JP2019207746A - Electrode for laminated battery and laminated battery - Google Patents

Electrode for laminated battery and laminated battery Download PDF

Info

Publication number
JP2019207746A
JP2019207746A JP2016170940A JP2016170940A JP2019207746A JP 2019207746 A JP2019207746 A JP 2019207746A JP 2016170940 A JP2016170940 A JP 2016170940A JP 2016170940 A JP2016170940 A JP 2016170940A JP 2019207746 A JP2019207746 A JP 2019207746A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive electrode
mixture layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016170940A
Other languages
Japanese (ja)
Inventor
阿部 誠
Makoto Abe
阿部  誠
西村 悦子
Etsuko Nishimura
悦子 西村
野家 明彦
Akihiko Noie
明彦 野家
尼崎新平
Shimpei Amagasaki
新平 尼崎
和明 直江
Kazuaki Naoe
和明 直江
祐介 加賀
Yusuke Kaga
祐介 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016170940A priority Critical patent/JP2019207746A/en
Priority to PCT/JP2017/026629 priority patent/WO2018042942A1/en
Publication of JP2019207746A publication Critical patent/JP2019207746A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To obtain an electrode of a laminated battery, which reduces a contact failure of an electrode terminal at binding.SOLUTION: Electrodes 101 and 201 of a laminated battery 10, includes: electrode collector foils 104 and 204; electrode mixing agent layers 105 and 205 formed on each electrode collector foil; and separators 106 and 206 formed on each electrode mixing agent layer. Each electrodes includes an electrode lamination part, and electrode terminal parts 103 and 203 projected from the electrode lamination part, and each electrode mixing agent layer is exposed when viewing each electrode terminal part from a lamination direction of each electrode.SELECTED DRAWING: Figure 2

Description

本発明は、積層型電池用電極及び積層型電池に関する。   The present invention relates to a laminated battery electrode and a laminated battery.

電池自動車等に用いられる二次電池の形状として、捲回円筒型、捲回角型、積層型等があげられる。例えば、特許文献1には、以下のような積層型二次電池が開示されている。非水電解質二次電池の電極体14は、セパレータ22を挟んで重ね合わされた正極18および負極20を有し、負極は、外縁を有する負極集電体20aと、負極集電体の外縁から突出し負極集電体と一体に形成された負極タブ20cと、負極集電体の全幅に亘って、かつ負極タブの基端部上に担持されたチタン酸リチウムを含む負極活物質層20bと、を有している。負極20は、負極活物質層20bが負極タブに形成された部分を除いて、正極活物質層18bの外縁の内側に位置した状態で正極18と重ね合わされ、負極タブの基端部に形成された部分を含む負極活物質層の幅H1、負極タブ以外の部分における負極活物質層および負極集電体の幅H2、正極集電体18aおよび正極活物質層の幅H3は、H2<H3、かつ、(H1−H2)≧(H3−H2)÷2である。   Examples of the shape of a secondary battery used in a battery car or the like include a wound cylindrical type, a wound square type, and a stacked type. For example, Patent Document 1 discloses the following stacked secondary battery. The electrode body 14 of the nonaqueous electrolyte secondary battery has a positive electrode 18 and a negative electrode 20 that are overlapped with a separator 22 interposed therebetween. The negative electrode protrudes from the negative electrode current collector 20a having an outer edge and the outer edge of the negative electrode current collector. A negative electrode tab 20c formed integrally with the negative electrode current collector, and a negative electrode active material layer 20b containing lithium titanate supported on the base end of the negative electrode tab over the entire width of the negative electrode current collector. Have. The negative electrode 20 is overlapped with the positive electrode 18 in a state where the negative electrode active material layer 20b is located inside the outer edge of the positive electrode active material layer 18b except for a portion where the negative electrode active material layer 20b is formed on the negative electrode tab, and is formed at the base end portion of the negative electrode tab. The width H1 of the negative electrode active material layer including the portion, the width H2 of the negative electrode active material layer and the negative electrode current collector in the portion other than the negative electrode tab, and the width H3 of the positive electrode current collector 18a and the positive electrode active material layer are H2 <H3, And (H1-H2) ≧ (H3-H2) / 2.

特開2010−86813号公報JP 2010-86813 A

特許文献1では、負極タブの基端部上に負極活物質層が担持されており、セパレータは、負極よりも大きく形成され、その外周は、負極の外側で、かつ、正極タブおよび負極タブを超えない範囲に形成されている。二次電池の外部端子として複数の電極タブを接合する際、セパレータ等の電子電導パスがない材料が電極タブ間に介在していると、電極タブの接合不良を起こす可能性がある。電池のエネルギー密度を向上させるために、電極タブの長さを小さくした場合、特許文献1の構造では、セパレータの存在により、電極タブの接触不良を起こす可能性がある。   In Patent Document 1, a negative electrode active material layer is supported on the base end portion of the negative electrode tab, the separator is formed larger than the negative electrode, the outer periphery thereof is outside the negative electrode, and the positive electrode tab and the negative electrode tab are arranged. It is formed in a range that does not exceed. When joining a plurality of electrode tabs as external terminals of the secondary battery, if a material having no electronic conduction path such as a separator is interposed between the electrode tabs, there is a possibility that the electrode tabs are poorly joined. When the length of the electrode tab is reduced in order to improve the energy density of the battery, in the structure of Patent Document 1, there is a possibility of causing a contact failure of the electrode tab due to the presence of the separator.

本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、接合時の電極タブの接触不良を低減させる積層型電池用電極及び積層型電池を得ることである。   This invention is made | formed in view of said point, The place made into the objective is to obtain the electrode for laminated batteries and laminated battery which reduce the contact failure of the electrode tab at the time of joining.

上記課題を解決するための本発明の特徴は、例えば以下の通りである。
電極集電箔と、前記電極集電箔の上に形成された電極合材層と、前記電極合材層の上に形成されたセパレータと、を有する積層型電池の電極であって、前記電極は、電極積層部と、前記電極積層部から突出する電極端子部を有し、前記電極端子部を前記電極の積層方向から見たときに前記電極合材層が露出していることを特徴とする積層型電池の電極。
The features of the present invention for solving the above problems are as follows, for example.
An electrode of a laminated battery comprising: an electrode current collector foil; an electrode mixture layer formed on the electrode current collector foil; and a separator formed on the electrode mixture layer. Has an electrode lamination part and an electrode terminal part protruding from the electrode lamination part, and the electrode mixture layer is exposed when the electrode terminal part is viewed from the lamination direction of the electrodes, The electrode of the laminated battery.

本発明によれば、接合時の電極端子部の接触不良を低減できる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, contact failure of the electrode terminal portion during bonding can be reduced. Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施形態に係る積層型電池の一例を示す平面模式図。1 is a schematic plan view showing an example of a stacked battery according to an embodiment of the present invention. 図1のA−A’線断面矢視図。FIG. 2 is a cross-sectional view taken along line A-A ′ in FIG. 1. 正極端子部の平面拡大図。The plane enlarged view of a positive electrode terminal part. 負極端子部の平面拡大図。The plane enlarged view of a negative electrode terminal part.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

本実施形態では、主にリチウムイオン二次電池の構造について説明するが、本発明は、リチウムイオン二次電池に限らず、ニッケル水素電池、ニッケルカドミウム電池、鉛電池、リチウムイオン電池、ナトリウムイオン電池等の二次電池や一次電池においても固体電解質を用いた積層型電池であれば適用可能である。   In the present embodiment, the structure of the lithium ion secondary battery will be mainly described. However, the present invention is not limited to the lithium ion secondary battery, but is a nickel hydrogen battery, a nickel cadmium battery, a lead battery, a lithium ion battery, or a sodium ion battery. Such a secondary battery or primary battery can be applied to any stacked battery using a solid electrolyte.

図1は、本発明の一実施形態に係る積層型電池の一例を示す平面模式図である。図中のX方向とY方向を含む面に沿った方向を面内方向と定義し、面内方向に垂直なZ方向を積層方向と定義する。   FIG. 1 is a schematic plan view showing an example of a stacked battery according to an embodiment of the present invention. In the drawing, a direction along a plane including the X direction and the Y direction is defined as an in-plane direction, and a Z direction perpendicular to the in-plane direction is defined as a stacking direction.

積層型電池10は、電極として正極101と負極201を有する。正極101と負極201は、不図示の電池容器もしくは絶縁樹脂で被覆されている。正極101は、正極積層部102と正極端子部(電極タブ)103を有し、負極201は、負極積層部202と、負極端子部(電極タブ)203を有する。正極積層部102と負極積層部202は、平面視略矩形のシート形状を有しており、交互に重なり合うように積層されている。正極端子部103と負極端子部203は、正極積層部102と負極積層部202を積層した状態で正極積層部102と負極積層部202の互いに隣接する一辺からそれぞれ突出する舌片形状を有しており、Y方向一方側と他方側に離れて配置されている。   The stacked battery 10 includes a positive electrode 101 and a negative electrode 201 as electrodes. The positive electrode 101 and the negative electrode 201 are covered with a battery container (not shown) or an insulating resin. The positive electrode 101 has a positive electrode laminate portion 102 and a positive electrode terminal portion (electrode tab) 103, and the negative electrode 201 has a negative electrode laminate portion 202 and a negative electrode terminal portion (electrode tab) 203. The positive electrode laminate portion 102 and the negative electrode laminate portion 202 have a substantially rectangular sheet shape in plan view, and are laminated so as to overlap each other. The positive electrode terminal portion 103 and the negative electrode terminal portion 203 have tongue-shaped shapes that protrude from the adjacent sides of the positive electrode laminate portion 102 and the negative electrode laminate portion 202 in a state where the positive electrode laminate portion 102 and the negative electrode laminate portion 202 are laminated. They are arranged apart from one side and the other side in the Y direction.

図1に示す例では、積層型電池10の面内方向において、負極積層部202を正極積層部102に対して大きくしているが、同じにしてもよく、また、小さくしてもよい。負極積層部202を正極積層部102に対して大きくすることにより、正極101中の正極活物質からのリチウム析出を抑制できる。   In the example shown in FIG. 1, in the in-plane direction of the stacked battery 10, the negative electrode stacking portion 202 is made larger than the positive electrode stacking portion 102, but it may be the same or smaller. By making the negative electrode laminate portion 202 larger than the positive electrode laminate portion 102, lithium deposition from the positive electrode active material in the positive electrode 101 can be suppressed.

図2は、図1のA−A’線断面矢視図であり、本発明の一実施形態に係る積層型電池の一例を示す断面模式図である。積層型電池10の積層方向を図2のように定義する。   FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. The stacking direction of the stacked battery 10 is defined as shown in FIG.

積層型電池10は、正極101と負極201が積層されている。図2では、説明の便宜上、正極101と負極201の間を空間的に離して図示しているが、実際の電池では各々の間には空間はほぼなく、面内で接触している。正極101は、正極集電箔104と、正極合材層105と、正極セパレータ106を有する。負極201は、負極集電箔204と、負極合材層205と、負極セパレータ206を有する。図2では、積層型電池10の積層方向において、正極101、負極201の順に2組積層されているが1組でもよいし、3組以上でもよい。   In the stacked battery 10, a positive electrode 101 and a negative electrode 201 are stacked. In FIG. 2, for convenience of explanation, the positive electrode 101 and the negative electrode 201 are illustrated as being spatially separated from each other, but in an actual battery, there is almost no space between them, and they are in contact in a plane. The positive electrode 101 includes a positive electrode current collector foil 104, a positive electrode mixture layer 105, and a positive electrode separator 106. The negative electrode 201 includes a negative electrode current collector foil 204, a negative electrode mixture layer 205, and a negative electrode separator 206. In FIG. 2, in the stacking direction of the stacked battery 10, two sets are stacked in the order of the positive electrode 101 and the negative electrode 201, but one set may be used, or three or more sets may be used.

正極101は、積層方向の最下部を除く正極集電箔104の両面に正極合材層105と、正極セパレータ106が形成されている。正極合材層105は、正極集電箔104の上に塗工され、正極セパレータ106は、正極合材層105の上に塗工されている。正極合材層105と正極セパレータ106は、正極積層部102の全面に亘って形成されている。   In the positive electrode 101, a positive electrode mixture layer 105 and a positive electrode separator 106 are formed on both surfaces of the positive electrode current collector foil 104 except the lowermost part in the stacking direction. The positive electrode mixture layer 105 is applied on the positive electrode current collector foil 104, and the positive electrode separator 106 is applied on the positive electrode mixture layer 105. The positive electrode mixture layer 105 and the positive electrode separator 106 are formed over the entire surface of the positive electrode laminate 102.

負極201は、積層方向の最上部を除く負極集電箔204の両面に負極合材層205と、負極セパレータ206が形成されている。負極合材層205は、負極集電箔204の上に塗工され、負極セパレータ206は、負極合材層205の上に塗工されている。負極合材層205と負極セパレータ206は、負極積層部202の全面に亘って形成されている。   In the negative electrode 201, a negative electrode mixture layer 205 and a negative electrode separator 206 are formed on both surfaces of the negative electrode current collector foil 204 excluding the uppermost portion in the stacking direction. The negative electrode mixture layer 205 is coated on the negative electrode current collector foil 204, and the negative electrode separator 206 is coated on the negative electrode mixture layer 205. The negative electrode mixture layer 205 and the negative electrode separator 206 are formed over the entire surface of the negative electrode laminate 202.

図2に示す例では、積層方向の最下部の正極101は、正極集電箔104の片面(負極201が配置されている方の面)にのみ正極合材層105と、正極セパレータ106が形成されている。積層方向の最上部の負極201は、負極集電箔204の片面(正極101が配置されているの面)にのみ負極合材層205と、負極セパレータ206が形成されている。   In the example shown in FIG. 2, the lowermost positive electrode 101 in the stacking direction is formed with the positive electrode mixture layer 105 and the positive electrode separator 106 only on one surface of the positive electrode current collector foil 104 (the surface on which the negative electrode 201 is disposed). Has been. In the uppermost negative electrode 201 in the stacking direction, the negative electrode mixture layer 205 and the negative electrode separator 206 are formed only on one surface of the negative electrode current collector foil 204 (the surface on which the positive electrode 101 is disposed).

単位セル20は、積層方向に対し、正極集電箔104と、正極合材層105と、正極セパレータ106と、負極セパレータ206と、負極合材層205と、負極集電箔204で構成されている。また、単位セル20は、積層方向に対し、鏡像反転を繰り返しながら配置されている。本実施例では3組の単位セルで構成している。   The unit cell 20 includes a positive electrode current collector foil 104, a positive electrode mixture layer 105, a positive electrode separator 106, a negative electrode separator 206, a negative electrode mixture layer 205, and a negative electrode current collector foil 204 in the stacking direction. Yes. Further, the unit cells 20 are arranged while repeating mirror image inversion in the stacking direction. In this embodiment, it is composed of three sets of unit cells.

<正極集電箔104>
正極集電箔104には、アルミニウム箔や孔径0.1〜10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用できる。正極集電箔104の厚さは、好ましくは10nm〜1mmである。二次電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Positive electrode current collector foil 104>
As the positive electrode current collector foil 104, an aluminum foil, an aluminum perforated foil having a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed aluminum plate, or the like is used. As the material, stainless steel, titanium, or the like can be applied in addition to aluminum. The thickness of the positive electrode current collector foil 104 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of a secondary battery and the mechanical strength of an electrode.

<正極合材層105>
正極合材層105には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物、Li−Co−Ni−Mn複合酸化物、LiFeP系酸化物などが拳げられる。正極合材層105中に、正極合材層105内の電子伝導性を担う導電材や、正極合材層105内の材料間の密着性を確保するバインダ、さらには正極合材層105内のイオン伝導性を確保するための固体電解質を含めてもよい。
<Positive electrode mixture layer 105>
The positive electrode mixture layer 105 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, and LiFeP-based oxides. In the positive electrode mixture layer 105, a conductive material responsible for electronic conductivity in the positive electrode mixture layer 105, a binder that secures adhesion between the materials in the positive electrode mixture layer 105, and further in the positive electrode mixture layer 105 A solid electrolyte for ensuring ionic conductivity may be included.

正極合材層105を作製する方法として、正極合材層105に含まれる材料を溶媒に溶かしてスラリー化し、それを正極集電箔104上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。また、塗布から乾燥までを複数回行うことにより、複数の正極合材層105を正極集電箔104に積層してもよい。その後、溶媒を除去するための乾燥、正極合材層105内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、正極合材層105が形成される。   As a method for producing the positive electrode mixture layer 105, a material contained in the positive electrode mixture layer 105 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector foil 104. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Further, a plurality of positive electrode mixture layers 105 may be laminated on the positive electrode current collector foil 104 by performing a plurality of times from application to drying. Thereafter, the positive electrode mixture layer 105 is formed through a drying process for removing the solvent and a pressing process for ensuring electron conductivity and ion conductivity in the positive electrode mixture layer 105.

正極合材層105の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。正極合材層105に含まれる正極活物質等の材料の粒径は、正極合材層105の厚さ以下になるように規定される。正極活物質粉末中に正極合材層105の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、正極合材層105の厚さ以下の粒子を用意する。   The thickness of the positive electrode mixture layer 105 is designed according to the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of a material such as a positive electrode active material included in the positive electrode mixture layer 105 is defined to be equal to or less than the thickness of the positive electrode mixture layer 105. When the positive electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer 105, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<負極集電箔204>
負極集電箔204には、銅箔や孔径0.1〜10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用できる。負極集電箔204の厚さは、好ましくは10nm〜1mmである。全固体電池のエネルギー密度と電極の機械強度両立の観点から1〜100μm程度が望ましい。
<Negative electrode current collector foil 204>
For the negative electrode current collector foil 204, a copper foil, a copper perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed copper plate, or the like is used. The thickness of the negative electrode current collector foil 204 is preferably 10 nm to 1 mm. About 1-100 micrometers is desirable from a viewpoint of the energy density of an all-solid-state battery and the mechanical strength of an electrode.

<負極合材層205>
負極合材層205には、少なくともLiの吸蔵・放出が可能な負極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが拳げられる。負極合材層205中に、負極合材層205内の電子伝導性を担う導電材や、負極合材層205内の材料間の密着性を確保するバインダ、さらには負極合材層205内のイオン伝導性を確保するための固体電解質を含めてもよい。
負極合材層205を作製する方法は正極の場合と同様なので省略する。
<Negative electrode mixture layer 205>
The negative electrode mixture layer 205 contains at least a negative electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal. In the negative electrode mixture layer 205, a conductive material responsible for electronic conductivity in the negative electrode mixture layer 205, a binder that ensures adhesion between the materials in the negative electrode mixture layer 205, and further in the negative electrode mixture layer 205 A solid electrolyte for ensuring ionic conductivity may be included.
Since the method for producing the negative electrode mixture layer 205 is the same as that for the positive electrode, the description thereof is omitted.

負極合材層205の厚さは全固体電池のエネルギー密度、レート特性、入出力特性に応じて設計するが、一般的には数μm〜数百μmのサイズとなる。負極合材層205に含まれる負極活物質等の材料の粒径は、負極合材層205の厚さ以下になるように規定される。負極活物質粉末中に負極合材層205の厚さ以上の粒径を有する粗粒がある場合、ふるい分級、風流分級などにより粗粒を予め除去し、負極合材層205の厚さ以下の粒子を用意する。   The thickness of the negative electrode mixture layer 205 is designed in accordance with the energy density, rate characteristics, and input / output characteristics of the all-solid-state battery, but generally has a size of several μm to several hundred μm. The particle size of the material such as the negative electrode active material contained in the negative electrode mixture layer 205 is defined to be equal to or less than the thickness of the negative electrode mixture layer 205. When the negative electrode active material powder has coarse particles having a particle size equal to or larger than the thickness of the negative electrode mixture layer 205, the coarse particles are previously removed by sieving classification, wind classification, etc. Prepare the particles.

<正極セパレータ106、負極セパレータ206>
正極セパレータ106と、負極セパレータ206には、それぞれ固体電解質が含まれる。固体電解質として、Li10GePS12、LiS−Pなどの硫化物系の材料や、Li−La−Zr−Oなどの酸化物系の材料、あるいは、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させたポリマー型や、半固体電解質等、二次電池の動作温度範囲内で流動性を示さない材料が挙げられる。固体電解質層は、粉体の圧縮、結着材との混合、スラリー化した固体電解質層の離型材への塗布や担持体への含浸などにより形成する。固体電解質層の厚さは二次電池のエネルギー密度、電子絶縁性の確保等の観点から数nm〜数mmのサイズとなる。
<Positive electrode separator 106, negative electrode separator 206>
The positive electrode separator 106 and the negative electrode separator 206 each contain a solid electrolyte. As a solid electrolyte, a sulfide-based material such as Li 10 Ge 2 PS 12 or Li 2 S—P 2 S 5, an oxide-based material such as Li—La—Zr—O, or an ionic liquid or room temperature melting Examples thereof include materials that do not exhibit fluidity within the operating temperature range of a secondary battery, such as a polymer type in which a salt or the like is supported on an organic polymer or inorganic particles, or a semi-solid electrolyte. The solid electrolyte layer is formed by compressing powder, mixing with a binder, applying the slurryed solid electrolyte layer to a release material, or impregnating a carrier. The thickness of the solid electrolyte layer is a size of several nm to several mm from the viewpoint of ensuring the energy density of the secondary battery, ensuring electronic insulation, and the like.

<補助線600>
正極集電箔104及び負極集電箔204は、それぞれ電気的接続を示す補助線に従い、物理的な接触、あるいは、金属材料を介した接合により、正極集電箔104同士及び負極集電箔204同士が電気的に接続されている。これにより、積層型電池10内では、正極101と負極201がそれぞれ並列に電気接続されている。
<Auxiliary line 600>
The positive electrode current collector foil 104 and the negative electrode current collector foil 204 are each in contact with the positive electrode current collector foils 104 and the negative electrode current collector foil 204 by physical contact or bonding via a metal material in accordance with auxiliary lines indicating electrical connection. They are electrically connected to each other. Thereby, in the laminated battery 10, the positive electrode 101 and the negative electrode 201 are each electrically connected in parallel.

<補助線800>
正極集電箔104と、正極合材層105と、負極集電箔204と、負極合材層205は、積層方向の各材料の位置関係を示す補助線800に倣うようにサイズが規定されている。
<Auxiliary line 800>
The positive electrode current collector foil 104, the positive electrode material mixture layer 105, the negative electrode current collector foil 204, and the negative electrode material mixture layer 205 are sized so as to follow the auxiliary line 800 indicating the positional relationship of each material in the stacking direction. Yes.

図2のように、積層型電池10の面内方向において、正極集電箔104は正極合材層105よりも大きく、正極合材層105は正極セパレータ106よりも大きく配置されている。   As shown in FIG. 2, the positive electrode current collector foil 104 is larger than the positive electrode mixture layer 105 and the positive electrode mixture layer 105 is arranged larger than the positive electrode separator 106 in the in-plane direction of the stacked battery 10.

図3は、正極端子部の平面拡大図、図4は、負極端子部の平面拡大図である。
正極101の正極積層部102と正極端子部103は、境界部分Xaで互いに連続している。正極端子部103には、正極集電箔104が露出している。そして、正極端子部103の基端部には、正極積層部102から連続して正極合材層105と正極セパレータ106が形成されている。積層方向から正極端子部103を見たときに、正極合材層105が露出している。正極合材層105と正極セパレータ106は、正極端子部103において、正極合材層105の方が正極セパレータ106よりも突出しており、正極集電箔104の上に露出した状態となっている。
3 is an enlarged plan view of the positive terminal portion, and FIG. 4 is an enlarged plan view of the negative terminal portion.
The positive electrode laminate portion 102 and the positive electrode terminal portion 103 of the positive electrode 101 are continuous with each other at the boundary portion Xa. The positive electrode current collector foil 104 is exposed at the positive electrode terminal portion 103. A positive electrode mixture layer 105 and a positive electrode separator 106 are formed continuously from the positive electrode stacking portion 102 at the base end portion of the positive electrode terminal portion 103. When the positive electrode terminal portion 103 is viewed from the stacking direction, the positive electrode mixture layer 105 is exposed. In the positive electrode terminal portion 103, the positive electrode mixture layer 105 and the positive electrode separator 106 protrude from the positive electrode separator 106 in the positive electrode terminal portion 103 and are exposed on the positive electrode current collector foil 104.

同様に、負極201の負極積層部202と負極端子部203は、境界部分Xbで互いに連続している。負極端子部203には、負極集電箔204が露出している。そして、負極端子部203の基端部には、負極積層部202から連続して負極合材層205と負極セパレータ206が形成されている。積層方向から負極端子部203を見たときに、負極合材層205が露出している。負極合材層205と負極セパレータ206は、負極端子部203において、負極合材層205の方が負極セパレータ206よりも突出しており、負極集電箔204の上に露出した状態となっている。   Similarly, the negative electrode laminate portion 202 and the negative electrode terminal portion 203 of the negative electrode 201 are continuous with each other at the boundary portion Xb. The negative electrode current collector foil 204 is exposed at the negative electrode terminal portion 203. A negative electrode mixture layer 205 and a negative electrode separator 206 are formed continuously from the negative electrode stacking portion 202 at the base end portion of the negative electrode terminal portion 203. When the negative electrode terminal portion 203 is viewed from the stacking direction, the negative electrode mixture layer 205 is exposed. In the negative electrode terminal layer 203, the negative electrode composite material layer 205 and the negative electrode separator 206 protrude from the negative electrode separator 206 and are exposed on the negative electrode current collector foil 204.

これにより、電子伝導性を持たない正極セパレータ106及び負極セパレータ206が端子部103、203にかかる領域を最小にでき、電子伝導性が要求される端子部103、203の接触不良を低減させることが可能となる。一方で、正極合材層105と、負極合材層205は電子伝導性を有するため、端子部103、203を物理的に接触、あるいは電子伝導性を有する材料で結合した場合に、その部分に重畳していても接触不良を発生させることはない。   Thereby, the positive electrode separator 106 and the negative electrode separator 206 which do not have electronic conductivity can minimize the area applied to the terminal portions 103 and 203, and the contact failure of the terminal portions 103 and 203 where electronic conductivity is required can be reduced. It becomes possible. On the other hand, since the positive electrode mixture layer 105 and the negative electrode mixture layer 205 have electronic conductivity, when the terminal portions 103 and 203 are physically contacted or bonded with a material having electronic conductivity, Even if they are superimposed, no contact failure occurs.

本実施例によれば、正極セパレータ106が境界部分Xaを越えて正極端子部103の基端部にも配置されており、かつ、負極セパレータ206が境界部分Xbを越えて負極端子部203の基端部にも配置されているので、正極端子部103及び負極端子部203における短絡を効果的に防ぐことができる。   According to the present embodiment, the positive electrode separator 106 is disposed at the base end portion of the positive electrode terminal portion 103 beyond the boundary portion Xa, and the negative electrode separator 206 is disposed at the base portion of the negative electrode terminal portion 203 beyond the boundary portion Xb. Since it is also arranged at the end, it is possible to effectively prevent a short circuit in the positive electrode terminal portion 103 and the negative electrode terminal portion 203.

そして、正極端子部103では、正極合材層105が境界部分Xaを越えて正極端子部103の基端部にも配置されて露出しているので、正極端子部103を、隣接する正極端子部103に束ね合わせた場合、あるいは、不図示の導電性部材と接合した場合に、正極合材層105の露出部分を接触させて電子伝導パスを作ることができ、接触不良の発生を防ぐことができる。   In the positive electrode terminal portion 103, since the positive electrode mixture layer 105 is disposed and exposed at the base end portion of the positive electrode terminal portion 103 beyond the boundary portion Xa, the positive electrode terminal portion 103 is exposed to the adjacent positive electrode terminal portion 103. 103, or when bonded to a conductive member (not shown), the exposed portion of the positive electrode mixture layer 105 can be brought into contact with each other to form an electron conduction path, thereby preventing the occurrence of poor contact. it can.

同様に、負極端子部203では、負極合材層205が境界部分Xbを越えて負極端子部203の基端部にも配置されて露出しているので、負極端子部203を、隣接する負極端子部203に束ね合わせた場合、あるいは、不図示の導電性部材と接合した場合に、負極合材層205の露出部分を接触させて電子伝導パスを作ることができ、接触不良の発生を防ぐことができる。   Similarly, in the negative electrode terminal portion 203, since the negative electrode mixture layer 205 is disposed and exposed at the base end portion of the negative electrode terminal portion 203 beyond the boundary portion Xb, the negative electrode terminal portion 203 is adjacent to the negative electrode terminal 203. When bundled with the portion 203 or joined to a conductive member (not shown), an exposed portion of the negative electrode mixture layer 205 can be brought into contact with each other to create an electron conduction path, thereby preventing the occurrence of contact failure. Can do.

したがって、正極積層部102から突出する正極端子部103の長さと、負極積層部202から負極端子部203が突出する長さをそれぞれ小さくしても、短絡と接触不良の発生を防ぐことができる。したがって、正極端子部103と負極端子部203を小さくした分だけ、正極積層部102と負極積層部202を大型化でき、電池のエネルギー密度の増大を図ることができる。そして、本実施例では、正極積層部102の全面に亘って正極合材層105が形成されており、また、負極積層部202の全面に亘って負極合材層205が形成されているので、エネルギー密度をより高くすることができる。   Therefore, even if the length of the positive electrode terminal portion 103 protruding from the positive electrode stacked portion 102 and the length of the negative electrode terminal portion 203 protruding from the negative electrode stacked portion 202 are reduced, the occurrence of short circuit and poor contact can be prevented. Therefore, the positive electrode laminate portion 102 and the negative electrode laminate portion 202 can be increased in size by the amount that the positive electrode terminal portion 103 and the negative electrode terminal portion 203 are reduced, and the energy density of the battery can be increased. In this example, the positive electrode mixture layer 105 is formed over the entire surface of the positive electrode laminate 102, and the negative electrode mixture layer 205 is formed over the entire surface of the negative electrode laminate 202. The energy density can be further increased.

また、正極合材層105と負極合材層205の露出によって、正極端子部103と負極端子部203における導電性を有する部分の面積を広く確保することができ、正極端子部103と負極端子部203の電気抵抗も低減できる。   Further, by exposing the positive electrode mixture layer 105 and the negative electrode mixture layer 205, the positive electrode terminal portion 103 and the negative electrode terminal portion 203 can have a large area of the conductive portion, and the positive electrode terminal portion 103 and the negative electrode terminal portion can be secured. The electrical resistance of 203 can also be reduced.

なお、正極端子部103と負極端子部203に形成された正極セパレータ106と負極セパレータ206を剥離することによって端子部の接触不良を低減することも可能であるが、工程増加につながるおそれがあるため、剥離工程を含まない本発明により、接触不良を低減することがより好ましい。また、上記実施例では、正極101と負極201の両方において、端子部に合材層とセパレータを有する場合を例に説明したが、正極101と負極201のいずれか一方に設けることも可能である。また、セパレータを正極101と負極201のいずれか一方に設ける構成としてもよい。   In addition, it is possible to reduce the contact failure of the terminal portion by peeling off the positive electrode separator 106 and the negative electrode separator 206 formed in the positive electrode terminal portion 103 and the negative electrode terminal portion 203, but this may lead to an increase in processes. More preferably, contact failure is reduced by the present invention that does not include a peeling step. In the above-described embodiment, the case where both the positive electrode 101 and the negative electrode 201 have the composite layer and the separator in the terminal portion has been described as an example. . Alternatively, the separator may be provided on either the positive electrode 101 or the negative electrode 201.

上記において、各構成部材の大きさに差をつける度合いは、電子・イオンの絶縁性、積層型電池10のエネルギー密度、製造時の製造公差、各構成部材を積層する際の寸法公差等に基づき、正極積層部102と負極積層部202の大きさに鑑みて定められる。具体的には、数十μm〜数cmのサイズで大きくするとよく、数mm大きくすることがより好ましい。   In the above, the degree of difference in the size of each constituent member is based on the electron / ion insulation, the energy density of the laminated battery 10, the manufacturing tolerance at the time of manufacture, the dimensional tolerance at the time of stacking the constituent members, etc. It is determined in view of the size of the positive electrode stacking portion 102 and the negative electrode stacking portion 202. Specifically, the size is preferably several tens of μm to several cm, more preferably several mm.

上記において、端子部のサイズは電子・イオンの絶縁性、積層型電池10のエネルギー密度、製造時の製造公差、各構成部材を積層する際の寸法公差等に基づき、電池の目標とするエネルギー密度に鑑みて定められる。具体的には数cm〜数μmのサイズとすると良く、数mm以下とすることがより好ましい。   In the above, the size of the terminal portion is the target energy density of the battery based on the insulating properties of electrons and ions, the energy density of the laminated battery 10, the manufacturing tolerance at the time of manufacture, the dimensional tolerance when each component is laminated, Determined in view of Specifically, the size may be several centimeters to several micrometers, more preferably several millimeters or less.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. A part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

10…積層型電池
20…単位セル
101…正極(電極)
102…正極積層部(電極積層部)
103…正極端子部(電極端子部)
104…正極集電箔(電極集電箔)
105…正極合材層(電極合材層)
106…正極セパレータ(セパレータ)
201…負極(電極)
202…負極積層部(電極積層部)
203…負極端子部(電極端子部)
204…負極集電箔(電極集電箔)
205…負極合材層(電極合材層)
206…負極セパレータ(セパレータ)
DESCRIPTION OF SYMBOLS 10 ... Stack type battery 20 ... Unit cell 101 ... Positive electrode (electrode)
102 ... Positive electrode laminated part (electrode laminated part)
103 ... Positive electrode terminal part (electrode terminal part)
104 ... Positive electrode current collector foil (electrode current collector foil)
105 ... Positive electrode mixture layer (electrode mixture layer)
106 ... Positive electrode separator (separator)
201 ... Negative electrode (electrode)
202 ... Negative electrode laminate (electrode laminate)
203 ... Negative electrode terminal (electrode terminal)
204 ... Negative electrode current collector foil (electrode current collector foil)
205 ... Negative electrode composite material layer (electrode composite material layer)
206 ... Negative electrode separator (separator)

Claims (5)

電極集電箔と、前記電極集電箔の上に形成された電極合材層と、前記電極合材層の上に形成されたセパレータと、を有する積層型電池の電極であって、
前記電極は、
電極積層部と、前記電極積層部から突出する電極端子部を有し、
前記電極端子部を前記電極の積層方向から見たときに前記電極合材層が露出していることを特徴とする積層型電池の電極。
An electrode current collector foil; an electrode mixture layer formed on the electrode current collector foil; and a separator formed on the electrode mixture layer;
The electrode is
An electrode laminated portion, and an electrode terminal portion protruding from the electrode laminated portion,
The electrode of the stacked battery, wherein the electrode mixture layer is exposed when the electrode terminal portion is viewed from the stacking direction of the electrodes.
前記電極積層部の全面に前記電極合材層と前記セパレータが形成されていることを特徴とする請求項1に記載の積層型電池の電極。   2. The electrode of the multilayer battery according to claim 1, wherein the electrode mixture layer and the separator are formed on the entire surface of the electrode laminate portion. 前記電極は、正極または負極であり、
前記正極と前記負極の少なくとも一方に前記セパレータが形成されていることを特徴とする請求項1に記載の積層型電池の電極。
The electrode is a positive electrode or a negative electrode;
The electrode of the multilayer battery according to claim 1, wherein the separator is formed on at least one of the positive electrode and the negative electrode.
前記電極端子部の一部において、積層方向から見たとき、前記電極集電箔が露出していることを特徴とする請求項1に記載の積層型電池の電極。   2. The electrode of the multilayer battery according to claim 1, wherein the electrode current collector foil is exposed in a part of the electrode terminal portion when viewed from the stacking direction. 請求項1に記載の積層型電池の電極を有する積層型電池。   A laminated battery comprising the electrode of the laminated battery according to claim 1.
JP2016170940A 2016-09-01 2016-09-01 Electrode for laminated battery and laminated battery Pending JP2019207746A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016170940A JP2019207746A (en) 2016-09-01 2016-09-01 Electrode for laminated battery and laminated battery
PCT/JP2017/026629 WO2018042942A1 (en) 2016-09-01 2017-07-24 Electrode for stacked cells, and stacked cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170940A JP2019207746A (en) 2016-09-01 2016-09-01 Electrode for laminated battery and laminated battery

Publications (1)

Publication Number Publication Date
JP2019207746A true JP2019207746A (en) 2019-12-05

Family

ID=61300445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170940A Pending JP2019207746A (en) 2016-09-01 2016-09-01 Electrode for laminated battery and laminated battery

Country Status (2)

Country Link
JP (1) JP2019207746A (en)
WO (1) WO2018042942A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469091B2 (en) 2020-03-23 2024-04-16 本田技研工業株式会社 Lithium-ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086813A (en) * 2008-09-30 2010-04-15 Toshiba Corp Nonaqueous electrolyte secondary battery
KR101156377B1 (en) * 2009-11-30 2012-06-13 삼성에스디아이 주식회사 Secondary battery
JP5354042B2 (en) * 2012-02-27 2013-11-27 株式会社豊田自動織機 Power storage device, vehicle
JP2014123454A (en) * 2012-12-20 2014-07-03 Toyota Industries Corp Power storage device
JP2014179217A (en) * 2013-03-14 2014-09-25 Mitsubishi Heavy Ind Ltd Method for manufacturing secondary battery, and secondary battery
JP2017016812A (en) * 2015-06-30 2017-01-19 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2018042942A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
KR102158246B1 (en) All solid battery
JP2017103123A (en) Laminated all-solid battery
CN111740066A (en) Pole piece and electrode assembly with same
KR20080009351A (en) Electrode assembly having electrode tabs of the same size in joint portion thereof and electrochemical cell containing the same
JP7012251B2 (en) Batteries and battery manufacturing methods
CN106469826B (en) Battery with a battery cell
WO2020017467A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
US10714789B2 (en) All-solid state battery
KR102440683B1 (en) All-solid battery and method for manufacturing the same
JP2011150974A (en) Electrode body, and method for manufacturing the same
JP2010108751A (en) Battery
JP4929592B2 (en) Energy device manufacturing method
JP2011204511A (en) All-solid state lithium ion secondary battery
JP2019192564A (en) All-solid battery
WO2018079165A1 (en) Stacked secondary battery and method for producing same
JP2017195076A (en) Bipolar type battery
JP2018018729A (en) Lamination type secondary battery pack
WO2018042942A1 (en) Electrode for stacked cells, and stacked cell
WO2020022111A1 (en) Positive electrode for solid-state battery, manufacturing method of positive electrode for solid-state battery, and solid-state battery
JP2018060699A (en) Manufacturing method for laminated secondary battery
JP2018073518A (en) Secondary battery module
WO2018074133A1 (en) Secondary cell module
JP5310797B2 (en) Energy device and manufacturing method thereof
JP2019140079A (en) Stacked battery
JP7279632B2 (en) All-solid battery