JP2020016313A - Speed reduction device - Google Patents

Speed reduction device Download PDF

Info

Publication number
JP2020016313A
JP2020016313A JP2018141084A JP2018141084A JP2020016313A JP 2020016313 A JP2020016313 A JP 2020016313A JP 2018141084 A JP2018141084 A JP 2018141084A JP 2018141084 A JP2018141084 A JP 2018141084A JP 2020016313 A JP2020016313 A JP 2020016313A
Authority
JP
Japan
Prior art keywords
output member
bolts
bolt
reduction gear
driven member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018141084A
Other languages
Japanese (ja)
Inventor
悠朗 石田
Hiroaki Ishida
悠朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2018141084A priority Critical patent/JP2020016313A/en
Publication of JP2020016313A publication Critical patent/JP2020016313A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

To provide a speed reduction device capable of reducing an inertial load of an output member.SOLUTION: A speed reduction device (1) comprises a speed reduction mechanism, and an output member (29) for outputting rotation whose speed is reduced by the speed reduction mechanism. The output member (29) and a driven member (62) are coupled to each other by plural bolts (B1). Adhesive is applied to a coupling face of the output member (29) and the driven member (62). A relationship between a total sum X[mm] of a product of PCD radiuses and effective cross section areas of the plural bolts (B1) and an acceleration time peak torque Y[Nm] is Y>0.024×X.SELECTED DRAWING: Figure 3

Description

本発明は、減速装置に関する。   The present invention relates to a reduction gear transmission.

特許文献1の図1には、被駆動部材(15)に回転運動を伝達する減速装置(G4)が示されている。減速装置(G4)は、減速された回転運動を出力する出力部材(34)を備え、出力部材(34)は、ボルト(44)を介して被駆動部材(15)と連結されている。   FIG. 1 of Patent Document 1 shows a reduction gear (G4) that transmits a rotational motion to a driven member (15). The speed reducer (G4) includes an output member (34) that outputs a reduced rotational motion, and the output member (34) is connected to the driven member (15) via a bolt (44).

特開2014−161952号公報JP 2014-161952 A

一般に、減速装置の出力部材と被駆動部材とは、これらの間で滑りが生じないよう、多数のボルトが使用されて強固に連結される。しかしながら、多数のボルトは、大きな重量を有することから、出力部材の慣性負荷(負荷の慣性モーメント)を大きくする。モータから減速装置へ回転運動を入力する場合、出力部材の慣性負荷の増大は、モータの特性に影響を及ぼし、モータの消費電力を増加させる。   Generally, the output member and the driven member of the reduction gear transmission are firmly connected by using a number of bolts so that no slippage occurs between them. However, since many bolts have a large weight, they increase the inertial load (moment of inertia of load) of the output member. When a rotational motion is input from the motor to the speed reducer, an increase in the inertial load of the output member affects the characteristics of the motor and increases the power consumption of the motor.

本発明の目的は、出力部材の慣性負荷を小さくすることのできる減速装置を提供することである。   An object of the present invention is to provide a speed reducer capable of reducing the inertial load of an output member.

本発明は、減速機構と、前記減速機構により減速された回転を出力する出力部材とを備え、複数のボルトによって前記出力部材と被駆動部材とが連結される減速装置であって、
前記出力部材と前記被駆動部材との連結面に接着剤が塗布され、
前記複数のボルトのPCD半径と有効断面積との積の総和X[mm]と、加速時ピークトルクY[Nm]との関係が、
Y > 0.024 × X

Figure 2020016313
である構成とした。 The present invention is a reduction gear transmission, comprising: a reduction mechanism, and an output member that outputs rotation reduced by the reduction mechanism, wherein the output member and the driven member are connected by a plurality of bolts,
An adhesive is applied to a connection surface between the output member and the driven member,
The relationship between the sum X [mm 3 ] of the product of the PCD radius of the plurality of bolts and the effective sectional area and the peak torque during acceleration Y [Nm] is as follows:
Y> 0.024 × X
Figure 2020016313
Was adopted.

本発明によれば、出力部材の慣性負荷を小さくできるという効果が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the effect that the inertial load of an output member can be reduced is acquired.

本発明の実施形態1に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。It is a sectional view (A) showing a reduction gear concerning a first embodiment of the present invention, and an enlarged drawing (B) of a part thereof. 実施形態1の減速装置を軸方向に負荷側から見た平面図である。It is the top view which looked at the reduction gear transmission of Embodiment 1 from the load side in the axial direction. 被駆動部材が連結された実施形態1の減速装置を示す断面図である。It is sectional drawing which shows the reduction gear of Embodiment 1 with which the driven member was connected. 接着層の厚さと剪断強度との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive layer and shear strength. 既存の複数種類の減速装置についてボルト連結部の特性値と加速時ピークトルクとの関係を示したグラフである。It is the graph which showed the relationship between the characteristic value of the bolt connection part, and the peak torque at the time of acceleration about the existing several types of reduction gears. 加速時ピークトルクを満たす接着面積の比率を示すコンター図を示す。The contour diagram which shows the ratio of the adhesion area which satisfies the peak torque at the time of acceleration is shown. 本発明の実施形態2に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。It is sectional drawing (A) which shows the speed reducer which concerns on Embodiment 2 of this invention, and its enlarged view (B). 実施形態2の減速装置を軸方向に負荷側から見た平面図である。It is the top view which looked at the reduction gear of Embodiment 2 from the load side in the axial direction. 本発明の実施形態3に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。It is sectional drawing (A) which shows the reduction gear which concerns on Embodiment 3 of this invention, and its enlarged view (B). 実施形態3の減速装置を軸方向に負荷側から見た平面図である。It is the top view which looked at the reduction gear of Embodiment 3 from the load side in the direction of an axis.

以下、本発明の実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。本明細書では、回転軸O1に沿った方向を軸方向、回転軸O1から垂直な方向を径方向、回転軸O1を中心とする回転方向を周方向と定義する。図1は、図2のA−A線断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view (A) showing a reduction gear transmission according to Embodiment 1 of the present invention, and an enlarged view (B) of a part thereof. In this specification, a direction along the rotation axis O1 is defined as an axial direction, a direction perpendicular to the rotation axis O1 is defined as a radial direction, and a rotation direction about the rotation axis O1 is defined as a circumferential direction. FIG. 1 is a sectional view taken along line AA of FIG.

実施形態1係る減速装置1は、回転運動が入力される入力軸10と、入力軸10の回転運動を減速する減速機構と、被駆動部材と連結されて減速された回転運動を出力する出力部材29とを備える。減速機構は、特に限定されないが、本実施形態においては、外歯歯車12が撓み変形されて回転運動が伝達される撓み噛合い式歯車機構である。減速機構は、入力軸10に設けられた起振体10A、起振体軸受15、外歯歯車12、第1内歯歯車22g、第2内歯歯車23g、軸受31、32及び主軸受33を備える。減速装置1は、更に、第1内歯歯車部材22、第2内歯歯車部材23、ケーシング24、第1カバー26及び第2カバー27を備える。これらのうち、第2内歯歯車部材23及び第2カバー27が、出力部材29に相当する。   The reduction gear transmission 1 according to the first embodiment includes an input shaft 10 to which a rotational motion is input, a reduction mechanism that reduces the rotational motion of the input shaft 10, and an output member that is connected to a driven member and outputs a reduced rotational motion. 29. Although the speed reduction mechanism is not particularly limited, in the present embodiment, the external gear 12 is a bending engagement type gear mechanism in which the rotational motion is transmitted by bending deformation. The speed reduction mechanism includes an exciter 10A, an exciter bearing 15, an external gear 12, a first internal gear 22g, a second internal gear 23g, bearings 31, 32, and a main bearing 33 provided on the input shaft 10. Prepare. The reduction gear transmission 1 further includes a first internal gear member 22, a second internal gear member 23, a casing 24, a first cover 26, and a second cover 27. Among them, the second internal gear member 23 and the second cover 27 correspond to the output member 29.

入力軸10は、中空軸状であり、回転軸O1に垂直な断面の外形が楕円状である起振体10Aと、起振体10Aの軸方向の両側に設けられ回転軸O1に垂直な断面の外形が円形である軸部10B、10Cとを有する。楕円状は、幾何学的に厳密な楕円である必要はなく、略楕円を含む。入力軸10は、回転軸O1を中心に回転する。   The input shaft 10 has a hollow shaft shape, and a vibrating body 10A whose cross section perpendicular to the rotation axis O1 has an elliptical outer shape, and a cross section provided on both axial sides of the vibration body 10A and perpendicular to the rotation axis O1. Have shaft portions 10B and 10C whose outer shape is circular. The elliptical shape does not need to be a geometrically exact ellipse, but includes a substantially elliptical shape. The input shaft 10 rotates around a rotation axis O1.

外歯歯車12は、可撓性を有する円筒状の部材であり、外周に歯が設けられている。   The external gear 12 is a flexible cylindrical member having teeth on the outer periphery.

起振体軸受15は、コロ軸受であり、起振体10Aと外歯歯車12との間に配置される。起振体10Aと外歯歯車12とは、起振体軸受15を介して、相対的に回転可能に互いに支持される。   The exciter bearing 15 is a roller bearing, and is disposed between the exciter 10 </ b> A and the external gear 12. The exciter 10 </ b> A and the external gear 12 are mutually supported via an exciter bearing 15 so as to be relatively rotatable.

第1内歯歯車22gと第2内歯歯車23gとは、軸方向に並んで外歯歯車12と噛合う。第1内歯歯車22gは、第1内歯歯車部材22の内周の一部に歯が設けられて構成される。第2内歯歯車23gは、第2内歯歯車部材23の内周の一部に歯が設けられて構成される。   The first internal gear 22g and the second internal gear 23g mesh with the external gear 12 side by side in the axial direction. The first internal gear 22g is configured by providing teeth on a part of the inner periphery of the first internal gear member 22. The second internal gear 23 g is configured by providing teeth on a part of the inner periphery of the second internal gear member 23.

ケーシング24は、第1内歯歯車部材22と連結され、第2内歯歯車部材23の外周側を覆う。ケーシング24と第2内歯歯車部材23とは、主軸受33を介して相対的に回転可能に互いが支持される。主軸受33は、例えばクロスローラ軸受である。   The casing 24 is connected to the first internal gear member 22 and covers the outer peripheral side of the second internal gear member 23. The casing 24 and the second internal gear member 23 are mutually supported via a main bearing 33 so as to be relatively rotatable. The main bearing 33 is, for example, a cross roller bearing.

第1カバー26は、第1内歯歯車部材22と連結され、入力軸10の反負荷側の外周部を覆う。反負荷側とは、軸方向のうち、被駆動部材が連結される側の反対側を意味する。第1カバー26は、軸受31を介して相対的に回転可能に入力軸10の軸部10Bを支持する。第2カバー27は、第2内歯歯車部材23と連結され、入力軸10の負荷側の外周部を覆う。負荷側とは、軸方向のうち、被駆動部材が連結される側を意味する。第2カバー27は、軸受32を介して相対的に回転可能に入力軸10の軸部10Cを支持する。軸受31、32は、例えば玉軸受である。   The first cover 26 is connected to the first internal gear member 22 and covers the outer peripheral portion of the input shaft 10 on the non-load side. The non-load side means the side opposite to the side to which the driven member is connected in the axial direction. The first cover 26 supports the shaft portion 10B of the input shaft 10 via a bearing 31 so as to be relatively rotatable. The second cover 27 is connected to the second internal gear member 23 and covers an outer peripheral portion of the input shaft 10 on the load side. The load side means a side to which the driven member is connected in the axial direction. The second cover 27 supports the shaft portion 10C of the input shaft 10 via a bearing 32 so as to be relatively rotatable. The bearings 31 and 32 are, for example, ball bearings.

<減速動作の説明>
図示略のモータ等から回転運動が入力され、入力軸10が回転すると、起振体10Aの運動が外歯歯車12に伝わる。このとき、外歯歯車12は、起振体10Aの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車12は、固定された第1内歯歯車22gと長軸部分で噛合っている。このため、外歯歯車12は起振体10Aと同じ回転速度で回転することはなく、外歯歯車12の内側で起振体10Aが相対的に回転する。そして、この相対的な回転に伴って、外歯歯車12は長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、入力軸10の回転周期に比例する。
<Description of deceleration operation>
When a rotational motion is input from a motor or the like (not shown) and the input shaft 10 rotates, the motion of the vibration generator 10 </ b> A is transmitted to the external gear 12. At this time, the external gear 12 is restricted to a shape along the outer peripheral surface of the vibration generator 10A, and is bent into an elliptical shape having a long axis portion and a short axis portion when viewed from the axial direction. Further, the external gear 12 meshes with the fixed first internal gear 22g at a long axis portion. For this reason, the external gear 12 does not rotate at the same rotational speed as the exciter 10A, and the exciter 10A relatively rotates inside the external gear 12. Then, with this relative rotation, the external gear 12 bends and deforms so that the long axis position and the short axis position move in the circumferential direction. The cycle of this deformation is proportional to the rotation cycle of the input shaft 10.

外歯歯車12が撓み変形する際、その長軸位置が移動することで、外歯歯車12と第1内歯歯車22gとの噛合う位置が回転方向に変化する。ここで、外歯歯車12の歯数が100で、第1内歯歯車22gの歯数が102だとすると、噛合う位置が一周するごとに、外歯歯車12と第1内歯歯車22gとの噛合う歯がずれていき、これにより外歯歯車12が回転(自転)する。上記の歯数であれば、入力軸10の回転運動は減速比100:2で減速されて外歯歯車12に伝達される。   When the external gear 12 bends and deforms, the position of its long axis moves, so that the position where the external gear 12 meshes with the first internal gear 22g changes in the rotational direction. Here, assuming that the number of teeth of the external gear 12 is 100 and the number of teeth of the first internal gear 22g is 102, the mesh between the external gear 12 and the first internal gear 22g every time the meshing position goes around once. The fitted teeth are shifted, whereby the external gear 12 rotates (rotates). If the number of teeth is the above, the rotational motion of the input shaft 10 is reduced at a reduction ratio of 100: 2 and transmitted to the external gear 12.

一方、外歯歯車12は第2内歯歯車23gとも噛合っているため、入力軸10の回転によって外歯歯車12と第2内歯歯車23gとの噛合う位置も回転方向に変化する。ここで、第2内歯歯車23gの歯数と外歯歯車12の歯数とが同数であるとすると、外歯歯車12と第2内歯歯車23gとは相対的に回転せず、外歯歯車12の回転運動が減速比1:1で第2内歯歯車23gへ伝達される。これらによって、入力軸10の回転運動が減速比100:2で減速されて、出力部材29(第2内歯歯車部材23及び第2カバー27)へ伝達され、この回転運動が被駆動部材62(図3)に出力される。   On the other hand, since the external gear 12 meshes with the second internal gear 23g, the position where the external gear 12 meshes with the second internal gear 23g also changes in the rotation direction by the rotation of the input shaft 10. Here, assuming that the number of teeth of the second internal gear 23g and the number of teeth of the external gear 12 are the same, the external gear 12 and the second internal gear 23g do not relatively rotate and the external gear 23g does not rotate. The rotational motion of the gear 12 is transmitted to the second internal gear 23g at a reduction ratio of 1: 1. As a result, the rotational motion of the input shaft 10 is reduced at a reduction ratio of 100: 2 and transmitted to the output member 29 (the second internal gear member 23 and the second cover 27), and the rotational motion is transmitted to the driven member 62 ( 3).

<出力部材の詳細>
図2は、実施形態1の減速装置を軸方向に負荷側から見た平面図である。図3は、被駆動部材が連結された実施形態1の減速装置を示す断面図である。図3の減速装置1の断面は、図2のB−B線断面部分に相当する。
<Details of output members>
FIG. 2 is a plan view of the reduction gear transmission of the first embodiment as viewed from the load side in the axial direction. FIG. 3 is a cross-sectional view illustrating the reduction gear transmission of Embodiment 1 to which the driven members are connected. A cross section of the reduction gear transmission 1 in FIG. 3 corresponds to a cross section taken along line BB in FIG.

出力部材29は、第2内歯歯車部材23と第2カバー27とが連結されて構成される。図2に示すように、出力部材29は、軸方向に延びる複数のボルト穴H1、H2を有する。さらに、第2カバー27は、軸方向に延びる複数のピン穴H3を有する。図2中、複数のボルト穴H1のうち1つのみに符号を付しているが、これと同一円周上に設けられた同一の大きさの穴もボルト穴H1である。ボルト穴H2及びピン穴H3についても同様に1つのみに符号を付すが、これらと同一円周上に設けられた同一の大きさの穴もボルト穴H2及びピン穴H3である。   The output member 29 is configured by connecting the second internal gear member 23 and the second cover 27. As shown in FIG. 2, the output member 29 has a plurality of bolt holes H1 and H2 extending in the axial direction. Further, the second cover 27 has a plurality of pin holes H3 extending in the axial direction. In FIG. 2, only one of the plurality of bolt holes H1 is denoted by a reference numeral, but holes of the same size provided on the same circumference as the holes are also the bolt holes H1. Similarly, only one of the bolt holes H2 and the pin hole H3 is denoted by the same reference numeral, and the holes of the same size provided on the same circumference are also the bolt hole H2 and the pin hole H3.

ボルト穴H1は、被駆動部材62を出力部材29に連結するためのものであり、図3に示すように、第2内歯歯車部材23と第2カバー27とに連通している。ボルト穴H1のうち、第2カバー27の穴部分はボルトB1の軸部を挿通する径を有し、第2内歯歯車部材23の穴部分には雌ネジが設けられている。   The bolt hole H1 is for connecting the driven member 62 to the output member 29, and communicates with the second internal gear member 23 and the second cover 27 as shown in FIG. Of the bolt holes H1, a hole portion of the second cover 27 has a diameter through which the shaft portion of the bolt B1 is inserted, and a female screw is provided in a hole portion of the second internal gear member 23.

複数のボルト穴H1は、図2に示すように、回転軸O1を中心とする同一円周上に、周方向において等間隔に設けられている。図2では、16個のボルト穴H1が設けられているが、本実施形態では、これらの一部(例えば4個)が被駆動部材62を連結するのに使用される。なお、ボルト穴H1は、回転軸O1を中心とする異なる円周上に設けられていてもよいし、周方向において異なる間隔で設けられていてもよい。使用されないボルト穴H1は、省略されてもよいし、雌ネジを有さない肉抜き穴に代替されて出力部材29の軽量化が図られてもよい。   As shown in FIG. 2, the plurality of bolt holes H1 are provided at equal intervals in the circumferential direction on the same circumference centered on the rotation axis O1. In FIG. 2, 16 bolt holes H <b> 1 are provided, but in the present embodiment, some of them (for example, 4) are used to connect the driven member 62. Note that the bolt holes H1 may be provided on different circles around the rotation axis O1, or may be provided at different intervals in the circumferential direction. The unused bolt hole H1 may be omitted, or may be replaced with a lightening hole having no female screw to reduce the weight of the output member 29.

ボルト穴H2は、第2内歯歯車部材23と第2カバー27とを連結するためのもので、図3に示すように、第2内歯歯車部材23と第2カバー27とに連通している。ボルト穴H2のうち、第2カバー27の穴部分は、ボルトB2の頭部を収容する空間と、ボルトB2の軸部を挿通する空間とを有する。ボルト穴H2のうち、第2内歯歯車部材23の穴部分には、雌ネジが設けられている。第2内歯歯車部材23と第2カバー27とは、ボルト穴H2を介して複数のボルトB2によって連結される。ボルトB2の頭部はボルト穴H2に収容され、第2カバー27の負荷側の端面から突出しない。ボルトB2による連結及びボルト穴H2は、省略されてもよい。   The bolt hole H2 is for connecting the second internal gear member 23 and the second cover 27, and communicates with the second internal gear member 23 and the second cover 27 as shown in FIG. I have. The hole portion of the second cover 27 in the bolt hole H2 has a space for accommodating the head of the bolt B2 and a space for inserting the shaft of the bolt B2. A female screw is provided in a hole portion of the second internal gear member 23 in the bolt hole H2. The second internal gear member 23 and the second cover 27 are connected by a plurality of bolts B2 via bolt holes H2. The head of the bolt B2 is housed in the bolt hole H2 and does not protrude from the load-side end face of the second cover 27. The connection by the bolt B2 and the bolt hole H2 may be omitted.

ピン穴H3は、第2内歯歯車部材23から第2カバー27を取り外す際に使用される。ピン穴H3は、省略されてもよい。   The pin hole H3 is used when removing the second cover 27 from the second internal gear member 23. The pin hole H3 may be omitted.

第2カバー27は、負荷側の面に、軸方向に凹み、接着剤が塗布される凹部27mを有する。凹部27mは、図2に示すように、複数のボルト穴H1の内接円よりも径方向の内方に位置する。凹部27mは、周方向に連なった環状の形態を有するが、周方向において複数に分割されていてもよい。さらに凹部27mは、回転軸O1からの距離及び径方向の幅が、周方向の何れの位置においても等しい形状を有しているが、周方向に沿って回転軸O1からの距離又は径方向の幅が変化する形状としてもよい。凹部27mの深さは、20μm以上かつ30μm以下である。   The second cover 27 has a concave portion 27m which is concave in the axial direction and is coated with an adhesive on a surface on the load side. The recess 27m is located radially inward of the inscribed circle of the plurality of bolt holes H1, as shown in FIG. The concave portion 27m has an annular shape connected in the circumferential direction, but may be divided into a plurality in the circumferential direction. Further, the recess 27m has a shape in which the distance from the rotation axis O1 and the width in the radial direction are equal at any position in the circumferential direction, but the distance from the rotation axis O1 along the circumferential direction or the radial direction. The width may be changed. The depth of the recess 27m is not less than 20 μm and not more than 30 μm.

<被駆動部材と出力部材との連結構造>
被駆動部材62と出力部材29との連結は、複数のボルトB1の締め付けと、接着剤による接着により連結される。
<Connection structure between driven member and output member>
The connection between the driven member 62 and the output member 29 is performed by tightening a plurality of bolts B1 and bonding with an adhesive.

図3に示すように、ボルトB1はボルト穴H1に締め付けられて、被駆動部材62と第2カバー27と第2内歯歯車部材23とを連結する。本実施形態においては、4本のボルトB1が、ほぼ等間隔に設けられた4箇所のボルト穴H1に締め付けられる。各ボルトB1は、被駆動部材62のボルト穴62hと、第2カバー27のボルト穴H1に通され、第2内歯歯車部材23のボルト穴H1の雌ネジと螺合する。ボルトB1のボルト軸力によって、第2内歯歯車部材23とボルトB1の座面との間に、被駆動部材62と第2カバー27とが共締めされる。   As shown in FIG. 3, the bolt B1 is tightened in the bolt hole H1, and connects the driven member 62, the second cover 27, and the second internal gear member 23. In the present embodiment, four bolts B1 are tightened into four bolt holes H1 provided at substantially equal intervals. Each bolt B1 is passed through the bolt hole 62h of the driven member 62 and the bolt hole H1 of the second cover 27, and is screwed with the female screw of the bolt hole H1 of the second internal gear member 23. The driven member 62 and the second cover 27 are fastened together between the second internal gear member 23 and the bearing surface of the bolt B1 by the bolt axial force of the bolt B1.

ボルトB1は、JIS規格の鋼製ボルトにおいて最も高い強度区分のボルトであり、有効断面積に応じた規定の締め付けトルクによって締め付けられる。ボルトB1の有効断面積は、JIS(日本工業規格:Japanese Industrial Standards)B1082に規定されている。   The bolt B1 is a bolt of the highest strength category among JIS standard steel bolts, and is tightened by a specified tightening torque according to the effective sectional area. The effective sectional area of the bolt B1 is specified in JIS (Japanese Industrial Standards) B1082.

図4は、接着層の厚さと剪断強度との関係を示すグラフである。   FIG. 4 is a graph showing the relationship between the thickness of the adhesive layer and the shear strength.

被駆動部材62の端面と第2カバー27の負荷側の端面とは、凹部27mに塗布された接着剤により接着される。この接着には、シアノアクリレート系の接着剤が用いられる。凹部27mの体積に応じた接着剤が塗布されることで、凹部27mから接着剤がはみ出すことなく、凹部27mのほぼ全域で出力部材29と被駆動部材62とを接着できる。凹部27mの深さは、前述の通り20μm以上かつ30μm以下であるので、図4に示すように、この部分の接着層によって、出力部材29と被駆動部材62との間に高いせん断強度が得られる。   The end face of the driven member 62 and the end face on the load side of the second cover 27 are adhered by an adhesive applied to the recess 27m. For this bonding, a cyanoacrylate-based adhesive is used. By applying the adhesive according to the volume of the concave portion 27m, the output member 29 and the driven member 62 can be bonded substantially over the entire region of the concave portion 27m without the adhesive protruding from the concave portion 27m. Since the depth of the concave portion 27m is not less than 20 μm and not more than 30 μm as described above, as shown in FIG. 4, a high shear strength can be obtained between the output member 29 and the driven member 62 by the adhesive layer in this portion. Can be

<加速時ピークトルクと連結部のパラメータとの関係>
本実施形態の減速装置1の仕様には、加速時ピークトルクY[Nm]が規定される。減速装置1は、加速時ピークトルクY[Nm]が規定値を超えないよう制限されて運転される。ここで、加速時ピークトルクとは、起動・停止時許容ピークトルクと呼ばれることもあり、通常の起動(加速)、停止(減速)時に出力部材にかかるピークトルクの許容値のことである。換言すれば、歯車機構部を疲労破壊させずに規定回数(もしくは規定時間)駆動することのできる出力ピークトルクの許容値ということもできる。
<Relationship between peak torque during acceleration and connection parameter>
In the specification of the reduction gear transmission 1 of the present embodiment, an acceleration peak torque Y [Nm] is specified. The speed reducer 1 is operated with the peak torque during acceleration Y [Nm] limited so as not to exceed a specified value. Here, the peak torque during acceleration is sometimes referred to as an allowable peak torque at start / stop, and is an allowable value of the peak torque applied to the output member during normal start (acceleration) and stop (deceleration). In other words, it can be said that the output peak torque is an allowable value of the output peak torque that can be driven a specified number of times (or a specified time) without causing the gear mechanism to be fatigued and destroyed.

本実実施形態の減速装置1では、複数のボルトB1のPCD(Pitch Circle Diameter)半径D[mm]並びに有効断面積As[mm]の積の総和Xと、加速時ピークトルクY[Nm]との関係は、次式(1)の通りである。
Y > 0.024 × X (1)
In the reduction gear transmission 1 of the present embodiment, the sum X of the products of the PCD (Pitch Circle Diameter) radius D [mm] and the effective sectional area As [mm 2 ] of the plurality of bolts B1, and the acceleration peak torque Y [Nm]. Is as shown in the following equation (1).
Y> 0.024 × X (1)

PCD半径とは、ボルトの中心を通り、回転軸O1をほぼ中心とする仮想円の半径を意味し、PCD/2と記してもよい。本実施形態では、図2に示すように、複数のボルトB1が締め付けられる複数のボルト穴H1が、同一PCDの仮想円上に配置され、複数のボルトB1の有効断面積が同一である。また、複数のボルトB1の総数は4本である。このため、総和Xは、次式(2)のように求められる。   The PCD radius refers to the radius of an imaginary circle passing through the center of the bolt and substantially centering on the rotation axis O1, and may be written as PCD / 2. In the present embodiment, as shown in FIG. 2, a plurality of bolt holes H1 to which a plurality of bolts B1 are tightened are arranged on an imaginary circle of the same PCD, and the effective sectional areas of the plurality of bolts B1 are the same. The total number of the plurality of bolts B1 is four. Therefore, the sum X is obtained as in the following equation (2).

X=4×D×As (2)
ここで、Dは、複数のボルトB1のPCD半径[mm]、Asは1本のボルトB1の有効断面積[mm]である。
X = 4 × D × As (2)
Here, D is the PCD radius [mm] of the plurality of bolts B1, and As is the effective sectional area [mm 2 ] of one bolt B1.

一般化すると、上記総和Xは、次式(3)のように求めることができる。

Figure 2020016313
ここで、nは複数のボルトB1の総数、Dはi番目のボルトB1のPCD半径[mm]、Asはi番目のボルトB1の有効断面積[mm]である。複数のボルトB1が、複数のPCDの仮想円上に締め付けられる場合、あるいは、複数のボルトB1が異なる有効断面積を有する場合には、式(3)を適用して総和Xを求めればよい。 When generalized, the sum X can be obtained as in the following equation (3).
Figure 2020016313
Here, n is the total number of the plurality of bolts B1, the D i PCD radius of i-th bolts B1 [mm], As i is the effective cross-sectional area of the i-th bolts B1 [mm 2]. When the plurality of bolts B1 are tightened on the virtual circles of the plurality of PCDs, or when the plurality of bolts B1 have different effective cross-sectional areas, the total sum X may be obtained by applying Expression (3).

<関係式(1)の作用>
図5は、既存の複数種類の減速装置についてボルト連結部の特性値と加速時ピークトルクとの関係を示したグラフである。横軸は、被駆動部材を連結する複数のボルトのPCD半径と有効断面積との積の総和Xを示し、縦軸は、規定された加速時ピークトルクYを示す。
<Operation of relational expression (1)>
FIG. 5 is a graph showing the relationship between the characteristic value of the bolt connection portion and the peak torque during acceleration for a plurality of types of existing reduction gears. The horizontal axis indicates the total sum X of the products of the PCD radii of the plurality of bolts connecting the driven members and the effective sectional area, and the vertical axis indicates the specified peak torque during acceleration Y.

既存の複数種類の減速装置について、規定された加速時ピークトルクY[Nm]と、被駆動部材を連結する複数のボルトのPCD半径及び有効断面積の積の総和X[mm]との関係を調べると、次式(4)のように、ほぼ線形な関係を有することが判明する。ここで、既存の減速装置は、ボルトのみを用いて被駆動部材が出力部材に連結される構成を有する。
Y ≒ 0.024 × X (4)
The relationship between the specified peak torque during acceleration Y [Nm] and the sum X [mm 3 ] of the products of the PCD radii and the effective cross-sectional areas of the plurality of bolts connecting the driven members, for a plurality of types of existing reduction gears. Is found to have a substantially linear relationship as shown in the following equation (4). Here, the existing reduction gear transmission has a configuration in which the driven member is connected to the output member using only bolts.
Y ≒ 0.024 × X (4)

既存の減速装置は、被駆動部材の連結力に大きな過不足が生じない範囲で、加速時ピークトルクYの仕様が満たされるよう、計算及び試験等でボルトの個数、位置及び大きさが決定されている。すなわち、式(4)の関係であれば、複数のボルトの軸力によって被駆動部材と出力部材との間の接触面に摩擦力が生じ、規定の加速時ピークトルクが加わっても接触面に滑りが生じないことが見込まれる。   In the existing speed reducer, the number, position and size of bolts are determined by calculation and tests so that the specification of the peak torque during acceleration Y is satisfied within a range where the coupling force of the driven member does not cause a large excess or deficiency. ing. That is, according to the relationship of Expression (4), the frictional force is generated on the contact surface between the driven member and the output member due to the axial force of the plurality of bolts, and even if a specified acceleration peak torque is applied to the contact surface. No slip is expected.

一方、(X、Y)の値が、図5のグラフ線の上側の領域R1にある減速装置は、加速時ピークトルクYの仕様を満たす標準的な被駆動部材の連結よりも、ボルトによる被駆動部材の連結が弱いことを表わす。言い換えれば、ボルトの軸力に基づき出力部材と被駆動部材との接触面に滑りを発生させないトルクの限界が低いことを表わす。逆に、(X、Y)の値が、図5のグラフ線の下側の領域R2にある減速装置は、加速時ピークトルクYの仕様を満たす標準的な被駆動部材の連結よりも、ボルトによる被駆動部材の連結が強いことを表わす。   On the other hand, the speed reducer in which the value of (X, Y) is in the region R1 above the graph line in FIG. Indicates that the connection of the driving member is weak. In other words, it indicates that the limit of the torque that does not cause slip on the contact surface between the output member and the driven member based on the axial force of the bolt is low. Conversely, the reduction gear having the value (X, Y) in the region R2 below the graph line in FIG. Indicates that the connection of the driven member by the is strong.

実施形態1の減速装置1においては、被駆動部材62と出力部材29との連結力に接着力が追加される。これにより、加速時ピークトルクYの仕様を満たしつつ、複数のボルトB1の連結力と加速時ピークトルクYとの関係を、Y > 0.024 × Xとしている。この(X、Y)の値は、標準的なボルトによる被駆動部材の連結と比較して、例えばボルトB1の本数が削減されるなど、出力部材29の慣性負荷を既存の減速装置の標準値よりも低減するように作用する。したがって、本実施形態の減速装置1によれば、加速時ピークトルクが同一の従来の減速装置と比較して、出力部材29の慣性負荷が低減されるという効果が得られる。   In the reduction gear transmission 1 of the first embodiment, an adhesive force is added to the coupling force between the driven member 62 and the output member 29. As a result, the relationship between the coupling force of the plurality of bolts B1 and the acceleration peak torque Y is set to be Y> 0.024 × X while satisfying the specification of the acceleration peak torque Y. The value of (X, Y) is determined by reducing the inertial load of the output member 29 to the standard value of the existing speed reducer, for example, by reducing the number of bolts B1 as compared with the connection of the driven member by a standard bolt. It works to reduce it. Therefore, according to the reduction gear transmission 1 of the present embodiment, an effect is obtained that the inertial load on the output member 29 is reduced as compared with the conventional reduction gear transmission having the same peak torque during acceleration.

<接着面の位置及び面積>
図4に示したように、接着層のせん断強度は高く、例えば、1本のボルトの頭部と同じ面積の接着をボルトと同一のPCD円周上で行った場合、接着層によって得られる保持トルクは、1本のボルトの保持トルクよりも高くなる。保持トルクとは、被駆動部材を静止状態で固定し、出力部材にトルクを加えたときに、被駆動部材と出力部材との接触面に滑りが生じない最大トルクを意味する。例えば、1本のボルトB1による保持トルクが36Nmである場合に、接着による保持トルクは59Nmである。
<Position and area of bonding surface>
As shown in FIG. 4, the shear strength of the adhesive layer is high. For example, when bonding of the same area as the head of one bolt is performed on the same PCD circumference as the bolt, the retention obtained by the adhesive layer is obtained. The torque is higher than the holding torque of one bolt. The holding torque means a maximum torque at which the driven member is fixed in a stationary state and no slip occurs on the contact surface between the driven member and the output member when a torque is applied to the output member. For example, when the holding torque by one bolt B1 is 36 Nm, the holding torque by adhesion is 59 Nm.

したがって、加速時ピークトルクYを満たす接着面の位置及び面積は、複数のボルトB1による保持トルクと接着層による保持トルクとの合計が、所定の余裕度を持って加速時ピークトルクを上回るように計算及び試験等により求めることができる。接着面の位置及び面積は、接着剤が塗布される第2カバー27の凹部27mの位置及び面積に相当する。接着面積が過大になることによる弊害は少ないことから、接着面の面積は大きめに決定されてもよい。   Therefore, the position and area of the bonding surface that satisfies the peak torque Y during acceleration are set such that the sum of the holding torque by the plurality of bolts B1 and the holding torque by the bonding layer exceeds the peak torque during acceleration with a predetermined margin. It can be obtained by calculation, test, and the like. The position and the area of the bonding surface correspond to the position and the area of the concave portion 27m of the second cover 27 to which the adhesive is applied. Since the adverse effect caused by an excessively large bonding area is small, the area of the bonding surface may be determined to be relatively large.

実施形態1の減速装置1においては、凹部27mは、複数のボルト穴H1の内接円よりも径方向の内方に位置する(図2を参照)。凹部27mの深さは、20μm以上かつ30μm以下である。凹部27mの面積は、複数のボルトB1による保持トルクと接着層の保持トルクとの合計が、所定の余裕度を持って加速時ピークトルクを上回るように決定されている。   In the reduction gear transmission 1 of the first embodiment, the recess 27m is located radially inward of the inscribed circle of the plurality of bolt holes H1 (see FIG. 2). The depth of the recess 27m is not less than 20 μm and not more than 30 μm. The area of the recess 27m is determined so that the sum of the holding torque of the plurality of bolts B1 and the holding torque of the adhesive layer exceeds the peak torque during acceleration with a predetermined margin.

なお、接着面(凹部27m)の位置及び面積は、様々に変更可能である。続いて、加速時ピークトルクを満たす接着面の位置及び面積の求め方の一例について説明する。   Note that the position and area of the bonding surface (recess 27 m) can be variously changed. Subsequently, an example of a method of obtaining the position and the area of the bonding surface satisfying the peak torque at the time of acceleration will be described.

図6は、加速時ピークトルクを満たす接着面積の比率を示すコンター図である。コンター図の横軸は、複数のボルトB1のPCD半径と有効断面積との積の総和Xを示し、縦軸は、減速装置1に規定された加速時ピークトルクYを示す。さらに、等値線は、加速時ピークトルクを満たすために最低限必要な接着面積の割合[%]を示す。最低限必要な接着面積の割合は、接着層のせん断強度から、ボルトB1の本数を削減したときに、削減されたボルトB1と同等の保持トルクを得るための接着面積を計算し、領域A1(図2を参照)の総面積の割合で表わした結果である。接着位置は、領域A1内の所定の角度範囲と規定している。領域A1は、外半径φ1(=複数のボルトB1のPCD半径+ボルト穴H1の有効径の1/2)の円と、内半径φ2(=複数のボルトB1のPCD半径−ボルト穴H1の有効径の1/2)の円とに囲まれる領域と定義される。図6の0[%]の等値線は、図5のY ≒ 0.024 × Xのグラフ線と一致する。ここで、有効径とは、JIS B 0205−4に規定されている通り、軸線の方向に測ったねじ溝の幅とねじ山の幅とが等しくなるような仮想的な円筒の直径を意味する。   FIG. 6 is a contour diagram showing the ratio of the bonding area satisfying the peak torque during acceleration. The horizontal axis of the contour diagram indicates the total sum X of the products of the PCD radii of the plurality of bolts B1 and the effective sectional area, and the vertical axis indicates the peak torque during acceleration Y defined in the reduction gear 1. Further, the contour lines indicate the minimum ratio [%] of the bonding area required to satisfy the peak torque during acceleration. The ratio of the minimum required bonding area is calculated from the shear strength of the bonding layer by calculating the bonding area for obtaining the same holding torque as the reduced bolt B1 when the number of bolts B1 is reduced, and calculating the area A1 ( 2 (see FIG. 2). The bonding position is defined as a predetermined angle range within the area A1. The area A1 includes a circle having an outer radius φ1 (= the PCD radius of the plurality of bolts B1 + 1 / of the effective diameter of the bolt holes H1) and an inner radius φ2 (= PCD radius of the plurality of bolts B1−effectiveness of the bolt holes H1). It is defined as a region surrounded by a circle having a diameter of)). The isovalue line of 0 [%] in FIG. 6 matches the graph line of Y ≒ 0.024 × X in FIG. Here, the effective diameter means a virtual cylinder diameter such that the width of the thread groove measured in the direction of the axis is equal to the width of the thread as defined in JIS B 0205-4. .

加速時ピークトルクYの設定値と、ボルトB1の本数、大きさ(有効断面積)及びボルト穴H1の位置(PCD半径)とが決まると、減速装置1の(X、Y)の値が決まる。加速時ピークトルクYが同等でボルト連結のみの減速装置を基準に、ボルトB1の本数が減らされたり、小さいボルトB1が適用されたりすると、(X、Y)の値は、図6の0[%]の等値線よりも上方の領域に位置する。   When the set value of the peak torque Y at the time of acceleration, the number of bolts B1, the size (effective area), and the position of the bolt hole H1 (PCD radius) are determined, the value of (X, Y) of the reduction gear 1 is determined. . If the number of bolts B1 is reduced or a small bolt B1 is applied based on a reduction gear having only the bolt connection and the same peak torque Y during acceleration, the value of (X, Y) becomes 0 [in FIG. %] Above the contour line.

接着面の位置及び面積を求めるには、先ず、図6のコンター図を用いて、減速装置1の(X、Y)の値が含まれる領域の接着面積の割合Fを求める。例えば、0[%]の等値線と20[%]の等値線との間の領域であれば、接着面積の割合Fは20[%]とすればよい。より細かい間隔で等値線を描き、細かい間隔で接着面積の割合Fを求めてもよい。   To determine the position and area of the bonding surface, first, the ratio F of the bonding area of the region including the value of (X, Y) of the reduction gear 1 is calculated using the contour diagram of FIG. For example, if it is a region between a contour line of 0 [%] and a contour line of 20 [%], the ratio F of the bonding area may be set to 20 [%]. Contour lines may be drawn at finer intervals, and the bonding area ratio F may be determined at finer intervals.

仮に、接着面が領域A1の任意の角度範囲に設けられるのであれば、接着面積は上記のように求められた割合Fの面積又はそれ以上の面積とすればよい。これにより、接着面と複数のボルトB1との連結により、加速時ピークトルクYを満たす連結が実現される。   If the bonding surface is provided in an arbitrary angle range of the region A1, the bonding area may be the area of the ratio F obtained as described above or an area larger than that. Thus, the connection that satisfies the acceleration peak torque Y is realized by the connection between the bonding surface and the plurality of bolts B1.

一方、接着面が領域A1よりも内周側又は外周側に設けられるのであれば、接着面積は、上記のように求められた割合Fで表わされる面積Sを、接着面のPCD半径R(回転軸O1を中心とする接着面の径方向の位置)の変化に合わせて、換算すればよい。すなわち、接着面積S×PCD半径Rが不変となるように、接着面の径方向の位置に応じて割合Fで表わされる面積Sを増減すればよい。複数の分割された接着面を径方向の位置が異なる複数の箇所に設ける場合には、個々の接着面を領域A1に移動させる換算を行ったときに、接着面の総和が割合Fで表わされる面積となるように、個々の接着面積を求めればよい。このように求められた接着面と複数のボルトB1との連結により、加速時ピークトルクYを満たす連結が実現される。   On the other hand, if the bonding surface is provided on the inner circumferential side or the outer circumferential side with respect to the region A1, the bonding area is calculated by dividing the area S represented by the ratio F obtained as described above into the PCD radius R (rotational area) of the bonding surface. The conversion may be made in accordance with a change in the radial position of the bonding surface about the axis O1). That is, the area S represented by the ratio F may be increased or decreased according to the position of the bonding surface in the radial direction so that the bonding area S × the PCD radius R does not change. When a plurality of divided adhesive surfaces are provided at a plurality of locations having different radial positions, the total sum of the adhesive surfaces is represented by a ratio F when conversion is performed to move the individual adhesive surfaces to the area A1. What is necessary is just to calculate each bonding area so as to obtain the area. The connection that satisfies the peak torque during acceleration Y is realized by the connection between the bonding surface and the plurality of bolts B1 thus determined.

<実施形態効果>
以上のように、実施形態1の減速装置1によれば、出力部材29と被駆動部材62との連結面に接着剤が塗布されている。さらに、複数のボルトB1のPCD半径と有効断面積との積の総和X[mm]と、加速時ピークトルクY[Nm]との関係が、Y > 0.024 × Xである。したがって、同等の加速時ピークトルクの仕様を有し、ボルトのみで被駆動部材と連結される構成の減速装置と比較して、ボルトB1の重量を低減できる。これにより、出力部材29の慣性負荷が低減されるという効果が得られ、減速装置1に回転運動を入力するモータの消費電力の低減等を図れる。
<Effects of Embodiment>
As described above, according to the reduction gear transmission 1 of the first embodiment, the adhesive is applied to the connection surface between the output member 29 and the driven member 62. Further, the relationship between the sum X [mm 2 ] of the product of the PCD radius of the plurality of bolts B1 and the effective cross-sectional area and the peak torque during acceleration Y [Nm] is Y> 0.024 × X. Therefore, the weight of the bolt B1 can be reduced as compared with a reduction gear having the same specification of the peak torque at the time of acceleration and connected to the driven member only by the bolt. As a result, the effect that the inertial load of the output member 29 is reduced is obtained, and the power consumption of the motor that inputs the rotational motion to the reduction gear 1 can be reduced.

さらに、実施形態1の減速装置1によれば、出力部材29に接着剤を塗布する凹部27mが設けられている。したがって、凹部27mにより接着位置、接着層の深さ、及び接着面積が安定し、被駆動部材62との接着についての個体差を減らすことができる。また、接着剤が所望の位置と異なる部位に流動して固まってしまうことを抑制できる。例えば摺動部で接着剤が固まってしまったり、被駆動部材62との接触面を汚してしまったりすることを抑制できる。   Further, according to the reduction gear transmission 1 of the first embodiment, the output member 29 is provided with the concave portion 27m for applying the adhesive. Accordingly, the bonding position, the depth of the bonding layer, and the bonding area are stabilized by the concave portion 27m, and individual differences in bonding with the driven member 62 can be reduced. In addition, it is possible to suppress the adhesive from flowing to a portion different from the desired position and solidifying. For example, it is possible to suppress the adhesive from hardening in the sliding portion and the contact surface with the driven member 62 from being stained.

さらに、実施形態1の減速装置1によれば、凹部27mが、複数のボルト穴H1の内接円よりも径方向内方に位置する。すなわち、複数のボルトB1による連結が、接着面よりも径方向の外方で行われる。これにより、制限トルクに近い大きなトルクが加わったときに、ボルトB1の連結部分と接着面とに発生する応力のバランスが好適になり、ボルトB1の連結部分が先にズレ易くなるあるいは接着面が先に降伏し易くなるといった不均衡を抑制できる。   Further, according to the reduction gear transmission 1 of the first embodiment, the recess 27m is located radially inward of the inscribed circle of the plurality of bolt holes H1. That is, the connection by the plurality of bolts B1 is performed radially outward from the bonding surface. Thereby, when a large torque close to the limit torque is applied, the balance of the stress generated between the connecting portion of the bolt B1 and the bonding surface becomes suitable, and the connecting portion of the bolt B1 easily shifts first or the bonding surface becomes It is possible to suppress an imbalance such as a tendency to surrender first.

さらに、実施形態1の減速装置1によれば、凹部27mの深さが、20μm以上かつ30μm以下であるので、接着層の高いせん断強度を得ることができる。   Furthermore, according to the reduction gear transmission 1 of the first embodiment, since the depth of the recess 27m is not less than 20 μm and not more than 30 μm, a high shear strength of the adhesive layer can be obtained.

(実施形態2)
図7は、本発明の実施形態2に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。図8は、実施形態2の減速装置を軸方向に負荷側から見た平面図である。
(Embodiment 2)
FIG. 7 is a sectional view (A) showing a reduction gear transmission according to Embodiment 2 of the present invention, and an enlarged view (B) of a part thereof. FIG. 8 is a plan view of the reduction gear transmission of the second embodiment as viewed from the load side in the axial direction.

実施形態2の減速装置1Aは、接着剤が塗布される凹部27mAの位置及び平面形状が主に異なり、その他の構成要素は実施形態1と同様である。同様の構成については同一符号を付して詳細な説明を省略する。   The speed reducer 1A according to the second embodiment is different mainly in the position and the planar shape of the concave portion 27mA to which the adhesive is applied, and the other components are the same as those in the first embodiment. The same components are denoted by the same reference numerals, and detailed description is omitted.

実施形態2に係る凹部27mAには、1つのボルト穴(一のボルト穴)H1と別の1つのボルト穴(他のボルト穴)H1との間に配置された介在部a1が含まれる。本実施形態では、介在部a1は、同一のPCD半径上で周方向に並ぶ(隣接する)一対のボルト穴H1、H1の間に配置されている。なお、これに限られず、異なるPCD半径上に複数のボルト穴H1が設けられている場合には、一対のボルト穴H1とこれらに挟まれる凹部27mAの介在部a1とは、周方向に並んでなくてもよい。   The recessed portion 27mA according to the second embodiment includes an interposition part a1 arranged between one bolt hole (one bolt hole) H1 and another one bolt hole (other bolt hole) H1. In the present embodiment, the interposition portion a1 is disposed between a pair of bolt holes H1 and H1 that are arranged (adjacent) in the circumferential direction on the same PCD radius. However, the present invention is not limited to this. When a plurality of bolt holes H1 are provided on different PCD radii, the pair of bolt holes H1 and the interposed portion a1 of the concave portion 27mA interposed therebetween are arranged side by side in the circumferential direction. It is not necessary.

また、実施形態2の凹部27mAは、複数のボルト穴H1の内接円よりも径方向の内方に位置する周方向に連なった環状部b1を含む。環状部b1と複数の介在部a1とは連なっている。これらが連なっていることで、接着剤を塗布する作業性を向上できる。なお、凹部27mAは、複数の介在部a1を含む一方、環状部b1を含まない構成としてもよい。また、凹部27mAは、複数の介在部a1と環状部b1とに分割されている構成としてもよい。   Further, the concave portion 27mA of the second embodiment includes a circumferentially continuous annular portion b1 located radially inward of the inscribed circle of the plurality of bolt holes H1. The annular portion b1 and the plurality of intervening portions a1 are continuous. By connecting these, the workability of applying the adhesive can be improved. The recess 27mA may include a plurality of intervening portions a1, but do not include the annular portion b1. Further, the concave portion 27mA may be configured to be divided into a plurality of interposed portions a1 and an annular portion b1.

凹部27mAの深さは、実施形態1と同様に、20μm以上かつ30μm以下である。   The depth of the concave portion 27 mA is 20 μm or more and 30 μm or less as in the first embodiment.

以上のように、実施形態2の減速装置1Aによれば、接着剤が塗布される凹部27mAに、一対のボルト穴H1の間に配置される介在部a1が含まれる。これにより、接着層に基づくより強い連結強度を確保することができ、その分、設計段階でボルトB1を減らして、出力部材29の慣性負荷をより低減できる。   As described above, according to the speed reducer 1A of the second embodiment, the recessed portion 27mA to which the adhesive is applied includes the interposed portion a1 arranged between the pair of bolt holes H1. As a result, a stronger connection strength based on the adhesive layer can be secured, and accordingly, the bolt B1 can be reduced in the design stage, and the inertial load on the output member 29 can be further reduced.

(実施形態3)
図9は、本発明の実施形態3に係る減速装置を示す断面図(A)及びその一部の拡大図(B)である。図10は、実施形態3の減速装置を軸方向に負荷側から見た平面図である。
(Embodiment 3)
FIG. 9 is a cross-sectional view (A) showing a reduction gear transmission according to Embodiment 3 of the present invention and an enlarged view (B) of a part thereof. FIG. 10 is a plan view of the reduction gear transmission of the third embodiment viewed from the load side in the axial direction.

実施形態3の減速装置1Bは、接着剤が塗布される凹部27mBの位置が主に異なり、その他の構成要素は実施形態1と同様である。同様の構成については同一符号を付して詳細な説明を省略する。   The speed reducer 1B of the third embodiment is different mainly in the position of the concave portion 27mB to which the adhesive is applied, and the other components are the same as those of the first embodiment. The same components are denoted by the same reference numerals, and detailed description is omitted.

実施形態3に係る凹部27mBは、複数のボルト穴H1の外接円よりも径方向の外方に位置する。凹部27mBは、周方向に連なった環状の形態を有するが、周方向において複数に分割されていてもよい。さらに、凹部27mBは、回転軸O1からの距離及び径方向の幅が、周方向の何れの位置においても等しい形状を有しているが、周方向に沿って回転軸O1からの距離又は径方向の幅が変化する形状としもよい。凹部27mBの深さは、20μm以上かつ30μm以下である。   The recess 27mB according to the third embodiment is located radially outward of a circumscribed circle of the plurality of bolt holes H1. The concave portion 27mB has an annular shape connected in the circumferential direction, but may be divided into a plurality in the circumferential direction. Further, the recess 27mB has a shape in which the distance from the rotation axis O1 and the width in the radial direction are equal at any position in the circumferential direction, but the distance from the rotation axis O1 along the circumferential direction or the radial direction. May be changed in shape. The depth of the recess 27 mB is not less than 20 μm and not more than 30 μm.

実施形態3の減速装置1Bによれば、複数のボルト穴H1が出力部材29の内周寄りに設けられているような場合でも、容易に接着面を確保することができる。そして、設計時にボルトB1の本数、大きさ等を減らして、出力部材29の慣性負荷を低減することができる。   According to the reduction gear transmission 1B of the third embodiment, even when a plurality of bolt holes H1 are provided near the inner periphery of the output member 29, the bonding surface can be easily secured. In addition, the number, size, and the like of the bolts B1 can be reduced at the time of design, and the inertial load of the output member 29 can be reduced.

以上、本発明の実施形態を説明した。しかし、本発明は上記の実施形態に限られない。例えば、上記実施形態では、減速機構として撓み噛合い式歯車装置の減速機構を示した。しかし、本発明に係る減速機構は特に限定されず、例えば所謂カップ型又はシルクハット型の撓み噛合い式歯車装置の減速機構が適用されてもよい。さらに、本発明に係る減速機構は、センタークランク型の偏心揺動型減速装置、偏心体を有する2個以上の軸が減速装置の軸心からオフセットして配置された所謂振り分け型の偏心揺動型減速装置、又は、単純遊星歯車装置の各減速機構が適用されてもよい。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. For example, in the above-described embodiment, the speed reduction mechanism of the bending mesh gear device is described as the speed reduction mechanism. However, the speed reduction mechanism according to the present invention is not particularly limited, and for example, a speed reduction mechanism of a so-called cup-type or silk-hat-type flexible meshing gear device may be applied. Furthermore, the reduction mechanism according to the present invention is a so-called eccentric oscillating type eccentric oscillating device in which two or more shafts having an eccentric body are arranged offset from the axis of the speed reducing device. Each reduction mechanism of a mold reduction gear or a simple planetary gear may be applied.

また、上記実施形態では、接着剤としてシアノアクリレート系の接着剤を一例として示したが、他の種類の接着剤を適用してもよい。また、上記実施形態では、出力部材29、被駆動部材62及びボルトB1の素材として鋼を想定しているが、素材はこれらに制限されない。また、上記実施形態では、出力部材に接着剤が塗布される凹部が設けられた例を示した。しかし、被駆動部材に凹部が設けられていてもよいし、出力部材と被駆動部材との両方に凹部が設けられてもよい。また、出力部材にも被駆動部材にも凹部が設けられなくてもよい。被駆動部材と実施形態の減速装置とを組み合わせた構成を、本発明に係る減速装置の一例と見なしてもよい。   Further, in the above embodiment, a cyanoacrylate-based adhesive is described as an example of the adhesive, but another type of adhesive may be applied. In the above embodiment, steel is assumed as the material of the output member 29, the driven member 62, and the bolt B1, but the material is not limited to these. In the above embodiment, the output member is provided with the concave portion to which the adhesive is applied. However, a concave portion may be provided in the driven member, or a concave portion may be provided in both the output member and the driven member. Further, the concave portion may not be provided in both the output member and the driven member. A configuration in which the driven member and the reduction gear of the embodiment are combined may be regarded as an example of the reduction gear according to the present invention.

また、実施形態において、単一の部材により一体的に形成された構成要素は、複数の部材に分割されて互いに連結又は固着された構成要素に置換されてもよい。また、複数の部材が連結されて構成された構成要素は、単一の部材により一体的に形成された構成要素に置換されてもよい。その他、実施形態で具体的に示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   Further, in the embodiment, a component integrally formed by a single member may be divided into a plurality of members and replaced with a component connected or fixed to each other. Further, a component configured by connecting a plurality of members may be replaced with a component integrally formed by a single member. Other details specifically shown in the embodiments can be appropriately changed without departing from the spirit of the invention.

1、1A、1B 減速装置
10 入力軸
10A 起振体
12 外歯歯車
15 起振体軸受
22g 第1内歯歯車
23 第2内歯歯車部材
23g 第2内歯歯車
27 第2カバー
27m、27mA、27mB 凹部
29 出力部材
62 被駆動部材
a1 介在部
b1 環状部
B1 ボルト
H1 ボルト穴
O1 回転軸
DESCRIPTION OF SYMBOLS 1, 1A, 1B Reduction gear 10 Input shaft 10A Exciter 12 External gear 15 Exciter bearing 22g First internal gear 23 Second internal gear member 23g Second internal gear 27 Second cover 27m, 27mA, 27 mB recess 29 output member 62 driven member a1 intervening part b1 annular part B1 bolt H1 bolt hole O1 rotating shaft

Claims (5)

減速機構と、前記減速機構により減速された回転を出力する出力部材とを備え、複数のボルトによって前記出力部材と被駆動部材とが連結される減速装置であって、
前記出力部材と前記被駆動部材との連結面に接着剤が塗布され、
前記複数のボルトのPCD半径と有効断面積との積の総和X[mm]と、加速時ピークトルクY[Nm]との関係が、
Y > 0.024 × X
Figure 2020016313
である減速装置。
A speed reduction device, comprising: a speed reduction mechanism, and an output member that outputs rotation reduced by the speed reduction mechanism, wherein the output member and the driven member are connected by a plurality of bolts,
An adhesive is applied to a connection surface between the output member and the driven member,
The relationship between the sum X [mm 3 ] of the product of the PCD radius of the plurality of bolts and the effective sectional area and the peak torque during acceleration Y [Nm] is as follows:
Y> 0.024 × X
Figure 2020016313
Is a reduction gear.
前記出力部材の前記連結面及び前記被駆動部材の前記連結面の少なくとも一方は、接着剤が塗布される凹部を有する、請求項1記載の減速装置。   The reduction gear transmission according to claim 1, wherein at least one of the connection surface of the output member and the connection surface of the driven member has a concave portion to which an adhesive is applied. 前記凹部は、前記複数のボルトが通される複数のボルト穴の内接円よりも径方向内方に位置する、請求項2記載の減速装置。   The reduction gear transmission according to claim 2, wherein the recess is located radially inward of an inscribed circle of the plurality of bolt holes through which the plurality of bolts are passed. 前記凹部は、前記複数のボルトに対応する複数のボルト穴のうちの一のボルト穴と他のボルト穴との間に位置する、請求項2又は請求項3に記載の減速装置。   4. The reduction gear transmission according to claim 2, wherein the recess is located between one of the plurality of bolt holes corresponding to the plurality of bolts and another of the plurality of bolt holes. 5. 前記凹部の深さは、20μm以上、かつ、30μm以下である、請求項2から請求項4のいずれか一項に記載の減速装置。   The reduction gear according to any one of claims 2 to 4, wherein the depth of the recess is not less than 20 µm and not more than 30 µm.
JP2018141084A 2018-07-27 2018-07-27 Speed reduction device Pending JP2020016313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018141084A JP2020016313A (en) 2018-07-27 2018-07-27 Speed reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141084A JP2020016313A (en) 2018-07-27 2018-07-27 Speed reduction device

Publications (1)

Publication Number Publication Date
JP2020016313A true JP2020016313A (en) 2020-01-30

Family

ID=69580187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141084A Pending JP2020016313A (en) 2018-07-27 2018-07-27 Speed reduction device

Country Status (1)

Country Link
JP (1) JP2020016313A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336588A (en) * 2000-05-26 2001-12-07 Harmonic Drive Syst Ind Co Ltd Cup type wave gear device
JP2006263878A (en) * 2005-03-24 2006-10-05 Sumitomo Heavy Ind Ltd Power transmission device for driving robot wrist and power transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336588A (en) * 2000-05-26 2001-12-07 Harmonic Drive Syst Ind Co Ltd Cup type wave gear device
JP2006263878A (en) * 2005-03-24 2006-10-05 Sumitomo Heavy Ind Ltd Power transmission device for driving robot wrist and power transmission device

Similar Documents

Publication Publication Date Title
US4846018A (en) Articulation drive apparatus of industrial robot
JP7145601B2 (en) flexure meshing gearbox
JPWO2007032400A1 (en) Eccentric rocking speed reducer
US20180187763A1 (en) Harmonic driving device
CN107076282B (en) Compound planetary friction drive device
JP2007016838A (en) Silk hat type harmonic drive
KR101849187B1 (en) Wave generator for wave gear device and production method for wave generator
TW201823607A (en) Eccentric oscillating speed reducer
JPH01105039A (en) Integral type asymmetric planetary gear device
US20070207887A1 (en) Power transmission device
US5992020A (en) Method of fabricating inner roller and outer roller in internal-meshing planetary gear construction
JP2023133498A (en) Gear unit and method for manufacturing gear unit
JP5552359B2 (en) Reduction gear
US11009079B2 (en) Vehicle drive apparatus
JP2020016313A (en) Speed reduction device
WO2020235399A1 (en) Gear device
JP5820298B2 (en) Power transmission device and assembly method thereof
JP6707312B2 (en) Wave gearing
JP2017137896A (en) Stationary support structure of rolling bearing
JP5009232B2 (en) Eccentric oscillating gear unit
KR20090099202A (en) Harmonic drive
JP6480107B2 (en) Drive plate
JP5494383B2 (en) Wave gear device
JP6757149B2 (en) Gear device
JPH09317847A (en) Drive plate for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004