て等により柱の曲げ又はせん断耐力や靱性を増したり、杭を増したりする。   As an example of the seismic reinforcement of the pier, the bending or shear strength and toughness of the column are increased by RC winding, steel plate winding, resin sheet winding, or the number of piles is increased.

橋台の耐震補強の例としては、橋脚で用いる方法の他に、グランドアンカにより、橋台と背面部との一体性を増す。   As an example of seismic reinforcement of an abutment, in addition to the method used for a pier, a ground anchor is used to increase the integration between the abutment and the rear portion.

また、上記補強する橋脚や橋台に設置される支承も当初設計時に比べて増加した地震時水平力を負担することになるため、支承本体やアンカーボルトを交換、あるいはアンカー用コンクリートの増し打ちやアンカーボルト数を増すといった補強を行う。 Also, the bearings installed on the piers and abutments to be reinforced will bear the increased horizontal force during an earthquake compared to the original design. Reinforcement by increasing the number of bolts.

ところで、上記のように支承の水平方向の拘束度合を調整したとしても、既設橋台A1,A2において、充分な耐力を有する場合は、耐震補強をしなくてもよい(もしくは軽微な耐震補強のみでよい)。   By the way, even if the degree of horizontal restraint of the bearing is adjusted as described above, if the existing abutments A1 and A2 have sufficient proof strength, it is not necessary to perform the aseismic reinforcement (or only the slight aseismic reinforcement is required). Good).

本願出願人が、実際の連続桁を有する橋梁について耐震補強を検討したところ、耐震補強不要との結果になるケースが複数あった。   When the applicant of the present application examined seismic reinforcement of a bridge having an actual continuous girder, there were a plurality of cases where the result was that seismic reinforcement was unnecessary.

図6は、適用例の変形である。既設橋台A1,A2において、充分な耐力を有する場合は、耐震補強不要である。   FIG. 6 is a modification of the application example. If the existing abutments A1 and A2 have sufficient strength, seismic reinforcement is not required.

図6において、支承B2,B3,B4については水平方向の拘束度合いが調整されている(点線中抜の三角)が、橋台A1,A2は耐震補強されていない(中塗)。   In FIG. 6, the degree of restraint in the horizontal direction is adjusted for the bearings B2, B3, and B4 (triangles outlined by dotted lines), but the abutments A1 and A2 are not reinforced by seismic resistance (intermediate coating).

なお、本願では、連続桁の水平振動を長周期化することで、連続桁への入力地震動が低減しており、耐震補強の必要程度も低減される。   In the present application, by increasing the period of the horizontal vibration of the continuous girder, the input seismic motion to the continuous girder is reduced, and the necessary degree of seismic reinforcement is also reduced.

〜地震時挙動〜
図7は、上記適用例における地震時挙動を示す概略図(平面図)である。ただし、説明の便宜のため、変位振幅を強調して図示している。
~ Earthquake Behavior ~
FIG. 7 is a schematic diagram (plan view) showing the behavior during an earthquake in the application example. However, for convenience of explanation, the displacement amplitude is shown in an emphasized manner.

橋脚P1〜P3に設置される支承B2,B3,B4では水平方向の拘束度合が調整されている(図3参照)。これにより、連続桁Gは単純桁と類似する挙動を示す。   In the bearings B2, B3, and B4 installed on the piers P1 to P3, the degree of restraint in the horizontal direction is adjusted (see FIG. 3). As a result, the continuous digit G behaves similarly to the simple digit.

連続桁Gのスパンが長くなり、水平方向の振動が長周期化する結果、連続桁Gへの入力地震動が低減される。   As a result of the span of the continuous girder G being lengthened and the horizontal vibration being lengthened, the input seismic motion to the continuous girder G is reduced.

地震時に連続桁Gに水平力(慣性力)が発生した場合、水平力は橋台A1,A2に集中する。一方で、水平力の橋脚P1〜P3への伝達は低減される。   When a horizontal force (inertial force) is generated in the continuous girder G during an earthquake, the horizontal force concentrates on the abutments A1 and A2. On the other hand, the transmission of the horizontal force to the piers P1 to P3 is reduced.

橋台A1,A2では充分な耐震補強が行われており、水平力に耐えることができる。橋脚P1〜P3では耐震補強が行われていないが、伝達される水平力が低減されており、既設の耐震力により水平力に耐えることができる。   The abutments A1 and A2 are sufficiently reinforced by earthquake resistance, and can withstand horizontal forces. Although the piers P1 to P3 are not reinforced by seismic resistance, the transmitted horizontal force is reduced, and the piers P1 to P3 can withstand the horizontal force by the existing seismic resistance.

なお、図示の例では、説明の便宜のために、全ての橋脚P1〜P3に設置される支承B2,B3,B4において、水平方向拘束度合が調整されているが、例えば、橋脚P1に設置される支承B3の水平方向拘束が維持された場合(支承B2,B4では調整)でも、調整前に比べて長周期化する。   In the illustrated example, for the convenience of explanation, the degree of horizontal restraint is adjusted in the bearings B2, B3, and B4 installed on all the piers P1 to P3. Even if the horizontal constraint of the bearing B3 is maintained (adjusted in the bearings B2 and B4), the period becomes longer than before the adjustment.

〜効果〜
連続桁を有する橋梁において、施工条件に差が出るような既設橋梁特有の要因がある場合でも、施工困難箇所を避け、施工容易箇所にて、容易に施工可能である。
~effect~
In a bridge having a continuous girder, even if there is a factor peculiar to an existing bridge that causes a difference in construction conditions, it is possible to easily construct a bridge at a construction-easy location while avoiding difficult-to-construct locations.

充分な耐震補強が行われた橋台A1,A2でも、耐震補強が行われていない橋脚P1〜P3でも、損傷を防止できる。   Even in the abutments A1 and A2 in which sufficient seismic reinforcement has been performed, and in the piers P1 to P3 in which seismic reinforcement has not been performed, damage can be prevented.

水平方向拘束度合調整により、連続桁の固有周期はより長くなり、入力地震動を低減できる。上記適用例では、連続桁Gが、単純桁と類似する挙動をする。同スパンの単純桁と同程度に長周期となる。   By adjusting the degree of restraint in the horizontal direction, the natural period of the continuous girder becomes longer, and the input ground motion can be reduced. In the above application example, the continuous digit G behaves similarly to the simple digit. The period is as long as a simple girder of the same span.

以上の様に、入力地震動低減および耐震補強箇所選択の相乗効果により、最小限の労力で耐震補強が可能となる。   As described above, due to the synergistic effects of the reduction of input seismic motion and the selection of seismic reinforcement locations, seismic reinforcement can be performed with minimum effort.

〜変形例〜
上記適用例では、説明を簡略化するために、連続桁のみからなる橋梁に本願発明を適用したが、本願発明はこれに限定されず、その技術思想の範囲で種々の変形が可能である。
~ Variation ~
In the above application example, in order to simplify the explanation, the present invention is applied to a bridge consisting of only continuous girder, but the present invention is not limited to this, and various modifications are possible within the scope of the technical idea.

図8は変形例に係る既設橋梁である。図9に変形例の既設橋梁に本願発明を適用した場合を示す。   FIG. 8 shows an existing bridge according to a modification. FIG. 9 shows a case where the present invention is applied to an existing bridge of a modified example.

変形例にかかる橋梁は、連続桁G1と単純桁G2とからなる変則多径間橋梁である。   The bridge according to the modification is an irregular multi-span bridge including a continuous girder G1 and a simple girder G2.

下部構造として、両端に橋台A1および橋台A2が設けられている。さらに、橋台A1,A2の間に3本の橋脚P1〜P3が設けられている。   As a lower structure, an abutment A1 and an abutment A2 are provided at both ends. Further, three piers P1 to P3 are provided between the abutments A1 and A2.

橋脚A1上には支承B1が、橋脚P1上には支承B2が、橋脚P2上には支承B3が、橋脚P3上には支承B4およびB5が、橋脚A2上には支承B56設置されている。   A support B1 is provided on the pier A1, a support B2 is provided on the pier P1, a support B3 is provided on the pier P2, supports B4 and B5 are provided on the pier P3, and a support B56 is provided on the pier A2.

連続桁G1は、支承B1〜B4を介して、下部構造(橋脚A1、橋脚P1〜P3)に支持されている。連続桁G2は、支承B5〜B6を介して、下部構造(橋脚P3、橋台A2)に支持されている。   The continuous girder G1 is supported by lower structures (piers A1, piers P1 to P3) via bearings B1 to B4. The continuous girder G2 is supported by the lower structure (pier P3, abutment A2) via bearings B5 to B6.

支承B1〜6では水平方向の変位が拘束されている。したがって、地震時に橋桁G1およびG2に水平力が発生すると、支承B1〜B6を介して、橋台A1,A2および橋脚P1〜P3に伝達される。これに対する耐震補強が必要になる。   In the supports B1 to B6, the displacement in the horizontal direction is restricted. Therefore, when a horizontal force is generated in the bridge girders G1 and G2 during an earthquake, it is transmitted to the abutments A1, A2 and the piers P1 to P3 via the bearings B1 to B6. Seismic reinforcement is needed for this.

一方、既設橋梁特有の要因とし、橋脚P1〜P3付近では施工条件が厳しく、橋台A1,A2付近では、施工条件の制約は緩いものとする。   On the other hand, as a factor peculiar to the existing bridge, the construction conditions are severe near the piers P1 to P3, and the constraints on the construction conditions are loose near the abutments A1 and A2.

図9に示す変形例においては、連結手段により橋桁G1〜G2を1つの連結桁GXとする。図示点線四角は連結手段Jを示す。   In the modification shown in FIG. 9, the bridge girders G1 to G2 are made into one connecting girder GX by the connecting means. The dotted squares in the figure indicate the connecting means J.

連結桁GXを支持する橋脚P1〜P3および橋台A1,A2のうち、橋脚P1〜P3に設置される支承B2〜B5ついて水平方向の拘束度合いを調整する。   Among the piers P1 to P3 and the abutments A1 and A2 that support the connecting girder GX, the degree of horizontal restraint of the bearings B2 to B5 installed on the piers P1 to P3 is adjusted.

一方で、連結桁GXを支持する橋脚P1〜P3および橋台A1,A2のうち、例えば、橋台A1において、耐震補強をおこなう。既設橋台A2の耐力が不充分の場合は、さらに、橋台A2において、耐震補強をおこなってもよい。   On the other hand, among the piers P1 to P3 and the abutments A1 and A2 that support the connecting girder GX, for example, the abutment A1 is subjected to seismic reinforcement. If the strength of the existing abutment A2 is insufficient, the abutment A2 may be further subjected to seismic reinforcement.

連結後の連結桁GXは地震時に単純桁と類似する挙動を示す。すなわち、上記適用例と同様な効果が期待できる。   The connected girder GX after the connection shows a behavior similar to a simple girder during an earthquake. That is, the same effect as the above application example can be expected.

図9に変形例の一例を示したが、更に変形してもよい。図10〜12にいくつかの他の変形例を示す。   FIG. 9 shows an example of the modification, but the modification may be further modified. 10 to 12 show some other modifications.

図10に示すように、既設橋台A1,A2において、充分な耐力を有する場合は、既設橋台A1,A2の耐震補強不要である。なお、連結桁GXの水平振動を長周期化することで、連結桁GXへの入力地震動が低減しており、耐震補強の必要程度も低減されている。   As shown in FIG. 10, when the existing abutments A1 and A2 have a sufficient strength, the existing abutments A1 and A2 do not need to be earthquake-resistant. In addition, by making the horizontal vibration of the connecting girder GX longer, the input seismic motion to the connecting girder GX is reduced, and the necessary degree of seismic reinforcement is also reduced.

図11に示すように、上記変形例において、単純桁を支持する支承B5の水平方向拘束度合調整は必須でない(図示実線中塗)。   As shown in FIG. 11, in the above-described modified example, it is not essential to adjust the degree of horizontal constraint of the bearing B5 that supports the simple girder (solid line in the figure).

図12に示すように、上記変形例において、連結手段は必須ではない。連続桁G1を支持する支承B1〜B4のうち支承B2およびB3が水平方向拘束度合調整の対象である。   As shown in FIG. 12, in the above modification, the connecting means is not essential. Of the supports B1 to B4 that support the continuous girder G1, the supports B2 and B3 are the targets of the horizontal restraint degree adjustment.

〜連結手段〜
連結桁GXは、橋桁の連結部Jにおいて引張力対抗機能および圧縮力対抗機能を有する。地震時に連結桁に水平力が作用し、連結部Jに橋桁同士から引張力が作用する場合、引張力対抗機能は引張方向の力に対抗する。同様に、橋桁同士から圧縮力が作用する場合、圧縮力対抗機能は圧縮方向の力に対抗する。
~ Connecting means ~
The connecting girder GX has a tensile force opposing function and a compressive force opposing function at the connecting portion J of the bridge girder. When a horizontal force acts on the connecting girder at the time of the earthquake and a tensile force acts on the connecting part J from the bridge girder, the tensile force opposing function opposes the force in the tensile direction. Similarly, when a compressive force acts from the bridge girders, the compressive force opposing function opposes the compressive force.

図13は連結手段の一例である。   FIG. 13 shows an example of the connecting means.

橋桁間において、橋桁の側面に沿うようにPC鋼棒21が配置され、橋桁に設けられたブラケット22にPC鋼棒が定着されることにより、引張力対抗機能が形成される。PC鋼棒の代わりに、PCケーブル、鉄筋その他鋼材等を使用してもよい。   The PC steel bars 21 are arranged between the bridge girders along the side surfaces of the bridge girders, and the PC steel bars are fixed to the brackets 22 provided on the bridge girders, thereby forming a tensile force opposing function. Instead of the PC steel rod, a PC cable, a reinforcing steel bar, or another steel material may be used.

一方で、橋桁間において、間詰コンクリート23が打設され、圧縮力対抗機能が形成される。温度変化による橋軸方向の変位に対応できるように、間詰コンクリートはスリットを有していてもよい。コンクリートの代わりに、モルタル、セメントペースト、鋼材、樹脂又はゴム等を使用してもよい。   On the other hand, between the bridge girder, the filling concrete 23 is cast, and the function of opposing the compressive force is formed. In order to cope with displacement in the bridge axis direction due to temperature change, the filling concrete may have a slit. Instead of concrete, mortar, cement paste, steel, resin or rubber may be used.

図14は連結手段の別例である。   FIG. 14 shows another example of the connecting means.

橋桁間において、橋桁の側面に沿うように鋼管20が配置され、橋桁に設けられたブラケット25に鋼管が定着されることにより、引張力対抗機能が形成される。   The steel pipes 20 are arranged between the bridge girders along the side surfaces of the bridge girders, and the steel pipes are fixed to the brackets 25 provided on the bridge girders, thereby forming a tensile force opposing function.

一方、鋼管内にコンクリート26が充填され、圧縮力対抗機能が形成される。   On the other hand, the concrete is filled in the steel pipe, and the function of opposing the compressive force is formed.

なお、上記コンクリート26が充填された鋼管20は、連結桁が水平面内での曲げモーメントに抵抗するために効率的な位置に設ければよいが、既設ケーブルなどと支障する場合には、必ずしも連結桁の内面に設ける必要はなく外面に設けても良い。   The steel pipe 20 filled with the concrete 26 may be provided at an efficient position so that the connecting girder resists a bending moment in a horizontal plane. It does not need to be provided on the inner surface of the girder, and may be provided on the outer surface.

A1,A2 橋台
P1〜P3 橋脚
G,G1 連続桁
G2 単純桁
GX 連結桁
B1〜B6 支承
J 連結手段
20 鋼管
21 PC鋼棒
22 ブラケット
23 間詰コンクリート
25 ブラケット
26 充填コンクリート
A1, A2 Abutment P1 to P3 Pier G, G1 Continuous girder G2 Simple girder GX Connection girder B1 to B6 Bearing J Connection means 20 Steel pipe 21 PC steel rod 22 Bracket 23 Filling concrete 25 Bracket 26 Filling concrete

Claims (9)

連続桁を有する橋梁の耐震補強方法であって、
前記連続桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する工程
を含む耐震補強方法。
A method for seismic reinforcement of a bridge having continuous girder,
Adjusting the degree of horizontal restraint of a bearing installed on at least one pier or abutment supporting the continuous girder.
前記橋梁は、前記連続桁のみからなる
請求項1記載の耐震補強方法。
The seismic strengthening method according to claim 1, wherein the bridge comprises only the continuous girder.
前記連続桁を支持する全ての橋脚に設置される支承の水平方向の拘束度合いを調整する
請求項1または2記載の耐震補強方法。
The seismic retrofit method according to claim 1 or 2, wherein the degree of horizontal restraint of the bearings installed on all the piers supporting the continuous girder is adjusted.
前記橋梁は、前記連続桁と、前記連続桁と隣あう少なくとも1の橋桁を有し、
前記連続桁と、前記連続桁と隣あう少なくとも1の橋桁を連結して連結桁とする工程と、
前記連続桁と連結された橋桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する工程と
を含む請求項1記載耐震補強方法。
The bridge has the continuous girder and at least one bridge girder adjacent to the continuous girder,
The continuous girder, a step of connecting at least one bridge girder adjacent to the continuous girder to form a connection girder,
Adjusting the degree of horizontal restraint of a bearing installed on at least one pier or abutment supporting the bridge girder connected to the continuous girder.
前記支承の水平方向の拘束度合いを調整する工程では、前記支承を介して橋脚又は橋台に伝達される断面力が、前記橋脚又は橋台の耐力以下となるように検討する
請求項1〜4いずれか記載の耐震補強方法。
In the step of adjusting the degree of horizontal restraint of the bearing, a study is made so that a sectional force transmitted to the pier or abutment via the bearing is equal to or less than the proof strength of the pier or abutment. The seismic reinforcement method described.
前記水平方向の拘束度合いを調整された支承を支持する橋脚または橋台を補強しない
請求項1〜5いずれか記載の耐震補強方法。
The seismic retrofitting method according to any one of claims 1 to 5, wherein a pier or an abutment that supports the bearing whose degree of restraint in the horizontal direction is adjusted is not reinforced.
前記水平方向の拘束度合いを調整された支承を支持する橋脚または橋台を含む全ての橋脚および橋台を補強しない
請求項1〜5いずれか記載の耐震補強方法。
The seismic retrofitting method according to any one of claims 1 to 5, wherein all piers and abutments including the pier or abutment supporting the bearing whose degree of horizontal restraint is adjusted are not reinforced.
連続桁と、
前記連続桁を支持する少なくとも1つの橋脚又は橋台に設置される支承の水平方向の拘束度合いを調整する水平方向拘束度合い調整手段と、
を有する橋梁。
Continuous digits,
Horizontal restraint degree adjusting means for adjusting the horizontal restraint degree of a bearing installed on at least one pier or abutment supporting the continuous girder,
Bridge with.
前記水平方向拘束度合い調整手段は、
前記橋脚又は橋台に連結される下部支承と、
前記連続桁に連結され、前記下部支承に対し摺動可能な上部支承と、
前記下部支承に対する前記上部支承の摺動を拘束するとともに、所定の摺動力以上により破壊される摺動拘束手段と
を有する
請求項8記載の橋梁。
The horizontal restraint degree adjusting means,
A lower bearing connected to the pier or abutment;
An upper bearing connected to the continuous girder and slidable with respect to the lower bearing;
The bridge according to claim 8, further comprising: a sliding restraint means for restraining the sliding of the upper bearing with respect to the lower bearing and being destroyed by a predetermined sliding force or more.
JP2018170236A 2018-09-12 2018-09-12 Seismic reinforcement method and bridge Active JP7116644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018170236A JP7116644B2 (en) 2018-09-12 2018-09-12 Seismic reinforcement method and bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018170236A JP7116644B2 (en) 2018-09-12 2018-09-12 Seismic reinforcement method and bridge

Publications (2)

Publication Number Publication Date
JP2020041346A true JP2020041346A (en) 2020-03-19
JP7116644B2 JP7116644B2 (en) 2022-08-10

Family

ID=69797767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018170236A Active JP7116644B2 (en) 2018-09-12 2018-09-12 Seismic reinforcement method and bridge

Country Status (1)

Country Link
JP (1) JP7116644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210124925A (en) * 2020-04-07 2021-10-15 주식회사 에이베스트 Railway bridge rehabilitation method using superstructure continuation, support transition, and pier reinforcement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918802A (en) * 1982-07-20 1984-01-31 株式会社長大 Totally movable continuous bridge
JPH09302622A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Bearing structure for bridge beam
JPH10183530A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Reinforcing method for bridge
JP2000178920A (en) * 1998-12-14 2000-06-27 Toyo Tire & Rubber Co Ltd Rubber bearing for bridge
JP2003082616A (en) * 2001-09-13 2003-03-19 Asahi Engineering Kk Horizontal-load absorbing structure in bridge bearing section
JP2005127031A (en) * 2003-10-24 2005-05-19 Kawaguchi Metal Industries Co Ltd Supporting side block
JP2007063961A (en) * 2005-08-30 2007-03-15 Shunichiro Hanzawa Aseismatic structure of existing multi-span bridge for stability by inelastic collision with bridge abutment
JP2009041272A (en) * 2007-08-09 2009-02-26 Ps Mitsubishi Construction Co Ltd Construction method for bridge
JP2018003558A (en) * 2016-07-08 2018-01-11 東日本高速道路株式会社 Aseismatic structure, and method to improve aseismatic performance
JP2019039269A (en) * 2017-08-29 2019-03-14 Jr東日本コンサルタンツ株式会社 Aseismatic reinforcement method and aseismatic reinforcement structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918802A (en) * 1982-07-20 1984-01-31 株式会社長大 Totally movable continuous bridge
JPH09302622A (en) * 1996-05-13 1997-11-25 Yokohama Rubber Co Ltd:The Bearing structure for bridge beam
JPH10183530A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Reinforcing method for bridge
JP2000178920A (en) * 1998-12-14 2000-06-27 Toyo Tire & Rubber Co Ltd Rubber bearing for bridge
JP2003082616A (en) * 2001-09-13 2003-03-19 Asahi Engineering Kk Horizontal-load absorbing structure in bridge bearing section
JP2005127031A (en) * 2003-10-24 2005-05-19 Kawaguchi Metal Industries Co Ltd Supporting side block
JP2007063961A (en) * 2005-08-30 2007-03-15 Shunichiro Hanzawa Aseismatic structure of existing multi-span bridge for stability by inelastic collision with bridge abutment
JP2009041272A (en) * 2007-08-09 2009-02-26 Ps Mitsubishi Construction Co Ltd Construction method for bridge
JP2018003558A (en) * 2016-07-08 2018-01-11 東日本高速道路株式会社 Aseismatic structure, and method to improve aseismatic performance
JP2019039269A (en) * 2017-08-29 2019-03-14 Jr東日本コンサルタンツ株式会社 Aseismatic reinforcement method and aseismatic reinforcement structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210124925A (en) * 2020-04-07 2021-10-15 주식회사 에이베스트 Railway bridge rehabilitation method using superstructure continuation, support transition, and pier reinforcement
KR102350331B1 (en) * 2020-04-07 2022-01-12 주식회사 에이베스트 Railway bridge rehabilitation method using superstructure continuation, support transition, and pier reinforcement

Also Published As

Publication number Publication date
JP7116644B2 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
Podolny The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures
Cormack The design and construction of the major bridges on the Mangaweka rail deviation
JP2019039269A (en) Aseismatic reinforcement method and aseismatic reinforcement structure
JP2009228296A (en) Seismic strengthening method for bridge
Niwa et al. Experimental study on the possibility of using steel fiber–reinforced concrete to reduce conventional rebars in beam-column joints
Mitoulis et al. An unconventional restraining system for limiting the seismic movements of isolated bridges
JP2020041346A (en) Seismic strengthening method and bridge
JP6182402B2 (en) Seismic reinforcement method for bridges to prevent falling bridges
JP2005248523A (en) Structure of pile head joint section
JP3748525B2 (en) Seismic reinforcement structure for bridges
Afefy et al. Development and study of deck joints in prefabricated concrete bulb-tee bridge girders: Experimental evaluation
JP6536895B2 (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
Farhat et al. Full-scale experimental testing and finite element analysis of a totally prefabricated counterfort retaining wall system
Yen et al. Connections for integral jointless bridges in seismic regions suitable for accelerated bridge construction
Harvey et al. On the service behaviour of masonry viaducts
JP4076185B2 (en) How to design an extended floor slab
Valenzuela et al. Bridge strengthening by conversion to network arch: design criteria and economic validation
JP3735813B2 (en) Seismic pile group structure
Robin Sham Design of the Padma road and rail bridge, Bangladesh
KR102521965B1 (en) Bridge having reinforced structure for transverse direction and point part
Jain et al. A state-of-the-art review on seismic design of bridges-Part I: Historical development and AASHTO code
Astin Design of the Third Karnaphuli bridge
Bloxam et al. TAURANGA HARBOUR cnossme STELLA PASSAGE emcee-SEISMIC DESIGN
Mavrakis Greece's new high‐speed railway line: Detailed design and construction engineering of bridge SG26
Bloxam et al. Tauranga Harbour Crossing Stella Passage Bridge: Seismic design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7116644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150