JP2020024663A - New type housing environment measurement device - Google Patents

New type housing environment measurement device Download PDF

Info

Publication number
JP2020024663A
JP2020024663A JP2019065205A JP2019065205A JP2020024663A JP 2020024663 A JP2020024663 A JP 2020024663A JP 2019065205 A JP2019065205 A JP 2019065205A JP 2019065205 A JP2019065205 A JP 2019065205A JP 2020024663 A JP2020024663 A JP 2020024663A
Authority
JP
Japan
Prior art keywords
powder
temperature
tio
detector
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019065205A
Other languages
Japanese (ja)
Other versions
JP6584704B1 (en
Inventor
邱炎新
Yan Xin Qiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mingchuang Automatic Control Tech Co Ltd
Original Assignee
Shenzhen Mingchuang Automatic Control Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mingchuang Automatic Control Tech Co Ltd filed Critical Shenzhen Mingchuang Automatic Control Tech Co Ltd
Application granted granted Critical
Publication of JP6584704B1 publication Critical patent/JP6584704B1/en
Publication of JP2020024663A publication Critical patent/JP2020024663A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Emergency Alarm Devices (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

To provide a new type housing environment measurement device comprising a central processing unit.SOLUTION: A communication unit 3, an environment measurement system 1, and an automatic control processing operation device 5 are connected to a central processing unit 2. A receiving terminal 4 is further connected to the communication unit 3. The environment measurement system 1 comprises a carbon dioxide detector 10, a carbon monoxide detector 11, a formaldehyde detector 12, an oxygen content detector 13, a dust content detector 14, a smoke sensor 15, a humidity sensor 16, a temperature sensor 17, a water leakage detection device 18, and a leakage detection device 19. The receiving terminal 4 comprises a home information display terminal 41 and an intelligent terminal 42. The automatic control processing operation device 5 comprises an automatic water stop device 51, an automatic sprinkler 52, and an automatic power failure device 53.SELECTED DRAWING: Figure 1

Description

本出願は、住宅環境測定技術の分野に関し、特に、新型住宅環境測定装置に関する。   The present application relates to the field of housing environment measurement technology, and in particular, to a new housing environment measurement device.

情報技術の発展に伴い、住宅環境の品質と安全性に対する人々の要求はますます高まっている。現在、住宅環境測定装置は、対応する製品はあっても、そのコストが高く、機能が単一で、配線が複雑で、ネットワークに接続するのが不便である。室内環境に影響を与える様々な物質の含有量および排出量、室内環境状態パラメータを測定可能な装置、住宅環境中の水、電気およびガスを測定でき、さらに事故が発生する時に災害を防止し、家族の健康、財産の安全、防災および災害救援などのための基本的な情報と生活ガイドを提供する新型住宅環境測定装置を必要としている。 With the development of information technology, people's demands for quality and safety of residential environment are increasing. At present, even though there is a corresponding product, the housing environment measuring device is expensive, has a single function, has complicated wiring, and is inconvenient to connect to a network. Equipment that can measure the content and emission of various substances that affect the indoor environment, indoor environment condition parameters, water, electricity and gas in the residential environment can be measured, and prevent accidents when an accident occurs, There is a need for a new home environment measurement device that provides basic information and living guides for family health, property security, disaster prevention and disaster relief, etc.

中国特許出願公開第103809558号明細書Chinese Patent Application No. 103809558

上記の問題に対して、本発明は新型住宅環境測定装置を提供することを旨とする。
本発明の実施例は、中央処理装置を含む新型住宅環境測定装置を提供し、前記中央処理装置には通信ユニット、環境測定システムおよび自動制御処理操作装置が接続され、前記通信ユニットにはさらに受信端末が接続され、前記環境測定システムは、二酸化炭素検出器と、一酸化炭素検出器と、メタン検出器と、酸素含有量検出器と、ダスト含有量検出器と、スモークセンサと、湿度センサと、温度センサと、漏水検知装置と、漏電検出装置とを備え、前記受信端末は、家庭内情報表示端末およびインテリジェント端末を備え、前記自動制御処理操作装置は、自動止水装置と、自動スプリンクラーと、自動停電装置とを備え、前記温度センサは、サーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板は、Ba−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oであり、シェル構造はTiOである。
In view of the above problems, the present invention aims to provide a new type of housing environment measuring device.
An embodiment of the present invention provides a new residential environment measuring device including a central processing unit, wherein the central processing unit is connected with a communication unit, an environment measuring system and an automatic control processing operation device, and the communication unit further receives a signal. The terminal is connected, the environment measurement system is a carbon dioxide detector, a carbon monoxide detector, a methane detector, an oxygen content detector, a dust content detector, a smoke sensor, a humidity sensor, , A temperature sensor, a water leakage detection device, and a leakage detection device, the reception terminal includes a home information display terminal and an intelligent terminal, and the automatic control processing operation device includes an automatic water stop device, an automatic sprinkler, , An automatic power failure device, wherein the temperature sensor is a thermistor temperature sensor including a thermistor substrate, and the thermistor substrate is Ba-Cu-Y- i-W-Mn-O is a PTC thermal ceramic material of the core-shell structure based on, specifically, the core structure is (Ba 0.985 Cu 0.012 Y 0.003) (Ti 0.94 W 0 .03 Mn 0.03 ) O 3 and the shell structure is TiO 2 .

本発明の実施例によって提供される技術的解決手段は、以下の有益な効果を有する。即ち   The technical solutions provided by the embodiments of the present invention have the following beneficial effects. That is

1、本住宅環境測定装置は、住宅内の空気質の測定を実現することができる。   1. The present housing environment measuring apparatus can realize measurement of air quality in a house.

2、本住宅環境測定装置は、住宅内の空気中の有害ガスを検出してタイムリーに警報することができる。   2. The house environment measuring device can detect harmful gas in the air in the house and issue a timely alarm.

3、本住宅環境測定装置は、住宅内の水、電気、ガスの使用状況および異常情況をリアルタイムで検知および監視し、そしてタイムリーに警報して防災処理を実行することができる。   3. The house environment measuring device can detect and monitor the usage and abnormal situations of water, electricity and gas in the house in real time, and execute a disaster prevention process by timely alarming.

4、本住宅環境測定装置は、温度への高感度測定を実現することができる。   4. The present housing environment measuring device can realize high sensitivity measurement to temperature.

本出願の態様および利点は、以下の説明において部分的に与えられ、その一部は以下の説明で明らかになるか、または本出願の実施を通じて理解される。上記の一般的な説明および以下の詳細な説明は、単なる例示および説明に過ぎず、本出願を制限するものではない。   Aspects and advantages of the present application will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned through practice of the application. The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present application.

図面を用いて本発明について説明するが、図面における実施例は本発明を制限するものではなく、当業者であれば、創造的労働を要することなく、これらの図面に基づく他の図面を得ることができる。   The present invention will be described with reference to the drawings, but the embodiments in the drawings do not limit the present invention, and those skilled in the art can obtain other drawings based on these drawings without creative labor. Can be.

本発明による新型住宅環境測定装置の構造概略図である。FIG. 1 is a schematic structural diagram of a new type housing environment measuring device according to the present invention.

ここでは例示的な実施例を詳細に説明するが、その内容は図面に示されている。以下の説明は、別段の指示がない限り、異なる図中の同じ数字が同一または類似の要素を示す。以下の例示的な実施例に記載された実施形態は、本発明と一致する全ての実施形態を示すものではない。これに対して、それらは、添付の特許請求の範囲に詳述されるように、本発明のある態様と一致する装置および方法の単なる例である。 An exemplary embodiment will now be described in detail, the contents of which are illustrated in the drawings. In the following description, the same numbers in different figures indicate the same or similar elements unless otherwise indicated. The embodiments described in the following illustrative examples do not represent all embodiments consistent with the present invention. On the contrary, they are merely examples of apparatus and methods consistent with certain aspects of the invention, as set forth in the appended claims.

本出願の実施例は、新型住宅環境測定装置に関し、図1に示すように、中央処理装置2を含む新型住宅環境測定装置であって、前記中央処理装置2には、通信ユニット3、環境測定システム1および自動制御処理操作装置5が接続され、前記通信ユニット3にはさらに受信端末4が接続され、前記環境測定システム1は、二酸化炭素検出器10と、一酸化炭素検出器11と、メタン検出器12と、酸素含有量検出器13と、ダスト含有量検出器14と、スモークセンサ15と、湿度センサ16と、温度センサ17と、漏水検知装置18と、漏電検出装置19とを備え、前記受信端末4は、家庭内情報表示端末41およびインテリジェント端末42を備え、前記自動制御処理操作装置5は、自動止水装置51と、自動スプリンクラー52と、自動停電装置53とを備え、前記通信ユニット3はローカルエリアネットワーク通信モジュール31およびリモートネットワーク通信モジュール32を備え、前記ローカルエリアネットワーク通信モジュール31は中央処理装置2および家庭内情報表示端末41に接続され、前記リモートネットワーク通信モジュール32はインテリジェント端末42に接続され、前記インテリジェント端末42にはさらに警報装置一421が接続され、前記ローカルエリアネットワーク通信モジュール31にはさらに警報装置二311が接続される。 The embodiment of the present application relates to a new housing environment measuring device, as shown in FIG. 1, a new housing environment measuring device including a central processing unit 2, wherein the central processing unit 2 includes a communication unit 3, an environment measuring device, A system 1 and an automatic control processing operation device 5 are connected, and a receiving terminal 4 is further connected to the communication unit 3. The environment measurement system 1 includes a carbon dioxide detector 10, a carbon monoxide detector 11, A detector 12, an oxygen content detector 13, a dust content detector 14, a smoke sensor 15, a humidity sensor 16, a temperature sensor 17, a water leakage detection device 18, and a leakage detection device 19, The receiving terminal 4 includes a home information display terminal 41 and an intelligent terminal 42, and the automatic control processing operation device 5 includes an automatic water stop device 51, an automatic sprinkler 52, and an automatic sprinkler 52. A power failure device 53; the communication unit 3 includes a local area network communication module 31 and a remote network communication module 32; the local area network communication module 31 is connected to the central processing unit 2 and the home information display terminal 41; The remote network communication module 32 is connected to an intelligent terminal 42, an alarm device 421 is connected to the intelligent terminal 42, and an alarm device 2 311 is further connected to the local area network communication module 31.

本発明の技術的解決手段は新型住宅環境測定装置であり、作動する時に、環境測定システム1は、住宅内の環境をリアルタイムに監視し、信号を中央処理装置2に送信し、中央処理装置2は、通信ユニット3を介して信号を受信端末4に送信し、受信端末4は、警報しまたは信号を中央処理装置2にフィードバックし、中央処理装置2によって自動制御処理操作装置5を制御し、自動制御処理操作装置5は、信号種別により自動止水装置51、自動スプリンクラー52および自動停電装置53を制御して対応する作業を実行させ、家族の健康、財産の安全、防災および災害救済を保証する。 The technical solution of the present invention is a new residential environment measuring device, and when operating, the environmental measuring system 1 monitors the environment in the house in real time, sends a signal to the central processing unit 2, and transmits the signal to the central processing unit 2. Transmits a signal to the receiving terminal 4 via the communication unit 3, the receiving terminal 4 issues an alarm or feeds back a signal to the central processing unit 2, controls the automatic control processing operation device 5 by the central processing unit 2, The automatic control processing operation device 5 controls the automatic water stop device 51, the automatic sprinkler 52, and the automatic power outage device 53 according to the signal type to execute the corresponding work, and assures the health of the family, the safety of property, disaster prevention and disaster relief. I do.

温度測定効果をより良く実現するために、本発明の技術的解決手段では、前記温度センサはサーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板は、Ba−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oであり、シェル構造はTiOである。 In order to better realize the temperature measurement effect, in the technical solution of the present invention, the temperature sensor is a thermistor temperature sensor including a thermistor substrate, and the thermistor substrate is Ba-Cu-Y-Ti-W-Mn. -O based core-shell PTC thermosensitive ceramic material, specifically, the core structure is (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0. 03 ) O 3 and the shell structure is TiO 2 .

温度は基本的な物理量であり、現実に生活および生産における温度測定は非常に一般的になっている。温度センサは、温度を測定して温度の変化を使用可能な出力信号に変換するセンサである。温度センサは遍在しており、その中で、感熱材料は、温度の変化に非常に敏感な温度センサの中核となり、現在、多く応用されている感熱材料には、PTC(正温度係数)感熱材料およびNTC(負温度係数)感熱材料が含まれる。正温度係数サーミスタは、キュリー温度付近での著しい抵抗変化のために電子産業の様々な分野で広く応用されており、現在最も多く生産されている感温素子である。現在、正温度係数感熱材料はチタン酸バリウムをベースとしており、その性能指数はさらに高める必要があり、さらに、この材料で作られた温度センサは厚くなり、その具体的な応用が制限される。現在の技術的解決手段では、チタン酸バリウム系サーミスタ材料は通常、Pb、Sr、Y、Nbなどの単一元素添加剤でキュリー点を移動し、半導体化を達成し、揚抗比を高め、そして高電圧耐性を高める。本出願の技術的解決手段では、コア・シェル構造を有するBa−Cu−Y−Ti−W−Mn−O系PTC感熱セラミック材料を革新的に採用し、シェル構造は、具体的には、高い導電率および抵抗温度特性を有するTiO2であり、それは内部のコア構造と組み合わせて機能し、サーミスタ基板の抵抗温度特性が改善され、予見できない技術的効果が得られる。さらに、コア・シェル構造の感熱セラミック材料を使用することによって、サーミスタ基板の厚さを効果的に低減し、温度センサを超薄型にし、適用範囲を拡大する。 Temperature is a fundamental physical quantity, and in practice temperature measurement in life and production has become very common. A temperature sensor is a sensor that measures temperature and converts a change in temperature into a usable output signal. Temperature sensors are ubiquitous, in which thermosensitive materials are the core of temperature sensors that are very sensitive to changes in temperature, and the most widely used thermosensitive materials today include PTC (Positive Temperature Coefficient) Materials and NTC (Negative Temperature Coefficient) thermal materials. Positive temperature coefficient thermistors have been widely applied in various fields of the electronics industry due to a remarkable resistance change near the Curie temperature, and are currently the most produced thermosensitive elements. At present, the positive temperature coefficient thermosensitive material is based on barium titanate, whose figure of merit needs to be further increased, and the temperature sensor made of this material becomes thicker, which limits its specific application. With current technical solutions, barium titanate-based thermistor materials usually move the Curie point with a single element additive such as Pb, Sr, Y, Nb, achieve semiconductivity, increase lift-drag ratio, Then, the high voltage resistance is increased. In the technical solution of the present application, a Ba-Cu-Y-Ti-W-Mn-O-based PTC thermosensitive ceramic material having a core-shell structure is innovatively adopted, and the shell structure is specifically, a high TiO2 having electrical conductivity and resistance temperature characteristics, which works in combination with the internal core structure, improves the resistance temperature characteristics of the thermistor substrate and provides unpredictable technical effects. In addition, the use of a core-shell structured thermo-sensitive ceramic material effectively reduces the thickness of the thermistor substrate, makes the temperature sensor ultra-thin, and extends its application range.

コア構造に関して、この(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oは、BaCO、CuCO、Y、TiO、WO、MnCO粉末のボールミルで粉砕混合、仮焼成、および再びボールミル粉砕によって形成され、その粒径は5−50μmが好ましい。本出願の技術的解決手段では、このコア構造は革新的にBa−Cu−Y−Ti−W−Mn−O系セラミック材料に基づいて、ドーピングによって、材料のPTC効果が改善され、予見できない技術的効果が得られる。シェル構造に関して、このTiOは水熱法によって調製される。TiOは重要な半導体材料であり、化学性質が安定で、一般に光触媒性能を示し、充填剤や着色剤として光触媒自己洗浄材料、紙、ゴムなどの製品に使用され、本出願では、それを(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oと組み合わせ、TiOの誘電率が大きいため、材料のPTC効果が明らかに改善され、予見できない技術的効果が得られる。
実施例1
Regarding the core structure, this (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 is made of BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , WO 3 , and MnCO 3 powders are formed by pulverizing and mixing with a ball mill, calcining, and again pulverizing with a ball mill. In the technical solution of the present application, this core structure is based on an innovative Ba-Cu-Y-Ti-W-Mn-O-based ceramic material. Effect is obtained. Regarding the shell structure, this TiO 2 is prepared by a hydrothermal method. TiO 2 is an important semiconductor material, has stable chemical properties, generally exhibits photocatalytic performance, and is used as a filler or a coloring agent in products such as photocatalytic self-cleaning materials, paper, rubber, and the like. In combination with Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 , the dielectric constant of TiO 2 is large, so that the PTC effect of the material is clearly improved. Unexpected technical effects are obtained.
Example 1

前記温度センサはサーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板は、Ba−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oであり、シェル構造はTiOである。この(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oは、BaCO、CuCO、Y、TiO、WO、MnCO粉末のボールミルで混合、仮焼成、再ボールミル粉砕によって形成され、その粒径は5μmが好ましい。 The temperature sensor is a thermistor temperature sensor including a thermistor substrate, wherein the thermistor substrate is a PTC thermosensitive ceramic material having a core-shell structure based on Ba-Cu-Y-Ti-W-Mn-O. The core structure is (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 , and the shell structure is TiO 2 . This (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 is made of BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , WO 3 , The MnCO 3 powder is formed by mixing with a ball mill, calcining, and re-ball milling.

本出願に記載のサーミスタ基板の調製手順は次の通りである。 The preparation procedure of the thermistor substrate described in the present application is as follows.

手順1、化学量論比に従ってBaCO、CuCO、Y、TiO、MnCO粉末を量り、湿式ボールミル粉砕により粉末を均一に混合して粉末を精製し、粉末とジルコニウムボールの質量比を1:3に制御し、粉末と脱イオン水の質量比を1:2に制御し、ボールミル粉砕時間を10hとし、回転速度を350rpmに設定し、ボールミル粉砕したスラリーをドライボックスに入れ、90°Cで10h乾燥し、乾燥した粉末を1158°Cで3h仮焼成する。その後、WO3を添加し、1回目と同様に、2回目のボールミル粉砕および乾燥を行う。2回目のボールミル粉砕後、5μmの粒径を篩い分けて、粉末Aを得る。脱イオン水、乳化剤ドデシルベンゼンスルホン酸アンモニウム、ポリオキシエチレンオクチルフェノールエーテルを機械攪拌、還流冷却器、窒素保護および温度計を備えた反応容器中に加え、水浴中で70°Cまで加熱し、攪拌して溶解させ、予備の乳化系を得る。シランカップリング剤KH−570と前手順の粉末Aをスチレンに添加し、20min超音波処理した後に乳化系を添加し、30分間乳化した後に開始剤過硫酸アンモニウムと緩衝剤NaHCOを添加し、87°Cに昇温させて5h保温し、さらに92°Cに昇温させて1h保温した後、反応を停止させ、解乳化し、お湯で洗浄を繰り返し、乾燥してPS/粉末Aを得る。フラスコに脱イオン水を加え、次いで適量のドデシルベンゼンスルホン酸ナトリウムとポリビニルピロリドンを加え、塩酸でpH値を2.7に調整し、次いで撹拌しながらテトラブチルチタネートと無水エタノールの混合溶液を加え、次いで硝酸コバルト五水和物と硝酸セリウムの無水エタノール溶液を加え、1h撹拌した後、上記のPS/粉末Aを添加し、アンモニア水でpH値を調整し、60°Cで24h放置し、蒸留水と無水エタノールで洗浄し、乾燥してTiO/PS/粉末Aを得、PSを除去し、600°Cで5h焼成してTiO/粉末Aを得る。 Procedure 1, BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , MnCO 3 powders were weighed according to the stoichiometric ratio, and the powders were uniformly mixed by wet ball milling to purify the powders, and the mass of the powders and zirconium balls The ratio was controlled to 1: 3, the mass ratio of powder to deionized water was controlled to 1: 2, the ball milling time was 10 h, the rotation speed was set to 350 rpm, and the ball milled slurry was put in a dry box. After drying at 90 ° C. for 10 hours, the dried powder is calcined at 1158 ° C. for 3 hours. Thereafter, WO3 is added, and a second ball mill pulverization and drying are performed as in the first time. After the second ball mill pulverization, a particle size of 5 μm is sieved to obtain powder A. Add deionized water, emulsifier ammonium dodecylbenzenesulfonate, polyoxyethylene octylphenol ether into a reaction vessel equipped with mechanical stirring, reflux condenser, nitrogen protection and thermometer, heat to 70 ° C in a water bath and stir. To obtain a preliminary emulsified system. The silane coupling agent KH-570 and the powder A of the preceding procedure were added to styrene, and after sonication for 20 minutes, an emulsification system was added. After emulsification for 30 minutes, ammonium persulfate initiator and a buffer NaHCO 3 were added. After raising the temperature to ° C and keeping the temperature for 5 hours, further raising the temperature to 92 ° C and keeping the temperature for 1 hour, the reaction was stopped, demulsification, repeated washing with hot water, and dried to obtain PS / powder A. Add deionized water to the flask, then add appropriate amounts of sodium dodecylbenzenesulfonate and polyvinylpyrrolidone, adjust the pH to 2.7 with hydrochloric acid, then add a mixed solution of tetrabutyl titanate and absolute ethanol with stirring, Then, an anhydrous ethanol solution of cobalt nitrate pentahydrate and cerium nitrate was added, and after stirring for 1 hour, the above PS / powder A was added, the pH value was adjusted with aqueous ammonia, and the solution was left at 60 ° C. for 24 hours, and distilled. washed with water and absolute ethanol, and dried to obtain a TiO 2 / PS / powder a, to remove the PS, to obtain a TiO 2 / powder a and 5h calcined at 600 ° C.

手順2、粘着剤として上記で調製したTiO/粉末Aに7wt.%のPVAを添加し、180Mpaの圧力下で矩形にプレスする。 Step 2, 7 wt on TiO 2 / powder A prepared in the above as an adhesive. % PVA is added and pressed into a rectangle under a pressure of 180 Mpa.

手順3、焼結プロセスとして、2°C/minの速度で530°Cまで昇温させ、530°Cで1h保温し、3°C/minの速度で630°Cまで昇温させ、630°Cで3h保温し、さらに5°C/minの速度で1360°Cまで昇温させ、1360°Cで4h保温し、次いで室温まで冷却し、前記サーミスタ基板を得る。 Step 3: As a sintering process, the temperature is raised to 530 ° C at a rate of 2 ° C / min, kept at 530 ° C for 1 hour, and raised to 630 ° C at a rate of 3 ° C / min, 630 ° The temperature is kept at C for 3 hours, the temperature is further raised to 1360 ° C. at a rate of 5 ° C./min, the temperature is kept at 1360 ° C. for 4 hours, and then cooled to room temperature to obtain the thermistor substrate.

測定により、本願で得られたサーミスタ基板の室温抵抗率は2.52×10Ω・mであり、キュリー温度は126℃である。
実施例2
According to the measurement, the room temperature resistivity of the thermistor substrate obtained in the present application is 2.52 × 10 6 Ω · m, and the Curie temperature is 126 ° C.
Example 2

前記温度センサはサーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板は、Ba−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oであり、シェル構造はTiOである。この(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oは、BaCO、CuCO、Y、TiO、WO、MnCO粉末のボールミルで混合、仮焼成、再ボールミル粉砕によって形成され、その粒径は25μmが好ましい。 The temperature sensor is a thermistor temperature sensor including a thermistor substrate, wherein the thermistor substrate is a PTC thermosensitive ceramic material having a core-shell structure based on Ba-Cu-Y-Ti-W-Mn-O. The core structure is (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 , and the shell structure is TiO 2 . This (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 is made of BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , WO 3 , The MnCO 3 powder is formed by mixing with a ball mill, calcining, and re-ball milling.

本出願に記載のサーミスタ基板の調製手順は次の通りである。 The preparation procedure of the thermistor substrate described in the present application is as follows.

手順1、化学量論比に従ってBaCO、CuCO、Y、TiO、MnCO粉末を量り、湿式ボールミル粉砕により粉末を均一に混合して粉末を精製し、粉末とジルコニウムボールの質量比を1:3に制御し、粉末と脱イオン水の質量比を1:2に制御し、ボールミル粉砕時間を10hとし、回転数を350rpmに設定し、ボールミル粉砕したスラリーをドライボックスに入れ、90°Cで10h乾燥し、乾燥した粉末を1158°Cで3h仮焼成する。その後、WO3を添加し、1回目と同様に、2回目のボールミル粉砕および乾燥を行う。2回目のボールミル粉砕後、5μmの粒径を篩い分けて、粉末Aを得る。脱イオン水、乳化剤ドデシルベンゼンスルホン酸アンモニウム、ポリオキシエチレンオクチルフェノールエーテルを機械攪拌、還流冷却器、窒素保護および温度計を備えた反応容器中に加え、水浴中で70°Cまで加熱し、攪拌して溶解させ、予備の乳化系を得る。シランカップリング剤KH−570と前手順の粉末Aをスチレンに添加し、20min超音波処理した後に乳化系を添加し、30分間乳化した後に開始剤過硫酸アンモニウムと緩衝剤NaHCOを添加し、87°Cに昇温させて5h保温し、さらに92°Cに昇温させて1h保温した後、反応を停止させ、解乳化し、お湯で洗浄を繰り返し、乾燥してPS/粉末Aを得る。フラスコに脱イオン水を加え、次いで適量のドデシルベンゼンスルホン酸ナトリウムとポリビニルピロリドンを加え、塩酸でpH値を2.7に調整し、次いで撹拌しながらテトラブチルチタネートと無水エタノールの混合溶液を加え、次いで硝酸コバルト五水和物と硝酸セリウムの無水エタノール溶液を加え、1h撹拌した後、上記のPS/粉末Aを添加し、アンモニア水でpH値を調整し、60°Cで24h放置し、蒸留水と無水エタノールで洗浄し、乾燥してTiO/PS/粉末Aを得、PSを除去しし、600°Cで5h焼成してTiO/粉末Aを得る。 Procedure 1, BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , MnCO 3 powders were weighed according to the stoichiometric ratio, and the powders were uniformly mixed by wet ball milling to purify the powders, and the mass of the powders and zirconium balls The ratio was controlled to 1: 3, the mass ratio of powder and deionized water was controlled to 1: 2, the ball milling time was set to 10 h, the number of revolutions was set to 350 rpm, and the ball milled slurry was put in a dry box. After drying at 90 ° C. for 10 hours, the dried powder is calcined at 1158 ° C. for 3 hours. Thereafter, WO3 is added, and a second ball mill pulverization and drying are performed as in the first time. After the second ball mill pulverization, a particle size of 5 μm is sieved to obtain powder A. Add deionized water, emulsifier ammonium dodecylbenzenesulfonate, polyoxyethylene octylphenol ether into a reaction vessel equipped with mechanical stirring, reflux condenser, nitrogen protection and thermometer, heat to 70 ° C in a water bath and stir. To obtain a preliminary emulsified system. The silane coupling agent KH-570 and the powder A of the preceding procedure were added to styrene, and after sonication for 20 minutes, an emulsification system was added. After emulsification for 30 minutes, ammonium persulfate initiator and a buffer NaHCO 3 were added. After raising the temperature to ° C and keeping the temperature for 5 hours, further raising the temperature to 92 ° C and keeping the temperature for 1 hour, the reaction was stopped, demulsification, repeated washing with hot water, and dried to obtain PS / powder A. Add deionized water to the flask, then add appropriate amounts of sodium dodecylbenzenesulfonate and polyvinylpyrrolidone, adjust the pH to 2.7 with hydrochloric acid, then add a mixed solution of tetrabutyl titanate and absolute ethanol with stirring, Then, an anhydrous ethanol solution of cobalt nitrate pentahydrate and cerium nitrate was added, and after stirring for 1 hour, the above PS / powder A was added, the pH value was adjusted with aqueous ammonia, and the solution was left at 60 ° C. for 24 hours, and distilled. washed with water and absolute ethanol, and dried to obtain a TiO 2 / PS / powder a, and to remove the PS, to obtain a TiO 2 / powder a and 5h calcined at 600 ° C.

手順2、粘着剤として上記で調製したTiO/粉末Aに7wt.%のPVAを添加し、180Mpaの圧力下で矩形にプレスする。 Step 2, 7 wt on TiO 2 / powder A prepared in the above as an adhesive. % PVA is added and pressed into a rectangle under a pressure of 180 Mpa.

手順3、焼結プロセスとして、2°C/minの速度で530°Cまで昇温させ、530°Cで1h保温し、3°C/minの速度で630°Cまで昇温させ、630°Cで3h保温し、さらに5°C/minの速度で1360°Cまで昇温させ、1360°Cで4h保温し、次いで室温まで冷却し、前記サーミスタ基板を得る。 Step 3: As a sintering process, the temperature is raised to 530 ° C at a rate of 2 ° C / min, kept at 530 ° C for 1 hour, and raised to 630 ° C at a rate of 3 ° C / min, 630 ° The temperature is kept at C for 3 hours, the temperature is further raised to 1360 ° C. at a rate of 5 ° C./min, the temperature is kept at 1360 ° C. for 4 hours, and then cooled to room temperature to obtain the thermistor substrate.

測定により、本出願で得られたサーミスタ基板の室温抵抗率は2.42×10Ω・mであり、キュリー温度は126°Cである。
実施例3
According to the measurement, the room temperature resistivity of the thermistor substrate obtained in the present application is 2.42 × 10 6 Ω · m, and the Curie temperature is 126 ° C.
Example 3

前記温度センサはサーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板は、Ba−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.94W0.03Mn0.03)Oであり、シェル構造はTiOである。この(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oは、BaCO、CuCO、Y、TiO、WO、MnCO粉末のボールミルで混合、仮焼成、再ボールミル粉砕によって形成され、その粒径は50μmが好ましい。 The temperature sensor is a thermistor temperature sensor including a thermistor substrate, wherein the thermistor substrate is a PTC thermosensitive ceramic material having a core-shell structure based on Ba-Cu-Y-Ti-W-Mn-O. The core structure is (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94W 0.03 Mn 0.03 ) O 3 , and the shell structure is TiO 2 . This (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 is made of BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , WO 3 , MnCO 3 powder is formed by mixing in a ball mill, calcining, and re-ball milling, and its particle size is preferably 50 μm.

本出願に記載のサーミスタ基板の調製手順は次の通りである。 The preparation procedure of the thermistor substrate described in the present application is as follows.

手順1、化学量論比に従ってBCO、CuCO、Y、TiO、MnCO粉末を量り、湿式ボールミル粉砕により粉末を均一に混合して粉末を精製し、粉末とジルコニウムボールの質量比を1:3に制御し、粉末と脱イオン水の質量比を1:2に制御し、ボールミル粉砕時間を10hとし、回転速度を350rpmに設定し、ボールミル粉砕したスラリーをドライボックスに入れ、90°Cで10h乾燥し、乾燥した粉末を1158°Cで3h仮焼成する。その後、WO3を添加し、1回目と同様に、2回目のボールミル粉砕および乾燥を行う。2回目のボールミル粉砕後、5μmの粒径を篩い分けて、粉末Aを得る。脱イオン水、乳化剤ドデシルベンゼンスルホン酸アンモニウム、ポリオキシエチレンオクチルフェノールエーテルを機械攪拌、還流冷却器、窒素保護および温度計を備えた反応容器中に加え、水浴中で70°Cまで加熱し、攪拌して溶解させ、予備の乳化系を得る。シランカップリング剤KH−570と前手順の粉末Aをスチレンに添加し、20min超音波処理した後に乳化系を添加し、30分間乳化した後に開始剤過硫酸アンモニウムと緩衝剤NaHCOを添加し、87°Cに昇温させて5h保温し、さらに92°Cに昇温させて1h保温した後、反応を停止させ、解乳化し、お湯で洗浄を繰り返し、乾燥してPS/粉末Aを得る。フラスコに脱イオン水を加え、次いで適量のドデシルベンゼンスルホン酸ナトリウムとポリビニルピロリドンを加え、塩酸でpH値を2.7に調整し、次いで撹拌しながらテトラブチルチタネートと無水エタノールの混合溶液を加え、次いで硝酸コバルト五水和物と硝酸セリウムの無水エタノール溶液を加え、1h撹拌した後、上記のPS/粉末Aを添加し、アンモニア水でpH値を調整し、60°Cで24h放置し、蒸留水と無水エタノールで洗浄し、乾燥してTiO/PS/粉末Aを得、PSを除去しし、600°Cで5h焼成してTiO/粉末Aを得る。 Step 1, Weigh B a CO 3, CuCO 3, Y 2 O 3, TiO 2, MnCO 3 powder according to the stoichiometry ratio, the powder was uniformly mixed was purified powder by wet ball milling, the powder and the zirconium ball Is controlled to 1: 3, the mass ratio of powder and deionized water is controlled to 1: 2, the ball milling time is set to 10 h, the rotation speed is set to 350 rpm, and the ball milled slurry is placed in a dry box. The mixture is dried at 90 ° C. for 10 hours, and the dried powder is calcined at 1158 ° C. for 3 hours. Thereafter, WO3 is added, and a second ball mill pulverization and drying are performed as in the first time. After the second ball mill pulverization, 5 μm particle size is sieved to obtain powder A. Add deionized water, emulsifier ammonium dodecylbenzenesulfonate, polyoxyethylene octylphenol ether into a reaction vessel equipped with mechanical stirring, reflux condenser, nitrogen protection and thermometer, heat to 70 ° C in a water bath and stir. To obtain a preliminary emulsified system. Powder A pre-procedure with the silane coupling agent KH-570 was added to the styrene, was added to the emulsion system after 20min ultrasonic wave treatment, were added ammonium persulfate and a buffer NaHCO 3 after emulsification 30 min, 87 After raising the temperature to ° C and keeping it warm for 5 hours, further raising it to 92 ° C and keeping it warm for 1 hour, the reaction was stopped, demulsified, washed with hot water repeatedly, and dried to obtain PS / powder A. Add deionized water to the flask, then add appropriate amounts of sodium dodecylbenzenesulfonate and polyvinylpyrrolidone, adjust the pH to 2.7 with hydrochloric acid, then add a mixed solution of tetrabutyl titanate and absolute ethanol with stirring, Then, an anhydrous ethanol solution of cobalt nitrate pentahydrate and cerium nitrate was added, and after stirring for 1 hour, the above PS / powder A was added, the pH value was adjusted with aqueous ammonia, and the solution was left at 60 ° C. for 24 hours, and distilled. washed with water and absolute ethanol, and dried to obtain a TiO 2 / PS / powder a, and to remove the PS, to obtain a TiO 2 / powder a and 5h calcined at 600 ° C.

手順2、粘着剤として上記で調製したTiO/粉末Aに7wt.%のPVAを添加し、180Mpaの圧力下で矩形にプレスする。 Step 2, 7 wt on TiO 2 / powder A prepared in the above as an adhesive. % PVA is added and pressed into a rectangle under a pressure of 180 Mpa.

手順3、焼結プロセスとして、2°C/minの速度で530°Cまで昇温させ、530°Cで1h保温し、3°C/minの速度で630°Cまで昇温させ、630°Cで3h保温し、さらに5°C/minの速度で1360°Cまで昇温させ、1360°Cで4h保温し、次いで室温まで冷却し、前記サーミスタ基板を得る。 Step 3: As a sintering process, the temperature is raised to 530 ° C at a rate of 2 ° C / min, kept at 530 ° C for 1 hour, and raised to 630 ° C at a rate of 3 ° C / min, 630 ° The temperature is kept at C for 3 hours, the temperature is further raised to 1360 ° C. at a rate of 5 ° C./min, the temperature is kept at 1360 ° C. for 4 hours, and then cooled to room temperature to obtain the thermistor substrate.

測定により、本出願で得られたサーミスタ基板の室温抵抗率は2.65×10Ω・mであり、キュリー温度は126°Cである。 According to the measurement, the room temperature resistivity of the thermistor substrate obtained in the present application is 2.65 × 10 6 Ω · m, and the Curie temperature is 126 ° C.

上記は本発明の好ましい実施例に過ぎず、本発明を制限するためのものではなく、本発明の精神及び原則においてなされたあらゆる変更、等価置換及び改良等は、本発明の保護範囲に含まれるはずである。
The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and any changes, equivalent substitutions, improvements, etc. made in the spirit and principle of the present invention are included in the protection scope of the present invention. Should be.

Claims (8)

中央処理装置を含む新型住宅環境測定装置であって、前記中央処理装置には通信ユニット、環境測定システムおよび自動制御処理操作装置が接続され、前記通信ユニットにはさらに受信端末が接続され、
前記環境測定システムは二酸化炭素検出器と、一酸化炭素検出器と、メタン検出器と、酸素含有量検出器と、ダスト含有量検出器と、スモークセンサと、湿度センサと、温度センサと、漏水検知装置と、漏電検出装置とを備え、前記受信端末は、家庭内情報表示端末およびインテリジェント端末を備え、前記自動制御処理操作装置は、自動止水装置と、自動スプリンクラーと、自動停電装置とを備え、
前記温度センサはサーミスタ基板を含むサーミスタ温度センサであり、前記サーミスタ基板はBa−Cu−Y−Ti−W−Mn−Oに基づくコア・シェル構造のPTC感熱セラミック材料であり、具体的には、コア構造は(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)Oであり、シェル構造はTiOである、ことを特徴とする新型住宅環境測定装置。
A new residential environment measurement device including a central processing unit, wherein the central processing unit is connected to a communication unit, an environment measurement system and an automatic control processing operation device, and the communication unit is further connected to a receiving terminal,
The environment measurement system includes a carbon dioxide detector, a carbon monoxide detector, a methane detector, an oxygen content detector, a dust content detector, a smoke sensor, a humidity sensor, a temperature sensor, and water leakage. A receiving device, a home information display terminal and an intelligent terminal, and the automatic control processing operation device includes an automatic water stop device, an automatic sprinkler, and an automatic power failure device. Prepare,
The temperature sensor is a thermistor temperature sensor including a thermistor substrate, the thermistor substrate is a core-shell structure PTC thermosensitive ceramic material based on Ba-Cu-Y-Ti-W-Mn-O, specifically, The new type characterized in that the core structure is (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 and the shell structure is TiO 2. Housing environment measuring device.
前記通信ユニットは、ローカルエリアネットワーク通信モジュールおよびリモートネットワーク通信モジュールを備える、ことを特徴とする請求項1に記載の新型住宅環境測定装置   The new home environment measuring device according to claim 1, wherein the communication unit includes a local area network communication module and a remote network communication module. 前記ローカルエリアネットワーク通信モジュールは中央処理装置および家庭内情報表示端末に接続される、ことを特徴とする請求項2に記載の新型住宅環境測定装置。   The new home environment measuring device according to claim 2, wherein the local area network communication module is connected to a central processing unit and a home information display terminal. 前記リモートネットワーク通信モジュールはインテリジェント端末に接続される、ことを特徴とする請求項2に記載の新型住宅環境測定装置。   The new home environment measuring device according to claim 2, wherein the remote network communication module is connected to an intelligent terminal. 前記インテリジェント端末にはさらに警報装置一が接続され、前記ローカルエリアネットワーク通信モジュールにはさらに警報装置二が接続される、ことを特徴とする請求項4に記載の新型住宅環境測定装置。   The new residential environment measuring device according to claim 4, wherein an alarm device is further connected to the intelligent terminal, and an alarm device 2 is further connected to the local area network communication module. 温度センサの中で、前記コア構造(Ba0.985Cu0.0120.003)(Ti0.940.03Mn0.03)OはBaCO、CuCO、Y、TiO、WO、MnCO粉末のボールミルで混合、仮焼成、再ボールミル粉砕によって形成される、ことを特徴とする請求項1に記載の新型住宅環境測定装置。 Among the temperature sensors, the core structure (Ba 0.985 Cu 0.012 Y 0.003 ) (Ti 0.94 W 0.03 Mn 0.03 ) O 3 is BaCO 3 , CuCO 3 , Y 2 O 3 , mixed with TiO 2, WO 3, MnCO 3 powder ball mill, calcined, formed by re-ball-milling, new residential environment measurement apparatus according to claim 1, characterized in that. 前記コア構造の粒径は5−50μmである、ことを特徴とする請求項6に記載の新型住宅環境測定装置。   The new housing environment measuring apparatus according to claim 6, wherein the particle diameter of the core structure is 5 to 50 m. 前記サーミスタ基板の調製手順は次の通りであり、
手順1、化学量論比に従ってBaCO、CuCO、Y、TiO、MnCO粉末を量り、湿式ボールミル粉砕により粉末を均一に混合して粉末を精製し、粉末とジルコニウムボールの質量比を1:3に制御し、粉末と脱イオン水の質量比を1:2に制御し、ボールミル粉砕時間を10hとし、回転速度を350rpmに設定し、ボールミル粉砕したスラリーをドライボックスに入れ、90°Cで10h乾燥し、乾燥した粉末を1158°Cで3h仮焼成し、
その後、WO3を添加し、1回目と同様に、2回目のボールミル粉砕および乾燥を行い、
2回目のボールミル粉砕後、5μmの粒径を篩い分けて、粉末Aを得、
脱イオン水、乳化剤ドデシルベンゼンスルホン酸アンモニウム、ポリオキシエチレンオクチルフェノールエーテルを機械攪拌、還流冷却器、窒素保護および温度計を備えた反応容器中に加え、水浴中で70°Cまで加熱し、攪拌して溶解させ、予備の乳化系を得、
シランカップリング剤KH−570と前手順の粉末Aをスチレンに添加し、20min超音波処理した後に乳化系を添加し、30分間乳化した後に開始剤過硫酸アンモニウムと緩衝剤NaHCOを添加し、87°Cに昇温させて5h保温し、さらに92°Cに昇温させて1h保温した後、反応を停止させ、解乳化し、お湯で洗浄を繰り返し、乾燥してPS/粉末Aを得、
フラスコに脱イオン水を加え、次いで適量のドデシルベンゼンスルホン酸ナトリウムとポリビニルピロリドンを加え、塩酸でpH値を2.7に調整し、次いで撹拌しながらテトラブチルチタネートと無水エタノールの混合溶液を加え、次いで硝酸コバルト五水和物と硝酸セリウムの無水エタノール溶液を加え、1h撹拌した後、上記のPS/粉末Aを添加し、アンモニア水でpH値を調整し、60°Cで24h放置し、蒸留水と無水エタノールで洗浄し、乾燥してTiO/PS/粉末Aを得、PSを除去しし、600°Cで5h焼成してTiO/粉末Aを得、
手順2、粘着剤として上記で調製したTiO/粉末Aに7wt.%のPVAを添加し、180Mpaの圧力下で矩形にプレスし、
手順3、焼結プロセスとして、2°C/minの速度で530°Cまで昇温させ、530°Cで1h保温し、3°C/minの速度で630°Cまで昇温させ、630°Cで3h保温し、さらに5°C/minの速度で1360°Cまで昇温させ、1360°Cで4h保温し、次いで室温まで冷却し、前記サーミスタ基板を得る、
ことを特徴とする請求項6に記載の新型住宅環境測定装置。
The preparation procedure of the thermistor substrate is as follows,
Procedure 1, BaCO 3 , CuCO 3 , Y 2 O 3 , TiO 2 , MnCO 3 powders were weighed according to the stoichiometric ratio, and the powders were uniformly mixed by wet ball milling to purify the powders, and the mass of the powders and zirconium balls The ratio was controlled to 1: 3, the mass ratio of powder to deionized water was controlled to 1: 2, the ball milling time was 10 h, the rotation speed was set to 350 rpm, and the ball milled slurry was put in a dry box. After drying at 90 ° C. for 10 hours, the dried powder is calcined at 1158 ° C. for 3 hours,
Thereafter, WO3 was added, and a second ball mill pulverization and drying were performed as in the first time,
After the second ball mill pulverization, 5 μm particle size is sieved to obtain powder A,
Add deionized water, emulsifier ammonium dodecylbenzenesulfonate, polyoxyethylene octylphenol ether into a reaction vessel equipped with mechanical stirring, reflux condenser, nitrogen protection and thermometer, heat to 70 ° C in a water bath and stir. To obtain a preliminary emulsification system,
The silane coupling agent KH-570 and the powder A of the preceding procedure were added to styrene, and after sonication for 20 minutes, an emulsification system was added. After emulsification for 30 minutes, ammonium persulfate initiator and a buffer NaHCO 3 were added. After raising the temperature to 5 ° C. and keeping it warm for 5 hours, further raising it to 92 ° C. and keeping it warm for 1 hour, the reaction was stopped, demulsification, repeated washing with hot water, and dried to obtain PS / powder A.
Add deionized water to the flask, then add appropriate amounts of sodium dodecylbenzenesulfonate and polyvinylpyrrolidone, adjust the pH to 2.7 with hydrochloric acid, then add a mixed solution of tetrabutyl titanate and absolute ethanol with stirring, Then, an anhydrous ethanol solution of cobalt nitrate pentahydrate and cerium nitrate was added, and after stirring for 1 hour, the above PS / powder A was added, the pH value was adjusted with aqueous ammonia, and the solution was left at 60 ° C. for 24 hours, and distilled. After washing with water and anhydrous ethanol and drying, TiO 2 / PS / powder A was obtained, PS was removed and calcined at 600 ° C. for 5 hours to obtain TiO 2 / powder A,
Step 2, 7 wt on TiO 2 / powder A prepared in the above as an adhesive. % PVA, pressed into a rectangle under a pressure of 180 MPa,
Step 3: As a sintering process, the temperature is raised to 530 ° C at a rate of 2 ° C / min, kept at 530 ° C for 1 hour, and raised to 630 ° C at a rate of 3 ° C / min, 630 ° C for 3 h, further increase the temperature to 1360 ° C. at a rate of 5 ° C./min, keep the temperature at 1360 ° C. for 4 h, and then cool to room temperature to obtain the thermistor substrate.
The new housing environment measuring device according to claim 6, wherein:
JP2019065205A 2018-08-06 2019-03-29 New housing environment measuring device Expired - Fee Related JP6584704B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810886702.2 2018-08-06
CN201810886702.2A CN108981820A (en) 2018-08-06 2018-08-06 A kind of novel household environmental detection set

Publications (2)

Publication Number Publication Date
JP6584704B1 JP6584704B1 (en) 2019-10-02
JP2020024663A true JP2020024663A (en) 2020-02-13

Family

ID=64554959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065205A Expired - Fee Related JP6584704B1 (en) 2018-08-06 2019-03-29 New housing environment measuring device

Country Status (2)

Country Link
JP (1) JP6584704B1 (en)
CN (1) CN108981820A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110521A (en) * 1995-10-13 1997-04-28 Matsushita Electric Ind Co Ltd Semiconductor ceramic composition and ptc thermistor
JP2005107796A (en) * 2003-09-30 2005-04-21 Daiwa House Ind Co Ltd House environment information management system, house environment information data management device, house environment information data management method and house environment information data management program
JP2012181814A (en) * 2011-02-10 2012-09-20 Hochiki Corp Alarm cooperation system, alarm cooperation method and alarm device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305196A (en) * 2000-11-15 2001-07-25 中国科学院新疆物理研究所 Wafer-type thermosensitive oxide resistor
DE102009049404B4 (en) * 2009-10-14 2022-08-18 Tdk Electronics Ag Ceramic material, method for producing the ceramic material and resistance component comprising the ceramic material
CN102219479B (en) * 2011-04-21 2013-04-17 西安交通大学 Negative temperature coefficient (NTC) material utilized at high temperature and preparation method thereof
CN102382322B (en) * 2011-08-10 2013-05-15 陕西师范大学 Polystyrene/barium titanate composite microsphere
CN206075025U (en) * 2016-04-29 2017-04-05 黄山硕客家居有限公司 A kind of novel household environmental detection set
CN106012104B (en) * 2016-05-23 2018-04-03 同济大学 A kind of one-step synthesis method one-dimensional nucleocapsid structure BaTiO3@Al2O3Preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110521A (en) * 1995-10-13 1997-04-28 Matsushita Electric Ind Co Ltd Semiconductor ceramic composition and ptc thermistor
JP2005107796A (en) * 2003-09-30 2005-04-21 Daiwa House Ind Co Ltd House environment information management system, house environment information data management device, house environment information data management method and house environment information data management program
JP2012181814A (en) * 2011-02-10 2012-09-20 Hochiki Corp Alarm cooperation system, alarm cooperation method and alarm device

Also Published As

Publication number Publication date
CN108981820A (en) 2018-12-11
JP6584704B1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CN105527325B (en) Humidity sensor based on tin dioxide/graphene-like molybdenum disulfide film
Sahoo et al. CaTiO 3 nano ceramic for NTCR thermistor based sensor application
WO2019096335A1 (en) Composite thermistor material, and preparation method therefor and application thereof
CN107056279A (en) Single donor doping positive temperature coefficient thermal sensitive ceramic and preparation method thereof
Shukla et al. Study of electrical properties of La 3+/Mn 4+-modified PbTiO 3 nanoceramics
TW524787B (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
CN103354142B (en) Motor protection negative temperature coefficient NTC themistor and manufacture method thereof
Omari et al. Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors
WO2001016966A1 (en) Thermistor device
JPS61260605A (en) Ceramic humidity sensor
JP2020024663A (en) New type housing environment measurement device
CN108329015B (en) Doped modified nickel oxide-based NTC (negative temperature coefficient) thermistor material and preparation method thereof
JPH0338230B2 (en)
Ke et al. Structural and electric properties of barium strontium titanate based ceramic composite as a humidity sensor
CN102249649A (en) Thermal sensitive ceramic and preparation method thereof
CN108585793A (en) A kind of semiconductor ceramic material and preparation method thereof
CN104844163A (en) High resistance and high B value NTC thermal sensitive ceramic material and preparation method thereof
CN109085781A (en) A kind of home environment detection device
CN102953059A (en) Manufacture method of acetone gas sensitive sensor based on titanium dioxide doped by zinc oxide
Suman et al. Impedance Analysis of Pb 2 Sb 3 LaTi 5 O 18 Ceramic
KR100605289B1 (en) Method of making vanadium dioxide film and homoiothermal temperature switch having same film
CN102701731B (en) Novel thermosensitive ceramic material used for temperature detector
KR20160118730A (en) Fabrication method and its structure of temperature sensor using vanadium oxide
CN107915482A (en) Ceramic electrical resistance body thermistor material and preparation method thereof
CN108871452A (en) Domestic environment detection system based on many reference amounts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees