JP3735813B2 - Seismic pile group structure - Google Patents

Seismic pile group structure Download PDF

Info

Publication number
JP3735813B2
JP3735813B2 JP2002103102A JP2002103102A JP3735813B2 JP 3735813 B2 JP3735813 B2 JP 3735813B2 JP 2002103102 A JP2002103102 A JP 2002103102A JP 2002103102 A JP2002103102 A JP 2002103102A JP 3735813 B2 JP3735813 B2 JP 3735813B2
Authority
JP
Japan
Prior art keywords
pile
gap
length
head
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002103102A
Other languages
Japanese (ja)
Other versions
JP2003253689A (en
Inventor
平八 林
Original Assignee
平八 林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平八 林 filed Critical 平八 林
Priority to JP2002103102A priority Critical patent/JP3735813B2/en
Publication of JP2003253689A publication Critical patent/JP2003253689A/en
Application granted granted Critical
Publication of JP3735813B2 publication Critical patent/JP3735813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はビルや橋梁の基礎に使用する杭に関し特に頭部の結合法に関する。
【0002】
【従来の技術】
杭の上部とこの上にある基礎コンクリートとの結合部の構造は従来よりピン結合と剛結合が主なものであった。ピン結合は杭の頭部を10cm程度埋め込むもので一般には定着鉄筋は使用せず、使用する場合でも大きな曲げモーメントが生じないように杭の中心部に用いるようにする。また剛結合は杭頭部の出来るだけ外周に定着鉄筋を多数用いるものでラーメン構造の偶角部に近いものである。また水平力を受ける杭基礎の頭部を剛結とするとき、頭部に極端に大きい曲げモーメントが生じることが知られていた。また施工時の打ち込みの打撃により頭部が破損することもあった。この対策として杭の外側に同心円状に上の方だけ別の鋼管パイプを包むように設置し、この間を適正量(例えば5〜10cm)離してここにコンクリートまたはモルタルを充填して、この付着力により一体化した合成杭があった。この例として特開昭53−67905、特公昭48−6888および特願昭55−182301がある。また当出願者のものとして特許第1598594号、特願平02−270087および特願平11−376538がある。
【0003】
【発明が解決しようとする課題】
発明が解決しようとする課題および解決するための手段等は特願平02−270087(特願A)および特願平11−376538(特願B)のようであるが更に次のような課題がある。特願Bのように隙間(4)は地下水等で充満され、杭(1)と外杭(2)とが縦方向すなわち杭の長さ方向に極めて容易に移動できるが水平方向には疑問がある。特願Bの図4のように分離シートを設置する方法や図7のようにプレキャスト鉄筋コンクリートブロックを設置する方法やこの別案として詳細な説明に示した補修コンクリートの上面とプレキャスト鉄筋コンクリートブロックの下面との間に別の鉄板を挟む方法などは圧縮力が小さい時やマイナスの時は摩擦抵抗は小さいが大きな圧縮力が働く時は杭(1)と基礎コンクリート(3)とが一体化され隙間(4)の効果がなくなる。そのため特願Aの図11のように杭(1)の頭部に遮断材として二枚のテフロン板(符号、G−2)を杭(1)の頭部に用いる方法があるが、これを頭部の全面に用いることは施工がしづらく費用も増大する。この問題を解決して発明の実施の形態に示し請求項1とするが、発明の構成に重要な外杭(2)の長さについて特願Bより転記して確認する。特願Bの段落(0009)の発明の実施の形態の中に「例えば杭(1)が30mの場合外杭(2)は10mである。ただしこの割合は1/3に限らず例えば1/4すなはち7.5mでもよい。これはその時々の設計条件による。仮に地盤が30mの間一様の土質であっても、上の方の10mを太径にすれば、水平荷重に関しては、全長を太径の杭にしたのと同じ位の効果があり、土質や杭の径にもよるが、95%前後の効果があるのが一般的である。これは参考文献(くい構造物の計算法と計算例、横山、著、山海堂、昭和52年11月発行)のP . 57の1行目およびP . 68の2.3.4.の(2)による。」と具体的に明記してある。
【0004】
次の2番目の課題として外杭(2)がある程度長いと負の摩擦力を減じる為にアスファルトを塗る等の措置を取らなければならない。また外杭(2)には軸力はほとんど作用せず曲げモーメントのみになり耐力は増大したものの剛結合であることには変わりがなく杭の頭部に曲げモーメントが集中する。この問題を解決して請求項2とした。
【0005】
3番目の課題として、前記2番目の課題を解決した場合、外杭(2)のまわりの土砂が軟弱な場合に日常起こる風荷重等で杭上の構造物が揺れる。これはゴム支承が容易に歪み易い為である。この問題を解決して請求項3とした。
【0006】
【課題を解決するための手段】
前記1番目の課題を解決するための方法を示す。支承部の大きさを図3のように小さくし杭の上面の残りの部分には発泡スチロ−ル板を隙間のないように布設する。発泡スチロ−ル板の硬さは杭頭の水平移動および角変化を妨げない硬さのものとする。また図3とは別に中空のものを用いる方法もある。発泡スチロ−ル板の他に段ボ−ル型枠や一部砂の利用もある。支承の材料は錆止めをした鋼板およびゴム板を使用し後日補修の必要の少ないゴム板を多く用いるようにする。
【0007】
2番目の課題を解決するために外杭(2)の長さを短くこれを杭(1)の直径の1.0〜1.5倍位とし、杭(1)を半剛結合にして費用の多くを内側の杭(1)に使用するようにした。杭頭がある程度動いてから固定され半剛結合になる。
【0008】
3番目の課題を解決するために杭群の中の一部、通常は中央部の杭に隙間の極めて少ない構造のものを用い、日常起こる風荷重等で杭上の構造物が揺れることがないようにした。更にこれが地震時に他の杭の、さきがけとしてダンパーすなわち緩衝杭になる。緩衝杭の配置は水平荷重作用時に軸力の変化の少ない中央部に設け杭が16本の場合の配置例を図8に示す。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。まず1番目の課題について示す。二枚の鋼板を支承状に用いる場合の詳細図を図1に示す。下部鋼板(11)をアンカー(12)により杭(1)の頭部のコンクリートに定着する。また上部鋼板(13)をアンカー(12)により基礎コンクリート(3)に定着する。鋼板は錆止めをし接触面はテフロン加工をして摩擦係数を小さくし、また脱着時に離れ易くする。鋼板の平面的な形状は円形または四角形とする。図1は側面図を示し二枚の鋼板がわかりやすいように、はなれた状態を示す。次にゴム支承と組み合わせる場合について図2に示す。ゴム板(14)は図2の場合は一枚であるが、あいだに歪み抑制材を挟んで複数の場合もある。ゴム板(14)は下部鋼板(11)とゴム支承用鋼板(15)に強固に接着され、この上に上部鋼板(13)を用い図2はこれがゴム支承用鋼板(15)と離れた状態を示す。錆止めおよびテフロン加工に付いては図1の場合と同様である。杭(1)は表面が滑らかでまた強度もある場所打ち鋼管コンクリート杭または、中心部にコンクリートを充填した、既製コンクリート杭または鋼管杭とする。杭(1)の外側に外杭(2)を同心円状に設け杭(1)の外面と外杭(2)の内面との間に隙間(4)を設ける。隙間(4)の距離は上の部分では構造上必要な距離とし中間部では施工上これよりやや広めとし先端部では最小限にして土砂のはいり込みを防ぐ。外杭(2)の材料は外殻鋼管コンクリート杭またはコンクリート杭とし施工は軽打または圧入とする。定着用鉄筋(20)を外殻の鋼管に溶接するか、または端部の鋼板にスタッド溶接またはネジ結合し基礎コンクリート(3)に定着する。杭(1)の上面の支承以外の部分に発泡スチロ−ル板(16)を隙間のないように粘着テ−プなども使用して布設し基礎のコンクリートを打設する。この詳細図を図3に全体図を図4に断面図を図5に示す。このような構造の二重杭を必要な数用いて耐震杭群構造物を造る。
【0010】
次に2番目の課題について示す。外杭(2)を図6のように短くする。その目的は既に示した通りである。隙間(4)は図3のように上、中、下部において変えることはなく一定でもよい。杭(1)の上端付近および外杭(2)の下端付近に緩衝ゴム板(17)を図6のように設ける場合もある。外杭(2)の先端部に流入防止ゴム板(18)を設ける。外杭(2)の施工は土砂を掘削して埋め戻すかまたは上から押し込む。支承部は図3の場合と同じである。
【0011】
次に3番目の課題について示す。隙間の極めて少ない構造の場合を図7に示す。その他は2番目の課題の場合と同じである。杭(1)の外杭(2)への埋め込み長さは支承部を除いて10cm〜20cm位とする。外杭(2)の厚さは図3のものより厚くし短くする。この目的は繰り返し剪断力に耐えるためとピン結合にして撓みやすくするためである。
【0012】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0013】
請求項1に関して。外杭を主として水平荷重用の曲げモーメントに抵抗するための杭とし内杭を鉛直荷重用の杭とし大きい軸力と比較的小さい曲げモーメントとの組み合わせ荷重に対するものにした杭構造とすることにより耐力が飛躍的に増大し、激しい地震動にも従来の杭構造に比較してより安全に耐えられる。支承部が小型化され施工がしやすく費用も安くなった。上下方向の脱着が容易になり応力上更に有利になった。
【0014】
請求項2に関して。半剛結合にすることにより杭頭曲げモーメントと地中部曲げモーメントが平均化される。
【0015】
請求項3に関して。半剛結合の杭を多数用いる中で一部隙間の極めて少ないものを用いることにより風荷重等による揺れが無くなり更にこれが地震時に他の杭の、さきがけとしてダンパーすなわち緩衝杭になる。
【0016】
【図面の簡単な説明】
【図1】鋼板支承の説明図である。
【図2】ゴム支承等の説明図である。
【図3】二重杭の頭部および外杭先端部の詳細図である。
【図4】二重杭の全体図である。
【図5】二重杭の断面図である。
【図6】半剛結合杭の詳細図である。
【図7】ピン結合杭の詳細図である。
【図8】緩衝杭の配置例の平面的である。
【符号の説明】
1 杭 2 外杭
3 基礎コンクリート 4 隙間
11 下部鋼板 12 アンカー 13 上部鋼板
14 ゴム板 15 ゴム支承用鋼板
16 発泡スチロ−ル板 17 緩衝ゴム板 18 流入防止ゴム板
19 欠番 20 定着用鉄筋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pile used for a foundation of a building or a bridge, and more particularly to a method of joining the heads.
[0002]
[Prior art]
The structure of the joint between the upper part of the pile and the foundation concrete on it has been mainly pin-coupled and rigid-coupled. The pin connection embeds the head of the pile by about 10 cm. Generally, no fixed reinforcing bar is used, and it is used at the center of the pile so that a large bending moment does not occur even when it is used. The rigid connection uses as many fixed reinforcing bars as possible on the outer periphery of the pile head and is close to the even angle part of the rigid frame structure. It was also known that when the head of a pile foundation that receives horizontal force is rigidly connected, an extremely large bending moment is generated at the head. In addition, the head was sometimes damaged by the impact of driving during construction. As a countermeasure against this, install another steel pipe pipe concentrically on the outer side of the pile, and fill it with concrete or mortar, leaving an appropriate amount (for example, 5-10 cm) between them. There was an integrated synthetic pile. Examples thereof include JP-A-53-67905, JP-B-48-6888, and JP-B-55-182301. Further, there are Japanese Patent No. 1598594, Japanese Patent Application No. 02-270087 and Japanese Patent Application No. 11-376538 as those of the present applicant.
[0003]
[Problems to be solved by the invention]
The problems to be solved by the invention and the means for solving them are as shown in Japanese Patent Application No. 02-270087 (Japanese Patent Application No. A) and Japanese Patent Application No. 11-376538 (Japanese Patent Application No. B). is there. As in Japanese Patent Application B, the gap (4) is filled with groundwater, etc., and the pile (1) and the outer pile (2) can move very easily in the vertical direction, that is, in the length direction of the pile. is there. The method of installing the separation sheet as shown in FIG. 4 of Japanese Patent Application B, the method of installing the precast reinforced concrete block as shown in FIG. 7, and the upper surface of the repair concrete and the lower surface of the precast reinforced concrete block shown in the detailed explanation as this alternative When the compression force is small or negative, the friction resistance is small, but when a large compression force is applied, the pile (1) and the foundation concrete (3) are integrated into a gap ( The effect of 4) is lost. Therefore, as shown in FIG. 11 of Japanese Patent Application A, there is a method of using two Teflon plates (symbols, G-2) for the head of the pile (1) as a blocking material on the head of the pile (1). Using it on the entire surface of the head makes construction difficult and increases costs. Although this problem is solved and shown in the embodiment of the invention and claimed in claim 1, the length of the outer pile (2) important for the configuration of the invention is confirmed by posting from Japanese Patent Application B. In the embodiment of the invention of paragraph (0009) of Japanese Patent Application B, “For example, when the pile (1) is 30 m, the outer pile (2) is 10 m. However, this ratio is not limited to 1/3. 4 may also be 7.5m, depending on the design conditions at that time, even if the ground is a uniform soil for 30m, if the upper 10m is made a large diameter, the horizontal load will be It has the same effect as a pile with a large diameter, and generally has an effect of around 95%, although it depends on the soil and pile diameter. examples of calculation methods and calculation, Yokoyama, Author, Sankaido, 2.3.4 of P. 1 line 57 and P. 68 of 1977 11 issued) by. (2). "the specific It is clearly stated in
[0004]
As the next second problem, if the outer pile (2) is somewhat long, measures such as applying asphalt must be taken to reduce the negative frictional force. The outer pile (2) has almost no axial force and only a bending moment, and the proof stress is increased. However, the bending force is concentrated on the head of the pile. Claim 2 is solved by solving this problem.
[0005]
As the third problem, when the second problem is solved, the structure on the pile is shaken by a wind load or the like that occurs daily when the earth and sand around the outer pile (2) is soft. This is because the rubber bearing is easily distorted. This problem has been solved and is claimed in claim 3.
[0006]
[Means for Solving the Problems]
A method for solving the first problem will be described. The size of the support portion is reduced as shown in FIG. 3, and a foamed polystyrene board is laid in the remaining portion of the upper surface of the pile so that there is no gap. The hardness of the foamed steel plate shall be that which does not hinder horizontal movement and angular change of the pile head. In addition to the method shown in FIG. In addition to the styrofoam plate, cardboard formwork and some sand are also available. For the material of the bearing, steel plates and rubber plates with rust prevention are used, and rubber plates that require little repair at a later date are used.
[0007]
In order to solve the second problem, the length of the outer pile (2) is shortened to 1.0 to 1.5 times the diameter of the pile (1), and the pile (1) is made semi-rigidly connected. Most of them were used for the inner pile (1). After the pile head moves to some extent, it is fixed and becomes semi-rigid.
[0008]
In order to solve the third problem, a part of the pile group, usually a central pile with a structure with very little clearance is used, and the structure on the pile does not shake due to wind loads that occur daily I did it. Furthermore, this becomes a damper, that is, a buffer pile, as a prelude to other piles in the event of an earthquake. The arrangement of the buffer piles is shown in FIG. 8 as an arrangement example in the case of 16 piles provided in the central part where the axial force hardly changes when a horizontal load is applied.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the first problem is shown. A detailed view when two steel plates are used for the bearing is shown in FIG. The lower steel plate (11) is fixed to the concrete of the head of the pile (1) by the anchor (12). The upper steel plate (13) is fixed to the foundation concrete (3) by the anchor (12). The steel plate is rust-prevented, and the contact surface is teflon processed to reduce the coefficient of friction and to be easily separated during removal. The planar shape of the steel plate is circular or square. FIG. 1 shows a side view and shows a separated state so that the two steel plates can be easily understood. Next, it shows in FIG. 2 about the case where it combines with a rubber bearing. In the case of FIG. 2, the number of the rubber plates (14) is one, but there may be a plurality of rubber plates with a strain suppressing material interposed therebetween. The rubber plate (14) is firmly bonded to the lower steel plate (11) and the rubber bearing steel plate (15), and the upper steel plate (13) is used on the rubber plate (14). FIG. 2 shows a state in which this is separated from the rubber bearing steel plate (15). Indicates. The rust prevention and Teflon processing are the same as in FIG. The pile (1) is a cast-in-place steel pipe concrete pile with a smooth surface and strength, or a ready-made concrete pile or steel pipe pile filled with concrete in the center. An outer pile (2) is provided concentrically outside the pile (1), and a gap (4) is provided between the outer surface of the pile (1) and the inner surface of the outer pile (2). The distance of the gap (4) is necessary for the structure in the upper part and slightly larger in construction than in the middle part, and is minimized at the tip part to prevent the entry of earth and sand. The material of the outer pile (2) is outer shell steel pipe concrete pile or concrete pile, and the construction is light hit or press fit. The fixing reinforcing bar (20) is welded to the steel pipe of the outer shell, or is stud-welded or screwed to the steel plate at the end to be fixed to the foundation concrete (3). Lay the foamed steel plate (16) on the part other than the support on the upper surface of the pile (1) using adhesive tape or the like so as not to leave any gaps, and place the foundation concrete. The detailed view is shown in FIG. 3, the overall view is shown in FIG. 4, and the sectional view is shown in FIG. A seismic pile group structure is constructed using the necessary number of double piles of such structure.
[0010]
Next, the second problem will be described. The outer pile (2) is shortened as shown in FIG. The purpose is as already shown. The gap (4) does not change in the upper, middle and lower portions as shown in FIG. 3, and may be constant. A buffer rubber plate (17) may be provided near the upper end of the pile (1) and near the lower end of the outer pile (2) as shown in FIG. An inflow prevention rubber plate (18) is provided at the tip of the outer pile (2). The construction of the outer pile (2) involves excavating the earth and sand to backfill or pushing in from above. The support is the same as in FIG.
[0011]
Next, the third problem will be described. FIG. 7 shows a structure having an extremely small gap. Others are the same as in the second task. The embedding length of the pile (1) into the outer pile (2) is about 10 cm to 20 cm excluding the support portion. The thickness of the outer pile (2) is thicker and shorter than that of FIG. The purpose of this is to withstand repeated shearing forces and to bend easily by pin coupling.
[0012]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0013]
Regarding claim 1. Strength of outer piles is mainly used to resist bending moments for horizontal loads, and inner piles are used for vertical loads. As a result, drastically increases, and it can withstand even strong earthquake motions more safely than conventional pile structures. The bearings were downsized, making construction easier and cheaper. Desorption in the vertical direction is facilitated, which is more advantageous in terms of stress.
[0014]
Regarding claim 2. The semi-rigid connection averages the pile head bending moment and the ground bending moment.
[0015]
Regarding claim 3. By using a semi-rigidly coupled pile with a few gaps, there is no vibration due to wind load, etc., and this becomes a damper, ie, a buffer pile, as a prelude to other piles during an earthquake.
[0016]
[Brief description of the drawings]
FIG. 1 is an explanatory view of a steel plate support.
FIG. 2 is an explanatory diagram of rubber bearings and the like.
FIG. 3 is a detailed view of a double pile head and an outer pile tip.
FIG. 4 is an overall view of a double pile.
FIG. 5 is a cross-sectional view of a double pile.
FIG. 6 is a detailed view of a semi-rigid joint pile.
FIG. 7 is a detailed view of a pin coupling pile.
FIG. 8 is a plan view of an arrangement example of buffer piles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pile 2 Outer pile 3 Foundation concrete 4 Crevice 11 Lower steel plate 12 Anchor 13 Upper steel plate 14 Rubber plate 15 Steel plate for rubber support 16 Styrofoam plate 17 Buffer rubber plate 18 Inflow prevention rubber plate 19 Missing number 20 Reinforcing bar

Claims (3)

鉛直荷重用の杭(1)の外側にこれより短い水平荷重用の外杭(2)を同心円状に設け、上部の基礎コンクリート(3)との関係は杭(1)は結合せず容易に脱着でき、外杭(2)は剛結とし杭(1)と外杭(2)との間を構造上必要な距離だけ離して隙間(4)を設け、この隙間(4)にモルタルやコンクリートなどのように両者を一体化し合成するものを注入せず、隙間(4)は地下水等で充満され、杭(1)と外杭(2)とが縦方向すなわち杭の長さ方向に極めて容易に移動することにより杭頭部の応力の集中の低減を目的とし、そのために杭(1)の頭部に摩擦抵抗の小さい二枚の鋼板を支承状に用いるか、または二枚の鋼板の下にゴム支承を組み合わせこのゴム支承は前記の隙間(4)の範囲を剪断変形できる厚さを有し、この二種類の支承の鋼板はいずれも上下方向に脱着自由でこれにより杭(1)に引き抜き力を生じることなく、また外杭(2)の長さは水平力に対しては、杭(1)と同じ長さに外杭(2)を用いた場合、と同じ程度の効果があることを目標とするものの、できるだけ短くし施工性や工費とのバランスにより決まるが具体的には地盤が深さ方向に一様の土質の場合外杭(2)の長さを杭(1)の長さの1/3に減少しても水平力に対して全長を杭(1)と同じ長さにした場合の95%の効果があると言う考え方にもとづく構造の二重杭を必要な数用いた耐震杭群構造物。The outer pile (2) for horizontal load shorter than this is provided concentrically outside the pile (1) for vertical load, and the relationship with the upper foundation concrete (3) is easy because the pile (1) is not connected. Detachable, the outer pile (2) is rigid, and the pile (1) and the outer pile (2) are separated by a structurally necessary distance to provide a gap (4). In this gap (4), mortar or concrete is provided. The gap (4) is filled with groundwater, etc., and the pile (1) and the outer pile (2) are extremely easy in the vertical direction, that is, the length direction of the pile. The purpose of this is to reduce the stress concentration of the pile head by moving to the head of the pile. Therefore, two steel plates with low frictional resistance are used for the head of the pile (1), or under the two steel plates. This rubber bearing has a thickness capable of shearing deformation in the range of the gap (4). All of the steel plates of the kind of support are free to attach and detach in the vertical direction, so that no pulling force is generated on the pile (1), and the length of the outer pile (2) is the same as that of the pile (1) with respect to the horizontal force. When the outer pile (2) is used for the same length, the goal is to have the same effect as that, but it is as short as possible and is determined by the balance with workability and construction cost. In the case of uniform soil quality Even if the length of the outer pile (2) is reduced to 1/3 of the length of the pile (1), the total length is the same as the pile (1) with respect to the horizontal force A seismic pile group structure using the necessary number of double piles with a structure based on the idea that there is a 95% effect . 請求項1の外杭(2)の長さを短くし、その程度は杭(1)の直径の1.0〜1.5倍位とし水平力に対する外杭(2)の効果は、ほとんど無くなるが杭(1)と基礎コンクリート(3)との固定度を半固定とし杭(1)の頭部の曲げモーメントと地中部の曲げモーメントとの釣り合いを良くし同時に地震などにより地盤および杭群が揺れたとき、この揺れが上の構造物に直ぐには伝わらない、ある程度の余裕や遊びが杭(1)と外杭(2)との隙間(4)の範囲で設けられ耐震上望ましい構造になった半剛結合杭を必要な数用いた耐震杭群構造物。The length of the outer pile (2) according to claim 1 is shortened, the degree of which is about 1.0 to 1.5 times the diameter of the pile (1), and the effect of the outer pile (2) on the horizontal force is almost eliminated. The semi-fixation of the pile (1) and the foundation concrete (3) is semi-fixed, and the balance between the bending moment of the head of the pile (1) and the bending moment of the underground part is improved. When swaying, this sway is not immediately transmitted to the upper structure, and a certain amount of allowance and play are provided in the range of the gap (4) between the pile (1) and the outer pile (2), making it a desirable structure for earthquake resistance. Seismic pile group structure using necessary number of semi-rigid piles. 請求項2に於いて外杭(2)のまわりの土砂が軟弱な場合に日常起こる風荷重等で杭上の構造物が隙間(4)の範囲を揺れないように杭群の中の一部の杭に隙間の極めて少ない構造のものを用い、これにより更にこれが地震時に他の杭の、さきがけとしてダンパーすなわち緩衝杭となり、これを適量適所に配した耐震杭群構造物。A part of the pile group so that the structure on the pile does not shake the range of the gap (4) due to wind load that occurs daily when the earth and sand around the outer pile (2) is soft. Seismic pile group structure in which a pile with a very small gap is used, and this becomes a damper or buffer pile as a prelude to other piles at the time of an earthquake.
JP2002103102A 2002-02-28 2002-02-28 Seismic pile group structure Expired - Fee Related JP3735813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103102A JP3735813B2 (en) 2002-02-28 2002-02-28 Seismic pile group structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002103102A JP3735813B2 (en) 2002-02-28 2002-02-28 Seismic pile group structure

Publications (2)

Publication Number Publication Date
JP2003253689A JP2003253689A (en) 2003-09-10
JP3735813B2 true JP3735813B2 (en) 2006-01-18

Family

ID=28672225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103102A Expired - Fee Related JP3735813B2 (en) 2002-02-28 2002-02-28 Seismic pile group structure

Country Status (1)

Country Link
JP (1) JP3735813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174159A (en) * 2011-12-23 2013-06-26 华锐风电科技(集团)股份有限公司 Single tubular pile base equipment of offshore wind power generating set

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176381B2 (en) * 2007-05-09 2013-04-03 Jfeスチール株式会社 Steel pipe pile and footing joint structure
CN102535499A (en) * 2012-02-13 2012-07-04 上海市城市建设设计研究总院 Lift-off type seismic isolation and reduction pile foundation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174159A (en) * 2011-12-23 2013-06-26 华锐风电科技(集团)股份有限公司 Single tubular pile base equipment of offshore wind power generating set
CN103174159B (en) * 2011-12-23 2015-11-25 华锐风电科技(集团)股份有限公司 Offshore wind turbine single pipe pile foundation device

Also Published As

Publication number Publication date
JP2003253689A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP7017541B2 (en) Improvement structure and improvement method of existing sheet pile type quay
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP3735813B2 (en) Seismic pile group structure
JP3455644B2 (en) Pile foundation structure
JP2019039269A (en) Aseismatic reinforcement method and aseismatic reinforcement structure
JP3735273B2 (en) How to install underwater foundation
JP2010047933A (en) Damping reinforcement frame
JP2005139670A (en) Arch bridge
JP2008031754A (en) Foundation ground reinforcing structure and foundation ground reinforcing method
JP6536895B2 (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
JP2005213977A (en) Slope stabilizing technique
JP2001073391A (en) Pile-head structure
JP5852475B2 (en) Pile foundation reconstruction method
JP4652009B2 (en) Structure
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JPH09296427A (en) Structure in water area and construction method thereof
JP3165063B2 (en) Seismic foundation structure
JP2001182053A (en) Underground aseismatic reinforcing pile and foundation aseismatic structure
JP2007162416A (en) Concrete pile joining method
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP3678290B2 (en) High earthquake resistance foundation
JP4313164B2 (en) Pile head joint structure
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP2000314133A (en) Horizontal load-bearing pile and method for arranging the same
JPH10204826A (en) Hanging floor slab bridge and construction thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees