JP2011204511A - All-solid state lithium ion secondary battery - Google Patents

All-solid state lithium ion secondary battery Download PDF

Info

Publication number
JP2011204511A
JP2011204511A JP2010071485A JP2010071485A JP2011204511A JP 2011204511 A JP2011204511 A JP 2011204511A JP 2010071485 A JP2010071485 A JP 2010071485A JP 2010071485 A JP2010071485 A JP 2010071485A JP 2011204511 A JP2011204511 A JP 2011204511A
Authority
JP
Japan
Prior art keywords
electrode
hole
positive electrode
secondary battery
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010071485A
Other languages
Japanese (ja)
Inventor
Fumiaki Sago
文昭 佐郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010071485A priority Critical patent/JP2011204511A/en
Publication of JP2011204511A publication Critical patent/JP2011204511A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid state lithium ion secondary battery capable of fast charging and discharging while maintaining high capacity.SOLUTION: The all-solid state lithium secondary battery is composed of a plurality of power generating elements with a cathode 1, solid electrolyte 2 and an anode 3 sequentially laminated connected in series through collectors 4. At least one electrode out of the cathode 1 and the anode 3 has a plurality of through-holes 7 in a thickness direction of the electrodes 1, 3, and an ionic conductive layer 9 is formed on an inner wall surface of each through-hole 7. Thereby, the ions in the electrodes 1, 3 flow well to the ionic conductive layer 9 in the through-hole 7 to improve the electron conductivity in the electrodes 1, 3. Since ions well transfer in the ionic conduction layer 9, high-speed charging and discharging become possible while maintaining high capacity.

Description

本発明は、正極、固体電解質、負極が順次積層された発電要素を、集電体を介して複数個直列に接続してなる全固体型リチウムイオン二次電池に関する。   The present invention relates to an all solid-state lithium ion secondary battery in which a plurality of power generating elements in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially stacked are connected in series via a current collector.

近年、二次電池は携帯電話やノート型パソコンだけでなく、電気自動車用バッテリーとしてもその用途を広げている。これらの二次電池に共通して要求されているものは、長時間使用の指標となる高容量化である。二次電池における高容量化の手法としては、容量の大きな電極材料を用いる方法や、高い放電電圧を示す正極材料の適用、電解質の固体化などが挙げられる。   In recent years, secondary batteries have been used not only for mobile phones and notebook computers, but also as batteries for electric vehicles. What is commonly required for these secondary batteries is an increase in capacity that is an indicator of long-term use. Methods for increasing the capacity of the secondary battery include a method using an electrode material having a large capacity, application of a positive electrode material exhibiting a high discharge voltage, solidification of an electrolyte, and the like.

例えば、特許文献1では、固体電極と固体電解質との界面抵抗を下げるために、固体電極と高分子固体電解質との間に電解液を介在させている。また特許文献2では、金属が付着した炭素粒子を含有する電極を用いることで、電極の電子伝導性の向上を図っている。一方、特許文献3では、正極を形成する粒子の表面に炭素などの導電性膜を成膜技術で形成したものを正極材料として用いることによって、正極の内部抵抗を低下させている。   For example, in Patent Document 1, an electrolyte is interposed between the solid electrode and the polymer solid electrolyte in order to reduce the interface resistance between the solid electrode and the solid electrolyte. Moreover, in patent document 2, the improvement of the electronic conductivity of an electrode is aimed at by using the electrode containing the carbon particle to which the metal adhered. On the other hand, in Patent Document 3, the internal resistance of the positive electrode is lowered by using, as a positive electrode material, a material in which a conductive film such as carbon is formed on the surface of particles forming the positive electrode by a film forming technique.

特開1999−204116号公報JP 1999-204116 A 特開2001−126768号公報JP 2001-126768 A 特開2000−58063号公報JP 2000-58063 A

高容量化と高速充放電は、全固体型リチウムイオン二次電池の特性において非常に重要である。高速充放電を行うために、従来、例えば上記特許文献1のように固体電極と高分子固体電解質との界面に電解液を介在させることが行われているが、電解液を介在させてしまうとそもそも全固体型二次電池とはならず、また電解液を使用するため、収納容器から電解液が漏出するおそれがあり、安全性の面で十分とは言えない。   High capacity and high-speed charging / discharging are very important in the characteristics of all solid-state lithium ion secondary batteries. In order to perform high-speed charge / discharge, conventionally, for example, as in Patent Document 1 described above, an electrolyte solution is interposed at the interface between the solid electrode and the polymer solid electrolyte. In the first place, it does not become an all-solid-state secondary battery, and since an electrolytic solution is used, the electrolytic solution may leak from the storage container, which is not sufficient in terms of safety.

また上記特許文献2では、電極における導電性を確保するために、導電材同士が電極内で接触するように大量の導電材を添加する必要がある。これにより、電極内における導電材の占める割合が高くなる一方で、電極内における活物質の割合が低下し、所定の容量を得ようとすると、電池のトータル重量や体積が大きくなり、逆に電極を所定寸法に収めようとすると電池容量は低下するという問題があった。   Moreover, in the said patent document 2, in order to ensure the electroconductivity in an electrode, it is necessary to add a lot of electrically conductive materials so that electrically conductive materials may contact in an electrode. As a result, the proportion of the conductive material in the electrode is increased, while the proportion of the active material in the electrode is decreased, and when trying to obtain a predetermined capacity, the total weight and volume of the battery are increased. There is a problem in that the battery capacity decreases when trying to fit the battery into a predetermined dimension.

また、上記特許文献3では、正極を形成する粒子の表面を炭素などの導電性膜で被覆し、正極を形成する粒子の容量を大きく低下させることなく、電極内の電子伝導性を高めようとしているが、電極においては電子の移動とともに、高容量化のため高いイオン伝導性が必要であり、固体電解質を用いる場合に、正極を形成する粒子の表面を導電性膜で被覆してしまうと、導電性膜が正極内でのイオン伝導の妨げになってしまい、高容量が得られなくなってしまうという問題があった。   In Patent Document 3, the surface of the particles forming the positive electrode is covered with a conductive film such as carbon to increase the electron conductivity in the electrode without greatly reducing the capacity of the particles forming the positive electrode. However, with the movement of electrons in the electrode, high ion conductivity is required for high capacity, and when using a solid electrolyte, if the surface of the particles forming the positive electrode is covered with a conductive film, There was a problem that the conductive film hindered ion conduction in the positive electrode, and high capacity could not be obtained.

本発明は、高容量を維持したまま高速充放電ができる全固体型リチウムイオン二次電池を提供することを目的とする。   An object of the present invention is to provide an all solid-state lithium ion secondary battery capable of high-speed charge / discharge while maintaining a high capacity.

本発明の全固体型リチウムイオン二次電池は、正極、固体電解質および負極が順次積層された発電要素を、集電体を介して複数個直列に接続してなる全固体型リチウムイオン二次電池において、前記正極および前記負極のうちの少なくとも一方の電極中に、該電極の厚み方向に延びる複数の穴を有しており、該穴の内壁面にイオン伝導層が形成されていることを特徴とする。   The all-solid-state lithium ion secondary battery of the present invention is an all-solid-state lithium ion secondary battery in which a plurality of power generating elements in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially stacked are connected in series via a current collector. And at least one of the positive electrode and the negative electrode has a plurality of holes extending in the thickness direction of the electrode, and an ion conductive layer is formed on the inner wall surface of the hole. And

リチウムイオン二次電池においては、放電する場合、電子は負極から正極へ流れると同時にLiイオンは固体電解質を介して負極から正極へ流れる。一方充電においては、正極から負極へ電子が流れ、Liイオンは正極から固体電解質を介して負極に流れる。   In a lithium ion secondary battery, when discharging, electrons flow from the negative electrode to the positive electrode, and at the same time, Li ions flow from the negative electrode to the positive electrode through the solid electrolyte. On the other hand, in charging, electrons flow from the positive electrode to the negative electrode, and Li ions flow from the positive electrode to the negative electrode through the solid electrolyte.

本発明の全固体型リチウムイオン二次電池では、正極および負極のうちの少なくとも一方の電極中に、電極の厚み方向に延びる複数の穴を有しており、該穴の内壁面にイオン伝導層が形成されているため、電極の厚み方向に延びる穴に形成されたイオン伝導層を介して、電極中のLiイオンが、例えば充電においては正極からイオン伝導層を介して固体電解質に良好に流れ、高速充電が可能となり、放電の場合も同様にLiイオンがイオン伝導層を介して、負極から正極に良好に流れて、高速放電が可能となる。   In the all-solid-state lithium ion secondary battery of the present invention, at least one of the positive electrode and the negative electrode has a plurality of holes extending in the thickness direction of the electrode, and an ion conductive layer is formed on the inner wall surface of the hole. Therefore, Li ions in the electrode flow from the positive electrode to the solid electrolyte through the ion conductive layer in charging, for example, through the ion conductive layer formed in the hole extending in the thickness direction of the electrode. In the case of discharging, Li ions can flow from the negative electrode to the positive electrode through the ion conductive layer, and high-speed discharge is possible.

また、効率よくLiイオンが電極からイオン伝導層に移動することで、電極内のカチオン密度が下がり、電極内の電子が、カチオンによるクーロン力によって移動性が抑制され難くなるため、電極内の電子が良好に移動し、電極中の電子伝導性を向上できる。   In addition, since the Li ions efficiently move from the electrode to the ion conductive layer, the cation density in the electrode decreases, and the mobility in the electrode becomes difficult to be suppressed by the Coulomb force of the cation. Move well, and the electron conductivity in the electrode can be improved.

さらに、電極中の穴径を小さくすることにより、電極中における穴の占める体積占有率を小さくすることができ、電極内における活物質の割合低下を最小限に抑えることができ、高容量を維持できる。   Furthermore, by reducing the hole diameter in the electrode, the volume occupying ratio of the hole in the electrode can be reduced, the reduction in the ratio of the active material in the electrode can be minimized, and high capacity is maintained. it can.

これらにより、本発明の全固体型リチウムイオン二次電池では、高容量を維持したまま高速充放電が可能となる。   As a result, the all-solid-state lithium ion secondary battery of the present invention can be charged and discharged at high speed while maintaining a high capacity.

また、本発明の全固体型リチウムイオン二次電池は、前記正極および前記負極のうちの少なくとも一方の電極が無機酸化物からなるとともに、該無機酸化物からなる前記電極中に前記穴が形成され、該穴内に形成される前記イオン伝導層が無機酸化物からなることを特徴とする。電極が無機酸化物からなる場合には、電極中におけるイオンや電子の伝導性が低いため、電極の穴の内壁面にイオン伝導層を形成することにより、このイオン伝導層を介して電極中のイオンの伝導性を著しく向上することができる。   In the all solid-state lithium ion secondary battery of the present invention, at least one of the positive electrode and the negative electrode is made of an inorganic oxide, and the hole is formed in the electrode made of the inorganic oxide. The ion conductive layer formed in the hole is made of an inorganic oxide. When the electrode is made of an inorganic oxide, the conductivity of ions and electrons in the electrode is low. Therefore, by forming an ion conductive layer on the inner wall surface of the hole of the electrode, Ion conductivity can be significantly improved.

さらに、本発明の全固体型リチウムイオン二次電池は、前記正極および前記負極のうちの少なくとも一方の電極が、電極薄層を複数積層してなるとともに、複数の前記電極薄層には、該電極薄層を厚み方向に貫通する薄層貫通穴がそれぞれ形成され、かつ該薄層貫通穴の内壁面にイオン伝導層が形成されており、前記複数の電極薄層の前記薄層貫通穴内にそれぞれ形成された前記イオン伝導層が前記電極の厚み方向に接続されていることを特徴とする。   Furthermore, in the all solid-state lithium ion secondary battery of the present invention, at least one of the positive electrode and the negative electrode is formed by laminating a plurality of electrode thin layers, and the plurality of electrode thin layers include A thin layer through hole penetrating the electrode thin layer in the thickness direction is formed, and an ion conductive layer is formed on an inner wall surface of the thin layer through hole, and the thin layer through hole of the plurality of electrode thin layers is formed in the thin layer through hole. Each of the formed ion conductive layers is connected in the thickness direction of the electrode.

電極が厚い場合には容量を大きくできるものの、イオン伝導性が低下する傾向にあるため、本発明のように、薄層貫通穴内に形成されたイオン伝導層を有する電極薄層を複数積層し、複数の電極薄層の薄層貫通穴のイオン伝導層同士を接続することにより、厚い電極を容易に形成でき、容量を大きくできるとともに、電極中のイオン伝導性を向上することができ、高速充放電が可能となる。   When the electrode is thick, the capacity can be increased, but the ionic conductivity tends to decrease, so as in the present invention, a plurality of electrode thin layers having an ion conductive layer formed in the thin layer through hole are laminated, By connecting the ion conductive layers of the thin electrode through-holes of a plurality of electrode thin layers, a thick electrode can be easily formed, the capacity can be increased, the ion conductivity in the electrode can be improved, and high-speed charging can be achieved. Discharge is possible.

本発明の全固体型リチウムイオン二次電池では、電極中のイオンが穴内のイオン伝導層へ良好に流れ、高速充放電が可能となるとともに、穴内のイオン伝導層にイオンが流れるために電極内のイオン密度が下がり、これに伴い、電極中の電子伝導性を向上できる。さらに、穴径を小さくすることにより、電極中における穴の占める体積占有率を小さくすることができ、電極内における活物質の割合低下を最小限に抑え、高容量を維持したまま高速充放電が可能となる。   In the all-solid-state lithium ion secondary battery of the present invention, ions in the electrode flow well to the ion conductive layer in the hole, enabling high-speed charge / discharge and ions flowing in the ion conductive layer in the hole. Accordingly, the electron conductivity in the electrode can be improved. Furthermore, by reducing the hole diameter, the volume occupancy ratio of the holes in the electrode can be reduced, minimizing the decrease in the ratio of the active material in the electrode, and performing high-speed charge / discharge while maintaining a high capacity. It becomes possible.

全固体型リチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of an all-solid-state lithium ion secondary battery. (a)は正極および負極の同じ位置に貫通穴が形成されており、貫通穴の壁面および底面にイオン伝導層が形成されている状態を示す縦断面図、(b)は正極だけに貫通穴を設け、この貫通穴の内壁面にイオン伝導層を形成した状態を示す縦断面図、(c)は正極および負極の同じ位置に貫通しない穴が形成されており、この穴の壁面および底面にイオン伝導層が形成されている状態を示す縦断面図、(d)は正極のみに貫通しない穴を形成し、穴の壁面および底面にイオン伝導層が形成されている状態を示す縦断面図である。(A) is a longitudinal sectional view showing a state in which through holes are formed at the same positions of the positive electrode and the negative electrode, and an ion conductive layer is formed on the wall surface and bottom surface of the through hole, and (b) is a through hole only in the positive electrode. A vertical sectional view showing a state in which an ion conductive layer is formed on the inner wall surface of the through hole, and (c) shows a hole that does not penetrate in the same position of the positive electrode and the negative electrode. The longitudinal cross-sectional view which shows the state in which the ion conductive layer is formed, (d) is a longitudinal cross-sectional view which shows the state in which the hole which does not penetrate only in a positive electrode is formed, and the ion conductive layer is formed in the wall surface and bottom face of a hole is there. (a)は正極および負極に形成された貫通穴の位置がずれており、貫通穴の内壁面および底面にイオン伝導層が形成されている状態を示す縦断面図、(b)は正極および負極に形成された貫通穴内にイオン伝導材料を充填した場合の縦断面図である。(A) is a longitudinal sectional view showing a state in which the positions of through holes formed in the positive electrode and the negative electrode are shifted, and an ion conductive layer is formed on the inner wall surface and bottom surface of the through hole, and (b) is a positive electrode and a negative electrode. It is a longitudinal cross-sectional view at the time of filling the ion conduction material in the through-hole formed in. (a)は電極薄層の積層体からなる正極を示すもので、上中下の電極薄層の薄層貫通穴が接続されるとともに、薄層貫通穴の内壁面に形成されたイオン伝導層同士が接続されている状態を示す縦断面図、(b)は(a)の断面の一部を拡大して示す図である。(A) shows the positive electrode which consists of a laminated body of an electrode thin layer, and the thin layer through-hole of the upper and lower electrode thin layers is connected, and the ion conduction layer formed in the inner wall surface of the thin layer through-hole The longitudinal cross-sectional view which shows the state connected mutually, (b) is a figure which expands and shows a part of cross section of (a). 全固体型リチウムイオン二次電池を収納容器内に収納してなる二次電池装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the secondary battery apparatus formed by accommodating an all-solid-type lithium ion secondary battery in a storage container.

図1は、全固体型リチウムイオン二次電池の縦断面図である。全固体型リチウムイオン
二次電池は、図1に示すように、少なくとも正極活物質からなる正極1と、固体電解質2と、少なくとも負極活物質からなる負極3とを順次積層して接合し一体化させた発電要素を、複数個集電体4を介して直列に接続して構成されている。
FIG. 1 is a longitudinal sectional view of an all-solid-state lithium ion secondary battery. As shown in FIG. 1, the all solid-state lithium ion secondary battery is formed by sequentially laminating and joining a positive electrode 1 made of at least a positive electrode active material, a solid electrolyte 2 and a negative electrode 3 made of at least a negative electrode active material. A plurality of generated power generation elements are connected in series via a current collector 4.

一般的には正極1と負極3とを金属製の集電体4で接続するが、予め自立できる強度を持った正極1、固体電解質2および負極3が積層され一体化された発電要素を作製し、複数の発電要素を集電体4を介して電気的に直列に接続して全固体型リチウムイオン二次電池を構成できる。   In general, the positive electrode 1 and the negative electrode 3 are connected by a metal current collector 4. However, a power generation element in which the positive electrode 1, the solid electrolyte 2, and the negative electrode 3 having a self-supporting strength are laminated and integrated is manufactured. In addition, an all-solid-state lithium ion secondary battery can be configured by electrically connecting a plurality of power generation elements in series via the current collector 4.

そして、本発明では、正極1および負極3(以下、電極1、3ということがある)中に、正極1および負極3の厚み方向に貫通する複数の貫通穴7を有しており、貫通穴7の内壁面には、図2(a)に示すように、イオン伝導層9が形成されている。なお、図1では、イオン伝導層9の記載を省略した。   In the present invention, the positive electrode 1 and the negative electrode 3 (hereinafter, also referred to as electrodes 1 and 3) have a plurality of through holes 7 that penetrate in the thickness direction of the positive electrode 1 and the negative electrode 3. An ion conductive layer 9 is formed on the inner wall surface 7 as shown in FIG. In FIG. 1, the illustration of the ion conductive layer 9 is omitted.

正極1および負極3の貫通穴7は同じ位置に形成されており、正極1および負極3の貫通穴7にそれぞれ形成されたイオン伝導層9が接続され、接続されたイオン伝導層9の内側には、正極1および負極3の内部に連続する空間10が形成されている。   The through holes 7 of the positive electrode 1 and the negative electrode 3 are formed at the same position, and the ion conductive layers 9 respectively formed in the through holes 7 of the positive electrode 1 and the negative electrode 3 are connected to the inside of the connected ion conductive layers 9. A continuous space 10 is formed inside the positive electrode 1 and the negative electrode 3.

言い換えれば、固体電解質2には貫通穴が形成されており、この貫通穴を介して、正極1および負極3に形成された空間が連通して空間10が形成されており、固体電解質2と、正極1および負極3の貫通穴7にそれぞれ形成されたイオン伝導層9とが接続されている。   In other words, a through hole is formed in the solid electrolyte 2, and a space 10 is formed by communicating the space formed in the positive electrode 1 and the negative electrode 3 through the through hole. An ion conductive layer 9 formed in each of the through holes 7 of the positive electrode 1 and the negative electrode 3 is connected.

イオン伝導層9は、製法上の観点から、固体電解質2と同一材料から形成することが望ましいが、異なる材料で形成することもできる。   The ion conductive layer 9 is preferably formed from the same material as the solid electrolyte 2 from the viewpoint of the manufacturing method, but may be formed from a different material.

なお、図2(a)では、正極1および負極3の貫通穴7の底部、言い換えれば、貫通穴7の集電体4側に集電体側イオン伝導層9aが形成されているが、この集電体側イオン伝導層9aは必ずしも形成する必要はない。また、正極1および負極3の貫通穴7の内壁面に形成されるイオン伝導層9は、内壁面全面に必ずしも形成する必要はなく、貫通穴7において正極1および負極3の厚み方向に連続していれば、貫通穴7の内壁面に形成されていない部分があっても構わない。   In FIG. 2A, the current collector side ion conductive layer 9a is formed on the bottoms of the through holes 7 of the positive electrode 1 and the negative electrode 3, in other words, on the current collector 4 side of the through holes 7. The electric conductor side ion conductive layer 9a is not necessarily formed. Further, the ion conductive layer 9 formed on the inner wall surface of the through hole 7 of the positive electrode 1 and the negative electrode 3 is not necessarily formed on the entire inner wall surface, and is continuous in the thickness direction of the positive electrode 1 and the negative electrode 3 in the through hole 7. If so, there may be a portion that is not formed on the inner wall surface of the through hole 7.

正極1の厚みは5μm以上、好ましくは30μm以上、更に好ましくは50μm以上であることが望ましい。正極1の厚みが薄い場合には、イオンの移動距離が短いため、正極1内のイオン伝導があまり電池性能に影響を与えないが、高容量化を図るため、正極1の厚みが30μm以上、50μm以上と厚くなると、正極1内のイオン伝導が電池性能に影響を与えるようになるため、本発明を好適に用いることができる。   The thickness of the positive electrode 1 is desirably 5 μm or more, preferably 30 μm or more, and more preferably 50 μm or more. When the thickness of the positive electrode 1 is thin, since the ion movement distance is short, the ion conduction in the positive electrode 1 does not affect the battery performance so much. However, in order to increase the capacity, the thickness of the positive electrode 1 is 30 μm or more. When the thickness is 50 μm or more, the ionic conduction in the positive electrode 1 affects the battery performance, so that the present invention can be suitably used.

負極3の厚みは負極容量にもよるが、正極1と同等以上の容量となる厚みであり、固体電解質2の厚みは絶縁が保持できる厚みで、かつ、できるだけ薄い膜厚が好ましく100〜500nmとされている。また、貫通穴7は断面が円形状であり、その径は、50μm以下であることが望ましい。貫通穴7の径が大きくなると、電極1、3内の貫通穴7の占める割合が大きくなるためイオン伝導性が向上しても電池容量が低下する傾向にあるため、貫通穴7の径は小さい方が望ましい。なお、貫通穴7の断面形状は円形に限らず、角形状であっても良い。この場合の径は、断面を円に換算した場合の径である。   Although the thickness of the negative electrode 3 depends on the negative electrode capacity, the thickness is equal to or greater than that of the positive electrode 1, and the thickness of the solid electrolyte 2 is a thickness that can maintain insulation, and is preferably as thin as possible and 100 to 500 nm. Has been. The through hole 7 has a circular cross section, and the diameter is desirably 50 μm or less. When the diameter of the through-hole 7 is increased, the ratio of the through-hole 7 in the electrodes 1 and 3 is increased, so that the battery capacity tends to decrease even if the ion conductivity is improved. Is preferable. In addition, the cross-sectional shape of the through hole 7 is not limited to a circle but may be a square shape. The diameter in this case is a diameter when the cross section is converted into a circle.

また電極1、3内にある貫通穴7同士の間隔は最短距離が電極厚みの1.5倍未満であることが望ましい。これは貫通穴7の径と同様に、貫通穴7の電極1、3内で占める割合を低くするとともに、貫通穴7間の間隔が長くなると、一部のイオンは厚み方向を最短距離として移動することになり、貫通穴7を設ける効果が低下するためである。   The distance between the through-holes 7 in the electrodes 1 and 3 is preferably such that the shortest distance is less than 1.5 times the electrode thickness. As with the diameter of the through hole 7, this reduces the proportion of the through hole 7 in the electrodes 1 and 3, and when the distance between the through holes 7 becomes longer, some ions move with the shortest distance in the thickness direction. This is because the effect of providing the through hole 7 is reduced.

また、厚い電極1、3に対しては積層構造を採用することができる。例えば、正極1を、図4(a)に示すように、複数の電極薄層1a、1b、1cを積層して形成するとともに、電極薄層1a、1b、1cに薄層貫通穴7a、7b、7cを形成し、薄層貫通穴7a、7b、7cの内壁面にそれぞれイオン伝導層9が形成されており、該薄層貫通穴7a、7b、7c内のイオン伝導層9が電極1の厚み方向に接続されている。これにより厚い正極1を形成できる。図4(b)に、薄層貫通穴7bの内壁面にイオン伝導層9が形成されている状態を示す。   A laminated structure can be adopted for the thick electrodes 1 and 3. For example, as shown in FIG. 4A, the positive electrode 1 is formed by laminating a plurality of thin electrode layers 1a, 1b, and 1c, and the thin electrode through layers 7a and 7b are formed in the thin electrode layers 1a, 1b, and 1c. 7c are formed on the inner wall surfaces of the thin layer through holes 7a, 7b, 7c, and the ion conductive layer 9 in the thin layer through holes 7a, 7b, 7c It is connected in the thickness direction. Thereby, the thick positive electrode 1 can be formed. FIG. 4B shows a state in which the ion conductive layer 9 is formed on the inner wall surface of the thin layer through hole 7b.

また、薄層貫通穴7a、7b、7cにそれぞれ形成されたイオン伝導層9の接続を容易に行うため、電極薄層1b、1cのイオン伝導層9が露出した位置にイオン伝導性の材料からなる層(ランド)を形成することが望ましい。この場合には、電極薄層1a、1b、1cを積層する際に、薄層貫通穴7a、7b、7cの位置を厳密に制御しなくても、それぞれのイオン伝導層9の接続が可能となる。負極3についても同様に形成できる。   Further, in order to easily connect the ion conductive layers 9 formed in the thin layer through-holes 7a, 7b, and 7c, an ion conductive material is used at a position where the ion conductive layers 9 of the electrode thin layers 1b and 1c are exposed. It is desirable to form a layer (land). In this case, when laminating the electrode thin layers 1a, 1b, 1c, the ion conductive layers 9 can be connected without strictly controlling the positions of the thin layer through holes 7a, 7b, 7c. Become. The negative electrode 3 can be similarly formed.

このような全固体型リチウムイオン二次電池では、電極1、3中に、電極1、3の厚み方向に貫通する複数の貫通穴7を有しており、これらの貫通穴7の内壁面に形成されたイオン伝導層9を有するため、イオン伝導層9を介して電極1、3中のイオンが集電体4に良好に流れ、高速充放電が可能となる。なお、イオン伝導層9を集電体4に接続することにより、イオン伝導性を向上できるが、必ずしも集電体4に接続する必要はない。   Such an all-solid-state lithium ion secondary battery has a plurality of through holes 7 penetrating in the thickness direction of the electrodes 1 and 3 in the electrodes 1 and 3. Since the ion conductive layer 9 is formed, the ions in the electrodes 1 and 3 flow through the current collector 4 through the ion conductive layer 9 and charge and discharge at high speed becomes possible. Although the ion conductivity can be improved by connecting the ion conductive layer 9 to the current collector 4, it is not always necessary to connect to the current collector 4.

また、電極1、3中のイオンが貫通穴7内に形成されたイオン伝導層に流れ込むため、電極1、3内のイオン密度が下がり、イオンと電子のクーロン力が弱まることで、電極1、3中の電子の移動速度が高くなり、付随的に電極1、3中の電子伝導を向上できる。   Further, since the ions in the electrodes 1 and 3 flow into the ion conductive layer formed in the through hole 7, the ion density in the electrodes 1 and 3 is lowered, and the Coulomb force between the ions and electrons is weakened. As a result, the movement speed of the electrons in the electrode 3 increases, and the electron conduction in the electrodes 1 and 3 can be improved.

また、貫通穴7の径を小さくすることにより、電極1、3中における貫通穴7の占める体積占有率を小さくすることができ、電極1、3内における活物質の割合低下を最小限に抑え、エネルギー密度の高い高容量の全固体型リチウムイオン二次電池を得ることができる。   Further, by reducing the diameter of the through hole 7, the volume occupation ratio occupied by the through hole 7 in the electrodes 1 and 3 can be reduced, and the decrease in the ratio of the active material in the electrodes 1 and 3 is minimized. A high-capacity all-solid-state lithium ion secondary battery with high energy density can be obtained.

さらに、リチウムイオンの移動に伴う体積膨張収縮が大きい電極1、3では、電極1、3の貫通穴7の内壁面にイオン伝導層9が形成され、その内側に空間10が存在するため、電極1、3の体積膨張収縮に伴う応力が空間10で緩和され、電極1、3内に発生するクラックなどが抑制され、さらに信頼性を向上できる。   Furthermore, in the electrodes 1 and 3 that have a large volume expansion / contraction due to the movement of lithium ions, the ion conductive layer 9 is formed on the inner wall surface of the through hole 7 of the electrodes 1 and 3, and the space 10 exists on the inner side thereof. The stress accompanying the volume expansion and contraction of 1 and 3 is relaxed in the space 10, cracks generated in the electrodes 1 and 3 are suppressed, and the reliability can be further improved.

なお、図1では、正極1および負極2に貫通穴7を形成し、貫通穴7の内壁面にイオン伝導層9を形成したが、正極1または負極3のいずれかに貫通穴7を形成し、貫通穴7の内壁面にイオン伝導層9を形成しても良い。   In FIG. 1, the through hole 7 is formed in the positive electrode 1 and the negative electrode 2, and the ion conductive layer 9 is formed on the inner wall surface of the through hole 7, but the through hole 7 is formed in either the positive electrode 1 or the negative electrode 3. The ion conductive layer 9 may be formed on the inner wall surface of the through hole 7.

また、貫通穴7の内壁面にイオン伝導層9を形成し、貫通穴7に空間10が形成されているが、この空間10に導体を充填し、電極1、3と導体を接続し、電子伝導性を向上することもできる。   In addition, an ion conductive layer 9 is formed on the inner wall surface of the through hole 7, and a space 10 is formed in the through hole 7. The space 10 is filled with a conductor, the electrodes 1, 3 are connected to the conductor, Conductivity can also be improved.

さらに、イオン伝導層9が形成される貫通穴7とは別個に電極1、3に複数の貫通穴を形成し、これらの複数の貫通穴に導体を充填することで、電子の移動を促進することもできる。   Further, a plurality of through holes are formed in the electrodes 1 and 3 separately from the through holes 7 in which the ion conductive layer 9 is formed, and the plurality of through holes are filled with a conductor to promote the movement of electrons. You can also

全固体型リチウムイオン二次電池を構成する正極1、固体電解質2、負極3、集電体4は、一般的なリチウムイオン二次電池に用いられているものを用いることができる。以下に本形態の全固体型リチウムイオン二次電池に使用できる正極1、固体電解質2、負極3、集電体4について説明する。   As the positive electrode 1, the solid electrolyte 2, the negative electrode 3, and the current collector 4 constituting the all solid-state lithium ion secondary battery, those used in general lithium ion secondary batteries can be used. The positive electrode 1, solid electrolyte 2, negative electrode 3, and current collector 4 that can be used in the all solid-state lithium ion secondary battery of this embodiment will be described below.

集電体4としては、例えば、熱可塑性樹脂と導電性フィラーから成る導電性接着剤を用いることができる。また一般的に用いられている導体板を用いることもできる。   As the current collector 4, for example, a conductive adhesive made of a thermoplastic resin and a conductive filler can be used. Moreover, the conductor plate generally used can also be used.

正極1は少なくとも正極活物質からなり、正極活物資としては、リチウム含有遷移金属酸化物が好適に用いられる。具体的にはリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リン酸系リチウム鉄複合酸化物、リチウムチタン複合酸化物などが挙げられる。   The positive electrode 1 is composed of at least a positive electrode active material, and a lithium-containing transition metal oxide is preferably used as the positive electrode active material. Specific examples include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, phosphoric acid lithium iron composite oxide, and lithium titanium composite oxide.

負極3も少なくとも負極活物質からなり、負極活物質としては炭素材料、遷移金属酸化物、リチウム含有遷移金属酸化物などが使用可能である。なお、負極活物質に金属リチウムなどを用いる場合は、正極のみ導体を用いればよい。   The negative electrode 3 is also made of at least a negative electrode active material. As the negative electrode active material, a carbon material, a transition metal oxide, a lithium-containing transition metal oxide, or the like can be used. In addition, when using metal lithium etc. for a negative electrode active material, what is necessary is just to use a conductor only for a positive electrode.

固体電解質2には、無機材料からなる無機固体電解質を用いる。無機固体電解質は難燃性、不燃性に優れることから単体で用いると安全性の高い全固体型リチウムイオン二次電池を提供することができ、好適である。また貫通穴7の内壁面への成膜を考えると、スパッタ、CVDなどの気相法や、ゾルゲル法などの液相法による形成が好ましい。   As the solid electrolyte 2, an inorganic solid electrolyte made of an inorganic material is used. Since the inorganic solid electrolyte is excellent in flame retardancy and non-flammability, it is preferable because it can provide an all solid lithium ion secondary battery with high safety. In consideration of film formation on the inner wall surface of the through hole 7, formation by a vapor phase method such as sputtering or CVD, or a liquid phase method such as a sol-gel method is preferable.

無機固体電解質としては、例えばLi1.3Al0.3Ti1.7(PO4)3やLi3.6Ge0.6V0.4O4、Li0.35La0.55TiO3などの結晶質固体電解質、30LiI-41Li2O-29P2O5や40Li2O-35B2O3-25LiNbO3など
の酸化物系非晶質固体電解質、45LiI-37Li2S-18P2S5や1Li3PO4-63Li2S-36SiS2などの硫化物系非晶質固体電解質、Li3PO4-xNxなどの非晶質薄膜固体電解質を挙げることができる。
Examples of inorganic solid electrolytes include crystalline solid electrolytes such as Li1.3Al0.3Ti1.7 (PO4) 3, Li3.6Ge0.6V0.4O4, Li0.35La0.55TiO3, 30LiI-41Li2O-29P2O5 and 40Li2O-35B2O3-25LiNbO3 Oxide-based amorphous solid electrolyte such as 45LiI-37Li2S-18P2S5 and sulfide-based amorphous solid electrolyte such as 1Li3PO4-63Li2S-36SiS2, amorphous thin-film solid electrolyte such as Li 3 PO 4-x N x Can be mentioned.

全固体型リチウムイオン二次電池の製法について説明する。   A method for producing an all solid-state lithium ion secondary battery will be described.

まず、例えば、LiMn2O4の粉体に対して、バインダーと分散材を溶媒とともに所定量添
加してスラリーを作製する。スラリーにはさらに焼結助剤として、例えばBやLi、Siの酸化物などを添加しても良い。この後、ドクターブレードやコーターなどによってテープ成形を行い乾燥することで、例えば厚みが200μmのグリーンシートを作製する。
First, for example, a predetermined amount of a binder and a dispersing agent together with a solvent are added to a LiMn 2 O 4 powder to prepare a slurry. For example, B, Li, or Si oxide may be added to the slurry as a sintering aid. Thereafter, a green sheet having a thickness of 200 μm, for example, is produced by tape forming with a doctor blade or a coater and drying.

得られたグリーンシートに、例えばYAGレーザーにて直径が15μmの貫通穴(ビアホール)を形成する。   A through hole (via hole) having a diameter of 15 μm is formed on the obtained green sheet by using, for example, a YAG laser.

この正極の表面に、例えばRFスパッタにてLi3PO4-xNxからなる300nmの固体電解質を形成する。RFスパッタにて正極表面に固体電解質層が形成されるとともに、正極の貫通穴の内壁面および貫通穴の底部にイオン伝導層が形成されることになる。 A 300 nm solid electrolyte made of Li 3 PO 4-x N x is formed on the surface of the positive electrode by, for example, RF sputtering. A solid electrolyte layer is formed on the surface of the positive electrode by RF sputtering, and an ion conductive layer is formed on the inner wall surface of the through hole of the positive electrode and the bottom of the through hole.

負極についても同様に、例えばLi4Ti5O12の粉体に対して、バインダーと分散材を溶媒
とともに所定量添加してスラリーを作製する。スラリーにはさらに正極材と同様にBやLi、Siの酸化物などの焼結助剤を添加しても良い。この後、ドクターブレードやコーターなどによってテープ成形を行い乾燥することで、例えば厚みが100μmのグリーンシートを作製する。
Similarly, for the negative electrode, for example, a predetermined amount of a binder and a dispersing agent together with a solvent are added to a powder of Li 4 Ti 5 O 12 to prepare a slurry. A sintering aid such as an oxide of B, Li, or Si may be further added to the slurry in the same manner as the positive electrode material. Thereafter, a green sheet having a thickness of, for example, 100 μm is manufactured by tape forming with a doctor blade or a coater and drying.

得られたグリーンシートに、正極と同様にYAGレーザーにて直径が15μmの貫通穴
(ビアホール)を形成する。
A through hole (via hole) having a diameter of 15 μm is formed in the obtained green sheet with a YAG laser in the same manner as the positive electrode.

この負極の表面および貫通穴にも、例えばRFスパッタにてLi3PO4-xNxの300μmの固体電解質およびイオン伝導層を形成する。 A 300 μm solid electrolyte of Li 3 PO 4-x N x and an ion conductive layer are also formed on the surface of the negative electrode and the through hole, for example, by RF sputtering.

そして、正極に形成された固体電解質、イオン伝導層と、負極に形成された固体電解質、イオン伝導層とを貫通穴同士が合致するように接触させた状態で加熱し、一体化させ、発電要素を作製する。この時、固体電解質間に固体電解質成分を含む密着液等を用いて接合強度をあげても良い。なお、図2(a)では、固体電解質2に正極1と負極3とに形成された固体電解質の境界を記載したが、正極1と固体電解質2と負極3とが一体となった場合には境界が判別できない場合もある。   Then, the solid electrolyte and ion conductive layer formed on the positive electrode and the solid electrolyte and ion conductive layer formed on the negative electrode are heated and brought into contact with each other so that the through holes match each other, thereby generating a power generation element. Is made. At this time, the bonding strength may be increased by using an adhesion liquid containing a solid electrolyte component between the solid electrolytes. In FIG. 2A, the boundary of the solid electrolyte formed on the positive electrode 1 and the negative electrode 3 is described in the solid electrolyte 2, but when the positive electrode 1, the solid electrolyte 2, and the negative electrode 3 are integrated, In some cases, the boundary cannot be determined.

この後、例えばステンレスからなる集電体の両面にカーボン等の導電性接着剤を塗布し、これを用いて複数の発電要素を接合し、全固体型リチウムイオン二次電池を作製することができる。   After that, for example, a conductive adhesive such as carbon is applied to both surfaces of a current collector made of stainless steel, and a plurality of power generation elements can be joined using the conductive adhesive, thereby producing an all-solid-state lithium ion secondary battery. .

電極を積層構造とする場合(図4)について、説明する。例えば、正極を形成するための複数のグリーンシート(電極薄層となる)に貫通穴を形成し、RFスパッタにて貫通穴の内壁面にイオン伝導層を形成する。この場合、貫通穴の周囲をマスクすることにより、貫通穴の近傍のグリーンシート表面に電解質材料からなるランドを形成するとともに、貫通穴の内壁面にイオン伝導層を形成することができる。このようなグリーンシートを貫通穴同士が合致するように積層して、未焼成の積層構造の電極を形成できる。   A case where the electrode has a laminated structure (FIG. 4) will be described. For example, a through hole is formed in a plurality of green sheets (which become an electrode thin layer) for forming a positive electrode, and an ion conductive layer is formed on the inner wall surface of the through hole by RF sputtering. In this case, by masking the periphery of the through hole, a land made of an electrolyte material can be formed on the surface of the green sheet near the through hole, and an ion conductive layer can be formed on the inner wall surface of the through hole. Such green sheets can be laminated so that the through holes match each other to form an unfired laminated electrode.

正極あるいは負極を作製するにはいくつかの方法が可能であり、例えば正極活物質あるいは負極活物質と導電剤とを含有するスラリーを作製し、離型性を有するポリエチレンテレフタレート製フィルム(以下、PETフィルム)上に塗布して乾燥後、剥離して必要に
応じて形状加工を施し正極あるいは負極とする方法や、正極活物質あるいは負極活物質を含有するスラリーを同様にPETフィルム上に塗布して剥離、整形後焼成して、正極活物質あるいは負極活物質からなる焼結体を作製し、正極あるいは負極とすることもできる。
There are several methods for producing the positive electrode or the negative electrode. For example, a positive electrode active material or a slurry containing a negative electrode active material and a conductive agent is prepared, and a polyethylene terephthalate film (hereinafter referred to as PET) having releasability. The film is coated on the film and dried, and then peeled off and subjected to shape processing as necessary to form a positive electrode or a negative electrode. Similarly, a slurry containing a positive electrode active material or a negative electrode active material is coated on a PET film. It is also possible to produce a sintered body made of a positive electrode active material or a negative electrode active material by peeling and shaping and then forming a positive electrode or a negative electrode.

このようにして形成された全固体型リチウムイオン二次電池は、収納容器内に収容されて二次電池装置が構成される。収納容器は、ラミネート型リチウムイオン電池や従来のコイン電池などで使用されている外装体や集電端子がいずれも適用可能である。例えば、図5に示すように、アルミニウムや亜鉛、鉄、ニッケル、ステンレスなどからなる電子伝導性を有する金属板をプレス成形法などによって加工した蓋材21と、容器本体22とを絶縁パッキン23を介在させてかしめて封止することにより作製することができる。蓋材21と、容器本体22が集電端子となる。なお、図5では、貫通穴7の記載は省略した。さらに、図1では、正極1と、固体電解質2と、負極3とを順次積層して接合し一体化させた発電要素の積層数が3層であるが、積層数について用途によって異なるものであり、特に限定されるものではない。   The all solid-state lithium ion secondary battery formed in this way is accommodated in a storage container to constitute a secondary battery device. As the storage container, any of an exterior body and a current collecting terminal used in a laminate type lithium ion battery or a conventional coin battery can be applied. For example, as shown in FIG. 5, a lid 21 obtained by processing a metal plate having electronic conductivity made of aluminum, zinc, iron, nickel, stainless steel or the like by a press molding method and the container body 22 are provided with an insulating packing 23. It can be manufactured by interposing and sealing. The lid member 21 and the container body 22 serve as current collecting terminals. In FIG. 5, the description of the through hole 7 is omitted. Further, in FIG. 1, the number of power generation elements in which the positive electrode 1, the solid electrolyte 2, and the negative electrode 3 are sequentially stacked, joined, and integrated is three, but the number of stacks varies depending on the application. There is no particular limitation.

図2(b)〜(d)、図3(a)、(b)は、正極1、負極3におけるイオン伝導層の他の形態を示すもので、図2(b)は、正極1だけに貫通穴7を設け、貫通穴7の内壁面にイオン伝導層9を形成した全固体型リチウムイオン二次電池の一部を示している。このような二次電池でも、正極1中のイオンが貫通穴7内のイオン伝導層9へ良好に流れ、これに伴い、正極1中の電子伝導を向上でき、さらに、イオンがイオン伝導層9を良好に流れることにより、高速充放電が可能となり、また、貫通穴7径を小さくすることにより、正極1内における活物質の割合低下を最小限に抑え、高容量を維持したまま高速充放電ができる。正極1のイオン電導度や電子伝導が負極に比べて低い場合には、正極1にイオン伝導層を設けることで高速充放電に十分効果がある。   2 (b) to 2 (d), FIGS. 3 (a) and 3 (b) show other forms of the ion conductive layer in the positive electrode 1 and the negative electrode 3, and FIG. A part of the all solid-state lithium ion secondary battery in which the through hole 7 is provided and the ion conductive layer 9 is formed on the inner wall surface of the through hole 7 is shown. Even in such a secondary battery, the ions in the positive electrode 1 flow well to the ion conductive layer 9 in the through hole 7, and accordingly, the electron conduction in the positive electrode 1 can be improved. Can be charged and discharged at high speed, and by reducing the diameter of the through-hole 7, the decrease in the proportion of the active material in the positive electrode 1 can be minimized and the high capacity can be maintained while maintaining high capacity. Can do. When the ionic conductivity and electronic conduction of the positive electrode 1 are lower than those of the negative electrode, providing the ion conductive layer on the positive electrode 1 is sufficiently effective for high-speed charge / discharge.

また、図2(c)は、図2(a)に対して正極1、負極3に貫通しない穴15を形成した二次電池を示すもので、貫通しない穴15はレーザーの出力や照射時間などを調整することにより作製することができる。このような二次電池では、貫通しない穴15の内壁面にイオン伝導層9が形成されているので、貫通している電極と同様な効果を得ることができる。さらに、この方法では、貫通しないようにレーザーの調整が必要となるが、穴を介して集電体側への材料の浸み出しを防ぐことができ、集電体側に凸などの形成が無く、集電体の接合などに不具合を生じることはない。   FIG. 2C shows a secondary battery in which a hole 15 that does not penetrate through the positive electrode 1 and the negative electrode 3 is formed as compared with FIG. 2A. It can produce by adjusting. In such a secondary battery, since the ion conductive layer 9 is formed on the inner wall surface of the hole 15 that does not penetrate, the same effect as that of the penetrating electrode can be obtained. Furthermore, in this method, it is necessary to adjust the laser so as not to penetrate, but it is possible to prevent leaching of the material to the current collector side through the hole, and there is no formation of protrusions on the current collector side, There is no problem in joining the current collector.

また、図2(d)は、図2(c)において正極1のみに貫通しない穴15を形成し、穴15の内壁面にイオン伝導層9を形成したもので、このような二次電池でも図2(c)と同様に電極と集電体との接合が容易となる。   FIG. 2 (d) shows a structure in which a hole 15 that does not penetrate only the positive electrode 1 in FIG. 2 (c) is formed, and an ion conductive layer 9 is formed on the inner wall surface of the hole 15. As in FIG. 2C, the electrode and the current collector can be easily joined.

図3(a)は、図2(a)に対して正極1、負極3に形成された貫通穴7の形成位置がずれている場合を示すもので、このように貫通穴7の位置がずれていた場合であっても、図2(a)の場合とほぼ同様の効果を得ることができる。この場合には、正極1の貫通穴7と負極3の貫通穴7との位置合わせを行う必要がないため、二次電池の作製が容易となる。   FIG. 3A shows a case where the formation positions of the through holes 7 formed in the positive electrode 1 and the negative electrode 3 are deviated with respect to FIG. 2A. Thus, the positions of the through holes 7 are deviated. Even in this case, substantially the same effect as in the case of FIG. 2A can be obtained. In this case, since it is not necessary to align the through hole 7 of the positive electrode 1 and the through hole 7 of the negative electrode 3, the secondary battery can be easily manufactured.

また、図3(b)は、図2(a)に対して正極1、負極3に形成された貫通穴7内にイオン伝導性を有するペーストを充填して二次電池を作製した場合であり、このような二次電池でも、図2(a)の場合とほぼ同様に効果を得ることができ、この場合には、空間がなくなるため機械的強度を高くできる。   FIG. 3B shows a case where a secondary battery is fabricated by filling a paste having ion conductivity into the through holes 7 formed in the positive electrode 1 and the negative electrode 3 with respect to FIG. Even with such a secondary battery, it is possible to obtain the same effect as in the case of FIG. 2A. In this case, since the space is eliminated, the mechanical strength can be increased.

1・・・正極
1a、1b、1c・・・電極薄層
2・・・固体電解質
3・・・負極
4・・・集電体
7・・・貫通穴
7a、7b、7c・・・薄層貫通穴
9・・・イオン伝導層
9a・・・集電体側イオン伝導層
10・・・空間
15・・・電極を貫通しない穴
DESCRIPTION OF SYMBOLS 1 ... Positive electrode 1a, 1b, 1c ... Electrode thin layer 2 ... Solid electrolyte 3 ... Negative electrode 4 ... Current collector 7 ... Through-hole 7a, 7b, 7c ... Thin layer Through hole 9... Ion conductive layer 9 a... Current collector side ion conductive layer 10... Space 15.

Claims (3)

正極、固体電解質および負極が順次積層された発電要素を、集電体を介して複数個直列に接続してなる全固体型リチウムイオン二次電池において、前記正極および前記負極のうちの少なくとも一方の電極中に、該電極の厚み方向に延びる複数の穴を有しており、該穴の内壁面にイオン伝導層が形成されていることを特徴とする全固体型リチウムイオン二次電池。   In an all-solid-state lithium ion secondary battery in which a plurality of power generation elements in which a positive electrode, a solid electrolyte, and a negative electrode are sequentially stacked are connected in series via a current collector, at least one of the positive electrode and the negative electrode An all-solid-state lithium ion secondary battery, wherein the electrode has a plurality of holes extending in the thickness direction of the electrode, and an ion conductive layer is formed on the inner wall surface of the hole. 前記正極および前記負極のうちの少なくとも一方の電極が無機酸化物からなるとともに、該無機酸化物からなる前記電極中に前記穴が形成され、該穴内に形成される前記イオン伝導層が無機酸化物からなることを特徴とする請求項1に記載の全固体型リチウムイオン二次電池。   At least one of the positive electrode and the negative electrode is made of an inorganic oxide, the hole is formed in the electrode made of the inorganic oxide, and the ion conductive layer formed in the hole is an inorganic oxide. The all-solid-state lithium ion secondary battery according to claim 1, comprising: 前記正極および前記負極のうちの少なくとも一方の電極が、電極薄層を複数積層してなるとともに、複数の前記電極薄層には、該電極薄層を厚み方向に貫通する薄層貫通穴がそれぞれ形成され、かつ該薄層貫通穴の内壁面にイオン伝導層が形成されており、前記複数の電極薄層の前記薄層貫通穴内にそれぞれ形成された前記イオン伝導層が前記電極の厚み方向に接続されていることを特徴とする請求項1または2に記載の全固体型リチウムイオン二次電池。   At least one of the positive electrode and the negative electrode is formed by laminating a plurality of electrode thin layers, and each of the plurality of electrode thin layers has a thin layer through-hole penetrating the electrode thin layer in the thickness direction. And an ion conductive layer is formed on an inner wall surface of the thin layer through hole, and the ion conductive layers formed in the thin layer through holes of the plurality of electrode thin layers are formed in the thickness direction of the electrode. 3. The all solid state lithium ion secondary battery according to claim 1, wherein the all solid state lithium ion secondary battery is connected.
JP2010071485A 2010-03-26 2010-03-26 All-solid state lithium ion secondary battery Pending JP2011204511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010071485A JP2011204511A (en) 2010-03-26 2010-03-26 All-solid state lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010071485A JP2011204511A (en) 2010-03-26 2010-03-26 All-solid state lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011204511A true JP2011204511A (en) 2011-10-13

Family

ID=44880963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010071485A Pending JP2011204511A (en) 2010-03-26 2010-03-26 All-solid state lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011204511A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
KR101484845B1 (en) * 2012-04-30 2015-01-22 주식회사 엘지화학 Secondary battery comprising solid electrolyte battery having a lithium ion-path, method for producing the same
JP2016025020A (en) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 Electrode complex, lithium battery, and electrode complex manufacturing method
CN105428595A (en) * 2016-01-11 2016-03-23 深圳市沃特玛电池有限公司 Lithium ion battery and preparation method thereof
US9350013B2 (en) 2013-02-05 2016-05-24 Seiko Epson Corporation Method for producing electrode assembly
JP2017183052A (en) * 2016-03-30 2017-10-05 Tdk株式会社 All-solid type secondary battery
CN109768214A (en) * 2017-11-10 2019-05-17 住友橡胶工业株式会社 The manufacturing method and lithium ion electric storage device of lithium ion electric storage device
WO2020138040A1 (en) * 2018-12-25 2020-07-02 Tdk株式会社 Solid-state battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2008053125A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Fully solid electric storage element
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
JP2008226666A (en) * 2007-03-13 2008-09-25 Ngk Insulators Ltd Manufacturing method of solid electrolyte structure for all-solid battery, and manufacturing method of all-solid battery
JP2009224318A (en) * 2008-02-22 2009-10-01 Kyushu Univ All-solid-state cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525674A (en) * 2001-07-27 2005-08-25 マサチューセッツ インスティテュート オブ テクノロジー Battery structure, self-organizing structure, and related method
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2008053125A (en) * 2006-08-25 2008-03-06 Ngk Insulators Ltd Fully solid electric storage element
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
JP2008226666A (en) * 2007-03-13 2008-09-25 Ngk Insulators Ltd Manufacturing method of solid electrolyte structure for all-solid battery, and manufacturing method of all-solid battery
JP2009224318A (en) * 2008-02-22 2009-10-01 Kyushu Univ All-solid-state cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248468A (en) * 2011-05-30 2012-12-13 Toyota Motor Corp Electrode body for all-solid battery, all-solid battery and methods for producing electrode body and all-solid battery
KR101484845B1 (en) * 2012-04-30 2015-01-22 주식회사 엘지화학 Secondary battery comprising solid electrolyte battery having a lithium ion-path, method for producing the same
US9350013B2 (en) 2013-02-05 2016-05-24 Seiko Epson Corporation Method for producing electrode assembly
JP2016025020A (en) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 Electrode complex, lithium battery, and electrode complex manufacturing method
CN105428595A (en) * 2016-01-11 2016-03-23 深圳市沃特玛电池有限公司 Lithium ion battery and preparation method thereof
JP2017183052A (en) * 2016-03-30 2017-10-05 Tdk株式会社 All-solid type secondary battery
CN109768214A (en) * 2017-11-10 2019-05-17 住友橡胶工业株式会社 The manufacturing method and lithium ion electric storage device of lithium ion electric storage device
CN109768214B (en) * 2017-11-10 2024-03-15 住友橡胶工业株式会社 Method for manufacturing lithium ion power storage device, and lithium ion power storage device
WO2020138040A1 (en) * 2018-12-25 2020-07-02 Tdk株式会社 Solid-state battery
CN113228375A (en) * 2018-12-25 2021-08-06 Tdk株式会社 All-solid-state battery
CN113228375B (en) * 2018-12-25 2023-11-28 Tdk株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP6887088B2 (en) Stacked all-solid-state battery and its manufacturing method
US9142811B2 (en) Current collector having built-in sealing means, and bipolar battery including such a collector
CN102460775B (en) Lithium batteries utilizing nanoporous separator layers
JP2011204511A (en) All-solid state lithium ion secondary battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
US20110281159A1 (en) Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
KR20160002988A (en) Electrochemical cell with solid and liquid electrolytes
US10971760B2 (en) Hybrid solid-state cell with a sealed anode structure
JP2001126756A (en) Lithium solid electrolyte battery and manufacturing method therefor
KR102158246B1 (en) All solid battery
KR20200027999A (en) Coin-type battery and its manufacturing method
US20200106135A1 (en) Hybrid solid-state cell with a sealed anode structure
WO2020017467A1 (en) Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
JP7182159B2 (en) All-solid battery
US20220021024A1 (en) Solid-state battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
CN204991877U (en) Multipolar ear lithium ion power batteries
JP5421151B2 (en) All solid-state lithium ion secondary battery
JP2011175905A (en) All-solid lithium ion secondary battery
JP2017195076A (en) Bipolar type battery
JP2018018729A (en) Lamination type secondary battery pack
CN113169374A (en) All-solid-state battery
CN112514106A (en) Positive electrode for solid-state battery, method for producing positive electrode for solid-state battery, and solid-state battery
KR101101546B1 (en) Electrochemical capacitor and method for manufacturing the same
WO2020100682A1 (en) Solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902