JP2019165073A - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP2019165073A
JP2019165073A JP2018051153A JP2018051153A JP2019165073A JP 2019165073 A JP2019165073 A JP 2019165073A JP 2018051153 A JP2018051153 A JP 2018051153A JP 2018051153 A JP2018051153 A JP 2018051153A JP 2019165073 A JP2019165073 A JP 2019165073A
Authority
JP
Japan
Prior art keywords
transport layer
solar cell
electrode
substrate
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018051153A
Other languages
English (en)
Inventor
田中 裕二
Yuji Tanaka
裕二 田中
堀内 保
Tamotsu Horiuchi
保 堀内
田元 望
Nozomi Tamoto
望 田元
陵宏 井出
Takahiro Ide
陵宏 井出
直道 兼為
Naomichi Kanei
直道 兼為
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2018051153A priority Critical patent/JP2019165073A/ja
Priority to PCT/JP2019/006039 priority patent/WO2019181330A1/en
Priority to CN201980026639.8A priority patent/CN111989792A/zh
Priority to US16/981,985 priority patent/US11594382B2/en
Priority to EP19770425.7A priority patent/EP3769351A4/en
Publication of JP2019165073A publication Critical patent/JP2019165073A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】高照度光に晒された前後において低照度光での出力低下を抑制することができる太陽電池モジュールを提供する。【解決手段】第1の基板上に少なくとも第1の電極、ホールブロッキング層、電子輸送層、ホール輸送層、第2の電極、第2の基板が形成され、第1の基板と第2の基板との間に封止部材を有する光電変換素子が複数設けられている太陽電池モジュールであって、互いに隣接する少なくとも2つの前記光電変換素子において、少なくとも前記ホール輸送層どうしが互いに延設された連続層の形態である太陽電池モジュールである。【選択図】図5

Description

本発明は、太陽電池モジュールに関する。
近年、化石燃料の代替エネルギーとして、また地球温暖化対策として太陽電池の重要性が高まっている。さらに、最近では低照度の光でも効率よく発電できる室内向けの太陽電池も多くの注目を集めている。特に、後者の太陽電池は、電池交換や電源配線等が不要な自立型電源として幅広い応用が期待されている。
室内向けの光電変換素子としては、アモルファスシリコンや色素増感型の太陽電池が知られている。中でも色素増感太陽電池は、従来の印刷手段を用いて製造できるため、低コスト化に有利である。一般に、色素増感太陽電池は、電解液を内包しているために液の揮発や漏れといった問題があったが、近年p型半導体材料を用いた固体型の色素増感太陽電池も開発され、注目を集めている。
固体型の色素増感太陽電池モジュールにおける耐久性の向上には、酸化チタン表面に吸着された光増感化合物を、高照度光、封止空間における水分及び酸素、封止樹脂から発生するアウトガスなどから保護することが重要である。そこで、封止空間内に紫外線吸収する材料や保護膜等を具備することで耐久性を向上させた太陽電池モジュールが開示されている(例えば、特許文献1参照)。
本発明は、高照度光に晒された前後において低照度光での出力低下を抑制することができる太陽電池モジュールを提供することを目的とする。
課題を解決するための手段としての本発明の太陽電池モジュールは、第1の基板上に少なくとも第1の電極、ホールブロッキング層、電子輸送層、ホール輸送層、第2の電極、第2の基板が形成され、第1の基板と第2の基板との間に封止部材を有する光電変換素子が複数設けられている太陽電池モジュールであって、互いに隣接する少なくとも2つの前記光電変換素子において、少なくとも前記ホール輸送層どうしが互いに延設された連続層の形態である。
本発明によれば、高照度光に晒された前後において低照度光での出力低下を抑制することができる太陽電池モジュールを提供することができる。
図1は、本発明の光電変換素子の一例を示す概略図である。 図2は、本発明の光電変換素子の別の一例を示す概略図である。 図3は、本発明の光電変換素子の別の一例を示す概略図である。 図4は、本発明の光電変換素子の別の一例を示す概略図である。 図5は、本発明の太陽電池モジュールの一例を示す概略図である。 図6は、本発明の太陽電池モジュールの一例を示す概略図である。 図7は、本発明の太陽電池モジュールの一例を示す概略図である。
(太陽電池モジュール)
本発明の太陽電池モジュールは、第1の基板上に少なくとも第1の電極、ホールブロッキング層、電子輸送層、ホール輸送層、第2の電極、第2の基板が形成され、第1の基板と第2の基板との間に封止部材を有する光電変換素子が複数設けられている太陽電池モジュールであって、互いに隣接する少なくとも2つの光電変換素子において、少なくともホール輸送層どうしが互いに延設された連続層の形態である。
本発明の太陽電池モジュールは、従来の太陽電池モジュールにおいて、太陽光などの高照度光に晒した後に、室内光などの低照度光での出力が大幅に低下するという問題があったという知見に基づくものである。具体的には、従来の太陽電池モジュールは、ホールブロッキング層が連結しているため高照度光でリーク電流が発生することから、センサーなどのための自立型電源として用いる際に一度でも高照度光に晒されると、低照度光で高い出力を得ることが困難であった。また、第1の電極をレーザー光などによりパターニングした後にホールブロッキング層を製膜すると、パターニングによる間隙をホールブロッキング層で十分に覆うことができず、高照度光で光増感化合物がダメージを受けやすくなるため、低照度光で高い出力を得にくかった。
本発明の太陽電池モジュールでは、互いに隣接する少なくとも2つの光電変換素子において、ホールブロッキング層を連結させずにホール輸送層を連結させる。これにより、本発明の太陽電池モジュールは、高照度光でリーク電流が発生しにくく、かつ光増感化合物がダメージを受けにくくなるため、高照度光に晒された前後において低照度光での出力低下を抑制することができる。このため、本発明の太陽電池モジュールは、太陽光に晒した後でも、太陽光に限らず、LED(Light Emitting Diode)や蛍光灯といった室内で使用される照明器具の光でも高い発電出力を有することができる。
本発明の太陽電池モジュールは、複数の光電変換素子を有し、互いに隣接する少なくとも2つの光電変換素子において、少なくともホール輸送層どうしが互いに延設された連続層の形態を有する。
次に、光電変換素子について説明する。
<光電変換素子>
光電変換素子とは、光エネルギーを電気エネルギーに変換することができる素子のことを示し、太陽電池やフォトダイオードなどに応用されている。
この光電変換素子は、第1の基板と、第1の電極と、ホールブロッキング層と、電子輸送層と、ホール輸送層と、第2の電極と、第2の基板と、封止部材とを有する。
<<第1の基板>>
第1の基板としては、その形状、構造、大きさについては、特に制限はなく、目的に応じて適宜選択することができる。
第1の基板の材質としては、透光性及び絶縁性を有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス、プラスチックフィルム、セラミック等の基板が挙げられる。これらの中でも、後述するように電子輸送層を形成する際に焼成する工程を含む場合は、焼成温度に対して耐熱性を有する基板が好ましい。また、第1の基板としては、可とう性を有するものが好ましい。
<<第1の電極>>
第1の電極としては、その形状、大きさについては、特に制限はなく、目的に応じて適宜選択することができる。
第1の電極の構造としては、特に制限はなく、目的に応じて適宜選択することができ、一層構造であってもよいし、複数の材料を積層する構造であってもよい。
第1の電極の材質としては、可視光に対する透明性及び導電性を有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、透明導電性金属酸化物、カーボン、金属などが挙げられる。
透明導電性金属酸化物としては、例えば、インジウム・スズ酸化物(以下、「ITO」と称する)、フッ素ドープ酸化スズ(以下、「FTO」と称する)、アンチモンドープ酸化スズ(以下、「ATO」と称する)、ニオブドープ酸化スズ(以下、「NTO」と称する)、アルミドープ酸化亜鉛、インジウム・亜鉛酸化物、ニオブ・チタン酸化物などが挙げられる。
カーボンとしては、例えば、カーボンブラック、カーボンナノチューブ、グラフェン、フラーレンなどが挙げられる。
金属としては、例えば、金、銀、アルミニウム、ニッケル、インジウム、タンタル、チタンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、透明性が高い透明導電性金属酸化物が好ましく、ITO、FTO、ATO、NTOがより好ましい。
第1の電極の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5nm以上100μm以下が好ましく、50nm以上10μm以下がより好ましい。なお、第1の電極の材質がカーボンや金属の場合には、第1の電極の平均厚みとしては、透光性を得られる程度の平均厚みにすることが好ましい。
第1の電極は、スパッタ法、蒸着法、スプレー法等の公知の方法などにより形成することができる。
また、第1の電極は、第1の基板上に形成されることが好ましく、予め第1の基板上に第1の電極が形成されている一体化された市販品を用いることができる。
一体化された市販品としては、例えば、FTOコートガラス、ITOコートガラス、酸化亜鉛:アルミニウムコートガラス、FTOコート透明プラスチックフィルム、ITOコート透明プラスチックフィルムなどが挙げられる。他の一体化された市販品としては、例えば、酸化スズ若しくは酸化インジウムに原子価の異なる陽イオン若しくは陰イオンをドープした透明電極、又はメッシュ状やストライプ状等の光が透過できる構造にした金属電極を設けたガラス基板などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用して混合又は積層したものでもよい。また、電気的抵抗値を下げる目的で、金属リード線などを併用してもよい。
金属リード線の材質としては、例えば、アルミニウム、銅、銀、金、白金、ニッケルなどが挙げられる。
金属リード線は、例えば、蒸着、スパッタリング、圧着などで基板に形成し、その上にITOやFTOの層を設けることにより併用することができる。
<<ホールブロッキング層>>
ホールブロッキング層は、第1の電極と電子輸送層との間に形成されている。ホールブロッキング層は、光増感化合物で生成され、電子輸送層に輸送された電子を第1の電極に輸送し、かつホール輸送層との接触を防ぐ。これにより、ホールブロッキング層は、第1の電極へホールを流入しにくくし、電子とホールの再結合による出力低下を抑制することができる。ホール輸送層を設けた固体型の光電変換素子は、電解液を用いた湿式型に比べて、ホール輸送材料中のホールと電極表面の電子の再結合速度が速いことから、ホールブロッキング層の形成による効果は非常に大きい。
ホールブロッキング層の材質としては、可視光に対して透明であり、かつ電子輸送性を有するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、シリコン、ゲルマニウム等の単体半導体、金属のカルコゲニドに代表される化合物半導体、ペロブスカイト構造を有する化合物などが挙げられる。
金属のカルコゲニドとしては、例えば、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、タンタルの酸化物;カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物;カドミウム、鉛のセレン化物;カドミウムのテルル化物などが挙げられる。他の化合物半導体としては、例えば、亜鉛、ガリウム、インジウム、カドミウム等のリン化物;ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物などが挙げられる。
ペロブスカイト構造を有する化合物としては、例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウムなどが挙げられる。
これらの中でも、酸化物半導体が好ましく、酸化チタン、酸化ニオブ、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化タングステン、酸化スズなどがより好ましく、酸化チタンが更に好ましい。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、単層としても積層してもよい。また、これらの半導体の結晶型は、特に制限はなく、目的に応じて適宜選択することができ、単結晶でもよいし、多結晶でもよいし、あるいは非晶質でもよい。
ホールブロッキング層の製膜方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、湿式製膜のゾルゲル法、四塩化チタンからの加水分解法、乾式製膜のスパッタリング法などが挙げられるが、これらの中でもスパッタリング法が好ましい。ホールブロッキング層の製膜方法がスパッタリング法であると、膜密度を十分に高くでき、損失電流を抑制することができる。
ホールブロッキング層の膜厚としては、特に制限はなく、目的に応じて適宜選択可能であるが、5nm以上1μm以下が好ましく、湿式製膜では500nm以上700nm以下がより好ましく、乾式製膜では5nm以上30nm以下がより好ましい。
<<電子輸送層>>
電子輸送層は、光増感化合物で生成された電子を第1の電極あるいはホールブロッキング層まで輸送する目的で形成される。このため、電子輸送層は、第1の電極あるいはホールブロッキング層に隣接して配置されることが好ましい。
電子輸送層の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、互いに隣接する少なくとも2つの光電変換素子において、電子輸送層どうしが互いに延設されていないことが好ましい。電子輸送層どうしが互いに延設されていなければ、電子拡散が抑制されてリーク電流が低下するため、光耐久性が向上する点で有利である。また、電子輸送層の構造としては、連続層単層であってもよく、複数の層が積層された多層であってもよい。
電子輸送層は、電子輸送性材料を含み、必要に応じてその他の材料を含む。
電子輸送性材料としては、特に制限はなく、目的に応じて適宜選択することができるが、半導体材料が好ましい。
半導体材料は、微粒子状の形状を有し、これらが接合することによって、多孔質状の膜に形成されることが好ましい。多孔質状の電子輸送層を構成する半導体微粒子の表面に、光増感化合物が化学的あるいは物理的に吸着される。
半導体材料としては、特に制限はなく、公知のものを用いることができ、例えば、単体半導体、化合物半導体、ペロブスカイト構造を有する化合物などが挙げられる。
単体半導体としては、例えば、シリコン、ゲルマニウムなどが挙げられる。
化合物半導体としては、例えば、金属のカルコゲニド、具体的には、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル等の酸化物;カドミウム、亜鉛、鉛、銀、アンチモン、ビスマス等の硫化物;カドミウム、鉛等のセレン化物;カドミウム等のテルル化物などが挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が挙げられる。
ペロブスカイト構造を有する化合物としては、例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウムなどが挙げられる。
これらの中でも、酸化物半導体が好ましく、特に酸化チタン、酸化亜鉛、酸化スズ及び酸化ニオブがより好ましい。電子輸送層の電子輸送性材料が酸化チタンであると、伝導帯(Conduction Band)が高く、高い開放電圧が得られる。また、屈折率が高く、光閉じ込め効果により高い短絡電流が得られる。さらに、誘電率が高く、移動度が高くなることで、高い曲線因子が得られる点で有利である。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、半導体材料の結晶型としては、特に制限はなく、目的に応じて適宜選択することができ、単結晶でも多結晶でもよく、非晶質でもよい。
半導体材料の一次粒子の個数平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、1nm以上100nm以下が好ましく、5nm以上50nm以下がより好ましい。また、個数平均粒径よりも大きい半導体材料を混合あるいは積層させてもよく、入射光を散乱させる効果により、変換効率を向上できる場合がある。この場合の個数平均粒径は、50nm以上500nm以下が好ましい。
電子輸送層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、50nm以上100μm以下が好ましく、100nm以上50μm以下がより好ましく、120nm以上10μm以下が更に好ましい。電子輸送層の平均厚みが好ましい範囲内であると、単位投影面積当たりの光増感化合物の量を十分に確保でき、光の捕獲率を高く維持できるとともに、注入された電子の拡散距離も増加しにくく、電荷の再結合によるロスを少なくできる点で有利である。
電子輸送層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スパッタリング等の真空中で薄膜を形成する方法、湿式製膜法などが挙げられる。これらの中でも、製造コストの観点から、湿式製膜法が好ましく、半導体材料の粉末あるいはゾルを分散したペーストを調製し、電子集電電極基板としての第1の電極の上、あるいはホールブロッキング層の上に塗布する方法がより好ましい。
湿式製膜法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法などが挙げられる。
湿式印刷方法としては、例えば、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷などの様々な方法を用いることができる。
半導体材料の分散液を作製する方法としては、例えば、公知のミリング装置等を用いて機械的に粉砕する方法が挙げられる。この方法により、粒子状の半導体材料を単独で、あるいは半導体材料と樹脂の混合物を、水又は溶媒に分散することにより半導体材料の分散液を作製できる。
樹脂としては、例えば、スチレン、酢酸ビニル、アクリル酸エステル、メタクリル酸エステル等によるビニル化合物の重合体や共重合体、シリコーン樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリエステル樹脂、セルロースエステル樹脂、セルロースエーテル樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアミド樹脂、ポリイミド樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
溶媒としては、例えば、水、アルコール溶媒、ケトン溶媒、エステル溶媒、エーテル溶媒、アミド溶媒、ハロゲン化炭化水素溶媒、炭化水素溶媒などが挙げられる。
アルコール溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、α−テルピネオールなどが挙げられる。
ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。
エステル溶媒としては、例えば、ギ酸エチル、酢酸エチル、酢酸n−ブチルなどが挙げられる。
エーテル溶媒としては、例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサンなどが挙げられる。
アミド溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが挙げられる。
ハロゲン化炭化水素溶媒としては、例えば、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、1−クロロナフタレンなどが挙げられる。
炭化水素溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、クメンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
半導体材料を含む分散液、あるいはゾル−ゲル法等によって得られた半導体材料を含むペーストには、粒子の再凝集を防ぐため、酸、界面活性剤、キレート化剤などを添加してもよい。
酸としては、例えば、塩酸、硝酸、酢酸などが挙げられる。
界面活性剤としては、例えば、ポリオキシエチレンオクチルフェニルエーテルなどが挙げられる。
キレート化剤としては、例えば、アセチルアセトン、2−アミノエタノール、エチレンジアミンなどが挙げられる。
また、製膜性を向上させる目的で、増粘剤を添加することも有効な手段である。
増粘剤としては、例えば、ポリエチレングリコール、ポリビニルアルコール、エチルセルロースなどが挙げられる。
半導体材料を塗布した後に、半導体材料の粒子間を電子的に接触させ、膜強度や基板との密着性を向上させるために焼成したり、マイクロ波や電子線を照射したり、又はレーザー光を照射することができる。これらの処理は、1種単独で行ってもよく、2種類以上組み合わせて行ってもよい。
半導体材料から形成された電子輸送層を焼成する場合には、焼成温度としては、特に制限はなく、目的に応じて適宜選択することができるが、温度が高すぎると基板の抵抗が高くなったり、溶融したりすることがあることから、30℃以上700℃以下が好ましく、100℃以上600℃以下がより好ましい。また、焼成時間としては、特に制限はなく、目的に応じて適宜選択することができるが、10分間以上10時間以下が好ましい。
半導体材料から形成された電子輸送層をマイクロ波照射する場合には、照射時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以下が好ましい。この場合、電子輸送層が形成されている面側から照射してもよく、電子輸送層が形成されていない面側から照射してもよい。
半導体材料からなる電子輸送層を焼成した後、電子輸送層の表面積の増大や、後述する光増感化合物から半導体材料への電子注入効率を高める目的で、例えば、四塩化チタンの水溶液や有機溶剤との混合溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
直径が数十nmの半導体材料を焼結し得られた膜は、多孔質状を形成することができる。このようなナノ多孔質構造は、非常に高い表面積を有し、その表面積はラフネスファクターを用いて表わすことができる。ラフネスファクターは、第1の基板に塗布した半導体粒子の面積に対する多孔質内部の実面積を表わす数値である。したがって、ラフネスファクターとしては、大きいほど好ましいが、電子輸送層の平均厚みとの関係から、20以上が好ましい。
<<光増感化合物>>
光増感化合物は、出力や光電変換効率の更なる向上のため、電子輸送層を構成する半導体材料の表面に、光増感化合物を吸着される。
光増感化合物としては、光電変換素子に照射される光により光励起される化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、下記の公知の化合物などが挙げられる。
具体的には、金属錯体化合物、J.Phys.Chem.C,7224,Vol.111(2007)等に記載のクマリン化合物、Chem.Commun.,4887(2007)等に記載のポリエン化合物、J.Am.Chem.Soc.,12218,Vol.126(2004)、Chem.Commun.,3036(2003)、Angew.Chem.Int.Ed.,1923,Vol.47(2008)等に記載のインドリン化合物、J.Am.Chem.Soc.,16701,Vol.128(2006)、J.Am.Chem.Soc.,14256,Vol.128(2006)等に記載のチオフェン化合物、シアニン色素、メロシアニン色素、9−アリールキサンテン化合物、トリアリールメタン化合物、J.Phys.Chem.,2342,Vol.91(1987)、J.Phys.Chem.B,6272,Vol.97(1993)、Electroanal.Chem.,31,Vol.537(2002)J.Porphyrins Phthalocyanines,230,Vol.3(1999)、Angew.Chem.Int.Ed.,373,Vol.46(2007)、Langmuir,5436,Vol.24(2008)等に記載のフタロシアニン化合物、ポルフィリン化合物などが挙げられる。
これらの中でも、金属錯体化合物、クマリン化合物、ポリエン化合物、インドリン化合物、チオフェン化合物が好ましく、三菱製紙株式会社製の下記構造式(1)、下記構造式(2)、下記構造式(3)で表される化合物、更に下記一般式(3)を含む化合物がより好ましい。なお、これらの光増感化合物は、単独で用いてもよく、2種類以上混合して用いることもできる。
(式中、X1、X2は酸素原子、硫黄原子、セレン原子を表す。R1は置換基を有していてもよいメチン基を表す。その置換基の具体例としては、フェニル基、ナフチル基などのアリール基、チエニル基、フリル基などのヘテロ環が挙げられる。R2は置換基を有していてもよいアルキル基、アリール基、ヘテロ環基を表す。アルキル基としては、メチル基、エチル基、2−プロピル基、2−エチルヘキシル基等、アリール基及びヘテロ環基としては前述のものが挙げられる。R3はカルボン酸、スルホン酸、ホスホン酸、ボロン酸、フェノール類などの酸性基を表す。Z1、Z2は環状構造を形成する置換基を表し、Z1は、ベンゼン環、ナフタレン環などの縮合炭化水素系化合物、チオフェン環、フラン環などのヘテロ環が挙げられ、それぞれ置換基を有していてもよい。その置換基の具体例としては前述のアルキル基、メトキシ基、エトキシ基、2−イソプロポキシ基等のアルコキシ基が挙げられる。Z2はそれぞれ下記に示す(A−1)〜(A−22)が挙げられる。)
一般式(3)を含む光増感化合物の具体例としては、以下に示す(B−1)〜(B−28)が挙げられる。但し、これらに限定されるものではない。
電子輸送層の半導体材料の表面に、光増感化合物を吸着させる方法としては、光増感化合物の溶液中、又は光増感化合物の分散液中に、半導体材料を含む電子輸送層を浸漬する方法、光増感化合物の溶液、又は光増感化合物の分散液を電子輸送層に塗布して吸着させる方法などを用いることができる。光増感化合物の溶液中、又は光増感化合物の分散液中に、半導体材料を形成した電子輸送層を浸漬する方法の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法などを用いることができる。光増感化合物の溶液、又は光増感化合物の分散液を、電子輸送層に塗布して吸着させる方法の場合は、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法などを用いることができる。また、二酸化炭素などを用いた超臨界流体中で吸着させることも可能である。
光増感化合物を半導体材料に吸着させる際には、縮合剤を併用してもよい。
縮合剤としては、半導体材料の表面に物理的もしくは化学的に、光増感化合物を結合させるような触媒的作用をするもの、又は化学量論的に作用し、化学平衡を有利に移動させるもののいずれであってもよい。更に、縮合助剤として、チオールやヒドロキシ化合物などを添加してもよい。
光増感化合物を溶解、又は分散する溶媒としては、例えば、水、アルコール溶媒、ケトン溶媒、エステル溶媒、エーテル溶媒、アミド溶媒、ハロゲン化炭化水素溶媒、炭化水素溶媒などが挙げられる。
アルコール溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコールなどが挙げられる。
ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。
エステル溶媒としては、例えば、ギ酸エチル、酢酸エチル、酢酸n−ブチルなどが挙げられる。
エーテル溶媒としては、例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサンなどが挙げられる。
アミド溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが挙げられる。
ハロゲン化炭化水素溶媒としては、例えば、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、1−クロロナフタレンなどが挙げられる。
炭化水素溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、クメンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
光増感化合物は、その種類によっては化合物間の凝集を抑制した方がより効果的に働くものが存在するため、凝集解離剤を併用してもよい。
凝集解離剤としては、特に制限はなく、用いる色素に対して適宜選択することができるが、コール酸、ケノデオキシコール酸などのステロイド化合物、長鎖アルキルカルボン酸または長鎖アルキルホスホン酸が好ましい。
凝集解離剤の含有量としては、光増感化合物1質量部に対して0.01質量部以上500質量部以下が好ましく、0.1質量部以上100質量部以下がより好ましい。
電子輸送層を構成する半導体材料の表面に、光増感化合物、又は、光増感化合物及び凝集解離剤を吸着させる際の温度としては、−50℃以上200℃以下が好ましい。吸着時間としては、5秒間以上1,000時間以下が好ましく、10秒間以上500時間以下がより好ましく、1分間以上150時間以下が更に好ましい。吸着させる工程は、暗所で行うことが好ましい。また、吸着させる工程は、静置して行ってもよく、攪拌しながら行ってもよい。
攪拌する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スターラー、ボールミル、ペイントコンディショナー、サンドミル、アトライター、ディスパーザー、超音波分散等を用いた方法などが挙げられる。
<<ホール輸送層>>
ホール輸送層は、ホールを輸送する機能を有していれば、公知の材料を用いることができ、例えば、酸化還元対を有機溶媒に溶解した電解液、酸化還元対を有機溶媒に溶解した液体をポリマーマトリックスに含浸したゲル電解質、酸化還元対を含有する溶融塩、固体電解質、無機ホール輸送材料、有機ホール輸送材料などが挙げられる。これらの中でも、電解液やゲル電解質を用いることも可能であるが、固体電解質が好ましく、有機ホール輸送材料がより好ましい。
ホール輸送層には、下記一般式(1)又は一般式(2)からなる塩基性化合物を含有する。
(式中、R1、R2は、それぞれ独立に、アルキル基または芳香族炭化水素基を表し、同一または異なる基を表すか、若しくは、R1、R2は互いに結合し、窒素原子を含む複素環基を表す。)
(式中、R1、R2は、それぞれ独立に、アルキル基または芳香族炭化水素基を表し、同一または異なる基を表すか、若しくは、R1、R2は互いに結合し、窒素原子を含む複素環基を表す。)
ホール輸送層は、一般式(1)又は一般式(2)で示される塩基性化合物を含有することが好ましい。ホール輸送層に一般式(1)又は一般式(2)で示される塩基性化合物を含有すると、光電変換素子の出力安定性を高める点で有利である。特に、低照度光に対する出力特性のバラツキを低減し、安定に発電することが可能な点でも有利である。
以下に、一般式(1)または一般式(2)で示される塩基性化合物の具体的な例示化合物を示すが、本発明はこれらに限定されるものではない。
ホール輸送層における一般式(1)又は一般式(2)で示される塩基性化合物の含有量としては、ホール輸送材料100質量部に対して、1質量部以上50質量部以下であることが好ましく、10質量部以上30質量部以下であることがより好ましい。塩基性化合物の含有量が好ましい範囲であることにより、高い開放電圧を維持でき、高い出力が得られ、かつ様々な環境で長期使用しても高い安定性と耐久性が得られる。
ホール輸送層にはホールを輸送する機能を得るために、ホール輸送材料あるいはp型半導体材料が含有される。ホール輸送材料あるいはp型半導体材料としては、公知の有機ホール輸送性化合物が用いられる。その具体例としては、オキサジアゾール化合物、トリフェニルメタン化合物、ピラゾリン化合物、ヒドラゾン化合物、オキサジアゾール化合物、テトラアリールベンジジン化合物、スチルベン化合物、スピロ型化合物等を挙げることができる。
これらの中でもスピロ型化合物がより好ましい。
スピロ型化合物としては、下記一般式(4)を含む化合物が好ましい。
(式中、R9〜R12は、ジメチルアミノ基、ジフェニルアミノ基、ナフチル−4−トリルアミノ基等の置換アミノ基を表す。)
スピロ型化合物の具体例としては、以下に示す(D−1)〜(D−22)が挙げられる。但し、これらに限定されるものではない。

これらのスピロ型化合物は、高いホール移動度を有している他に、2つのベンジジン骨格分子が捻れて結合しているため、球状に近い電子雲を形成しており、分子間におけるホッピング伝導性が良好であることにより優れた光電変換特性を示す。また溶解性も高いため各種有機溶媒に溶解し、アモルファス(結晶構造をもたない無定形物質)であるため、多孔質状の電子輸送層に密に充填されやすい。更に、450nm以上の光吸収特性を有さないために、光増感化合物に効率的に光吸収をさせることができ、固体型色素増感型太陽電池にとって特に好ましい。
ホール輸送層には、ホール輸送材料や塩基性化合物以外に、酸化剤を添加することが好ましい。酸化剤を含有させることにより、導電性が向上し、出力特性の耐久性や安定性を高めることが可能になる。
酸化剤としては、例えば、ヘキサクロロアンチモン酸トリス(4−ブロモフェニル)アミニウム、ヘキサフルオロアンチモネート銀、ニトロソニウムテトラフルオボラート、硝酸銀、金属錯体などが挙げられるが、これらの中でも金属錯体がより好ましい。酸化剤が金属錯体であると、有機溶媒に関する溶解度が高いことで、多く添加することが可能である点で有利である。
金属錯体は、金属カチオン、配位子、アニオンから構成される。
金属カチオンとしては、例えば、クロム、マンガン、鉄、コバルト、ニッケル、銅、モリブデン、ルテニウム、ロジウム、パラジウム、銀、タングステン、レニウム、オスミウム、イリジウム、金、白金等のカチオンを挙げることができ、この中でも、コバルト、鉄、ニッケル、銅のカチオンが好ましく、3価のコバルト錯体がより好ましい。配位子としては、少なくとも一つの窒素を含有する5及び/又は6員複素環を含むものが好ましく、置換基を有していてもよい。具体例としては、以下のものが挙げられるが、これらに限定されるものではない。
アニオンとしては、例えば、水素化物イオン(H)、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、ヨウ化物イオン(I)、水酸化物イオン(OH)、シアン化物イオン(CN)、硝酸イオン(NO )、亜硝酸イオン(NO )、次亜塩素酸イオン(ClO)、亜塩素酸イオン(ClO )、塩素酸イオン(ClO )、過塩素酸イオン(ClO )、過マンガン酸イオン(MnO )、酢酸イオン(CHCOO)、炭酸水素イオン(HCO )、リン酸二水素イオン(HPO )、硫酸水素イオン(HSO )、硫化水素イオン(HS)、チオシアン酸イオン(SCN)、テトラフロオロホウ素酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、テトラシアノホウ素酸イオン(B(CN) )、ジシアノアミンイオン(N(CN) )、p−トルエンスルホン酸イオン(TsO)、トリフルオロメチルスルホン酸イオン(CFSO )、ビス(トリフルオロメチルスルホニル)アミンイオン(N(SOCF2−)テトラヒドロキソアルミン酸イオン([Al(OH)、あるいは[Al(OH)(HO))、ジシアノ銀(I)酸イオン([Ag(CN))、テトラヒドロキソクロム(III)酸イオン([Cr(OH))、テトラクロロ金(III)酸イオン([AuCl)、酸化物イオン(O2−)、硫化物イオン(S2−)、過酸化物イオン(O 2−)、硫酸イオン(SO 2−)、亜硫酸イオン(SO 2−)、チオ硫酸イオン(S 2−)、炭酸イオン(CO 2−)、クロム酸イオン(CrO 2−)、二クロム酸イオン(Cr 2−)、リン酸一水素イオン(HPO 2−)、テトラヒドロキソ亜鉛(II)酸イオン([Zn(OH)2−)、テトラシアノ亜鉛(II)酸イオン([Zn(CN)2−)、テトラクロロ銅(II)酸イオン([CuCl2−)、リン酸イオン(PO 3−)、ヘキサシアノ鉄(III)酸イオン([Fe(CN)3−)、ビス(チオスルファト)銀(I)酸イオン([Ag(S3−)、ヘキサシアノ鉄(II)酸イオン([Fe(CN)4−)などが挙げられる。これらの中でも、テトラフロオロホウ素酸イオン、ヘキサフルオロリン酸イオン、テトラシアノホウ素酸イオン、ビス(トリフルオロメチルスルホニル)アミンイオン、過塩素酸イオンが好ましい。
これらの金属錯体の中でも、下記構造式(4)及び(5)で示される3価のコバルト錯体が特に好ましい。金属錯体が3価のコバルト錯体であると、高照度光に晒された前後において低照度光での出力低下をより抑制することができる点で有利である。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
酸化剤の含有量としては、ホール輸送材料100質量部に対して、0.5質量部以上30質量部以下であることが好ましく、1質量部以上15質量部以下であることがより好ましい。酸化剤の添加によって、すべてのホール輸送材料が酸化される必要はなく、一部のみが酸化されていれば有効である。
また、ホール輸送層は、アルカリ金属塩を更に含有することが好ましい。ホール輸送層がアルカリ金属塩を含有すると、出力を向上させることができ、更に光照射耐性や高温保存耐性を向上させることができる。
アルカリ金属塩としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム、過塩素酸リチウム、リチウムビス(トリフルオロメタンスルホニル)ジイミド、リチウムジイソプロピルイミド、酢酸リチウム、テトラフルオロホウ素酸リチウム、ペンタフルオロリン酸リチウム、テトラシアノホウ素酸リチウム等のリチウム塩、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、過塩素酸ナトリウム、ナトリウムビス(トリフルオロメタンスルホニル)ジイミド、酢酸ナトリウム、テトラフルオロホウ素酸ナトリウム、ペンタフルオロリン酸ナトリウム、テトラシアノホウ素酸ナトリウム等のナトリウム塩、塩化カリウム、臭化カリウム、ヨウ化カリウム、過塩素酸カリウム等のカリウム塩などが挙げられる。これらの中でも、リチウムビス(トリフルオロメタンスルホニル)ジイミド、リチウムジイソプロピルイミドが好ましい。
アルカリ金属塩の含有量としては、ホール輸送材料100質量部に対して、1質量部以上50質量部以下であることが好ましく、5質量部以上30質量部以下であることがより好ましい。
ホール輸送層は、単一材料からなる単層構造でもよく、複数の化合物を含む積層構造であってもよい。ホール輸送層が積層構造の場合には、第2の電極に近いホール輸送層に高分子材料を用いることが好ましい。製膜性に優れる高分子材料を用いると、多孔質状の電子輸送層の表面をより平滑化することができ、光電変換特性を向上することができる点で有利である。また、高分子材料は、多孔質状の電子輸送層内部へ浸透しにくいことから、多孔質状の電子輸送層表面の被覆性に優れ、電極を設ける際の短絡防止にも効果が得られる場合がある。
ホール輸送層に用いられる高分子材料としては、公知のホール輸送性高分子材料が挙げられる。
ホール輸送性高分子材料としては、例えば、ポリチオフェン化合物、ポリフェニレンビニレン化合物、ポリフルオレン化合物、ポリフェニレン化合物、ポリアリールアミン化合物、ポリチアジアゾール化合物などが挙げられる。
ポリチオフェン化合物としては、例えば、ポリ(3−n−ヘキシルチオフェン)、ポリ(3−n−オクチルオキシチオフェン)、ポリ(9,9’−ジオクチル−フルオレン−コ−ビチオフェン)、ポリ(3,3’’’−ジドデシル−クォーターチオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン)、ポリ(2,5−ビス(3−デシルチオフェン−2−イル)チエノ[3,2−b]チオフェン)、ポリ(3,4−ジデシルチオフェン−コ−チエノ[3,2−b]チオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン−コ−チエノ[3,2−b]チオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン−コ−チオフェン)、ポリ(3,6−ジオクチルチエノ[3,2−b]チオフェン−コ−ビチオフェン)などが挙げられる。
ポリフェニレンビニレン化合物としては、例えば、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ[2−メトキシ−5−(3,7−ジメチルオクチルオキシ)−1,4−フェニレンビニレン]、ポリ[(2−メトキシ−5−(2−エチルフェキシルオキシ)−1,4−フェニレンビニレン)−コ−(4,4’−ビフェニレン−ビニレン)]などが挙げられる。
ポリフルオレン化合物としては、例えば、ポリ(9,9’−ジドデシルフルオレニル−2,7−ジイル)、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(9,10−アントラセン)]、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(4,4’−ビフェニレン)]、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレン)−alt−コ−(2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレン)]、ポリ[(9,9−ジオクチル−2,7−ジイル)−コ−(1,4−(2,5−ジヘキシルオキシ)ベンゼン)]などが挙げられる。
ポリフェニレン化合物としては、例えば、ポリ[2,5−ジオクチルオキシ−1,4−フェニレン]、ポリ[2,5−ジ(2−エチルヘキシルオキシ−1,4−フェニレン]などが挙げられる。
ポリアリールアミン化合物としては、例えば、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(N,N’−ジフェニル)−N,N’−ジ(p−ヘキシルフェニル)−1,4−ジアミノベンゼン]、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(N,N’−ビス(4−オクチルオキシフェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[(N,N’−ビス(4−オクチルオキシフェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[(N,N’−ビス(4−(2−エチルヘキシルオキシ)フェニル)ベンジジン−N,N’−(1,4−ジフェニレン)]、ポリ[フェニルイミノ−1,4−フェニレンビニレン−2,5−ジオクチルオキシ−1,4−フェニレンビニレン−1,4−フェニレン]、ポリ[p−トリルイミノ−1,4−フェニレンビニレン−2,5−ジ(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン−1,4−フェニレン]、ポリ[4−(2−エチルヘキシルオキシ)フェニルイミノ−1,4−ビフェニレン]などが挙げられる。
ポリチアジアゾール化合物としては、例えば、ポリ[(9,9−ジオクチルフルオレニル−2,7−ジイル)−alt−コ−(1,4−ベンゾ(2,1’,3)チアジアゾール]、ポリ(3,4−ジデシルチオフェン−コ−(1,4−ベンゾ(2,1’,3)チアジアゾール)などが挙げられる。
これらの中でも、キャリア移動度やイオン化ポテンシャルの観点から、ポリチオフェン化合物及びポリアリールアミン化合物が好ましい。
ホール輸送層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、多孔質状の電子輸送層の細孔に入り込んだ構造を有することが好ましく、電子輸送層上に0.01μm以上20μm以下が好ましく、0.1μm以上10μm以下がより好ましく、0.2μm以上2μm以下が更に好ましい。
ホール輸送層は、光増感化合物が吸着された電子輸送層の上に直接形成することができる。ホール輸送層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができるが、真空蒸着等の真空中で薄膜を形成する方法、湿式製膜法などが挙げられる。これらの中でも、製造コストなどの点で、特に湿式製膜法が好ましく、電子輸送層上に塗布する方法が好ましい。
湿式製膜法を用いた場合、塗布方法としては、特に制限はなく、公知の方法にしたがって行うことができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。
また、超臨界流体又は臨界点より低い温度及び圧力の亜臨界流体中で製膜してもよい。超臨界流体は、気体と液体が共存できる限界(臨界点)を超えた温度及び圧力領域において非凝集性高密度流体として存在し、圧縮しても凝集せず、臨界温度以上、かつ臨界圧力以上の状態にある流体である限り特に制限はなく、目的に応じて適宜選択することができるが、臨界温度が低いものが好ましい。
超臨界流体としては、例えば、一酸化炭素、二酸化炭素、アンモニア、窒素、水、アルコール溶媒、炭化水素溶媒、ハロゲン溶媒、エーテル溶媒などが挙げられる。
アルコール溶媒としては、例えば、メタノール、エタノール、n−ブタノールなどが挙げられる。
炭化水素溶媒としては、例えば、エタン、プロパン、2,3−ジメチルブタン、ベンゼン、トルエンなどが挙げられる。ハロゲン溶媒としては、例えば、塩化メチレン、クロロトリフロロメタンなどが挙げられる。
エーテル溶媒としては、例えば、ジメチルエーテルなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、二酸化炭素が、臨界圧力7.3MPa、臨界温度31℃であることから、容易に超臨界状態をつくり出せるとともに、不燃性で取扱いが容易である点で好ましい。
亜臨界流体としては、臨界点近傍の温度及び圧力領域において、高圧液体として存在する限り特に制限はなく、目的に応じて適宜選択することができる。超臨界流体として挙げられる化合物は、亜臨界流体としても好適に使用することができる。
超臨界流体の臨界温度及び臨界圧力は、特に制限はなく、目的に応じて適宜選択することができるが、臨界温度としては、−273℃以上300℃以下が好ましく、0℃以上200℃以下がより好ましい。
さらに、超臨界流体及び亜臨界流体に加え、有機溶媒やエントレーナーを併用することもできる。有機溶媒及びエントレーナーの添加により、超臨界流体中での溶解度の調整をより容易に行うことができる。
有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ケトン溶媒、エステル溶媒、エーテル溶媒、アミド溶媒、ハロゲン化炭化水素溶媒、炭化水素溶媒などが挙げられる。
ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。
エステル溶媒としては、例えば、ギ酸エチル、酢酸エチル、酢酸n−ブチルなどが挙げられる。
エーテル溶媒としては、例えば、ジイソプロピルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサンなどが挙げられる。
アミド溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが挙げられる。
ハロゲン化炭化水素溶媒としては、例えば、ジクロロメタン、クロロホルム、ブロモホルム、ヨウ化メチル、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、o−ジクロロベンゼン、フルオロベンゼン、ブロモベンゼン、ヨードベンゼン、1−クロロナフタレンなどが挙げられる。
炭化水素溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−オクタン、1,5−ヘキサジエン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサジエン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、エチルベンゼン、クメンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
また、光増感化合物を吸着させた電子輸送層上に、ホール輸送材料を積層した後、プレス処理工程を施してもよい。プレス処理を施すことによって、ホール輸送材料がより多孔質電極である電子輸送層と密着するため、効率が改善できる場合がある。
プレス処理の方法としては、特に制限はなく、目的に応じて適宜選択することができ、IR錠剤成形器に代表されるような平板を用いたプレス成形法、ローラー等を用いたロールプレス法などを挙げることができる。
圧力としては、10kgf/cm以上が好ましく、30kgf/cm以上がより好ましい。
プレス処理する時間は、特に制限はなく、目的に応じて適宜選択することができるが、1時間以下が好ましい。また、プレス処理時に熱を加えてもよい。プレス処理の際、プレス機と電極との間に離型剤を挟んでもよい。
離型剤としては、例えば、ポリ四フッ化エチレン、ポリクロロ三フッ化エチレン、四フッ化エチレン六フッ化プロピレン共重合体、ペルフルオロアルコキシフッ化樹脂、ポリフッ化ビニリデン、エチレン四フッ化エチレン共重合体、エチレンクロロ三フッ化エチレン共重合体、ポリフッ化ビニル等のフッ素樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
プレス処理工程を行った後、第2の電極を設ける前に、ホール輸送材料と第2の電極との間に金属酸化物を設けてもよい。
金属酸化物としては、例えば、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化ニッケルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸化モリブデンが好ましい。
金属酸化物をホール輸送層上に設ける方法としては、特に制限はなく、目的に応じて適宜選択することができ、スパッタリング、真空蒸着等の真空中で薄膜を形成する方法や湿式製膜法などが挙げられる。
湿式製膜法としては、金属酸化物の粉末又はゾルを分散したペーストを調製し、ホール輸送層上に塗布する方法が好ましい。湿式製膜法を用いた場合の塗布方法としては、特に制限はなく、公知の方法にしたがって行うことができ、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、また、湿式印刷方法として、凸版、オフセット、グラビア、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。
塗布された金属酸化物の平均厚みとしては、0.1nm以上50nm以下が好ましく、1nm以上10nm以下がより好ましい。
<<第2の電極>>
第2の電極は、ホール輸送層上に、又はホール輸送層における金属酸化物上に形成することができる。また、第2の電極は、第1の電極と同様のものを用いることができ、強度が十分に保たれる場合には支持体は必ずしも必要ではない。
第2の電極の材質としては、例えば、金属、炭素化合物、導電性金属酸化物、導電性高分子などが挙げられる。
金属としては、例えば、白金、金、銀、銅、アルミニウムなどが挙げられる。
炭素化合物としては、例えば、グラファイト、フラーレン、カーボンナノチューブ、グラフェンなどが挙げられる。
導電性金属酸化物としては、例えば、ITO、FTO、ATOなどが挙げられる。
導電性高分子としては、例えば、ポリチオフェン、ポリアニリンなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
第2の電極の形成については、用いられる材料の種類やホール輸送層の種類により、適宜ホール輸送層上に塗布、ラミネート、蒸着、CVD、貼り合わせなどの手法により形成可能である。
光電変換素子においては、第1の電極と第2の電極の少なくともいずれかは実質的に透明であることが好ましい。第1の電極側が透明であり、入射光を第1の電極側から入射させる方法が好ましい。この場合、第2の電極側には光を反射させる材料を使用することが好ましく、金属、導電性酸化物を蒸着したガラス、プラスチック、あるいは金属薄膜が好ましく用いられる。また、入射光側に反射防止層を設けることも有効な手段である。
<<第2の基板>>
第2の基板としては、特に制限されるものではなく、公知のものを用いることができ、例えば、ガラス、プラスチックフィルム、セラミック等の基板が挙げられる。第2の基板と封止部材との接合部は密着性を上げるため、凹凸部を形成してもよい。
凹凸部の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、サンドブラスト法、ウオーターブラスト法、研磨紙、化学エッチング法、レーザー加工法などが挙げられる。
第2の基板と封止部材との密着性を上げる手段としては、例えば、表面の有機物を除去してもよく、親水性を向上させてもよい。第2の基板の表面の有機物を除去する手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、UVオゾン洗浄、酸素プラズマ処理などが挙げられる。
<<封止部材>>
封止樹脂としては、例えば、アクリル樹脂、エポキシ樹脂などが挙げられる。
アクリル樹脂の硬化物は、分子内にアクリル基を有するモノマーあるいはオリゴマーが硬化されたものであれば、公知のいずれの材料でも使用することが可能である。
エポキシ樹脂の硬化物は、分子内にエポキシ基を有するモノマーあるいはオリゴマーが硬化されたものであれば、公知のいずれの材料でも使用することが可能である。
エポキシ樹脂としては、例えば、水分散系、無溶剤系、固体系、加熱硬化型、硬化剤混合型、紫外線硬化型などが挙げられる。これらの中でも熱硬化型及び紫外線硬化型が好ましく、紫外線硬化型がより好ましい。なお、紫外線硬化型であっても、加熱を行うことは可能であり、紫外線硬化した後であっても加熱を行うことが好ましい。
エポキシ樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型、ノボラック型、環状脂肪族型、長鎖脂肪族型、グリシジルアミン型、グリシジルエーテル型、グリシジルエステル型などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
エポキシ樹脂は、必要に応じて硬化剤や各種添加剤を混合することが好ましい。
硬化剤としては、アミン系、酸無水物系、ポリアミド系およびその他の硬化剤に分類され、目的に応じて適宜選択される。
アミン系硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族ポリアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族ポリアミンなどが挙げられる。
酸無水物系硬化剤としては、例えば、無水フタル酸、テトラ及びヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ピロメリット酸、無水ヘット酸、ドデセニル無水コハク酸などが挙げられる。
その他の硬化剤としては、例えば、イミダゾール類、ポリメルカプタンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
添加剤としては、例えば、充填材(フィラー)、ギャップ剤、重合開始剤、乾燥剤(吸湿剤)、硬化促進剤、カップリング剤、可とう化剤、着色剤、難燃助剤、酸化防止剤、有機溶剤などが挙げられる。これらの中でも、充填材、ギャップ剤、硬化促進剤、重合開始剤、乾燥剤(吸湿剤)が好ましく、充填材及び重合開始剤がより好ましい。
充填材は、水分や酸素の浸入を抑制する上で有効であるほか、硬化時の体積収縮の低減、硬化時あるいは加熱時のアウトガス量の低減、機械的強度の向上、熱伝導性や流動性の制御等の効果を得ることができ、様々な環境でも安定した出力を維持する上で非常に有効である。特に、光電変換素子の出力特性やその耐久性は、単に侵入する水分や酸素の影響だけでなく、封止部材の硬化時あるいは加熱時に発生するアウトガスの影響が無視できない。特に、加熱時に発生するアウトガスの影響は、高温環境保管における出力特性に大きな影響を及ぼす。
この場合、封止部材に充填材やギャップ剤、乾燥剤を含有させることにより、これら自身が水分や酸素の浸入を抑制できるほか、封止部材の使用量を低減できることにより、アウトガスを低減させる効果を得ることができる。これは、硬化時だけでなく、光電変換素子を高温環境に保存した際にも有効である。
充填材としては、特に制限されるものではなく、公知のものを用いることができ、例えば、結晶性あるいは不定形のシリカ、タルク、アルミナ、窒化アルミ、窒化珪素、珪酸カルシウム、炭酸カルシウム等の無機系充填材が好ましく用いられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。充填材の平均一次粒径は、0.1μm以上10μmが好ましく、1μm以上5μm以下がより好ましい。添加量が好ましい範囲内であると、水分や酸素の侵入を抑制する効果を十分に得ることができ、粘度が適正となり、基板との密着性や脱泡性の向上、あるいは封止部の幅の制御や作業性に対しても有効である。
充填材の含有量としては、封止部材全体が100質量部に対し、10質量部以上90質量部以下が好ましく、20質量部以上70質量部以下がより好ましい。充填材の含有量が上記範囲内であることにより、水分や酸素の浸入抑制効果が十分に得られ、粘度も適正となり、密着性や作業性も良好となる。
ギャップ剤とは、ギャップ制御剤あるいはスペーサー剤とも称され、封止部のギャップを制御することが可能になる。例えば、第1の基板もしくは第1の電極の上に、封止部材を付与し、その上に第2の基板を載せて封止を行う場合、エポキシ樹脂にギャップ剤を混合していることにより、封止部のギャップがギャップ剤のサイズに揃うため、容易に封止部のギャップを制御することができる。
ギャップ剤としては、粒状でかつ粒径が均一であり、耐溶剤性や耐熱性が高いものであれば、公知の材料を使用できる。エポキシ樹脂と親和性が高く、粒子形状が球形であるものが好ましい。具体的には、ガラスビーズ、シリカ微粒子、有機樹脂微粒子等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
ギャップ剤の粒径としては、設定する封止部のギャップに合わせて選択可能であるが、1μm以上100μm以下が好ましく、5μm以上50μm以下がより好ましい。
重合開始剤は、熱や光を用いて重合を開始させることを目的として添加される材料である。
熱重合開始剤は、加熱によってラジカルやカチオンなどの活性種を発生する化合物で、具体的には2,2’−アゾビスブチロニトリル(AIBN)のようなアゾ化合物や、過酸化ベンゾイル(BPO)などの過酸化物等が用いられる。熱カチオン重合開始剤としてはベンゼンスルホン酸エステルやアルキルスルホニウム塩等が用いられる。一方、光重合開始剤は、エポキシ樹脂の場合光カチオン重合開始剤が好ましく用いられる。エポキシ樹脂に光カチオン重合開始剤を混合し、光照射を行うと光カチオン重合開始剤が分解して、強酸を発生し、酸がエポキシ樹脂の重合を引き起こし、硬化反応が進行する。光カチオン重合開始剤は、硬化時の体積収縮が少なく、酸素阻害を受けず、貯蔵安定性が高いといった効果を有する。
光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、メタセロン化合物、シラノール・アルミニウム錯体などが挙げられる。
また、光を照射することにより酸を発生する機能を有する光酸発生剤も使用できる。光酸発生剤は、カチオン重合を開始する酸として作用し、例えば、カチオン部とアニオン部からなるイオン性のスルホニウム塩系やヨードニウム塩系などのオニウム塩が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
重合開始剤の添加量としては、使用する材料によって異なる場合があるが、封止部材全体が100質量部に対し、0.5質量部以上10質量部以下が好ましく、1質量部以上5質量部以下がより好ましい。添加量が上記範囲内であることにより、硬化が適正に進み、未硬化物の残存を低減することができ、またアウトガスが過剰になるのを防止でき、有効である。
乾燥剤は、吸湿剤とも称され、水分を物理的あるいは化学的に吸着、吸湿する機能を有する材料であり、封止部材に含有させることにより、耐湿性をさらに高めたり、アウトガスの影響を低減できたりする場合もあることから有効である。
乾燥剤としては、粒子状であるものが好ましく、例えば、酸化カルシウム、酸化バリウム、酸化マグネシウム、硫酸マグネシウム、硫酸ナトリウム、塩化カルシウム、シリカゲル、モレキュラーシーブ、ゼオライトなどの無機吸水材料が挙げられる。これらの中でも、吸湿量が多いゼオライトが好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
硬化促進剤は、硬化触媒とも称され、硬化速度を速めることを目的として用いられ、主に熱硬化型のエポキシ樹脂に用いられる。
硬化促進剤としては、例えば、DBU(1,8−ジアザビシクロ(5,4,0)−ウンデセン−7)やDBN(1,5−ジアザビシクロ(4,3,0)−ノネン−5)等の三級アミンあるいは三級アミン塩、1−シアノエチル−2−エチル−4−メチルイミダゾールや2−エチル−4−メチルイミダゾール等のイミダゾール系、トリフェニルホスフィンやテトラフェニルホスホニウム・テトラフェニルボレート等のホスフィンあるいはホスホニウム塩などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
カップリング剤は、分子結合力を高める効果を有し、シランカップリング剤が挙げられ、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
さらに、封止部材は、封止材、シール材あるいは接着剤として市販されているエポキシ樹脂組成物が知られており、本発明においても有効に使用することができる。中でも、太陽電池や有機EL素子用途向けに開発、市販されているエポキシ樹脂組成物もあり、本発明において特に有効に使用できる。例えば、TB3118、TB3114、TB3124、TB3125F(スリーボンド社製)、WorldRock5910、WorldRock5920、WorldRock8723(協立化学社製)、WB90US(P)(モレスコ社製)等が挙げられる。
本発明においては、シート状封止材を用いることができる。
シート状封止材とは、シート上に予めエポキシ樹脂層を形成したもので、シートはガラスやガスバリア性の高いフィルム等が用いられ、本発明における第2の基板に該当する。シート状封止材を、第2の基板上に貼り付け、その後硬化させることにより、封止部材及び第2の基板を一度に形成することができる。シート上に形成するエポキシ樹脂層の形成パターンにより、中空部を設けた構造にすることもでき、有効である。
封止部材の形成方法としては、特に制限はなく、公知の方法にしたがって行うことができ、例えば、ディスペンス法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法、凸版、オフセット、凹版、ゴム版、スクリーン印刷等様々な方法を用いることができる。
更に、封止部材と第2の電極との間にパッシベーション層を設けてもよい。パッシベーション層としては、封止部材が第2の電極に接しないように配置されていれば特に制限はなく、目的に応じて適宜選択することができるが、酸化アルミニウム、窒化シリコン、酸化シリコンなどが好ましく用いられる。
以下、図面を参照しながら、発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
<素子の構成>
図1は、本発明の光電変換素子の一例を示す概略図である。図1に示すように、光電変換素子101には、第1の基板1上に第1の電極2が形成される。第1の電極2上には電子輸送層4が形成され、電子輸送層4を構成する電子輸送材料の表面に光増感化合物5が吸着されている。電子輸送層4の上部及び内部にはホール輸送層6が形成され、ホール輸送層6の上に第2の電極7が形成される。第2の電極7の上方には第2の基板9が配置され、第2の基板9は第1の電極2との間で封止部材8によって固定される。図1に示される光電変換素子は、第2の電極7及び第2の基板9の間に中空部を有する。中空部を有することにより、中空部内の水分量や酸素濃度を制御することが可能になり、発電性能やその耐久性を向上できるメリットがある。さらに、第2の電極7と第2の基板9が接触していないため、第2の電極7の剥離や破壊を防止することができる。中空部内の酸素濃度は、特に制限はなく、自由に選択できるが、0%以上21%以下が好ましく、0.05%以上10%以下がより好ましく、0.1%以上5%以下が更に好ましい。
なお、図示しないが、第1の電極2及び第2の電極7は各々電極取出し端子まで導通する経路を有する。
図2は、本発明の光電変換素子の別の一例を示す概略図であり、第1の基板1と電子輸送層4との間にホールブロッキング層3が形成されている。ホールブロッキング層3を形成することにより、電子とホールの再結合を防止することができ、発電性能の向上に有効である。図2に示される光電変換素子は、図1と同様に第2の電極7及び第2の基板9の間に中空部を有する。
図3は、本発明の光電変換素子の別の一例を示す概略図であり、封止部の中空部を設けずに、図2の中空部を封止部材8で覆った場合の一例である。例えば、封止部材8を第2の電極7上の全面に塗布し、その上に第2の基板9を設ける方法や、前述のシート状封止材を用いる方法により形成できる。この場合、封止内部の中空部を完全に無くしてもよいし、中空部を一部残してもよい。このように、ほぼ全面を封止部材で覆うことにより、第2の基板9が剥離したり、破壊したりすることを低減でき、光電変換素子の機械的強度を高めることが可能になる。
図4は、本発明の光電変換素子の別の一例を示す概略図であり、封止部材8が第1の基板1と第2の基板9に接着されている。このような構成にすることにより、封止部材8の基板との接着性が高くなり、光電変換素子の機械的強度が高まる効果が得られる。また、密着性が高まることにより、水分や酸素の浸入を防ぐ封止効果をより一層高める効果も得ることができる。
図5は、本発明の太陽電池モジュールの一例を示す概略図であり、複数の光電変換素子を含み、それらが直列に接続された太陽電池モジュールの一例である。図5の例は、ホール輸送層6を形成した後、貫通部10を形成し、その後第2の電極7を形成することによって、貫通部10の内部に第2の電極材料が導入され、隣接するセルの第1の電極2bと導通させることができる。なお、図5には図示しないが、第1の電極2a及び第2の電極7bは、更に隣接するセルの電極、あるいは出力取出し端子まで導通する経路を有する。
図5では、太陽電池モジュール102は、互いに隣接する少なくとも2つの光電変換素子において、ホールブロッキング層3を連結させずにホール輸送層6を連結させる。これにより、太陽電池モジュール102は、高照度光でリーク電流が発生しにくく、かつ光増感化合物がダメージを受けにくくなるため、高照度光に晒された前後において低照度光での出力低下を抑制することができる。このため、太陽電池モジュール102は、太陽光に晒した後でも、LEDや蛍光灯といった室内で使用される照明器具の光でも高い発電出力を有することができる。
なお、貫通部10については、第1の電極2を貫通し、第1の基板1まで達していてもよいし、第1の電極2の内部で加工をやめ、第1の基板1にまで達していなくてもよい。貫通部10の形状を第1の電極2を貫通し、第1の基板1まで到達する微細孔とする場合、貫通部10の面積に対して微細孔の開口面積合計が大きくなりすぎると、第1の電極2の膜断面積が減少することで抵抗値が増大してしまい、光電変換効率の低下を引き起こす場合がある。そのため、貫通部10の面積に対する微細孔の開口面積合計の比率は、5/100〜60/100であることが好ましい。
また、貫通部10の形成方法は、例えば、サンドブラスト法、ウオーターブラスト法、研磨紙、化学エッチング法、レーザー加工法等挙げられが、本発明においてはレーザー加工法が好ましい。その理由は微細な孔をサンドやエッチング、レジスト等を使うことなく形成でき、これにより清浄に再現性よく加工することが可能となる。レーザー加工法が好ましいもう一つの理由は、貫通部10を形成するとき、ホールブロッキング層3、電子輸送層4、ホール輸送層6、第2の電極7のうち少なくとも一つ、場合によっては全てをレーザー加工法による衝撃剥離によって除去することが可能になることである。これにより、積層時にマスクを設ける必要がなく、また、除去と微細な貫通部10の形成を一度に簡易的に行うことができる。
図6は、本発明の太陽電池モジュールの一例を示す概略図であり、図5と異なり、電子輸送層4が隣接する光電変換素子と切断されており、それぞれが独立した層構成となっている。これにより、図6に示す太陽電池モジュール102は、電子輸送層4どうしが互いに延設されていないことから、電子拡散が抑制されてリーク電流が低下するため、光耐久性が向上する点で有利である。
図7は、本発明の太陽電池モジュールの一例を示す概略図であり、複数の光電変換素子を含み、それらが直列に接続され、セル間の中空部に梁のように封止部材を設けた太陽電池モジュールの一例である。図2のように、第2の電極7と第2の基板9との間に中空部を設けると、第2の電極7の剥離や破壊を防止できる反面、封止の機械的強度が低下する場合がある。一方、図3のように、第2の電極7と第2の基板9との間を封止部材で満たした場合、封止の機械的強度は高まるが、第2の電極7の剥離が生じる懸念がある。発電力を高めるためには、太陽電池モジュールの面積を増加することが有効であるが、中空部を有する場合には機械的強度の低下が避けられない。この場合、図7に示すように梁のように封止部材を設けることにより、第2の基板9の剥離や破壊を防止し、かつ封止の機械的強度を高めることができる。
本発明の太陽電池モジュールは、発生した電流を制御する回路基盤等と組み合わせることにより電源装置に応用できる。電源装置を利用している機器類として、例えば、電子卓上計算機や腕時計が挙げられる。その他、携帯電話、電子手帳、電子ペーパー等に本発明の光電変換素子を有する電源装置を適用することができる。また、充電式や乾電池式の電気器具の連続使用時間を長くするための補助電源として本発明の光電変換素子を有する電源装置を用いることもできる。
以下、本発明を実施例及び比較例を挙げて説明する。なお、本発明はここに例示される実施例に限定されるものではない。
(実施例1)
<太陽電池モジュールの作製>
第1の基板としてのガラス基板上に、第1の電極としてのインジウムドープ酸化錫(ITO)とニオブドープ酸化錫(NTO)を順次スパッタ製膜し、次いでホールブロッキング層として酸化チタンからなる緻密な層を酸素ガスによる反応性スパッタにより形成した。次いで、基板上に形成されたITO/NTO及びホールブロッキング層の一部を、レーザー加工によりエッチング処理を行い、隣接する光電変換素子との距離を10μmに形成した。
次に、酸化チタン(石原産業株式会社製ST−21)3g、アセチルアセトン0.2g、界面活性剤(ポリオキシエチレンオクチルフェニルエーテル、和光純薬工業株式会社製)0.3gを水5.5g、エタノール1.0gとともに12時間ビーズミル処理を施し、得られた酸化チタン分散液にポリエチレングリコール(#20,000、和光純薬工業株式会社製)1.2gを加えてペーストを作製した。得られたペーストを、ホールブロッキング層上に平均厚みが約1.5μmになるように塗布し、60℃で乾燥後、空気中、550℃で30分間焼成し、多孔質状の電子輸送層を形成した。
電子輸送層を形成したガラス基板を、B−5で表される光増感化合物120mgと、ケノデオキシコール酸(東京化成株式会社製)150mgにアセトニトリル/t−ブタノール(体積比1:1)混合液を加え攪拌した溶液に浸漬し、1時間暗所で静置して、電子輸送層の表面に光増感化合物を吸着させた。
次に、D−7で表されるホール輸送材料(メルク株式会社製)183mgのクロロベンゼン溶液1mLに、リチウムビス(トリフルオロメタンスルホニル)イミド(関東化学株式会社製)15.0mg、C−12で表される塩基性化合物40mgを加えて溶解し、ホール輸送層塗布液を調整した。
次に、光増感化合物を吸着させた電子輸送層上に、ホール輸送層塗布液を用い、スピンコートにより約500nmのホール輸送層を形成した。その後、封止部材が設けられるガラス基板の端部をレーザー加工によりエッチング処理し、さらにレーザー加工により素子を直列に接続するための貫通孔を形成した。さらに、その上に銀を真空蒸着し、約100nmの第2の電極を形成した。マスク製膜により、隣接する光電変換素子との距離を200μmに形成した。また、貫通孔の内壁も銀が蒸着され、隣接する素子が直列に接続されていることを確認した。直列数は6個を形成した。
ガラス基板の端部を、発電領域が取り囲まれるように、紫外線硬化樹脂(TB3118、株式会社スリーボンドホールディングス製)をディスペンサー(2300N、株式会社サンエイテック製)を用いて塗布した。その後、低湿かつ酸素濃度を0.5%に制御したグローブボックス内に移して、紫外線硬化樹脂の上に第2の基板としてのカバーガラスを載せ、紫外線照射により硬化させ、発電領域の封止を行い、図5で示される本発明の太陽電池モジュール1を作製した。
<太陽電池モジュールの評価>
得られた太陽電池モジュール1について、3,000luxに調整した白色LED照射下で、太陽電池評価システム(As−510−PV03、株式会社エヌエフ回路設計ブロック製)を用いて、IV特性を評価し、初期の開放電圧Voc1(V)及び、最大出力電力Pmax1(μW/cm)を求めた。同様に、100luxにおけるIV特性を評価し、Voc2、Pmax2を求めた。次いで、太陽電池モジュール1をソーラーシミュレーター(AM1.5、10mW/cm)で200時間照射し、再度3,000lux及び100luxのIV特性を評価し、高照度光照射後の開放電圧及び、最大出力電力を測定し、それぞれの維持率を求めた。結果を表2に示す。
(実施例2)
実施例1において、第1の電極とホールブロッキング層における隣接する光電変換素子の距離を200μmに変更した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。モジュール構成を表1に、結果を表2に示す。
(実施例3)
実施例1において、電子輸送層における隣接する光電変換素子の距離を10μmに変更した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。モジュール構成を表1に、結果を表2に示す。
(実施例4)
実施例3において、ホール輸送材料に構造式4のコバルト錯体化合物(FK102、シグマアルドリッチ社製)を8mg追加した以外は、全て実施例3と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(実施例5)
実施例3において、ホール輸送材料に構造式5のコバルト錯体化合物(FK209、シグマアルドリッチ社製)を15mg追加した以外は、全て実施例3と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(実施例6)
実施例3において、ホール輸送材料に構造式6のコバルト錯体化合物(FK269、シグマアルドリッチ社製)を13mg追加した以外は、全て実施例3と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(比較例1)
実施例1において、隣接する光電変換素子における第1の電極の距離を同様に10μmに形成した後に、ホールブロッキング層を製膜した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(比較例2)
実施例1において、隣接する光電変換素子における第1の電極の距離を同様に10μmに形成した後に、ホールブロッキング層を製膜した。また、電子輸送層とホール輸送層の距離を10μmに変更した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(比較例3)
実施例1において、隣接する光電変換素子における電子輸送層とホール輸送層の距離を10μmに変更した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
(比較例4)
実施例2において、隣接する光電変換素子における電子輸送層とホール輸送層の距離を10μmに変更した以外は、全て実施例1と同様にして、Voc1、Pmax1、Voc2、Pmax2、及び維持率を求めた。結果を表2に示す。
表2の結果から、実施例1〜6は、比較例1〜4と比べると高照度光に晒された前後において低照度光での出力低下を抑制することができることがわかった。特に、100luxの低照度光では顕著であった。また、実施例1〜3よりも、ホール輸送材料にコバルト錯体化合物を追加した実施例4〜6のほうが、維持率が高いことがわかった。
以上説明したように、本発明の太陽電池モジュールは、互いに隣接する少なくとも2つの光電変換素子において、ホールブロッキング層を連結させずにホール輸送層を連結させる。これにより、本発明の太陽電池モジュールは、高照度光でリーク電流が発生しにくく、かつ光増感化合物がダメージを受けにくくなるため、高照度光に晒された前後において低照度光での出力低下を抑制することができる。このため、本発明の太陽電池モジュールは、太陽光に晒した後でも、LEDや蛍光灯といった室内で使用される照明器具の光でも高い発電出力を有することができる。
本発明の態様としては、例えば、以下のとおりである。
<1> 第1の基板上に少なくとも第1の電極、ホールブロッキング層、電子輸送層、ホール輸送層、第2の電極、第2の基板が形成され、第1の基板と第2の基板との間に封止部材を有する光電変換素子が複数設けられている太陽電池モジュールであって、
互いに隣接する少なくとも2つの前記光電変換素子において、
少なくとも前記ホール輸送層どうしが互いに延設された連続層の形態であることを特徴とする太陽電池モジュールである。
<2> 互いに隣接する少なくとも2つの前記光電変換素子において、
一の前記光電変換素子における前記第1の電極と、
他の前記光電変換素子における前記第2の電極とが、
連続層の形態である前記ホール輸送層を貫通した導通部により電気的に接続された、前記<1>に記載の太陽電池モジュールである。
<3> 互いに隣接する少なくとも2つの光電変換素子において、
前記電子輸送層どうしが互いに延設されていない請求項1から2のいずれかに記載の太陽電池モジュールである。
<4> 前記電子輸送層が酸化チタン微粒子からなる多孔質層であり、酸化チタンの表面に光増感化合物が吸着されている前記<1>から<3>のいずれかに記載の太陽電池モジュールである。
<5> 前記ホール輸送層が、金属錯体を含有する請求項1から4のいずれかに記載の太陽電池モジュールである。
<6> 前記金属錯体が、3価のコバルト錯体である請求項5に記載の太陽電池モジュールである。
<1>から<6>のいずれかに記載の太陽電池モジュールによれば、従来における諸問題を解決し、本発明の目的を達成することができる。
特開2014−143333号公報
1 第1の基板
2、2a、2b 第1の電極
3 ホールブロッキング層
4 電子輸送層
5 光増感化合物
6 ホール輸送層
7、7a、7b 第2の電極
8 封止部材
9 第2の基板
10 貫通部(導通部)
11 封止部材
101 光電変換素子
102 太陽電池モジュール

Claims (6)

  1. 第1の基板上に少なくとも第1の電極、ホールブロッキング層、電子輸送層、ホール輸送層、第2の電極、第2の基板が形成され、第1の基板と第2の基板との間に封止部材を有する光電変換素子が複数設けられている太陽電池モジュールであって、
    互いに隣接する少なくとも2つの前記光電変換素子において、
    少なくとも前記ホール輸送層どうしが互いに延設された連続層の形態であることを特徴とする太陽電池モジュール。
  2. 互いに隣接する少なくとも2つの前記光電変換素子において、
    一の前記光電変換素子における前記第1の電極と、
    他の前記光電変換素子における前記第2の電極とが、
    連続層の形態である前記ホール輸送層を貫通した導通部により電気的に接続された、請求項1に記載の太陽電池モジュール。
  3. 互いに隣接する少なくとも2つの前記光電変換素子において、
    前記電子輸送層どうしが互いに延設されていない請求項1から2のいずれかに記載の太陽電池モジュール。
  4. 前記電子輸送層が酸化チタン微粒子からなる多孔質層であり、酸化チタンの表面に光増感化合物が吸着されている請求項1から3のいずれかに記載の太陽電池モジュール。
  5. 前記ホール輸送層が、金属錯体を含有する請求項1から4のいずれかに記載の太陽電池モジュール。
  6. 前記金属錯体が、3価のコバルト錯体である請求項5に記載の太陽電池モジュール。
JP2018051153A 2018-03-19 2018-03-19 太陽電池モジュール Pending JP2019165073A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018051153A JP2019165073A (ja) 2018-03-19 2018-03-19 太陽電池モジュール
PCT/JP2019/006039 WO2019181330A1 (en) 2018-03-19 2019-02-19 Solar cell module
CN201980026639.8A CN111989792A (zh) 2018-03-19 2019-02-19 太阳能电池模块
US16/981,985 US11594382B2 (en) 2018-03-19 2019-02-19 Solar cell module
EP19770425.7A EP3769351A4 (en) 2018-03-19 2019-02-19 SOLAR CELL MODULE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051153A JP2019165073A (ja) 2018-03-19 2018-03-19 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2019165073A true JP2019165073A (ja) 2019-09-26

Family

ID=67986970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051153A Pending JP2019165073A (ja) 2018-03-19 2018-03-19 太陽電池モジュール

Country Status (5)

Country Link
US (1) US11594382B2 (ja)
EP (1) EP3769351A4 (ja)
JP (1) JP2019165073A (ja)
CN (1) CN111989792A (ja)
WO (1) WO2019181330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515991A (ja) * 2018-05-16 2021-06-24 エクセジャー オペレーションズ エービー 光起電力装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053616A (ja) * 2018-09-28 2020-04-02 株式会社リコー 太陽電池モジュール
US20210167287A1 (en) * 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP2022086058A (ja) * 2020-11-30 2022-06-09 株式会社リコー 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
CN113823745B (zh) * 2021-11-10 2022-04-12 浙江晶科能源有限公司 一种太阳能电池模块及其制备方法、光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204881A (ja) * 2007-02-22 2008-09-04 Kyocera Corp 光電変換モジュール
CN101615514A (zh) * 2009-07-21 2009-12-30 虞旺 一种染料敏化太阳能电池并联组件及其制备方法
JP2010165671A (ja) * 2008-12-17 2010-07-29 Sumitomo Osaka Cement Co Ltd 逆電子反応抑制膜形成用ペースト組成物、それを用いた色素増感型太陽電池用逆電子反応抑制膜及び色素増感型太陽電池
JP2013131477A (ja) * 2011-12-22 2013-07-04 Merck Ltd コバルト電解質、電解液、色素増感太陽電池およびコバルト電解質の製造方法
US20160268532A1 (en) * 2015-03-09 2016-09-15 Kabushiki Kaisha Toshiba Solar cell module and method for manufacturing the same
JP2017011066A (ja) * 2015-06-19 2017-01-12 株式会社リコー 光電変換素子

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139479A2 (en) * 2007-05-15 2008-11-20 3Gsolar Ltd. Photovoltaic cell
JP2005243379A (ja) 2004-02-26 2005-09-08 Kyocera Corp 光電変換装置
JP2006324090A (ja) * 2005-05-18 2006-11-30 Kyocera Corp 光電変換モジュールおよびそれを用いた光発電装置
JP2009043482A (ja) 2007-08-07 2009-02-26 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
JP2010087339A (ja) * 2008-10-01 2010-04-15 Fujifilm Corp 有機太陽電池素子
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
JP2011192544A (ja) * 2010-03-15 2011-09-29 Idemitsu Kosan Co Ltd 光電変換装置
GB201008697D0 (en) * 2010-05-25 2010-07-07 Solar Press Uk The Ltd Photovoltaic modules
JP2012113942A (ja) 2010-11-24 2012-06-14 Ricoh Co Ltd 多層型光電変換素子およびその製造方法
GB201101361D0 (en) 2011-01-26 2011-03-09 Univ Denmark Tech Dtu Process of electrical connection of photovoltaic devices
KR101258185B1 (ko) * 2011-07-22 2013-04-25 광주과학기술원 태양전지 모듈 및 이의 제조방법
JP2014143333A (ja) 2013-01-25 2014-08-07 Ricoh Co Ltd 固体色素増感型太陽電池、固体色素増感型太陽電池モジュール
KR101440607B1 (ko) * 2013-04-15 2014-09-19 광주과학기술원 태양전지 모듈 및 이의 제조방법
JP6405689B2 (ja) 2013-06-06 2018-10-17 株式会社リコー 光電変換素子及び太陽電池
US9257585B2 (en) * 2013-08-21 2016-02-09 Siva Power, Inc. Methods of hermetically sealing photovoltaic modules using powder consisting essentially of glass
JP6252071B2 (ja) 2013-09-26 2017-12-27 株式会社リコー 光電変換素子
JP6206037B2 (ja) 2013-09-26 2017-10-04 株式会社リコー 光電変換素子
JP6520020B2 (ja) 2013-11-26 2019-05-29 株式会社リコー 色素増感太陽電池
KR20200056470A (ko) 2014-02-24 2020-05-22 가부시키가이샤 리코 광전 변환 소자 및 태양 전지
JP6337561B2 (ja) * 2014-03-27 2018-06-06 株式会社リコー ペロブスカイト型太陽電池
JP6249093B2 (ja) 2014-04-16 2017-12-20 株式会社リコー 光電変換素子
TWI550928B (zh) * 2014-06-25 2016-09-21 Atomic Energy Council Series module of organic thin film solar cell and its making method
JP2016178288A (ja) 2015-03-20 2016-10-06 株式会社リコー 光電変換素子
WO2016181911A1 (ja) * 2015-05-08 2016-11-17 株式会社リコー 光電変換素子
JP6447754B2 (ja) 2016-01-25 2019-01-09 株式会社リコー 光電変換素子
US10686134B2 (en) 2016-01-28 2020-06-16 Ricoh Company, Ltd. Photoelectric conversion element
US20170243698A1 (en) 2016-02-22 2017-08-24 Ricoh Company, Ltd. Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
JP6880748B2 (ja) 2017-01-10 2021-06-02 株式会社リコー 光電変換素子及び太陽電池
US10319533B2 (en) 2017-01-12 2019-06-11 Ricoh Company, Ltd. Photoelectric conversion element and solar cell
TWI644448B (zh) * 2017-10-18 2018-12-11 台灣中油股份有限公司 鈣鈦礦太陽能電池模組及其製備方法
EP3547339A1 (en) 2018-03-30 2019-10-02 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204881A (ja) * 2007-02-22 2008-09-04 Kyocera Corp 光電変換モジュール
JP2010165671A (ja) * 2008-12-17 2010-07-29 Sumitomo Osaka Cement Co Ltd 逆電子反応抑制膜形成用ペースト組成物、それを用いた色素増感型太陽電池用逆電子反応抑制膜及び色素増感型太陽電池
CN101615514A (zh) * 2009-07-21 2009-12-30 虞旺 一种染料敏化太阳能电池并联组件及其制备方法
JP2013131477A (ja) * 2011-12-22 2013-07-04 Merck Ltd コバルト電解質、電解液、色素増感太陽電池およびコバルト電解質の製造方法
US20160268532A1 (en) * 2015-03-09 2016-09-15 Kabushiki Kaisha Toshiba Solar cell module and method for manufacturing the same
JP2017011066A (ja) * 2015-06-19 2017-01-12 株式会社リコー 光電変換素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021515991A (ja) * 2018-05-16 2021-06-24 エクセジャー オペレーションズ エービー 光起電力装置

Also Published As

Publication number Publication date
EP3769351A1 (en) 2021-01-27
WO2019181330A1 (en) 2019-09-26
US20210104367A1 (en) 2021-04-08
EP3769351A4 (en) 2021-05-05
US11594382B2 (en) 2023-02-28
CN111989792A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
JP2019165073A (ja) 太陽電池モジュール
WO2020067188A1 (en) Solar cell module
WO2020158876A1 (en) Photoelectric conversion element, solar cell module, power supply module, and electronic device
JP7230524B2 (ja) 光電変換素子、光電変換素子モジュール、電子機器、及び電源モジュール
JP2020102602A (ja) 光電変換素子、及び光電変換素子モジュール
JP2019176136A (ja) 光電変換素子、及び光電変換素子モジュール
KR102618397B1 (ko) 광전 변환 소자, 광전 변환 모듈, 전자 기기, 및 전원 모듈
US11502264B2 (en) Photoelectric conversion element and photoelectric conversion module
US20210296597A1 (en) Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
KR20220016961A (ko) 광전 변환 소자, 광전 변환 소자 모듈, 전자 장치 및 전원 모듈
WO2019181701A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP7413833B2 (ja) 光電変換素子及び光電変換モジュール
JP7505379B2 (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
JP2022176440A (ja) 光電変換素子の製造方法、光電変換素子、光電変換モジュールの製造方法、光電変換モジュール、電子機器、及び電源モジュール
JP2022144059A (ja) 光電変換素子、電子機器、及び電源モジュール
JP2021129102A (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
JP2023019661A (ja) 光電変換素子、光電変換モジュール、及び電子機器
JP2023136056A (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
JP2023067788A (ja) 光電変換素子、および光電変換素子モジュール
JP2022179342A (ja) 光電変換素子及び光電変換素子の製造方法、光電変換モジュール、並びに電子機器
JP2021136434A (ja) 光電変換素子及び光電変換モジュール
JP2022078488A (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
JP2022078536A (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
JP2022078492A (ja) 光電変換素子、光電変換モジュール、電子機器、及び電源モジュール
CN115376831A (zh) 光电转换元件及生产光电转换元件的方法、光电转换模块和电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802