JP2020026751A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2020026751A
JP2020026751A JP2018150561A JP2018150561A JP2020026751A JP 2020026751 A JP2020026751 A JP 2020026751A JP 2018150561 A JP2018150561 A JP 2018150561A JP 2018150561 A JP2018150561 A JP 2018150561A JP 2020026751 A JP2020026751 A JP 2020026751A
Authority
JP
Japan
Prior art keywords
cylinder
injection
valve
port
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018150561A
Other languages
English (en)
Inventor
明 北條
Akira Hojo
明 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018150561A priority Critical patent/JP2020026751A/ja
Publication of JP2020026751A publication Critical patent/JP2020026751A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】この発明は、内燃機関の制御装置に関し、吸気弁が開く前の吸気行程において筒内圧が負圧となる状況下において、気筒内にウェット燃料が生じることに起因する排気エミッション性能の低下を抑制できるようにする。【解決手段】ポート噴射弁26と、筒内噴射弁28と、開き時期IVOが排気上死点よりも遅角され、かつ、排気上死点から開き時期IVOまでのクランク角期間の少なくとも一部において吸排気弁34、36が閉じられるバルブ駆動モードを実行可能な吸気可変動弁装置38とを備える内燃機関10において、制御装置40は、上記バルブ駆動モードの使用中に、開き時期IVOにおける差圧ΔP(=Ps−Pc)が閾値TH以上である場合には、ポート噴射弁26による燃料噴射を禁止し、開き時期IVOにおける差圧ΔPが閾値TH未満である場合には、ポート噴射弁26による燃料噴射を許可する。【選択図】図4

Description

この発明は、内燃機関の制御装置に関する。
例えば、特許文献1には、内燃機関を備えるハイブリッド車両が開示されている。この内燃機関は、吸気弁の作動特性を変更するための電動VVT(Variable Valve Timing)装置を備えている。このハイブリッド車両では、内燃機関の始動時に気筒内の圧縮圧の低減のために、電動VVT装置を用いて吸気弁の開閉時期を遅角させるデコンプ制御が実行される。より詳細には、このデコンプ制御によれば、吸気下死点に対する吸気弁の閉じ時期の遅角量が増やされる。
特開2016−205195号公報
特許文献1に記載の技術におけるデコンプ制御によって吸気弁の開閉時期が遅角されると、吸気弁の開き時期が排気上死点よりも遅角され、その結果、吸気行程中に吸排気弁が閉じた状態でピストンが下降するクランク角期間が形成される。このようなクランク角期間では筒内圧が負圧となるため、その後に吸気弁が開いた際に、吸気が勢い良く気筒内に流入して筒内ガスに強い乱れが生じる。このため、デコンプ制御の終了後に燃焼を開始した際に上記クランク角期間が存在していると、排気上死点前に吸気ポート内に噴射された燃料が、気筒内の各部(シリンダボア及びピストンなど)に付着してウェット燃料となる。このようなウェット燃料の存在は、排気エミッション性能の低下(例えば、粒子状物質PMの排出増加)に繋がる。
一方、気筒内で上記ウェット燃料を発生させないために、ポート噴射を使用せずに筒内噴射(直噴)のみを使用することが考えられる。しかしながら、筒内噴射が使用されると、燃焼が開始するまでの噴射燃料の霧化時間が短くなる。このため、筒内負圧が低い状況下では、筒内噴射は、基本的に、ポート噴射と比べて排気エミッション性能の低下(例えば、粒子状物質PMの排出増加)を生じさせ易いという特性を有する。
したがって、ポート噴射と筒内噴射とを利用可能な内燃機関では、吸気弁が開く前の吸気行程において筒内圧が負圧となるようなバルブ駆動モードが用いられている場合において排気エミッション性能の低下を抑制するためには、ポート噴射と筒内噴射とを適切に使い分けることが望ましい。
本発明は、上述のような課題に鑑みてなされたものであり、吸気弁が開く前の吸気行程において筒内圧が負圧となる状況下において、気筒内にウェット燃料が生じることに起因する排気エミッション性能の低下を抑制できるようにした内燃機関の制御装置を提供することを目的とする。
本発明に係る内燃機関の制御装置は、吸気ポートに燃料を噴射するポート噴射弁と、気筒内に燃料を直接噴射する筒内噴射弁と、吸気弁の開き時期が排気上死点よりも遅角され、かつ、前記排気上死点から前記開き時期までのクランク角期間の少なくとも一部において前記吸気弁及び排気弁が閉じられるバルブ駆動モードを実行可能な吸気可変動弁装置と、を備える内燃機関を制御する。
前記制御装置は、前記バルブ駆動モードの使用中に、
前記吸気ポートの圧力から筒内圧を引いて得られる差圧が前記開き時期において閾値以上である場合、又は前記開き時期における前記差圧が大きいほど少なくなるポート許容噴射量が指示噴射量以下である場合には、前記ポート噴射弁による燃料噴射を禁止し、
前記差圧が前記開き時期において閾値未満である場合、又は、前記ポート許容噴射量が前記指示噴射量よりも多い場合には、前記ポート噴射弁による燃料噴射を許可する。
本発明によれば、上記バルブ駆動モードの使用中に吸気弁の開き時期における上記差圧が大きい場合、又は当該差圧に基づくポート許容噴射量が指示噴射量以下の場合(すなわち、吸気弁が開く前の吸気行程において生じる筒内負圧が大きくなる場合)には、ポート噴射弁による燃料噴射が禁止される。これにより、気筒内にウェット燃料が生じることに起因する排気エミッション性能の低下を抑制できるようになる。
本発明の実施の形態1のシステム構成を説明するための図である。 エンジン始動時のバルブタイミングの動作例を表した図である。 エンジン始動直後(燃焼開始直後)に図2(A)、(C)に示すINバルブタイミングが選択されることに起因する課題を説明するための図である。 本発明の実施の形態1に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。 閾値THの設定例を説明するためのグラフである。 本発明の実施の形態2に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。 ポート噴射の使用が禁止される場合に用いられる筒内噴射弁による燃料噴射時期を説明するための図である。 第1筒内噴射時期の最適筒内噴射量の設定手法の一例を説明するための図である。 本発明の実施の形態3に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。 閾値THの設定例を説明するためのグラフである。 本発明の実施の形態4に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。 ポート許容噴射量とポート壁面温度との関係を表したグラフである。 本発明の実施の形態4の変形例に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。
以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
1.実施の形態1
まず、図1〜図5を参照して、本発明の実施の形態1について説明する。
1−1.システム構成の例
図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すシステムは、内燃機関(例えば、火花点火式エンジン)10を備えている。内燃機関10は、一例として、直列4気筒エンジンであるものとする。また、内燃機関10は、一例として、内燃機関10とともに電動モータ(図示省略)を動力源として備えるハイブリッド車両であるものとする。内燃機関10は自然吸気エンジンであるが、過給エンジンであってもよい。
内燃機関10の各気筒12には、ピストン14が配置されている。ピストン14は、気筒12の内部を往復移動する。各気筒12には、吸気通路16及び排気通路18が連通している。吸気通路16の入口付近には、吸入空気流量に応じた信号を出力するエアフローセンサ20が設けられている。エアフローセンサ20よりも下流側の吸気通路16には、電子制御式のスロットル弁22が配置されている。
スロットル弁22の下流には、各気筒に向けて吸気を分配するための吸気マニホールド16aが設けられている。吸気マニホールド16aの内部通路は、吸気通路16の一部として機能する。吸気マニホールド16aの集合部(サージタンク)には、サージタンク圧Ps(吸気マニホールド圧)に応じた信号を出力する吸気圧センサ24が取り付けられている。
吸気通路16の一部を構成する各気筒12の吸気ポート16bには、吸気ポート16b内に燃料を噴射する燃料噴射弁(ポート噴射弁)26が配置されている。吸気ポート16bにおけるポート噴射弁26の周囲の圧力は、上記のサージタンク圧Psと相関を有する。また、各気筒12には、気筒12(燃焼室)内に燃料を直接噴射する燃料噴射弁(筒内噴射弁)28が配置されている。
また、各気筒12には、点火装置の点火プラグ30と、筒内圧Pcを検出する筒内圧センサ32とが配置されている。さらに、内燃機関10は、吸気ポート16bを開閉する吸気弁34と、排気ポート18aを開閉する排気弁36とを備えている。吸気弁34は、例えば、以下のように構成された吸気可変動弁装置38により開閉駆動される。吸気可変動弁装置38は、吸気弁34の開弁期間の位相を所定のクランク角範囲内で連続的に可変とする位相可変機能を有する。この位相可変機能は、例えば、電動モータ(図示省略)を用いてクランク軸の回転位相に対するカム軸の回転位相を変更可能な位相可変機構を備えることにより実現できる。吸気可変動弁装置38によれば、開弁期間(作用角)を変えずに吸気弁34の開閉時期が変更される。なお、排気弁36は、図示省略する動弁装置により開閉駆動される。
本実施形態のシステムは、内燃機関10を制御するための制御装置40を備えている。制御装置40は、少なくとも1つのプロセッサと少なくとも1つのメモリと入出力インターフェースとを有するECU(Electronic Control Unit)である。入出力インターフェースは、内燃機関10に搭載された各種センサからセンサ信号を取り込むとともに、内燃機関10の運転を制御するための各種アクチュエータに対して操作信号を出力する。上記の各種センサは、エアフローセンサ20、吸気圧センサ24及び筒内圧センサ32に加え、クランク角センサ42及び水温センサ44を含む。制御装置40は、クランク角センサ42及び水温センサ44は、それぞれ、クランク角及びエンジン冷却水温度に応じた信号を出力する。制御装置40は、クランク角センサ42からの信号を用いてエンジン回転速度を算出できる。また、上記の各種アクチュエータは、上述したスロットル弁22、ポート噴射弁26、筒内噴射弁28及び上記点火装置を含む。
制御装置40のメモリには、内燃機関10の制御のための各種のプログラムや各種のデータ(マップを含む)が記憶されている。メモリに記憶されているプログラムがプロセッサで実行されることで、制御装置40の様々な機能が実現される。なお、制御装置40は、複数のECUから構成されていてもよい。
1−2.エンジン制御
1−2−1.エンジン始動時のバルブタイミング(バルブの開閉時期)の動作例
図2は、エンジン始動時のバルブタイミングの動作例を表した図である。なお、図2に示す動作例では、排気弁36の開閉時期(EXバルブタイミング)は固定されており、排気弁36は、膨張行程中の所定タイミング(例えば、膨張下死点前60°CA)で開き、排気上死点において閉じている。なお、排気弁36は、吸気弁34の開き時期IVOよりも進角側である限り、吸気行程中に閉じられてもよい。
図2(A)は、内燃機関10を始動する際に燃料噴射及び点火前に行われるモータリング(クランキング)中に用いられる吸排気バルブタイミングを示している。モータリングは、一例として、ハイブリッド車両の上記電動モータを用いて行われる。吸気弁34の開弁期間(作用角)は、一例として、190°CAであり、小作用角とされている。
図2(A)に示す駆動状態では、吸気弁34は、吸気可変動弁装置38によって、吸気行程中の所定タイミング(吸気下死点前60°CA)で開き、圧縮行程中の所定タイミング(例えば、吸気下死点後130°CA)で閉じるように制御されている。このように、図2(A)に示す駆動状態では、吸気弁34の閉じ時期IVCは、吸気下死点(BDC)に対して大幅に遅角されている。本実施形態では、このような吸気弁34の開閉時期(INバルブタイミング)がモータリング中に使用される。これにより、気筒12内の圧縮圧を低減するためのデコンプ動作を実行してエンジン始動に要するトルクを低減することができる。
図2(B)は、図2(A)に示す駆動状態から図2(C)に示す駆動状態への移行途中の吸排気バルブタイミングを示している。図2(C)は、始動時の燃焼開始後に用いられる吸排気バルブタイミングの一例を示している。より詳細には、燃焼開始後には、エンジン回転速度の上昇のためにエンジントルクを効率良く発生させることが必要であり、このため、高い実圧縮比を確保することが必要とされる。そこで、図2(C)に示すINバルブタイミングは、一例として、排気上死点よりも前の所定タイミング(例えば、BTDC10°CA)で開き、吸気下死点で閉じるように制御されている。なお、その後の運転中には、INバルブタイミングは、運転状態に応じて進角又は遅角されることになる。
1−2−2.エンジン始動時のバルブタイミングの動作に伴う課題
図2(A)、(C)に示すINバルブタイミングを利用する内燃機関10では、エンジン始動時に燃焼(燃料噴射及び点火)を開始するサイクルの到来時に、モータリング中に選択されていた図2(A)に示すINバルブタイミングから図2(C)に示すINバルブタイミングに瞬時に切り替えることが理想的である。しかしながら、吸気可変動弁装置38の動作速度を考慮すると、現実的には、図2(A)に示すINバルブタイミングの選択中に燃焼を開始し、かつ、その後に数〜数十サイクルを経過しつつ(換言すると、図2(B)に示すような過渡的なINバルブタイミングを経て)、図2(C)に示すINバルブタイミングに移行することになる。
図3は、エンジン始動直後(燃焼開始直後)に図2(A)、(C)に示すINバルブタイミングが選択されることに起因する課題を説明するための図である。吸気弁34の作用角を固定しつつ開閉時期を可変とする吸気可変動弁装置38が用いられると、デコンプ動作のために閉じ時期IVCを遅角した際に、図2(A)に示すように開き時期IVOも遅角される。その結果、既述したように、開き時期IVOが排気上死点よりも遅角されることになる。そして、吸気弁34を駆動するカム(図示省略)が上述のように小作用角カム(例えば、作用角190°CA)であると、この傾向はより顕著となる。
ここで、図2(A)に示す吸排気バルブタイミングにおいて吸気行程中に吸排気弁が閉じた状態でピストンが下降するクランク角期間(TDCからIVOまでの期間)では、図3に示すように筒内圧Pcが負圧となる(真空引き状態になる)。このことは、図2(B)に示す過渡状態も同様である。その結果、吸気弁34が開いた際に、吸気が勢い良く気筒12(燃焼室)内に流入して筒内ガスに強い乱れが生じる。ポート噴射が排気上死点前に行われていると、吸気ポート16b内に噴射された燃料の一部は、吸気ポート16bの壁面にポートウェットとして付着し、また、その残りは、吸気弁34が開くまで吸気ポート16b内に滞留する。そして、吸気弁34が開くと、空気とともに吸気ポート16b内の燃料が気筒12内に勢い良く流入し、気筒12内の各部(例えば、シリンダボア壁、ピストン14の頂面、シリンダヘッド46側の燃焼室壁面、及び吸気弁34の表面)に付着してウェット燃料となる。このようなウェット燃料の存在は、排気エミッション性能の低下の要因となる。より詳細には、粒子状物質PM及び未燃炭化水素HCの排出量の増加、並びに、PN(PMの粒子数)の増加が生じることが懸念される。
上記の問題を回避するために、エンジン始動時にポート噴射を使用せずに、筒内噴射(直噴)のみを使用することが考えられる。しかしながら、筒内噴射が使用されると、燃焼が開始するまでの噴射燃料の霧化時間が短くなる。このため、筒内負圧が低い状況下では、筒内噴射を使用する始動は、基本的に、ポート噴射を使用する始動と比べてPM及びHCの排出量の増加並びにPNの増加(さらには、燃費悪化)を生じさせ易いという特性を有する。
1−2−3.エンジン始動時の制御の概要
上述の課題に鑑み、本実施形態では、エンジン始動直後において図2(A)に示すデコンプ動作用のINバルブタイミングから図2(C)に示すINバルブタイミングに移行する過程において、次のような燃料噴射モードの切り替えが実行される。なお、図2(A)に示すINバルブタイミング(図2(B)も同様)は、本発明に係る「バルブ駆動モード」の一例に相当する。
ここで、吸気ポート16bの圧力の代用例であるサージタンク圧Psから筒内圧Pcを引いて得られる差を、「差圧ΔP」と称する。本実施形態では、開き時期IVOにおける差圧ΔPが閾値TH以上である場合には、ポート噴射の使用が禁止され、直噴のみが使用される。一方、差圧ΔPが閾値TH未満の場合には、ポート噴射の使用が許可される。
1−2−4.制御装置の処理
図4は、本発明の実施の形態1に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。なお、本ルーチンの処理は、エンジン始動時に燃焼(燃料噴射及び点火)を開始する際に起動され、図2(A)に示すINバルブタイミングから図2(C)に示すINバルブタイミングへの移行が完了するまで気筒毎に各サイクルにおいて繰り返し実行される。
図4に示すルーチンでは、制御装置40は、まず、直近の所定クランク角期間における所定クランク角毎の筒内圧Pc(すなわち、筒内圧履歴)を取得する(ステップS100)。本ステップS100では、一例として、筒内圧センサ32のセンサ値を用いて筒内圧履歴が取得される。なお、筒内圧センサが一部の気筒又は全気筒に設置されていない内燃機関では、筒内圧センサを有しない気筒の所定クランク角毎の筒内圧は、例えば、次のような手法で推定されてもよい。すなわち、エンジン停止中のピストン位置、エンジン回転速度、及びモータリング時のサイクル数(現時点がクランキング開始後の何回転目かを示す情報)といった各種情報と、所定クランク角毎の筒内圧Pcとの関係を事前に定めておく。そして、そのような関係を利用して、上記の各種情報に応じた所定クランク角毎の筒内圧Pcを推定する。
次に、制御装置40は、吸気圧センサ24を用いて、直近の所定クランク角期間における所定クランク角毎のサージタンク圧Psを取得する(ステップS102)。次いで、制御装置40は、ステップS100及びステップS102の取得値から、上記の差圧ΔP(=Ps−Pc)を算出する(ステップS104)。
次に、制御装置40は、燃焼気筒(現在実行中の本ルーチンの処理の対象気筒)の吸気弁34の開き時期IVOを取得する(ステップS106)。より詳細には、制御装置40は、エンジン始動後に燃焼(燃料噴射及び点火)の開始後に、図2(A)に示すINバルブタイミングから図2(C)に示すINバルブタイミングに移行するように吸気可変動弁装置38を制御している。本ステップS106では、そのような制御の実行中の現在の開き時期IVOが取得される。
次に、制御装置40は、ステップS104における差圧ΔPの算出結果から、開き時期IVO時の差圧ΔPを算出したうえで、この差圧ΔPが所定の閾値TH以上であるか否かを判定する(ステップS108)。
図5は、閾値THの設定例を説明するためのグラフである。より詳細には、図5の横軸は開き時期IVO時の差圧ΔPであり、縦軸は、PMやHCの排出量及びPNである。以下、説明の便宜上、PN(PMの粒子数)、及びPMやHCの排出量のことを単に「PN・PM・HC」と称する。なお、図5に示す関係は、同一の燃料噴射量の下での関係であり、また、吸気ポート16bの壁温(ポート壁面温度)がある値である時の関係である。
図5に示すように、差圧ΔPは、サージタンク圧Psが低い場合、又は筒内圧Pcが高い場合に小さくなる。逆に、差圧ΔPは、サージタンク圧Psが高い場合、又は筒内圧Pcが低い場合(すなわち、デコンプ作用が大きい場合)に大きくなる。筒内噴射の例では、既述したように、燃焼までの霧化時間が短くなる。このため、図5に示すように、PN・PM・HCが基本的に多くなり、かつ、PN・PM・HCは差圧ΔPの増大に伴って徐々に多くなる。一方、ポート噴射の例では、差圧ΔPが小さい領域では、筒内噴射の例と比べて、PN・PM・HCが十分に少なくなる。しかしながら、差圧ΔPがあるレベルを超えると、差圧ΔPの増大に伴ってPN・PM・HCが急激に増加し始め、やがて同一の差圧ΔPの下でのPN・PM・HCが筒内噴射時と比べて多くなる。
ここで、制御装置40は、要求される燃料噴射量を、ポート噴射と筒内噴射とを用いて任意の噴き分け率(燃料噴射量の比率)で分担して噴射可能に構成されている。本実施形態では、エンジン始動時には、基本的には、所定の噴き分け率でのポート噴射と筒内噴射との噴き分けを利用することとしている。図5には、始動時に用いられる所定の噴き分け率に従って燃料噴射を行う例についても表されている。この噴き分けの例における特性は、上述の筒内噴射の特性とポート噴射の特性の双方の影響を受け、図5に示すようになる。すなわち、差圧ΔPが小さい領域におけるPN・PM・HCは、筒内噴射の例とポート噴射の例の中間的な値をとる。また、PN・PM・HCが急上昇し始める差圧ΔPの値は、ポート噴射(のみ)と比べて大きくなり、かつ、その急上昇の度合いが低くなる。
図5には、ステップS108で用いられる閾値THが表されている。すなわち、噴き分けの例においてPN・PM・HCが筒内噴射の例のそれと同じとなる差圧ΔPの値が閾値THに相当する。このように設定される閾値THの利用により、差圧ΔPが閾値THよりも小さい場合には、噴き分けの例の方がPN・PM・HCが少なくなると判断できる。一方、差圧ΔPが閾値THよりも大きい場合には、筒内噴射の例の方がPN・PM・HCが少なくなると判断できる。制御装置40は、以上説明した考えに基づいて予め設定された閾値TH(本実施形態では、固定値)を記憶している。
本ステップS108では、制御装置40は、開き時期IVO時の差圧ΔPが閾値TH以上であるか否かを判定する。その結果、この判定結果が肯定的である場合、つまり、筒内噴射の例の方がPN・PM・HCが少なくなると判断できる場合には、制御装置40は、ポート噴射(噴き分け)の使用を禁止し、筒内噴射のみを許可する(ステップS110)。
一方、ステップS108の判定結果が否定的である場合、つまり、噴き分けの例の方がPN・PM・HCが少なくなると判断できる場合には、制御装置40は、ポート噴射(噴き分け)の使用を許可する(ステップS112)。
1−3.効果
以上説明したように、本実施形態に係るエンジン始動時の制御によれば、差圧ΔPが閾値TH以上である場合には、ポート噴射の使用が禁止される。これにより、筒内負圧が高い(筒内圧Pcが低い)ために差圧ΔPが大きくなる場合には、筒内噴射(のみ)の活用により、気筒12内でウェット燃料が発生することを抑制できる。このため、エンジン始動直後に図2(C)に示すINバルブタイミングに移行する過程において、このようなウェット燃料の存在に起因する排気エミッション性能の低下(PN・PM・HCの増加)を抑制できる。一方、差圧ΔPが閾値TH未満の場合には、ポート噴射(噴き分け)の活用により、筒内噴射のみの例と比べて燃焼までの霧化時間を確保できるようになる。このため、この場合にも、排気エミッション性能の低下(PN・PM・HCの増加)を抑制できる。
ところで、上述した実施の形態1においては、差圧ΔPが閾値TH未満の場合には、ステップS112においてポート噴射の使用が許可されるので、上述の噴き分けが行われる。このような例に代え、ステップS112に進む場合であって、かつ、差圧ΔPが小さい領域(図5に示すポート噴射(のみ)の例において、筒内噴射の例と比べてPN・PM・HCが少ない領域)では、ポート噴射のみが使用されてもよい。
2.実施の形態2
次に、図6を参照して、本発明の実施の形態2について説明する。以下の説明では、実施の形態2に係るシステムのハードウェア構成の一例として、図1に示す構成が用いられているものとする。このことは、後述の実施の形態3及び4についても同様である。
2−1.エンジン始動時の制御の概要
本実施形態に係るエンジン始動時の制御は、差圧ΔPと閾値THの比較に基づく判定に代え、次のような判定が行われる点において、実施の形態1に係る制御と相違している。
具体的には、本実施形態では、「ポート許容噴射量」が噴射モードの切り替えのために利用される。ポート許容噴射量は、PN・PM・HCの増加抑制の観点で許容される燃料量の上限値に相当し、開き時期IVOにおける差圧ΔPが大きいほど少なくなるように事前に決定されている。
そのうえで、本実施形態では、上記のポート許容噴射量がポート噴射のための指示噴射量(要求噴射量)以下であるか否かが判定される。その結果、ポート許容噴射量が指示噴射量以下である場合には、ポート噴射の使用が禁止され、一方、ポート許容噴射量が指示噴射量よりも多い場合には、ポート噴射の使用が許可される。
2−2.制御装置の処理
図6は、本発明の実施の形態2に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。なお、本ルーチンのステップS100〜S106、S110及びS112の処理は、実施の形態1において既述した通りである。
図6に示すルーチンの処理は、ステップS106における燃焼気筒の開き時期IVOの取得の後に、ステップS200に進む。ステップS200では、制御装置40は、ポート許容噴射量を算出する。ここでは、ポート許容噴射量は、開き時期IVO時の差圧ΔPに応じた値として算出される。具体的には、図5に示すように、差圧ΔPが大きくなると、PN・PM・HCが多くなる。このため、ポート許容噴射量は、開き時期IVOにおける差圧ΔPが大きいほど少なくなるように事前に決定されている。
次に、制御装置40は、算出したポート許容噴射量が、現在のルーチンの対象気筒の指示噴射量以下であるか否かを判定する(ステップS202)。その結果、この判定結果が肯定的である場合、つまり、ポート許容噴射量が指示噴射量以下であるためにポート噴射(噴き分け)の使用を認めるとPN・PM・HCが多くなると判断できる場合には、ポート噴射の使用が禁止される(ステップS110)。一方、判定結果が否定的である場合、つまり、ポート許容噴射量の方が指示噴射量よりも多い場合には、ポート噴射の使用が許可される(ステップS112)。
2−3.効果
以上説明したようにポート許容噴射量と指示噴射量との比較に基づく判定が行われる本実施形態の制御によっても、筒内負圧が高い(筒内圧Pcが低い)ために差圧ΔPが大きくなる場合には、筒内噴射(のみ)の活用により、気筒12内でウェット燃料が発生することを抑制できる。このため、エンジン始動直後に図2(C)に示すINバルブタイミングに移行する過程において、このようなウェット燃料の存在に起因する排気エミッション性能の低下(PN・PM・HCの増加)を抑制できる。一方、ポート許容噴射量が指示噴射量よりも多い場合には、ポート噴射(噴き分け)の活用により、筒内噴射のみの例と比べて燃焼までの霧化時間を確保できるようになる。このため、この場合にも、排気エミッション性能の低下(PN・PM・HCの増加)を抑制できる。
3.実施の形態3
次に、図7〜図9を参照して、本発明の実施の形態3について説明する。
3−1.エンジン始動時の制御の概要
本実施形態に係るエンジン始動時の制御は、以下に説明する筒内噴射弁28の制御が追加的に実行される点において、実施の形態1に係る制御と相違している。
図7は、ポート噴射の使用が禁止される場合に用いられる筒内噴射弁28による燃料噴射時期を説明するための図である。図7に示す吸排気バルブタイミングは、図2(A)に示すものと同じである。この吸排気バルブタイミングによれば、排気上死点から開き時期IVOまでの吸気行程中のクランク角期間では、吸排気弁34、36が閉じているために気筒12内が負圧になる(真空引き状態になる)。このように筒内負圧が形成されている時に気筒12内に燃料を噴射すると、噴射燃料の霧化を促進し、PN・PM・HCの低減が可能となる。
そこで、本実施形態では、エンジン始動時にポート噴射の使用が禁止される場合(差圧ΔP≧閾値TH)には、あるサイクルの指示噴射量の一部が、図7に示すように筒内負圧の形成期間(排気上死点から開き時期IVOまで)中の所定の第1筒内噴射時期において、筒内噴射弁28によって噴射される。そして、残りの噴射量は、開き時期IVOの経過後の所定の第2筒内噴射時期(図7に示す例では、吸気行程の後半)において噴射される。
より詳細には、第1筒内噴射時期は、以下の点に配慮して決定される。すなわち、筒内負圧下で吸気弁34が開くと、既述したように強い気流が発生する。このため、第1筒内噴射時期での燃料噴射は、開き時期IVOまでに噴き終わり、かつ、霧化が完了している必要がある。第1筒内噴射時期は、このような要求を満たすように決定される。
また、負圧下の気筒12内への燃料噴射によれば、霧化が促進される一方で、噴霧長が伸びてしまう。そこで、第1筒内噴射時期の燃料噴射による燃料噴射量(燃料噴射期間)は、噴射燃料が気筒12内のシリンダボア等の壁面にウェット燃料として付着しないように調整される。具体的には、この燃料噴射量は、例えば、次のような最適筒内噴射量となるように設定される。
図8は、第1筒内噴射時期の最適筒内噴射量の設定手法の一例を説明するための図である。より詳細には、図8は、第1筒内噴射時期で(すなわち、開き時期IVO前に)行われる燃料噴射の最適筒内噴射量と、筒内負圧との関係を表している。筒内負圧が高いほど(すなわち、筒内圧Pcが真空に近づくほど)霧化が良くなるが、上述のように噴霧長が伸びてしまう。そこで、図8に示す例では、最適筒内噴射量は、筒内負圧が低い領域では筒内負圧の増大に伴って直線的に増加するように設定されている。そして、最適筒内噴射量は、当該領域よりも筒内負圧が高い領域では、最適筒内噴射量の増加率が筒内負圧の増大に伴って徐々に緩やかになるように(換言すると、最適筒内噴射量が筒内負圧の増大に伴って所定値に漸近するように)設定されている。
3−2.制御装置の処理
図9は、本発明の実施の形態3に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。なお、本ルーチンのステップS100〜S112の処理は、実施の形態1において既述した通りである。
図9に示すルーチンの処理は、差圧ΔPが閾値TH以上となる場合にステップS110においてポート噴射を禁止した後に、ステップS300に進む。ステップS300では、制御装置40は、第1筒内噴射時期の最適筒内噴射量を算出する。具体的には、制御装置40は、図8に示すような関係、すなわち、最適筒内噴射量と筒内負圧との関係を定めたマップを記憶している。本ステップS300では、ステップS100の処理によって取得された筒内圧履歴を利用して、所定の第1筒内噴射時期の筒内圧Pc(筒内負圧)に応じた最適筒内噴射量が上記マップから算出される。なお、第2筒内噴射時期の燃料噴射量は、別途算出される指示噴射量から上記の最適筒内噴射量を引いて得られる値として算出される。
3−3.効果
以上説明した本実施形態に係るエンジン始動時の制御によれば、ウェット燃料の存在に起因する排気エミッション性能の低下(PN・PM・HCの増加)抑制のためにポート噴射が禁止される場合には、開き時期IVO前に形成される筒内負圧が効果的に利用される。すなわち、筒内負圧を利用して(換言すると、デコンプ動作のためのINバルブタイミングの制御を活かして)、筒内噴射弁28による噴射燃料の霧化を促進し、PN・PM・HCの低減が可能となる。
ところで、上述した実施の形態3に係る制御は、実施の形態1に係る制御に代え、実施の形態2に係る制御(図6に示すルーチン)と組み合わされてもよい。
4.実施の形態4
次に、図10〜図13を参照して、本発明の実施の形態4及びその変形例について説明する。
4−1.エンジン始動時の制御の概要
本実施形態に係るエンジン始動時の制御は、噴射モードの切り替えに用いられる閾値THの設定の仕方において、実施の形態1に係る制御と相違している。
図10は、閾値THの設定例を説明するためのグラフである。図10の縦軸及び横軸は図5と同様である。吸気ポート16bの壁温(ポート壁面温度)は、ポートウェット(図3参照)の発生量に影響を与える。より詳細には、ポート壁面温度が高いと、ポートウェット量が少なくなる。その結果、筒内負圧の下で吸気弁34が開いた際に気筒12内で発生し得るウェット燃料の量も減少する。このため、同一の差圧ΔP(差圧ΔPが大きい領域)の下でポート噴射を利用する各例(ポート噴射のみ、又は噴き分け)のPN・PM・HCを比較したとき、当該PN・PM・HCは、ポート壁面温度が高くなると、図10に示すように少なくなる。
その結果、噴き分けの例においてPN・PM・HCが筒内噴射の例のそれと同じとなる差圧ΔPの値、すなわち、閾値THは、図10に示すように、ポート壁面温度が高くなると大きくなる。このことは、ポート壁面温度が高くなると、ポート噴射を禁止すべき差圧ΔPの範囲が縮小すること(換言すると、ポート噴射を許可できる差圧ΔPの範囲が拡大すること)を意味する。
そこで、本実施形態では、閾値THは、ポート壁面温度が高い場合には、それが低い場合と比べて大きくなるように設定される。これにより、ポート壁面温度の高低を考慮して、適切に閾値THを設定できるようになる。
4−2.制御装置の処理
図11は、本発明の実施の形態4に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。なお、本ルーチンのステップS100〜S112の処理は、実施の形態1において既述した通りである。本ルーチンでは、ステップS106とステップS108との間に、ステップS400及びステップS402が追加されている。
ステップS400では、制御装置40は、ポート壁面温度を取得する。ポート壁面温度の取得方法は、特に限定されないが、例えば、次のような推定手法を用いることができる。すなわち、ポート壁面温度は、水温センサ44を用いて取得したエンジン停止時のエンジン冷却水温度と相関がある。そこで、例えば、エンジン停止時のエンジン冷却水温度とポート壁面温度との関係を事前に取得しておき、そのような関係に利用してポート壁面温度を推定できる。また、ポート壁面温度は、このエンジン冷却水温度に代え、或いは、それとともにエンジン停止時のエンジン油温(図示しない油温センサにより取得可能)及びエンジン停止後の経過時間(ソークタイマにより取得可能)に基づいて推定されてもよい。さらに、ポート壁面温度は、吸入空気温度及びモータリング時のサイクル数によっても変化する。このため、上記のポート壁面温度の推定に対して、これらのパラメータも考慮されてもよい。
ステップS402では、制御装置40は、ステップS400において取得されたポート壁面温度に応じた閾値THを取得する。ここでは、例えば、閾値THは、ポート壁面温度が高いほど閾値THが大きくなる関係に従って取得される。
4−3.効果
以上説明した本実施形態に係るエンジン始動時の制御によれば、エンジン始動時のポート壁面温度が高いほど、ポート噴射がより禁止されにくくすることができる。このため、ポート壁面温度に応じて、排気エミッション低下(PN・PM・HC増加)抑制の観点でポート噴射を禁止すべき状況をより適切に決定できるようになる。付け加えると、例えば、エンジン停止からその後の再始動までのソーク時間が短い場合(ハイブリッド車両における間欠停止からの再始動時を含む)には、吸気ポート16bが暖機されているため、冷間時よりもポート噴射量(ポート噴射割合)を増やせるようになる。
4−4.変形例
上述したポート壁面温度を考慮した噴射モードの切り替えは、実施の形態1に係る制御例に代え、次のように実施の形態2に係る制御例と組み合わされてもよい。図12は、ポート許容噴射量とポート壁面温度との関係を表したグラフである。ポート壁面温度が高いと、既述したようにポートウェット量が減少し、筒内負圧の下で吸気弁34が開いた際に気筒12内で発生し得るウェット燃料の量も減少する。このため、ポート壁面温度が高いと、PN・PM・HCの増加抑制のために要求されるポート許容噴射量は多くなる。より詳細には、ポート許容噴射量は、図12に示すような特性で、ポート壁面温度が高いほど多くなる。
図13は、本発明の実施の形態4の変形例に係るエンジン始動時の制御に関する処理のルーチンを示すフローチャートである。なお、本ルーチンのステップS100〜S106、S110、S112、S202及びS400の処理は、実施の形態1、2及び4において既述した通りである。
図13に示すルーチンの処理は、ステップS400におけるポート壁面温度の取得の後に、ステップS500に進む。ステップS500では、制御装置40は、開き時期IVO時の差圧ΔPとともにポート壁面温度に基づいてポート許容噴射量を算出する。ポート壁面温度に応じたポート許容噴射量の取得については、例えば、図12に示すような関係を用いることができる。
上述した変形例に係るエンジン始動時の制御によっても、エンジン始動時のポート壁面温度が高いほど、ポート噴射がより禁止されにくくすることができる。このため、実施の形態4と同様の効果を奏する。
以上説明した各実施の形態に記載の例及び他の各変形例は、明示した組み合わせ以外にも可能な範囲内で適宜組み合わせてもよいし、また、本発明の趣旨を逸脱しない範囲で種々変形してもよい。
10 内燃機関
12 気筒
14 ピストン
16 吸気通路
16a 吸気マニホールド
16b 吸気ポート
24 吸気圧センサ
26 ポート噴射弁
28 筒内噴射弁
32 筒内圧センサ
34 吸気弁
36 排気弁
38 吸気可変動弁装置
40 制御装置
42 クランク角センサ
44 水温センサ

Claims (1)

  1. 吸気ポートに燃料を噴射するポート噴射弁と、
    気筒内に燃料を直接噴射する筒内噴射弁と、
    吸気弁の開き時期が排気上死点よりも遅角され、かつ、前記排気上死点から前記開き時期までのクランク角期間の少なくとも一部において前記吸気弁及び排気弁が閉じられるバルブ駆動モードを実行可能な吸気可変動弁装置と、
    を備える内燃機関を制御する、内燃機関の制御装置であって、
    前記制御装置は、前記バルブ駆動モードの使用中に、
    前記吸気ポートの圧力から筒内圧を引いて得られる差圧が前記開き時期において閾値以上である場合、又は前記開き時期における前記差圧が大きいほど少なくなるポート許容噴射量が指示噴射量以下である場合には、前記ポート噴射弁による燃料噴射を禁止し、
    前記差圧が前記開き時期において閾値未満である場合、又は、前記ポート許容噴射量が前記指示噴射量よりも多い場合には、前記ポート噴射弁による燃料噴射を許可する
    ことを特徴とする内燃機関の制御装置。
JP2018150561A 2018-08-09 2018-08-09 内燃機関の制御装置 Pending JP2020026751A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018150561A JP2020026751A (ja) 2018-08-09 2018-08-09 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150561A JP2020026751A (ja) 2018-08-09 2018-08-09 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2020026751A true JP2020026751A (ja) 2020-02-20

Family

ID=69619745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150561A Pending JP2020026751A (ja) 2018-08-09 2018-08-09 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2020026751A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129755A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機
JP2021129757A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機
JP2021129758A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235593A (ja) * 2000-12-04 2002-08-23 Denso Corp 内燃機関用制御装置
JP2005248883A (ja) * 2004-03-05 2005-09-15 Toyota Motor Corp 内燃機関の制御システム
JP2008051067A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 内燃機関の燃料噴射割合制御装置
JP2009216002A (ja) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd エンジンの燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235593A (ja) * 2000-12-04 2002-08-23 Denso Corp 内燃機関用制御装置
JP2005248883A (ja) * 2004-03-05 2005-09-15 Toyota Motor Corp 内燃機関の制御システム
JP2008051067A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 内燃機関の燃料噴射割合制御装置
JP2009216002A (ja) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd エンジンの燃料噴射制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021129755A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機
JP2021129757A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機
JP2021129758A (ja) * 2020-02-20 2021-09-09 株式会社大一商会 遊技機

Similar Documents

Publication Publication Date Title
CN105840333B (zh) 排气催化剂升温方法和***
US7559304B2 (en) Control device and control method for stopping and starting an internal combustion engine
US8439002B2 (en) Methods and systems for engine control
US20150019109A1 (en) Method and device for controlling an internal combustion engine
US10385791B2 (en) Engine control device
US10718275B2 (en) Miller cycle engine
US10697378B2 (en) Control system of miller cycle engine and method of controlling miller cycle engine
JP2018035739A (ja) 内燃機関の制御装置
US20130060453A1 (en) Engine speed based valvetrain control systems and methods
JP2020026751A (ja) 内燃機関の制御装置
US10655546B2 (en) Control device for internal combustion engine
JP2007327399A (ja) 内燃機関の制御装置
JP6090641B2 (ja) 内燃機関の制御装置
JP2007162664A (ja) 内燃機関のバルブ作用角可変制御装置
CN112112737A (zh) 用于控制发动机的停止的方法和***
JP2009216035A (ja) 内燃機関の制御装置
JP2008008223A (ja) 内燃機関の排気温度抑制装置
JP2016050502A (ja) 内燃機関の制御装置
JP6288130B2 (ja) エンジンの制御装置
JP2002256908A (ja) 内燃機関のバルブ制御装置
JP7272251B2 (ja) 内燃機関の駆動制御装置
JP6191828B2 (ja) エンジンの始動制御装置
JP2021050604A (ja) 内燃機関の制御装置
JP2020037908A (ja) 内燃機関の制御装置
JP6323798B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220628