JP2019160618A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2019160618A
JP2019160618A JP2018046707A JP2018046707A JP2019160618A JP 2019160618 A JP2019160618 A JP 2019160618A JP 2018046707 A JP2018046707 A JP 2018046707A JP 2018046707 A JP2018046707 A JP 2018046707A JP 2019160618 A JP2019160618 A JP 2019160618A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
electrolyte secondary
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018046707A
Other languages
Japanese (ja)
Other versions
JP7112860B2 (en
Inventor
研 三浦
Ken Miura
研 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2018046707A priority Critical patent/JP7112860B2/en
Priority to TW107136688A priority patent/TWI778151B/en
Priority to KR1020180165269A priority patent/KR102630459B1/en
Priority to CN201910192536.0A priority patent/CN110277591B/en
Publication of JP2019160618A publication Critical patent/JP2019160618A/en
Application granted granted Critical
Publication of JP7112860B2 publication Critical patent/JP7112860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a nonaqueous electrolyte secondary battery that accommodates more electrodes in a small cell and stabilizes charge/discharge characteristics.SOLUTION: In a nonaqueous electrolyte secondary battery according to the present invention, a positive electrode and a negative electrode are arranged opposite to each other with a separator interposed therebetween which are accommodated in a housing container, the negative electrode is made of an alloy containing lithium and aluminum, and a gap with a predetermined width is provided between the negative electrode and the separator.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

負極にリチウム−アルミニウム合金を用いたコイン形の非水電解質二次電池は、エネルギー密度が高く、容量を大きくできるため好適に用いられている。この非水電解質二次電池において、負極は例えば、アルミニウム材とステンレス鋼材のクラッド材からなる負極缶にリチウムを貼り付け、アルミニウムと合金化させることにより得られる(例えば、下記特許文献1参照)。
また、耐熱性を有する電解液や、セパレータやガスケット等の部材と組合せることにより、リフロー実装に適合した非水電解質二次電池を提供することができる(例えば、下記特許文献2参照)。
A coin-type non-aqueous electrolyte secondary battery using a lithium-aluminum alloy for the negative electrode is preferably used because of its high energy density and large capacity. In this non-aqueous electrolyte secondary battery, the negative electrode is obtained, for example, by attaching lithium to a negative electrode can made of a clad material made of an aluminum material and a stainless steel material, and alloying with aluminum (for example, see Patent Document 1 below).
In addition, a nonaqueous electrolyte secondary battery suitable for reflow mounting can be provided by combining with an electrolyte solution having heat resistance, or a member such as a separator or a gasket (for example, see Patent Document 2 below).

特開平11−121042号公報Japanese Patent Application Laid-Open No. 11-121022 特開2004−095399号公報JP 2004-095399 A

このようなコイン形非水電解質二次電池の用途が広がるにつれて、実装面積を維持したまま容量を増加させることが求められてきている。このとき、電池サイズを厚み方向に大きくして、その中に電極と電解液を収容しようとすると、充電時に金属リチウムが析出しやすくなることにより充放電特性が不安定になる問題がある。特に、基板に実装するために、リフローハンダ付けに伴う熱処理を受けた場合、電解液の蒸発や分解が進むと、上述のような充電異常がさらに顕著になる問題がある。   As the use of such coin-type non-aqueous electrolyte secondary batteries widens, it has been required to increase the capacity while maintaining the mounting area. At this time, if the battery size is increased in the thickness direction and the electrode and the electrolytic solution are to be accommodated therein, there is a problem that the charge / discharge characteristics become unstable because metallic lithium is likely to precipitate during charging. In particular, when a heat treatment associated with reflow soldering is performed for mounting on a substrate, there is a problem that the above-described charging abnormality becomes more noticeable when the electrolyte solution evaporates or decomposes.

本発明は、このような問題に鑑み、小型セルの内部により多くの電極を収容し、かつ、充放電特性を安定化させた非水電解質二次電池を提供することを課題とする。   In view of such a problem, an object of the present invention is to provide a non-aqueous electrolyte secondary battery in which more electrodes are accommodated in a small cell and charge / discharge characteristics are stabilized.

「1」前記課題を解決するため、本発明の一形態に係る非水電解質二次電池は、正極と負極をセパレータを介し対向配置し、収容容器に収容してなる非水電解質二次電池であって、前記負極がリチウムとアルミニウムを含む合金からなり、前記負極とセパレータとの間に所定幅の間隙が設けられたことを特徴とする。 [1] In order to solve the above-mentioned problem, a nonaqueous electrolyte secondary battery according to an embodiment of the present invention is a nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are arranged to face each other via a separator and are accommodated in a container. The negative electrode is made of an alloy containing lithium and aluminum, and a gap having a predetermined width is provided between the negative electrode and the separator.

本形態では、リチウムを含む負極とセパレータとの間に所定幅の間隙を設けたので、充電を行って負極側に多少の金属リチウム析出が生じたとしても、充放電特性が不安定となることがない。また、基板などへの実装の際にリフロー実装を行い、リフローハンダ付けに伴う熱履歴を経ることによって、電極や電解液の一部に蒸発や分解が生じた場合であっても、充電異常を生じることのない非水電解質二次電池を提供できる。
特に、実装面積を維持したまま容量を増加する目的で電池サイズを厚み方向に大きくした場合であって、電池内に電極と電解液を収容した場合、リフロー実装を行うと、充電時に負極側に金属リチウム析出のおそれが高くなるが、前記間隙を設けることで、充放電特性が不安定とならない非水電解質二次電池を提供できる。
In this embodiment, since a gap of a predetermined width is provided between the negative electrode containing lithium and the separator, even if charging causes some metallic lithium deposition on the negative electrode side, the charge / discharge characteristics become unstable. There is no. In addition, when reflow mounting is performed when mounting on a substrate, etc., and through the heat history associated with reflow soldering, even if evaporation or decomposition occurs in a part of the electrode or electrolyte, charging abnormality will occur. A non-aqueous electrolyte secondary battery that does not occur can be provided.
In particular, when the battery size is increased in the thickness direction for the purpose of increasing the capacity while maintaining the mounting area, and the electrode and the electrolytic solution are accommodated in the battery, reflow mounting is performed on the negative electrode side during charging. Although there is a high risk of metallic lithium deposition, providing the gap can provide a non-aqueous electrolyte secondary battery in which charge / discharge characteristics are not unstable.

「2」前記一形態の非水電解質二次電池では、前記正極缶が有底円筒状であり、前記負極缶が前記正極缶の開口部内側にガスケットを介在し固定され、前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことを特徴とする。 [2] In the nonaqueous electrolyte secondary battery according to the one aspect, the positive electrode can has a bottomed cylindrical shape, and the negative electrode can is fixed inside the opening of the positive electrode can with a gasket interposed therebetween. The container is hermetically sealed by providing a caulking part on the negative electrode can side, and the positive electrode, the negative electrode, the separator, and the electrolytic solution are accommodated in the container.

ガスケットを介しかしめ部を設けることで正極缶と負極缶を密封構造とした非水電解質二次電池にあっては、正極缶と負極缶から構成される収容容器が密封構造のため、リフローハンダ付けなどにより生じた電極や電解液の分解物などが外部に逃避することなく収容容器の内部に存在し、電池としての性能に影響を与えるおそれがある。しかし、前記所定幅の間隙を設けた構造であるならば、前述の金属リチウム析出の影響を受け難く、金属リチウム析出に加えた電極や電解液の分解物による影響を受け難い。   In a non-aqueous electrolyte secondary battery in which a positive electrode can and a negative electrode can are sealed by providing a constricted portion with a gasket, the container composed of the positive electrode can and the negative electrode can has a sealed structure. There is a possibility that an electrode or a decomposition product of the electrolytic solution generated due to attachment or the like is present inside the container without escaping to the outside, which may affect the performance as a battery. However, if the structure has the gap of the predetermined width, it is hardly affected by the above-described metal lithium deposition, and is not easily affected by the electrode added to the metal lithium deposition or the decomposition product of the electrolytic solution.

「3」前記一形態の非水電解質二次電池では、前記正極缶の外径が4〜6mmの場合、前記間隙の幅が0.34mm以上0.39mm以下であることが好ましい。 [3] In the nonaqueous electrolyte secondary battery according to one aspect, when the outer diameter of the positive electrode can is 4 to 6 mm, the width of the gap is preferably 0.34 mm or more and 0.39 mm or less.

本形態の非水電解質二次電池において、ガスケットを介しかしめ部を設けることで正極缶と負極缶を密封構造とした非水電解質二次電池にあっては、前記間隙の幅が大きすぎる場合に負極缶の中心が凹んだ構造となる場合がある。この点において、外径4〜6mmの正極缶の場合、前記間隙の幅が0.34mm以上0.39mm以下であるならば、生成する凹部の大きさは電池として許容範囲となり、リフロー実装などの加熱を受けたとしても外観に問題のない非水電解質二次電池を提供できる。   In the non-aqueous electrolyte secondary battery of this embodiment, in the non-aqueous electrolyte secondary battery in which the positive electrode can and the negative electrode can are sealed by providing a gasket through the gasket, the width of the gap is too large. In some cases, the negative electrode can has a recessed center. In this regard, in the case of a positive electrode can having an outer diameter of 4 to 6 mm, if the width of the gap is not less than 0.34 mm and not more than 0.39 mm, the size of the concave portion to be generated becomes an allowable range for the battery, A nonaqueous electrolyte secondary battery having no problem in appearance even when heated can be provided.

本形態によれば、負極側への金属リチウムの析出、リフロー実装による電極や電解液の一部蒸発や分解などが生じた場合であっても、充放電特性が安定な非水電解質二次電池を提供できる。
特に、実装面積を維持したまま容量を増加する目的で電池サイズを厚み方向に大きくした場合であって、電池内に電極と電解液を収容した場合、充電時に負極側に金属リチウム析出のおそれが高くなるが、間隙を設けることで、充放電特性が安定な非水電解質二次電池を提供できる。
According to the present embodiment, the non-aqueous electrolyte secondary battery having stable charge / discharge characteristics even when metal lithium is deposited on the negative electrode side, or the electrode or electrolyte solution is partially evaporated or decomposed due to reflow mounting. Can provide.
In particular, when the battery size is increased in the thickness direction for the purpose of increasing the capacity while maintaining the mounting area, and the electrode and the electrolyte are accommodated in the battery, there is a risk of metal lithium deposition on the negative electrode side during charging. However, providing a gap can provide a non-aqueous electrolyte secondary battery with stable charge / discharge characteristics.

第1実施形態に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the nonaqueous electrolyte secondary battery which concerns on 1st Embodiment. 実施例で作製した複数の非水電解質二次電池を用いて負極側に設けた間隙(スペース)の大きさとへこみ量の関係を測定した結果を示すグラフ。The graph which shows the result of having measured the relationship between the magnitude | size of the clearance gap (space) provided in the negative electrode side, and the amount of dents using the some nonaqueous electrolyte secondary battery produced in the Example. 実施例で作製した非水電解質二次電池を用いて充電した場合の充電電圧を示すグラフ。The graph which shows the charging voltage at the time of charging using the nonaqueous electrolyte secondary battery produced in the Example.

以下、本発明の実施形態である非水電解質二次電池の例を挙げ、その構成について図1を参照しながら詳述する。なお、本発明で説明する非水電解質二次電池とは、正極または負極として用いる活物質とセパレータが収容容器内に収容されてなる二次電池である。また、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更し表示しているため、各部材の相対的な大きさが図面に示す形態に限らないのは勿論である。   Hereinafter, the example of the nonaqueous electrolyte secondary battery which is embodiment of this invention is given, and the structure is explained in full detail, referring FIG. The nonaqueous electrolyte secondary battery described in the present invention is a secondary battery in which an active material used as a positive electrode or a negative electrode and a separator are housed in a housing container. Further, in the drawings used for the following description, the scale of each member is appropriately changed and displayed in order to make each member a recognizable size. Therefore, the relative size of each member is limited to the form shown in the drawing. Of course not.

図1に示す本実施形態の非水電解質二次電池1は、いわゆるコイン(ボタン)型の電池である。この非水電解質二次電池1は、有底円筒状の正極缶12と、正極缶12の開口部を塞ぐ有蓋円筒状の蓋状の負極缶22と、正極缶12の内周面に沿って設けられたガスケット40とを有し、正極缶12の開口部周縁を内側にかしめて構成された薄型(偏平型)の収納容器2を備えている。収納容器2内には、正極缶12と負極缶22とに囲まれた収容空間が形成され、この収容空間に正極10と負極20とがセパレータ30を介し対向配置され、更に電解液50が充填されている。
正極缶12の材質として、従来公知のものが用いられ、例えば、SUS316LやSUS329JL、あるいは、NAS64等のステンレス鋼が挙げられる。本形態において正極缶12の外径は4mm〜6mmの範囲に形成されている。
負極缶22の材質は、正極缶12の材質と同様、従来公知のステンレス鋼が挙げられ、例えば、SUS316LやSUS329JL、あるいは、SUS304−BA等が挙げられる。
The non-aqueous electrolyte secondary battery 1 of this embodiment shown in FIG. 1 is a so-called coin (button) type battery. The nonaqueous electrolyte secondary battery 1 includes a bottomed cylindrical positive electrode can 12, a covered cylindrical negative electrode can 22 that closes an opening of the positive electrode can 12, and an inner peripheral surface of the positive electrode can 12. And a thin container (flat type) 2 that is configured by caulking the periphery of the opening of the positive electrode can 12 inward. A storage space surrounded by the positive electrode can 12 and the negative electrode can 22 is formed in the storage container 2, and the positive electrode 10 and the negative electrode 20 are arranged to face each other with the separator 30 interposed therebetween, and further filled with the electrolytic solution 50. Has been.
As the material of the positive electrode can 12, conventionally known materials are used, and examples thereof include SUS316L, SUS329JL, or stainless steel such as NAS64. In this embodiment, the outer diameter of the positive electrode can 12 is formed in the range of 4 mm to 6 mm.
The material of the negative electrode can 22 may be a conventionally known stainless steel, similar to the material of the positive electrode can 12, such as SUS316L, SUS329JL, or SUS304-BA.

本形態において正極10は、正極集電体14を介し正極缶12の内面に電気的に接続されている。正極10の上部にはセパレータ30が載置されている。セパレータ30の上方には、負極20が設けられている。負極20は、負極缶22の底面にクラッド圧着などの手段により一体化された硬質アルミニウム層24にリチウムが圧着され、その後両者が合金化したリチウム−アルミニウム合金である。従って、負極20は、負極缶22の底面の硬質アルミニウム層24を介し負極缶22の内面に電気的に接続されている。
ガスケット40は、セパレータ30の外周に接続され、ガスケット40がセパレータ30を保持している。また、正極10には、収納容器2内に充填された電解液50が含浸されている。
In this embodiment, the positive electrode 10 is electrically connected to the inner surface of the positive electrode can 12 via the positive electrode current collector 14. A separator 30 is placed on the positive electrode 10. A negative electrode 20 is provided above the separator 30. The negative electrode 20 is a lithium-aluminum alloy in which lithium is pressure-bonded to a hard aluminum layer 24 integrated on the bottom surface of the negative electrode can 22 by means such as clad pressure bonding, and then both are alloyed. Accordingly, the negative electrode 20 is electrically connected to the inner surface of the negative electrode can 22 via the hard aluminum layer 24 on the bottom surface of the negative electrode can 22.
The gasket 40 is connected to the outer periphery of the separator 30, and the gasket 40 holds the separator 30. Further, the positive electrode 10 is impregnated with an electrolytic solution 50 filled in the storage container 2.

(正極)
正極10において、正極活物質の種類は特に限定されないが、例えば、正極活物質としてマンガン酸化物あるいはリチウム含有マンガン酸化物を選択することができる。
正極10中の正極活物質の含有量は、非水電解質二次電池1に要求される放電容量等を勘案して決定され、50〜95質量%の範囲とすることができる。正極活物質の含有量が上記好ましい範囲の下限値以上であれば、充分な放電容量が得られやすく、好ましい上限値以下であれば、正極10を成形しやすい。
正極10は、バインダ(以下、正極10に用いられるバインダを「正極バインダ」ということがある)を含有してもよい。
(Positive electrode)
In the positive electrode 10, the type of the positive electrode active material is not particularly limited. For example, manganese oxide or lithium-containing manganese oxide can be selected as the positive electrode active material.
The content of the positive electrode active material in the positive electrode 10 is determined in consideration of the discharge capacity and the like required for the nonaqueous electrolyte secondary battery 1, and can be in the range of 50 to 95 mass%. If the content of the positive electrode active material is not less than the lower limit value of the above preferred range, a sufficient discharge capacity can be easily obtained, and if it is not more than the preferred upper limit value, the positive electrode 10 can be easily formed.
The positive electrode 10 may contain a binder (hereinafter, the binder used for the positive electrode 10 may be referred to as a “positive electrode binder”).

正極バインダとして、従来公知の物質を用いることができ、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PA)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)等を選択できる。
また、正極バインダは、上記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。正極10において正極バインダの含有量は、例えば、1〜20質量%とすることができる。
正極集電体14として、従来公知のものを用いることができ、炭素を導電性フィラーとする導電性樹脂接着剤等が挙げられる。
また、本実施形態では、正極活物質として、前記のリチウムマンガン酸化物に加え、他の正極活物質を含有していても良く、例えば、モリブデン酸化物、リチウム鉄リン酸化合物、リチウムコバルト酸化物、リチウムニッケル酸化物、バナジウム酸化物等、他の酸化物の何れか1種以上を含有していても良い。
Conventionally known materials can be used as the positive electrode binder, such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), polyacrylic acid (PA), carboxymethyl cellulose (CMC). , Polyvinyl alcohol (PVA) and the like can be selected.
As the positive electrode binder, one of the above may be used alone, or two or more may be used in combination. In the positive electrode 10, the content of the positive electrode binder can be, for example, 1 to 20% by mass.
A conventionally well-known thing can be used as the positive electrode electrical power collector 14, and the conductive resin adhesive etc. which use carbon as a conductive filler are mentioned.
In the present embodiment, the positive electrode active material may contain other positive electrode active materials in addition to the lithium manganese oxide, for example, molybdenum oxide, lithium iron phosphate compound, lithium cobalt oxide. Any one or more of other oxides such as lithium nickel oxide and vanadium oxide may be contained.

(負極)
負極20としては、リチウム箔(リチウムフォイル)、リチウム−アルミニウム合金、リチウムを接触又は電気化学的にドープした炭素等が挙げられるが、リチウムとアルミニウムを含む合金(リチウム−アルミニウム合金)であれば、負極表面へのリチウムデンドライトの析出を防止することができることから好ましい。リチウム−アルミニウム合金は、負極缶22に形成された硬質アルミニウム層24にリチウムフォイルを圧着した状態で電解液に接触することによってリチウムとアルミニウムとが合金化することで得られる。
(Negative electrode)
Examples of the negative electrode 20 include lithium foil (lithium foil), lithium-aluminum alloy, carbon that is contacted or electrochemically doped with lithium, and the like. If the alloy includes lithium and aluminum (lithium-aluminum alloy), It is preferable because precipitation of lithium dendrite on the negative electrode surface can be prevented. The lithium-aluminum alloy is obtained by alloying lithium and aluminum by contacting the electrolytic solution in a state where a lithium foil is pressure-bonded to the hard aluminum layer 24 formed on the negative electrode can 22.

(セパレータ)
セパレータ30は、正極10と負極20との間に介在され、大きなイオン透過度を有し、かつ、機械的強度を有する絶縁膜が用いられる。
セパレータ30としては、従来から非水電解質二次電池のセパレータに用いられるものを何ら制限無く適用でき、例えば、アルカリガラス、ホウ珪酸ガラス、石英ガラス、鉛ガラス等のガラス、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリアミドイミド(PAI)、ポリアミド、ポリイミド(PI)等の樹脂からなる不織布等が挙げられる。中でも、ガラス製不織布が好ましく、ホウ珪酸ガラス製不織布がより好ましい。ガラス製不織布は、機械強度に優れるとともに、大きなイオン透過度を有するため、内部抵抗を低減して放電容量の向上を図ることができる。
セパレータ30の厚さは、非水電解質二次電池1の大きさや、セパレータ30の材質等を勘案して決定され、例えば5〜300μmとすることができる。
(Separator)
The separator 30 is interposed between the positive electrode 10 and the negative electrode 20, and an insulating film having a large ion permeability and mechanical strength is used.
As the separator 30, those conventionally used for separators of nonaqueous electrolyte secondary batteries can be applied without any limitation. For example, glass such as alkali glass, borosilicate glass, quartz glass, lead glass, polyphenylene sulfide (PPS), Nonwoven fabric made of a resin such as polyetheretherketone (PEEK), polyethylene terephthalate (PET), polyamideimide (PAI), polyamide, polyimide (PI), and the like can be given. Among these, a glass nonwoven fabric is preferable, and a borosilicate glass nonwoven fabric is more preferable. Since the glass nonwoven fabric has excellent mechanical strength and high ion permeability, the internal resistance can be reduced and the discharge capacity can be improved.
The thickness of the separator 30 is determined in consideration of the size of the nonaqueous electrolyte secondary battery 1, the material of the separator 30, and the like, and can be set to 5 to 300 μm, for example.

(ガスケット)
ガスケット40は、例えば、熱変形温度230℃以上の樹脂からなることが好ましい。ガスケット40に用いる樹脂材料の熱変形温度が230℃以上であれば、リフローハンダ処理や非水電解質二次電池1の使用中の加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。
ガスケット40は、図1に示すように、正極缶12の内周面に沿って円環状に形成され、その環状溝41の内部に負極缶22の外周端部22aが配置されている。
ガスケット40は、正極缶12の開口部内周側に隙間無く挿入される外径を有するリング状の外縁部40Aと、リング状の内縁部40Bと、これら外縁部40Aおよび内縁部40Bの下端部どうしを接続した底壁部40Cからなる。従って、ガスケット40の外周縁上面側には負極缶22の外周端部22aを挿入可能な環状溝41が形成されている。
図1に示す正極缶12の開口部12aの周縁部12bを内側、即ち負極缶22側にかしめることでガスケット40を挟み込むことにより収容空間を密封した構造の収納容器2が構成されている。
(gasket)
The gasket 40 is preferably made of a resin having a heat distortion temperature of 230 ° C. or higher, for example. If the heat deformation temperature of the resin material used for the gasket 40 is 230 ° C. or higher, the gasket is significantly deformed by reflow soldering or heating during use of the non-aqueous electrolyte secondary battery 1 to prevent the electrolyte solution 50 from leaking. it can.
As shown in FIG. 1, the gasket 40 is formed in an annular shape along the inner peripheral surface of the positive electrode can 12, and the outer peripheral end 22 a of the negative electrode can 22 is disposed in the annular groove 41.
The gasket 40 includes a ring-shaped outer edge portion 40A having an outer diameter that is inserted into the opening inner peripheral side of the positive electrode can 12 without a gap, a ring-shaped inner edge portion 40B, and lower end portions of the outer edge portion 40A and the inner edge portion 40B. The bottom wall portion 40C is connected. Therefore, an annular groove 41 into which the outer peripheral end 22a of the negative electrode can 22 can be inserted is formed on the upper surface side of the outer peripheral edge of the gasket 40.
The storage container 2 having a structure in which the storage space is sealed by sandwiching the gasket 40 by caulking the peripheral edge 12b of the opening 12a of the positive electrode can 12 shown in FIG.

以上のようなガスケット40の材質としては、例えば、ポリフェニルサルファイド(PPS)、ポリエチレンテレフタレート(PET)、ポリアミド、液晶ポリマー(LCP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂(PFA)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリエーテルニトリル樹脂(PEN)、ポリエーテルケトン樹脂(PEK)、ポリアリレート樹脂、ポリブチレンテレフタレート樹脂(PBT)、ポリシクロヘキサンジメチレンテレフタレート樹脂、ポリエーテルスルホン樹脂(PES)、ポリアミノビスマレイミド樹脂、ポリエーテルイミド樹脂、フッ素樹脂等が挙げられる。また、これらの材料にガラス繊維、マイカウイスカー、セラミック微粉末等を、30質量%以下の添加量で添加したものを好適に用いることができる。このような材質を用いることで、加熱によってガスケットが著しく変形し、電解液50が漏出するのを防止できる。なお、非水電解質二次電池1に特に耐熱性が要求されない場合にガスケット40は上述の材料以外を選択しても良い。   Examples of the material of the gasket 40 as described above include polyphenyl sulfide (PPS), polyethylene terephthalate (PET), polyamide, liquid crystal polymer (LCP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), poly Ether ether ketone resin (PEEK), polyether nitrile resin (PEN), polyether ketone resin (PEK), polyarylate resin, polybutylene terephthalate resin (PBT), polycyclohexanedimethylene terephthalate resin, polyether sulfone resin (PES) , Polyamino bismaleimide resin, polyetherimide resin, fluororesin and the like. Moreover, what added glass fiber, my cow whisker, ceramic fine powder, etc. to these materials with the addition amount of 30 mass% or less can be used conveniently. By using such a material, it is possible to prevent the gasket 50 from being significantly deformed by heating and the electrolyte solution 50 from leaking out. In addition, when heat resistance is not especially required for the non-aqueous electrolyte secondary battery 1, the gasket 40 may be selected from materials other than those described above.

(負極とセパレータ間の間隙)
本形態の非水電解質二次電池1においては、負極20の底面とセパレータ30との間に所定幅(所定厚さ)の間隙dが設けられている。
非水電解質二次電池1において正極缶12の外径が4〜6mmの場合、間隙dの幅(厚さ)は、0.34mm以上0.39mm以下の範囲であることが望ましい。間隙dの幅が0.34mm未満の場合、リフローハンダ付け時に相当する加熱を受けると充放電カーブに悪影響が出るおそれを生じる。また、間隙dの幅が0.39mmを超える場合、かしめ加工により正極缶12の開口部12aを密封して収容容器2を形成すると負極缶12の中心部に凹部状の大きな凹み部が形成される。この凹部のへこみ量が0.006mm未満であれば目視しても凹部として目立たないが、0.01mmを超えるへこみ量の凹部になると凹部が目立つようになり、形状不良となるおそれがある。正極缶12の外径が4〜6mmの場合、間隙dの幅が0.39mm程度においてへこみ量が0.006mm程度となるので、問題にはならないが、間隙dの幅が0.44mmを超えるとへこみ量が0.01mmを超えることとなる。これらを勘案すると、間隙dの幅は、0.34mm以上0.39mm以下の範囲であることが望ましい。また、間隙dの幅が0.37mm程度においてへこみ量が0.004mmとなり更に小さくなるので、間隙dの幅は0.37mm以下がより好ましい。本形態では、負極20の底面とセパレータ30の上面はそれぞれ平面であるため、負極20の底面とセパレータ30の上面との間に幅の均一な間隙dが形成されている。
(Gap between negative electrode and separator)
In the nonaqueous electrolyte secondary battery 1 of this embodiment, a gap d having a predetermined width (predetermined thickness) is provided between the bottom surface of the negative electrode 20 and the separator 30.
In the nonaqueous electrolyte secondary battery 1, when the outer diameter of the positive electrode can 12 is 4 to 6 mm, the width (thickness) of the gap d is preferably in the range of 0.34 mm to 0.39 mm. When the width of the gap d is less than 0.34 mm, the charge / discharge curve may be adversely affected if the heating corresponding to reflow soldering is applied. In addition, when the width of the gap d exceeds 0.39 mm, when the container 12 is formed by sealing the opening 12a of the positive electrode can 12 by caulking, a large concave portion is formed at the center of the negative electrode can 12. The If the dent amount of this recess is less than 0.006 mm, it is not conspicuous as a recess even when visually observed. However, if the dent has a dent amount exceeding 0.01 mm, the recess becomes conspicuous, and the shape may be poor. When the outer diameter of the positive electrode can 12 is 4 to 6 mm, the dent amount is about 0.006 mm when the width of the gap d is about 0.39 mm, which is not a problem, but the width of the gap d exceeds 0.44 mm. The dent amount will exceed 0.01 mm. Taking these into consideration, the width of the gap d is preferably in the range of 0.34 mm to 0.39 mm. Further, when the width of the gap d is about 0.37 mm, the dent amount becomes 0.004 mm and becomes further smaller. Therefore, the width of the gap d is more preferably 0.37 mm or less. In this embodiment, since the bottom surface of the negative electrode 20 and the top surface of the separator 30 are flat, a uniform gap d having a uniform width is formed between the bottom surface of the negative electrode 20 and the top surface of the separator 30.

「電解液」
電解液50は、通常、支持塩を非水溶媒に溶解させたものである。
本形態の非水電解質二次電池1においては、電解液50をなす非水溶媒が、テトラグライム(TEG)を主溶媒とし、ジエトキシエタン(DEE)を副溶媒として含有するものを選択できる。非水溶媒は、通常、電解液50に求められる耐熱性や粘度等を勘案して決定される。グライム系溶媒を構成するための主溶媒は、テトラグライム、トリグライム、ペンタグライム、ジグライムなどを利用することができる。
"Electrolyte"
The electrolytic solution 50 is usually obtained by dissolving a supporting salt in a non-aqueous solvent.
In the nonaqueous electrolyte secondary battery 1 of this embodiment, the nonaqueous solvent that forms the electrolytic solution 50 can be selected from those containing tetraglyme (TEG) as a main solvent and diethoxyethane (DEE) as a subsolvent. The non-aqueous solvent is usually determined in consideration of heat resistance and viscosity required for the electrolytic solution 50. Tetraglyme, triglyme, pentag lime, diglyme and the like can be used as the main solvent for constituting the glyme solvent.

本形態では、テトラグライム(TEG)およびジエトキシエタン(DEE)を含有する非水溶媒を用いた電解液50を採用している。このような構成を採用することで、支持塩をなすLiイオンに、DEE及びTEGが溶媒和する。
このとき、DEEがTEGよりもドナーナンバーが高いため、DEEが選択的にLiイオンと溶媒和する。このように、支持塩をなすLiイオンにDEE及びTEGが溶媒和し、Liイオンを保護する。これにより、例え、高温高湿環境下において非水電解質二次電池の内部に水分が侵入した場合であっても、水分とLiとが反応するのを防止できるので、放電容量が低下するのを抑制し、保存特性が向上する効果が得られる。
In this embodiment, an electrolytic solution 50 using a non-aqueous solvent containing tetraglyme (TEG) and diethoxyethane (DEE) is employed. By adopting such a configuration, DEE and TEG are solvated with Li ions forming the supporting salt.
At this time, since DEE has a higher donor number than TEG, DEE selectively solvates with Li ions. In this way, DEE and TEG are solvated with Li ions forming the supporting salt to protect the Li ions. As a result, even if moisture enters the inside of the non-aqueous electrolyte secondary battery in a high temperature and high humidity environment, it is possible to prevent the moisture and Li from reacting with each other. The effect which suppresses and a preservation | save characteristic improves is acquired.

支持塩は、非水電解質二次電池の電解液に支持塩として用いられる公知のLi化合物を用いることができ、例えば、LiCHSO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO、LiN(CFSO、LiN(FSO等の有機酸リチウム塩;LiPF、LiBF、LiB(C、LiCl、LiBr等の無機酸リチウム塩等のリチウム塩等が挙げられる。なかでも、リチウムイオン導電性を有する化合物であるリチウム塩が好ましく、LiN(CFSO、LiN(FSO、LiBFがより好ましく、耐熱性及び水分との反応性が低く、保存特性を充分に発揮できるという観点から、LiN(CFSOが特に好ましい。
支持塩は、前記のうちの1種を単独で用いてもよく、あるいは、2種以上を組み合わせて用いてもよい。電解液50中の支持塩の含有量は、支持塩の種類等を勘案して決定できる。
As the supporting salt, a known Li compound used as a supporting salt in the electrolyte solution of the nonaqueous electrolyte secondary battery can be used. For example, LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , Organic acid lithium salts such as LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 3 ) 2 , LiN (FSO 2 ) 2 ; LiPF 6 , LiBF 4 , LiB ( Examples thereof include lithium salts such as inorganic acid lithium salts such as C 6 H 5 ) 4 , LiCl and LiBr. Among them, a lithium salt that is a compound having lithium ion conductivity is preferable, LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiBF 4 are more preferable, heat resistance and reactivity with moisture are low, From the viewpoint of sufficiently exhibiting storage characteristics, LiN (CF 3 SO 2 ) 2 is particularly preferable.
As the supporting salt, one of the above may be used alone, or two or more may be used in combination. The content of the supporting salt in the electrolytic solution 50 can be determined in consideration of the type of the supporting salt.

以上説明した本形態の非水電解質二次電池1によれば、非水溶媒が、テトラグライム(TEG)とジエトキシエタン(DEE)を主体として含むので、リフローハンダ付けに耐え得る耐熱性を有し、リフローハンダ付けに伴う加熱を受けたとしても、溶媒が気化するおそれが少なく、収容容器2の内圧が上昇するおそれが少なく、収容容器2に変形を生じ難い構成を提供できる。
また、溶媒としてテトラグライムとジエトキシエタンを主体として含むグライム系の溶媒であるならば、これら溶媒の沸点が高いことに起因して電解液の耐熱性を高めることができる。
According to the nonaqueous electrolyte secondary battery 1 of the present embodiment described above, the nonaqueous solvent mainly includes tetraglyme (TEG) and diethoxyethane (DEE), and thus has heat resistance that can withstand reflow soldering. And even if it receives the heat | fever accompanying reflow soldering, there is little possibility that a solvent will vaporize, there is little possibility that the internal pressure of the storage container 2 will raise, and the structure which does not produce a deformation | transformation in the storage container 2 can be provided.
Further, if the solvent is a glyme-based solvent mainly containing tetraglyme and diethoxyethane, the heat resistance of the electrolytic solution can be increased due to the high boiling point of these solvents.

なお、先の実施形態において、好ましくはステンレス鋼製の正極缶とステンレス鋼製の負極缶とを用い、これらをかしめた収納容器を備えるコイン型構造の非水電解質二次電池を例に挙げて説明したが、本形態はこの構造に限定されるものではない。
例えば、セラミックス製の容器本体の開口部が、金属製の封口部材を用いたシーム溶接等の加熱処理によってセラミックス製の蓋体で封止された構造の非水電解質二次電池に本発明構造を適用してもよい。
In the previous embodiment, preferably, a stainless steel positive electrode can and a stainless steel negative electrode can are used, and a non-aqueous electrolyte secondary battery having a coin-type structure provided with a container that is crimped with these is taken as an example. Although described, this embodiment is not limited to this structure.
For example, the structure of the present invention is applied to a nonaqueous electrolyte secondary battery having a structure in which an opening of a ceramic container body is sealed with a ceramic lid by a heat treatment such as seam welding using a metal sealing member. You may apply.

図1に示す構成の非水電解質二次電池を試作し、後述する評価試験を行った。
正極10として、まず、市販のリチウムマンガン酸化物(Li1.14Co0.06Mn1.80)に、導電助剤としてグラファイトを、結着剤としてポリアクリル酸を、リチウムマンガン酸化物:グラファイト:ポリアクリル酸=90:8:2(質量比)の割合で混合して正極合剤とした。この正極合剤13mgを、2ton/cmの加圧力で加圧し、直径4mm、厚さ1mmの円盤形ペレットに加圧成形した。
A non-aqueous electrolyte secondary battery having the configuration shown in FIG. 1 was prototyped and an evaluation test described later was performed.
As the positive electrode 10, first, commercially available lithium manganese oxide (Li 1.14 Co 0.06 Mn 1.80 O 4 ), graphite as a conductive additive, polyacrylic acid as a binder, lithium manganese oxide : Graphite: polyacrylic acid = 90: 8: 2 (mass ratio) was mixed to obtain a positive electrode mixture. 13 mg of this positive electrode mixture was pressurized with a pressurizing force of 2 ton / cm 2 and pressed into a disk-shaped pellet having a diameter of 4 mm and a thickness of 1 mm.

得られたペレット(正極)を、ステンレス鋼(SUS316L:t=0.20mm)製の外径4.8mmの正極缶の内面に、炭素を含む導電性樹脂接着剤を用いて接着し、これらを一体化して正極ユニットを得た。その後、この正極ユニットを、大気中で120℃×11時間の条件で減圧加熱乾燥した。次に、正極ユニットにおける正極缶の開口部の内側面にシール剤を塗布した。   The obtained pellet (positive electrode) was bonded to the inner surface of a positive electrode can made of stainless steel (SUS316L: t = 0.20 mm) with an outer diameter of 4.8 mm using a conductive resin adhesive containing carbon. It integrated and the positive electrode unit was obtained. Thereafter, this positive electrode unit was dried by heating under reduced pressure in the atmosphere at 120 ° C. for 11 hours. Next, the sealing agent was apply | coated to the inner surface of the opening part of the positive electrode can in a positive electrode unit.

次に、負極であるLi−Al合金を次のようにして作製した。まず、リチウムフォイル(外径4mm、厚さ0.1mm)を用意した。   Next, a Li—Al alloy as a negative electrode was produced as follows. First, lithium foil (outer diameter 4 mm, thickness 0.1 mm) was prepared.

そして、ステンレス鋼(SUS304AL(JIS1050):t=0.20mm)製の負極缶の内面に厚さ0.13mmの硬質アルミニウム層をクラッドにより貼り合わせた構造の負極缶を用意した。この負極缶の硬質アルミニウム層に対しリチウムフォイルを圧着することにより負極ユニットを得た。その後、後述するプロセスを経て、リチウムとアルミニウムとが合金化された負極を得た。   Then, a negative electrode can having a structure in which a hard aluminum layer having a thickness of 0.13 mm was bonded to the inner surface of a negative electrode can made of stainless steel (SUS304AL (JIS1050): t = 0.20 mm) by a clad was prepared. A negative electrode unit was obtained by pressure bonding a lithium foil to the hard aluminum layer of the negative electrode can. Thereafter, a negative electrode in which lithium and aluminum were alloyed was obtained through a process described later.

次に、ガラス繊維からなる不織布を乾燥させた後、直径4mmの円盤型に打ち抜いてセパレータとした。そして、このセパレータを、正極ペレットの上に載置し、負極缶の開口部に、PEEK樹脂製のガスケットを配置した。   Next, after drying the nonwoven fabric which consists of glass fiber, it punched out to the disk shape of diameter 4mm, and was set as the separator. And this separator was mounted on the positive electrode pellet, and the gasket made from PEEK resin was arrange | positioned in the opening part of the negative electrode can.

(電解液の作製)
テトラグライム(TEG)とジエトキシエタン(DEE)の各溶媒を質量比1:1で混合して非水溶媒とし、得られた非水溶媒に支持塩としてLiTFSI(1M)を溶解させて電解液を得た。
上述の如く用意した正極缶及び負極缶に、前記手順で調整した各例の電解液を、電池1個あたりの合計で4.5μL充填した。
(Preparation of electrolyte)
Tetraglyme (TEG) and diethoxyethane (DEE) solvents are mixed at a mass ratio of 1: 1 to make a non-aqueous solvent, and LiTFSI (1M) is dissolved as a supporting salt in the obtained non-aqueous solvent to obtain an electrolytic solution. Got.
The positive electrode can and the negative electrode can prepared as described above were filled with 4.5 μL of the electrolyte solution of each example adjusted in the above procedure per battery.

次に、セパレータが正極に当接するように、負極ユニットを正極ユニットにかしめた。そして、正極缶の開口部を嵌合することで正極缶と負極缶とを密封した後、25℃で7日間静置して、非水電解質二次電池を得た。正極缶と負極缶を密封するガスケットはポリエーテルエーテルケトン樹脂(PEEK樹脂)から構成した。   Next, the negative electrode unit was caulked to the positive electrode unit so that the separator contacted the positive electrode. And after sealing the positive electrode can and the negative electrode can by fitting the opening part of a positive electrode can, it left still at 25 degreeC for 7 days, and obtained the nonaqueous electrolyte secondary battery. The gasket for sealing the positive electrode can and the negative electrode can was made of polyetheretherketone resin (PEEK resin).

上述の製造方法に基づき、負極とセパレータの間に0.22mmの間隙を形成した試料1を用意した。また、正極の厚みとリチウムフォイルの厚みを、正極と負極の容量のバランスを維持しながらそれぞれ変更することにより、負極とセパレータの間に0.24mmの間隙を形成した試料2と、負極とセパレータの間に0.3mmの間隙を形成した試料3と、負極とセパレータの間に0.34mmの間隙を形成した試料4と、負極とセパレータの間に0.37mmの間隙を形成した試料5と、負極とセパレータの間に0.44mmの間隙を形成した試料6を用意した。   Based on the manufacturing method described above, Sample 1 was prepared in which a 0.22 mm gap was formed between the negative electrode and the separator. Further, by changing the thickness of the positive electrode and the thickness of the lithium foil while maintaining the balance between the positive and negative electrode capacities, the sample 2 in which a gap of 0.24 mm was formed between the negative electrode and the separator, and the negative electrode and the separator Sample 3 in which a gap of 0.3 mm was formed between Sample 4, Sample 4 in which a gap of 0.34 mm was formed between the negative electrode and the separator, and Sample 5 in which a gap of 0.37 mm was formed between the negative electrode and the separator Sample 6 in which a gap of 0.44 mm was formed between the negative electrode and the separator was prepared.

上述の製造方法に基づき、負極とセパレータの間に0.04mmの間隙を形成した試料7と、負極とセパレータの間に0.14mmの間隙を形成した試料8と、負極とセパレータの間に0.24mmの間隙を形成した試料9と、負極とセパレータの間に0.34mmの間隙を形成した試料10と、負極とセパレータの間に0.39mmの間隙を形成した試料11と、負極とセパレータの間に0.51mmの間隙を形成した試料12と、負極とセパレータの間に0.61mmの間隙を形成した試料13を用意した。   Based on the above manufacturing method, Sample 7 having a gap of 0.04 mm between the negative electrode and the separator, Sample 8 having a gap of 0.14 mm between the negative electrode and the separator, and 0 between the negative electrode and the separator. Sample 9 with a gap of 24 mm, Sample 10 with a gap of 0.34 mm between the negative electrode and the separator, Sample 11 with a gap of 0.39 mm between the negative electrode and the separator, Negative electrode and separator Sample 12 in which a gap of 0.51 mm was formed between and Sample 13 in which a gap of 0.61 mm was formed between the negative electrode and the separator was prepared.

「評価試験」
(へこみ量測定試験)
試料1〜試料6の非水電解質二次電池について、正極缶と負極缶をかしめて密封した後、負極缶の中央部に形成された凹部のへこみ量を測定した。その結果を以下の表1と図3に示す。
"Evaluation test"
(Depression measurement test)
For the nonaqueous electrolyte secondary batteries of Samples 1 to 6, the positive electrode can and the negative electrode can were caulked and sealed, and then the amount of dents in the recess formed in the central portion of the negative electrode can was measured. The results are shown in Table 1 below and FIG.

Figure 2019160618
Figure 2019160618

表1に示す結果から、試料1〜4はへこみ量が殆ど0であり、非水電解質二次電池の外観として全く問題が無いことが明らかであった。試料5は0.004mmのへこみが形成されていたが、目視で殆ど凹部を確認することができず、外径4〜6mmの非水電解質二次電池の外観として問題は無い。
これらの試料に対し、試料6は凹部の存在を目視で確認することができ、非水電解質二次電池の外観として問題を生じた。この結果から、凹部として目視により確認できないへこみ量を示した間隙0.37mmまでであるならば、外径4〜6mmの非水電解質二次電池として、負極とセパレータの間の間隙を大きくしても問題ないことがわかった。
From the results shown in Table 1, it was clear that Samples 1 to 4 had almost no dent, and that there was no problem with the appearance of the nonaqueous electrolyte secondary battery. Although the sample 5 had a dent of 0.004 mm, the concave portion could hardly be visually confirmed, and there was no problem as the appearance of the nonaqueous electrolyte secondary battery having an outer diameter of 4 to 6 mm.
In contrast to these samples, Sample 6 was able to visually confirm the presence of the recesses, which caused a problem with the appearance of the nonaqueous electrolyte secondary battery. From this result, if the gap is up to 0.37 mm showing a dent amount that cannot be visually confirmed as a recess, the gap between the negative electrode and the separator is increased as a nonaqueous electrolyte secondary battery having an outer diameter of 4 to 6 mm. I found that there was no problem.

「充電試験」
試料7〜試料13の非水電解質二次電池を用い、それぞれについて、160〜200℃、10分間の予備加熱後、260℃、10秒で本加熱するリフローハンダ付けに相当する熱処理を施した後、充電電流max:0.02mA、充電電圧:3.1V、充電時間:96(hr)の条件で充電試験を行った。その結果を以下の表2に示す。
"Charging test"
Using the nonaqueous electrolyte secondary batteries of Sample 7 to Sample 13, after preheating at 160 to 200 ° C. for 10 minutes and then applying heat treatment equivalent to reflow soldering at 260 ° C. for 10 seconds, respectively. The charging test was performed under the conditions of charging current max: 0.02 mA, charging voltage: 3.1 V, charging time: 96 (hr). The results are shown in Table 2 below.

Figure 2019160618
Figure 2019160618

表2に示す充電異常ありとは、各試料の充電時に、充電時間(hr)を横軸に、充電電圧(V)を縦軸にとった図4に示すグラフを描いた場合、電圧の大きな変動を生じることを意味する。表2に示す充電異常なしとは、図4に示すグラフを描いた場合、電圧の変動を生じることなく充電できたことを意味する。   The charge abnormality shown in Table 2 means that when charging each sample, when the graph shown in FIG. 4 is drawn with the charging time (hr) on the horizontal axis and the charging voltage (V) on the vertical axis, the voltage is large. It means to cause fluctuation. “No charging abnormality shown in Table 2” means that when the graph shown in FIG. 4 was drawn, the battery could be charged without voltage fluctuation.

表2に示す結果が示すように、間隙を0.34mm〜0.61mmに設定した試料10〜試料13では充電異常を生じていないが、間隙を0.04mm〜0.24mmに設定した試料7〜試料19では充電異常を生じた。
この結果と、先に表1と図3を基に説明した結果に鑑み、外径4〜6mmの非水電解質二次電池において、負極とセパレータとの間隙について0.34mm以上0.39mm以下とするならば、充電異常を生じることなく、外観に問題のない非水電解質二次電池を得ることができることがわかった。
As shown by the results shown in Table 2, in Sample 10 to Sample 13 in which the gap was set to 0.34 mm to 0.61 mm, no charging abnormality occurred, but Sample 7 in which the gap was set to 0.04 mm to 0.24 mm. -Sample 19 had a charging abnormality.
In view of this result and the results described above based on Table 1 and FIG. 3, in the non-aqueous electrolyte secondary battery having an outer diameter of 4 to 6 mm, the gap between the negative electrode and the separator is 0.34 mm or more and 0.39 mm or less. Thus, it was found that a non-aqueous electrolyte secondary battery having no problem in appearance can be obtained without causing a charging abnormality.

1…非水電解質二次電池、2…収容容器、10…正極、12…正極缶、12a…開口部、12b…周縁部、14…正極集電体、20…負極、22…負極缶、24…硬質アルミニウム層、30…セパレータ、40…ガスケット、41…環状溝、50…電解液。   DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery, 2 ... Container, 10 ... Positive electrode, 12 ... Positive electrode can, 12a ... Opening part, 12b ... Peripheral part, 14 ... Positive electrode collector, 20 ... Negative electrode, 22 ... Negative electrode can, 24 ... hard aluminum layer, 30 ... separator, 40 ... gasket, 41 ... annular groove, 50 ... electrolyte.

Claims (3)

正極と負極をセパレータを介し対向配置し、収容容器に収容してなる非水電解質二次電池であって、前記負極がリチウムとアルミニウムを含む合金からなり、前記負極とセパレータとの間に所定幅の間隙が設けられていることを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery in which a positive electrode and a negative electrode are arranged opposite to each other with a separator interposed between them, and the negative electrode is made of an alloy containing lithium and aluminum, and has a predetermined width between the negative electrode and the separator. A non-aqueous electrolyte secondary battery characterized in that a gap is provided. 前記正極缶が有底円筒状であり、
前記負極缶が前記正極缶の開口部内側にガスケットを介在し固定され、
前記正極缶の開口部を前記負極缶側にかしめたかしめ部を設けることで前記収容容器が密封され、前記収容容器に正極と負極とセパレータと前記電解液が収容されたことを特徴とする請求項1に記載の非水電解質二次電池。
The positive electrode can has a bottomed cylindrical shape;
The negative electrode can is fixed by interposing a gasket inside the opening of the positive electrode can,
The container is hermetically sealed by providing a caulking portion that caulks the opening of the positive electrode can on the negative electrode can side, and the positive electrode, the negative electrode, the separator, and the electrolyte are stored in the storage container. Item 2. The nonaqueous electrolyte secondary battery according to Item 1.
前記正極缶の外径が4〜6mmの場合、前記間隙の間隔が0.34mm以上0.39mm以下であることを特徴とする請求項1または請求項2に記載の非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 1, wherein when the outer diameter of the positive electrode can is 4 to 6 mm, the gap interval is 0.34 mm or more and 0.39 mm or less.
JP2018046707A 2018-03-14 2018-03-14 Coin type non-aqueous electrolyte secondary battery for reflow mounting Active JP7112860B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018046707A JP7112860B2 (en) 2018-03-14 2018-03-14 Coin type non-aqueous electrolyte secondary battery for reflow mounting
TW107136688A TWI778151B (en) 2018-03-14 2018-10-18 Nonaqueous electrolyte secondary battery
KR1020180165269A KR102630459B1 (en) 2018-03-14 2018-12-19 Nonaqueous electrolyte secondary battery
CN201910192536.0A CN110277591B (en) 2018-03-14 2019-03-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046707A JP7112860B2 (en) 2018-03-14 2018-03-14 Coin type non-aqueous electrolyte secondary battery for reflow mounting

Publications (2)

Publication Number Publication Date
JP2019160618A true JP2019160618A (en) 2019-09-19
JP7112860B2 JP7112860B2 (en) 2022-08-04

Family

ID=67959208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046707A Active JP7112860B2 (en) 2018-03-14 2018-03-14 Coin type non-aqueous electrolyte secondary battery for reflow mounting

Country Status (3)

Country Link
JP (1) JP7112860B2 (en)
KR (1) KR102630459B1 (en)
TW (1) TWI778151B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012279A (en) * 1996-04-26 1998-01-16 Denso Corp Metal lithium secondary battery
JP2004095399A (en) * 2002-08-30 2004-03-25 Sony Corp Non-aqueous electrolyte rechargeable cell
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007273279A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2013105693A (en) * 2011-11-16 2013-05-30 Seiko Instruments Inc Nonaqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121042A (en) 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd Flat organic electrolyte secondary battery
KR100329560B1 (en) * 1999-04-16 2002-03-20 김순택 Grid, electrode and secondary battery utilizing the sames
JP2011204660A (en) * 2010-03-04 2011-10-13 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012279A (en) * 1996-04-26 1998-01-16 Denso Corp Metal lithium secondary battery
JP2004095399A (en) * 2002-08-30 2004-03-25 Sony Corp Non-aqueous electrolyte rechargeable cell
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JP2007273279A (en) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2013105693A (en) * 2011-11-16 2013-05-30 Seiko Instruments Inc Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR20190108478A (en) 2019-09-24
JP7112860B2 (en) 2022-08-04
TWI778151B (en) 2022-09-21
TW201939797A (en) 2019-10-01
KR102630459B1 (en) 2024-01-31
CN110277591A (en) 2019-09-24

Similar Documents

Publication Publication Date Title
US20230083371A1 (en) Secondary battery
JP2002025515A (en) Glass-to-metal seal under unmatched pressure
KR20240024162A (en) Nonaqueous electrolyte secondary battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
JP2004228086A (en) Hermetically sealed coin cell
EP3236523B1 (en) Nonaqueous electrolyte primary battery and method for producing same
JP2014179203A (en) Electrochemical cell
CN104009250B (en) Nonaqueous electrolytic secondary battery
TWI425538B (en) Button type power storage unit
EP4318702A1 (en) Cylindrical battery
JP2019160618A (en) Nonaqueous electrolyte secondary battery
JP2021150279A (en) Non-aqueous electrolyte secondary battery
CN110277591B (en) Nonaqueous electrolyte secondary battery
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP4201256B2 (en) Nonaqueous electrolyte secondary battery
US20220109150A1 (en) Non-aqueous electrolyte secondary battery
JP2023131278A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2574344B2 (en) Organic electrolyte battery
US11258145B2 (en) Battery and process for producing a battery
CN113394391A (en) Nonaqueous electrolyte secondary battery
JP2023049024A (en) Solid electrolyte and solid electrolyte cell
JPH01302659A (en) Organic solvent battery
JPH09330724A (en) Organic electrolyte battery
JPH11144718A (en) Nonaqueous solvent battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220523

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150