JP2019140056A - Negative electrode current collector, negative electrode and, lithium secondary battery - Google Patents

Negative electrode current collector, negative electrode and, lithium secondary battery Download PDF

Info

Publication number
JP2019140056A
JP2019140056A JP2018024836A JP2018024836A JP2019140056A JP 2019140056 A JP2019140056 A JP 2019140056A JP 2018024836 A JP2018024836 A JP 2018024836A JP 2018024836 A JP2018024836 A JP 2018024836A JP 2019140056 A JP2019140056 A JP 2019140056A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
electrode current
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018024836A
Other languages
Japanese (ja)
Other versions
JP6489252B1 (en
Inventor
靖博 ▲高▼木
靖博 ▲高▼木
Yasuhiro Takagi
良輔 谷木
Ryosuke Taniki
良輔 谷木
平林 幸子
Sachiko Hirabayashi
幸子 平林
康永 加賀谷
Yasunaga Kagaya
康永 加賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018024836A priority Critical patent/JP6489252B1/en
Application granted granted Critical
Publication of JP6489252B1 publication Critical patent/JP6489252B1/en
Publication of JP2019140056A publication Critical patent/JP2019140056A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a lithium secondary battery in which volume expansion is suppressed, and a negative electrode current collector and a negative electrode suitable for the same.SOLUTION: The negative electrode current collector has at least one crystal particle selected from a group consisting of copper, nickel, stainless steel, and titanium. An average crystallite size of the crystal particles is 380 Å or more and 4000 Å or less.SELECTED DRAWING: Figure 1

Description

本発明は、負極集電体、負極及びリチウム二次電池に関する。   The present invention relates to a negative electrode current collector, a negative electrode, and a lithium secondary battery.

リチウム二次電池は、高容量化を実現することができ、携帯電話やノートパソコン等のモバイルバッテリーから自動車用バッテリーや大型の電力貯蔵用バッテリーまで広く利用されている。   Lithium secondary batteries can achieve high capacity, and are widely used from mobile batteries such as mobile phones and notebook computers to automobile batteries and large-sized power storage batteries.

負極に金属リチウムを用いるリチウム二次電池は、リチウム金属が析出、溶解することで充放電を行う。リチウム金属は極めて卑な電位を有するため、リチウム二次電池は高い理論容量密度を実現できると期待されている。   Lithium secondary batteries that use metallic lithium for the negative electrode are charged and discharged by precipitation and dissolution of lithium metal. Since lithium metal has a very low potential, lithium secondary batteries are expected to be able to achieve a high theoretical capacity density.

リチウム二次電池の抱える課題の一つとして、充放電時の体積膨張がある。例えば、特許文献1には、デンドライト(金属リチウムが析出開始点を根として樹上に析出したもの)が生成、消滅することで体積膨張が生じ、この体積膨張により電極の一部が切断され電池容量の低下の原因となることが記載されている。   One of the problems that lithium secondary batteries have is volume expansion during charging and discharging. For example, Patent Document 1 discloses that a dendrite (metal lithium deposited on a tree with a deposition start point as a root) is generated and disappears, resulting in volume expansion, and a part of the electrode is cut by the volume expansion. It is described that it causes a decrease in capacity.

特許文献2及び3には、このデンドライトを抑制する手段が記載されている。特許文献2は、金属析出面に実質的に粒界のないアモルファス金属又はアモルファス合金を負極集電体として用いている。結晶粒界や配向面の食い違いが充放電時の電流分布の不均一の原因であり、この負極集電体を用いることでデンドライトが抑制できることが特許文献2に記載されている。   Patent Documents 2 and 3 describe means for suppressing this dendrite. Patent Document 2 uses an amorphous metal or an amorphous alloy substantially free of grain boundaries on the metal deposition surface as a negative electrode current collector. Patent Document 2 describes that the difference in crystal grain boundaries and orientation planes is a cause of non-uniform current distribution during charging and discharging, and that dendrite can be suppressed by using this negative electrode current collector.

特許文献3は、金属析出面の表面粗さ(Rz)を10μm以下とした負極集電体をリチウム二次電池に用いている。金属析出面を平滑化することで、充放電時の電流分布の不均一を防ぎ、デンドライトが抑制できることが特許文献3に記載されている。   In Patent Document 3, a negative electrode current collector having a metal deposition surface with a surface roughness (Rz) of 10 μm or less is used for a lithium secondary battery. Patent Document 3 describes that by smoothing the metal deposition surface, non-uniform current distribution during charge / discharge can be prevented and dendrite can be suppressed.

特開平11−224689号公報Japanese Patent Laid-Open No. 11-224689 特開2001−250559号公報JP 2001-250559 A 特開2001−243957号公報JP 2001-243957 A

デンドライトはリチウム二次電池の体積膨張の大きな原因の一つであるが、リチウム二次電池の体積膨張はデンドライトのみによって生じるわけではない。例えば、電解液が分解した分解ガスの量が多くなるとリチウム二次電池は大きく体積膨張する。つまり特許文献2及び3に記載のリチウム二次電池では体積膨張を充分に抑制することができなかった。また特許文献2及び3に記載の負極集電体を用いてもデンドライトの発生を十分抑制することができなかった。   Although dendrite is one of the major causes of volume expansion of lithium secondary batteries, the volume expansion of lithium secondary batteries is not only caused by dendrites. For example, when the amount of decomposition gas obtained by decomposing the electrolyte increases, the lithium secondary battery expands greatly. In other words, the lithium secondary batteries described in Patent Documents 2 and 3 could not sufficiently suppress volume expansion. Further, even when the negative electrode current collectors described in Patent Documents 2 and 3 were used, the generation of dendrites could not be sufficiently suppressed.

本発明は上記問題に鑑みてなされたものであり、体積膨張が抑制されたリチウム二次電池及びこれに適した負極集電体及び負極を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the lithium secondary battery by which volume expansion was suppressed, the negative electrode collector suitable for this, and a negative electrode.

本発明者らは、結晶粒子を構成する結晶子サイズに着目し、結晶子サイズを所定の範囲内とすると、リチウム二次電池の体積膨張を抑制できることを見出した。
すなわち、上記課題を解決するため、以下の手段を提供する。
The present inventors paid attention to the crystallite size constituting the crystal particles, and found that the volume expansion of the lithium secondary battery can be suppressed when the crystallite size is within a predetermined range.
That is, in order to solve the above problems, the following means are provided.

(1)第1の態様にかかる負極集電体は、銅、ニッケル、ステンレス、チタンからなる群から選択される少なくとも一つの結晶粒子を有し、前記結晶粒子の平均結晶子サイズが380Å以上4000Å以下である。 (1) The negative electrode current collector according to the first aspect has at least one crystal particle selected from the group consisting of copper, nickel, stainless steel, and titanium, and the crystallite has an average crystallite size of 380 to 4000 mm. It is as follows.

(2)上記態様にかかる負極集電体は、X線回折測定における(200)面における半値幅d1と、(220)面における半値幅d2と、が1.1≦d2/d1≦1.4の関係を満たしてもよい。 (2) In the negative electrode current collector according to the above aspect, the half-value width d1 on the (200) plane and the half-value width d2 on the (220) plane in X-ray diffraction measurement are 1.1 ≦ d2 / d1 ≦ 1.4. May be satisfied.

(3)上記態様にかかる負極集電体は、前記結晶粒子の大きさが1.5μm以上2.5μm以下であってもよい。 (3) In the negative electrode current collector according to the above aspect, the size of the crystal particles may be 1.5 μm or more and 2.5 μm or less.

(4)第2の態様にかかる負極は、上記態様にかかる負極集電体を備える。 (4) The negative electrode concerning a 2nd aspect is equipped with the negative electrode electrical power collector concerning the said aspect.

(5)上記態様にかかる負極は、前記負極集電体の少なくとも一面に負極活物質層として金属リチウムを備えてもよい。 (5) The negative electrode according to the above aspect may include metallic lithium as a negative electrode active material layer on at least one surface of the negative electrode current collector.

(6)第3の態様にかかるリチウム二次電池は、上記態様にかかる負極と、前記負極と対向する正極と、前記負極と前記正極との間に位置するセパレータと、を備える。 (6) A lithium secondary battery according to a third aspect includes the negative electrode according to the aspect described above, a positive electrode facing the negative electrode, and a separator positioned between the negative electrode and the positive electrode.

上記態様に係る負極集電体を用いると、体積膨張が抑制されたリチウム二次電池を得ることができる。   When the negative electrode current collector according to the above aspect is used, a lithium secondary battery in which volume expansion is suppressed can be obtained.

本実施形態にかかるリチウム二次電池の断面模式図である。It is a cross-sectional schematic diagram of the lithium secondary battery concerning this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, the present embodiment will be described in detail with appropriate reference to the drawings. In the drawings used in the following description, in order to make the characteristics of the present invention easier to understand, there are cases where the characteristic parts are enlarged for the sake of convenience, and the dimensional ratios of the respective components are different from actual ones. is there. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.

「第1実施形態」
[リチウム二次電池]
図1は、第1実施形態にかかるリチウム二次電池の断面模式図である。図1に示すリチウム二次電池100は、発電部40と、外装体50と、リード60、62とを備える。外装体50は、発電部40を密閉した状態で収容する。一対のリード60、62の一端は、発電部40に接続され、他端は外装体50の外部まで延在している。また図示されていないが、発電部40とともに電解液が、外装体50内に収容されている。
“First Embodiment”
[Lithium secondary battery]
FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to the first embodiment. A lithium secondary battery 100 illustrated in FIG. 1 includes a power generation unit 40, an exterior body 50, and leads 60 and 62. The exterior body 50 accommodates the power generation unit 40 in a sealed state. One end of the pair of leads 60 and 62 is connected to the power generation unit 40, and the other end extends to the outside of the exterior body 50. Although not shown, the electrolytic solution is housed in the outer package 50 together with the power generation unit 40.

(発電部)
発電部40は、正極20と負極30とが、セパレータ10を挟んで対向配置されている。図1では、外装体50内に発電部40が一つの場合を例示したが、複数積層されていてもよい。
(Power generation part)
In the power generation unit 40, the positive electrode 20 and the negative electrode 30 are disposed to face each other with the separator 10 interposed therebetween. In FIG. 1, the case where there is one power generation unit 40 in the exterior body 50 is illustrated, but a plurality of power generation units 40 may be stacked.

<負極>
負極30は、負極集電体32と負極活物質層34とを備える。負極30において金属リチウムの析出、溶解反応を用いる場合、負極活物質層34は初期状態では無くてもよい。電解液中のリチウムイオンが負極集電体32の一面に金属リチウムとして析出するためである。一方で、1回以上充電を行うと析出した金属リチウムが残存するため、この金属リチウムを含む層を負極活物質層34とみなすことができる。また充放電に寄与するリチウム量が不足することに備えて、充放電前の初期状態から集電体の一面にリチウム箔を設けてもよい。
<Negative electrode>
The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 34. When the deposition and dissolution reaction of metallic lithium is used in the negative electrode 30, the negative electrode active material layer 34 may not be in the initial state. This is because lithium ions in the electrolytic solution are deposited as metallic lithium on one surface of the negative electrode current collector 32. On the other hand, since the deposited metal lithium remains when charged one or more times, the layer containing the metal lithium can be regarded as the negative electrode active material layer 34. In preparation for the shortage of the amount of lithium contributing to charging / discharging, a lithium foil may be provided on one surface of the current collector from the initial state before charging / discharging.

一方で、負極において合金化、脱合金化反応を用いる場合は、負極活物質層34としてSi、Sn等が用いられる。Siは合金化すると体積が4倍になるため、体積膨張を抑制することが求められている。   On the other hand, when alloying or dealloying reaction is used in the negative electrode, Si, Sn, or the like is used as the negative electrode active material layer 34. When Si is alloyed, the volume becomes four times, so that it is required to suppress volume expansion.

負極集電体32は、銅、ニッケル、ステンレス、チタンからなる群から選択される少なくとも一つの結晶粒子を有する。負極集電体32は、これらの金属うちの少なくともいずれかの金属箔であることが好ましい。これらの金属は、いずれも導電性に優れ、リード60を介して発生した電子を速やかに外部に出力できる。   The negative electrode current collector 32 has at least one crystal particle selected from the group consisting of copper, nickel, stainless steel, and titanium. The negative electrode current collector 32 is preferably a metal foil of at least one of these metals. These metals are all excellent in conductivity, and can quickly output electrons generated via the lead 60 to the outside.

負極集電体32を構成するこの結晶粒子の平均結晶子サイズは、380Å以上4000Å以下であり、380Å以上800Å以下であることが好ましい。ここで結晶子とは、単結晶とみなせる最大の集まりをいい、一つの結晶粒子は複数の結晶子によって構成されている。平均結晶子サイズは、X線回折における回折ピークの半値幅からシェラーの式により求められる。測定にもちいたX線の波長は1.54Å、ブラッグ角(回折角の半分)は35°〜40°、半値幅の測定に用いた回折ピークは2θで74.14°とした。   The average crystallite size of the crystal particles constituting the negative electrode current collector 32 is 380 to 4000 mm, and preferably 380 to 800 mm. Here, the crystallite refers to the largest group that can be regarded as a single crystal, and one crystal particle is composed of a plurality of crystallites. The average crystallite size can be obtained from Scherrer's equation from the half width of the diffraction peak in X-ray diffraction. The X-ray wavelength used for the measurement was 1.54 mm, the Bragg angle (half of the diffraction angle) was 35 ° to 40 °, and the diffraction peak used for the measurement of the half width was 2θ at 74.14 °.

結晶粒子の平均結晶子サイズが当該範囲内にあると、リチウム二次電池100の体積膨張が抑制される。体積膨張が抑制される原因は明確ではないが、平均結晶子サイズが所定の範囲内となることで、充放電反応時の反応場が適切になったことが一つの大きな要因であると考えられる。   When the average crystallite size of the crystal particles is within the range, volume expansion of the lithium secondary battery 100 is suppressed. The reason why the volume expansion is suppressed is not clear, but it is thought that one of the major factors is that the reaction field at the time of charge / discharge reaction is appropriate because the average crystallite size is within a predetermined range. .

結晶粒子の平均結晶子サイズが小さいと、電解液と結晶子との反応面積が増え、反応場が増大する。与えられたエネルギーはリチウムの析出、溶解反応に全て用いられることが理想だが、反応場が多すぎるとこれらの反応が追い付かず、過剰なエネルギーが電解液を分解する。分解された電解液はガスとなり体積膨張の大きな原因となる。   When the average crystallite size of the crystal particles is small, the reaction area between the electrolytic solution and the crystallite increases, and the reaction field increases. Ideally, the given energy should be used for all lithium precipitation and dissolution reactions, but if there are too many reaction fields, these reactions will not catch up, and excess energy will decompose the electrolyte. The decomposed electrolytic solution becomes a gas and causes a large volume expansion.

一方で結晶粒子の平均結晶子サイズが大きいと、結晶粒子のサイズが大きくなりやすくなる。結晶粒子のサイズが大きいと、負極集電体32内の導電性が面内で不均一になり、リチウムの析出状態が不均一になり、析出面の表面状態が粗くなる。すると、反応が局所で生じることとなり、リチウムの析出、溶解反応が追い付かず、過剰なエネルギーが電解液を分解する。分解された電解液はガスとなり体積膨張の大きな原因となる。   On the other hand, if the average crystallite size of crystal grains is large, the size of crystal grains tends to increase. When the size of the crystal particles is large, the conductivity in the negative electrode current collector 32 becomes non-uniform in the surface, the lithium deposition state becomes non-uniform, and the surface state of the precipitation surface becomes rough. Then, the reaction occurs locally, lithium deposition and dissolution reaction cannot catch up, and excessive energy decomposes the electrolytic solution. The decomposed electrolytic solution becomes a gas and causes a large volume expansion.

これに対し、結晶粒子の平均結晶子サイズが上記の範囲内であると、リチウムの析出、溶解反応に寄与する反応場が負極30の面内で安定化し、電解液の分解反応が生じることを抑制できる。   On the other hand, when the average crystallite size of the crystal particles is within the above range, the reaction field contributing to the precipitation and dissolution reaction of lithium is stabilized in the plane of the negative electrode 30, and the decomposition reaction of the electrolytic solution occurs. Can be suppressed.

また結晶粒子の平均結晶子サイズが上記の範囲内にあると、デンドライトの発生も抑制できる。デンドライトは、体積膨張の原因の一つである。   In addition, when the average crystallite size of the crystal grains is within the above range, generation of dendrites can be suppressed. Dendrites are one of the causes of volume expansion.

結晶粒子の平均結晶子サイズが小さいと、結晶粒子を構成する金属元素が拡散しやすくなる。拡散した金属元素は、負極活物質層34を構成する元素(活物質)と反応し合金化する。上述のように初期状態として負極活物質層34がない場合でも、1回以上の充電後には金属リチウムが負極活物質層34となるため、拡散した金属元素と金属リチウムとの合金化反応が生じる。   When the average crystallite size of the crystal particles is small, the metal elements constituting the crystal particles are likely to diffuse. The diffused metal element reacts with the element (active material) constituting the negative electrode active material layer 34 to be alloyed. As described above, even when the negative electrode active material layer 34 is not present in the initial state, the metal lithium becomes the negative electrode active material layer 34 after one or more charges, so that an alloying reaction between the diffused metal element and the metal lithium occurs. .

負極活物質層34において合金化反応が生じると、活物質が体積膨張する。活物質が体積膨張すると、負極活物質層34内に圧縮応力が生じる。圧縮応力は活物質の粒子界面において特に強く生じ、負極活物質層34の面内における圧力分布を不均一にする。リチウムの析出状態は、析出面の状態の影響を強く受ける。たとえば、強い圧力を受けている部分では、圧力を解放するように析出面に対して交差する方向に金属リチウムが成長しやすくなる。析出面に対して交差する方向に析出する金属リチウムはデンドライトである。   When an alloying reaction occurs in the negative electrode active material layer 34, the active material expands in volume. When the active material expands in volume, compressive stress is generated in the negative electrode active material layer 34. The compressive stress is particularly strong at the particle interface of the active material, making the pressure distribution in the negative electrode active material layer 34 non-uniform. The precipitation state of lithium is strongly influenced by the state of the precipitation surface. For example, in a portion receiving a strong pressure, metallic lithium tends to grow in a direction crossing the precipitation surface so as to release the pressure. The metallic lithium deposited in the direction crossing the deposition surface is dendrite.

結晶粒子の平均結晶子サイズが380Å以上であれば、結晶粒子を構成する金属元素の拡散は十分抑制できる。   If the average crystallite size of the crystal particles is 380 mm or more, diffusion of the metal elements constituting the crystal particles can be sufficiently suppressed.

負極集電体32は、X線回折測定における(200)面における半値幅d1と(220)面における半値幅d2とが、1.10≦d2/d1≦1.40の関係を満たすことが好ましく、1.25<d2/d1≦1.40の関係を満たすことが好ましい。   In the negative electrode current collector 32, the half-value width d1 on the (200) plane and the half-value width d2 on the (220) plane in the X-ray diffraction measurement preferably satisfy the relationship of 1.10 ≦ d2 / d1 ≦ 1.40. 1.25 <d2 / d1 ≦ 1.40 is preferably satisfied.

負極集電体32の平均結晶子サイズは、焼結状態によって変化し、未焼結で小さく、焼結状態で大きい。また負極集電体32のX線回折測定結果は、未焼結では(200)面の結晶性が高く(半値幅d1が狭く)、焼結状態では(220)面の結晶性が高い(半値幅d2が狭い)。負極集電体32を構成する金属元素が結晶成長すると、平均結晶子サイズが大きくなり、X線の回折条件が変化したためと考えられる。   The average crystallite size of the negative electrode current collector 32 varies depending on the sintered state, is small when unsintered, and is large when sintered. The X-ray diffraction measurement result of the negative electrode current collector 32 shows that the uncrystallized (200) plane has high crystallinity (half-value width d1 is narrow), and the sintered (220) plane has high crystallinity (half). The value width d2 is narrow). It is considered that when the metal element constituting the negative electrode current collector 32 is crystal-grown, the average crystallite size is increased and the X-ray diffraction conditions are changed.

X線回折における(200)面における半値幅d1と(220)面における半値幅d2とが上記の関係を満たすと、リチウム二次電池100の体積膨張が抑制される。この原因は明確ではないが、結晶粒子の平均結晶子サイズに加えて、結晶の配向状態が特定の状態になることで反応場が安定化し、電解液の分解やデンドライトが抑制されるためと考えられる。   When the full width at half maximum d1 in the (200) plane and the full width at half maximum d2 in the (220) plane satisfy the above relationship in X-ray diffraction, volume expansion of the lithium secondary battery 100 is suppressed. The reason for this is not clear, but it is thought that in addition to the average crystallite size of the crystal grains, the crystal orientation state becomes a specific state, which stabilizes the reaction field and suppresses electrolyte decomposition and dendrite. It is done.

負極集電体32の結晶粒子の大きさは1.5μm以上2.5μm以下であることが好ましく、1.5μm以上1.7μm以下であることより好ましい。結晶粒子の大きさが当該範囲内にあるとリチウム二次電池100の体積膨張がより抑制される。   The size of the crystal particles of the negative electrode current collector 32 is preferably 1.5 μm or more and 2.5 μm or less, and more preferably 1.5 μm or more and 1.7 μm or less. When the size of the crystal particles is within the range, the volume expansion of the lithium secondary battery 100 is further suppressed.

結晶粒子の大きさは、走査型電子顕微鏡(SEM)等による観察において一つの粒子としてみなせる粒子の大きさであり、SEMで撮像した5000倍又は10000倍の平面画像から算出する。具体的には、画像の視野内で任意に選択した10個の結晶粒子の長軸長さ及び短軸長さを測定し、その平均値を求める。測定した結晶粒子の短軸長さ及び長軸長さを平均したものが、結晶粒子の大きさに対応する。   The size of the crystal particle is a size of a particle that can be regarded as one particle in observation with a scanning electron microscope (SEM) or the like, and is calculated from a 5000 × or 10,000 × plane image captured by the SEM. Specifically, the major axis length and minor axis length of 10 crystal grains arbitrarily selected within the field of view of the image are measured, and the average value is obtained. The average of the measured minor axis length and major axis length corresponds to the size of the crystal grain.

負極集電体32の結晶粒子の形状は柱状であることが好ましい。結晶粒子の形状が柱状であるとは、SEMで撮像した5000倍又は10000倍の断面画像において、任意に選択した10個の結晶粒子の平均長軸長さを平均短軸長さで割ったアスペクト比が、1.4以上であることを意味する。結晶粒子を構成する結晶子の配向状態が変化すると、金属リチウムの析出、溶解の反応状態が変化する。その結果、リチウム二次電池100の体積膨張がより抑制される。   The shape of the crystal particles of the negative electrode current collector 32 is preferably columnar. The shape of the crystal grains is columnar when the average major axis length of 10 arbitrarily selected crystal grains is divided by the average minor axis length in a 5000 times or 10,000 times cross-sectional image imaged by SEM. It means that the ratio is 1.4 or more. When the orientation state of the crystallites constituting the crystal particles changes, the reaction state of precipitation and dissolution of metallic lithium changes. As a result, the volume expansion of the lithium secondary battery 100 is further suppressed.

<正極>
正極20は、正極集電体22と、その一面に設けられた正極活物質層24とを有する(図1参照)。正極集電体22は、導電性を有する材料により構成されていればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
<Positive electrode>
The positive electrode 20 includes a positive electrode current collector 22 and a positive electrode active material layer 24 provided on one surface thereof (see FIG. 1). The positive electrode current collector 22 only needs to be made of a conductive material. For example, a thin metal plate of aluminum, copper, or nickel foil can be used.

正極活物質層24に用いる正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとリチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を用いることができる。 The positive electrode active material used for the positive electrode active material layer 24 includes insertion and extraction of lithium ions, desorption and insertion (intercalation) of lithium ions, or counter anions (for example, PF 6 ) of lithium ions and lithium ions. An electrode active material capable of reversibly proceeding doping and dedoping can be used.

例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMna2(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられる。 For example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), lithium manganese spinel (LiMn 2 O 4), and the general formula: LiNi x Co y Mn z M a2 ( x + y + z + a = 1, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ a <1, M is one or more selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr Element)), lithium vanadium compound (LiV 2 O 5 ), olivine-type LiMPO 4 (where M is selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) are shown one or more elements or VO), lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1 1) a composite metal oxide such as polyacetylene, polyaniline, polypyrrole, polythiophene, and the like polyacene.

また正極活物質層24は、導電材を有していてもよい。導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。正極活物質のみで十分な導電性を確保できる場合は、正極活物質層24は導電材を含んでいなくてもよい。   The positive electrode active material layer 24 may have a conductive material. Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done. In the case where sufficient conductivity can be ensured with only the positive electrode active material, the positive electrode active material layer 24 may not include a conductive material.

また正極活物質層24は、バインダーを含む。バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。   The positive electrode active material layer 24 includes a binder. A well-known thing can be used for a binder. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).

また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。   In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-) TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber The containing rubbers (VDF-CTFE-based fluorine rubber) vinylidene fluoride-based fluorine rubbers such as may be used.

<セパレータ>
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
<Separator>
The separator 10 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene, or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester, and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.

(電解液)
電解液は、発電部40内に含浸される。電解液には、リチウム塩等を含む電解質溶液(電解質水溶液、有機溶媒を使用する非水系電解質溶液) を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いため、充電時の耐用電圧が低く制限される。そのため、有機溶媒を使用する電解質溶液(非水系電解質溶液)であることが好ましい。
(Electrolyte)
The electrolytic solution is impregnated in the power generation unit 40. As the electrolytic solution, an electrolyte solution containing a lithium salt or the like (electrolyte aqueous solution, non-aqueous electrolyte solution using an organic solvent) can be used. However, since the electrolytic aqueous solution has a low decomposition voltage electrochemically, the withstand voltage during charging is limited to be low. For this reason, an electrolyte solution (nonaqueous electrolyte solution) using an organic solvent is preferable.

非水系電解質溶液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。   In the non-aqueous electrolyte solution, an electrolyte is dissolved in a non-aqueous solvent, and a cyclic carbonate and a chain carbonate may be contained as a non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。   As cyclic carbonate, what can solvate electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   The chain carbonate can reduce the viscosity of the cyclic carbonate. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.

また非水系電解質溶液としてイオン液体を用いてもよい。イオン液体は、カチオンとアニオンの組合せによって得られる100℃未満でも液体状の塩である。イオン液体は、イオンのみからなる液体であるため、静電的な相互作用が強く、不揮発性、不燃性と言う特徴を有する。電解液としてイオン液体を用いたリチウム二次電池100は、安全性に優れる。   Moreover, you may use an ionic liquid as a non-aqueous electrolyte solution. An ionic liquid is a salt which is liquid even below 100 ° C. obtained by a combination of a cation and an anion. Since the ionic liquid is a liquid composed only of ions, the ionic liquid has a strong electrostatic interaction and is characterized by non-volatility and nonflammability. The lithium secondary battery 100 using an ionic liquid as an electrolytic solution is excellent in safety.

(外装体)
外装体50は、その内部に発電部40及び電解液を密封する。外装体50は、電解液の外部への漏出や、外部からのリチウム二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。
(Exterior body)
The exterior body 50 seals the power generation unit 40 and the electrolytic solution therein. The outer package 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium secondary battery 100 from the outside.

例えば、外装体50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。   For example, as the outer package 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point, such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). Etc. are preferred.

「リード」
リード60、62は、アルミ等の導電材料から形成されている。リード60、62を正極20、負極30にそれぞれ溶接し、正極20と負極30との間にセパレータ10を挟んだ状態で、電解液と共に外装体50内に挿入し、外装体50の入り口をシールする。
"Lead"
The leads 60 and 62 are made of a conductive material such as aluminum. The leads 60 and 62 are welded to the positive electrode 20 and the negative electrode 30, respectively, and the separator 10 is sandwiched between the positive electrode 20 and the negative electrode 30, and inserted into the outer package 50 together with the electrolyte, and the entrance of the outer package 50 is sealed. To do.

上述のように、本実施形態にかかるリチウム二次電池は、負極集電体32の平均結晶子サイズが所定の範囲内である。そのため、反応場が安定化し、電解液の分解やデンドライトが抑制され、リチウム二次電池100の体積膨張が抑制される。   As described above, in the lithium secondary battery according to the present embodiment, the average crystallite size of the negative electrode current collector 32 is within a predetermined range. Therefore, the reaction field is stabilized, decomposition of the electrolytic solution and dendrite are suppressed, and volume expansion of the lithium secondary battery 100 is suppressed.

[リチウム二次電池の製造方法]
本実施形態にかかるリチウム二次電池100の製造方法について説明する。まず正極20及び負極30を作製する。
[Method for producing lithium secondary battery]
A method for manufacturing the lithium secondary battery 100 according to the present embodiment will be described. First, the positive electrode 20 and the negative electrode 30 are produced.

正極20は、正極集電体22上に正極活物質を含む塗料を塗布、乾燥して作製する。正極活物質を含む塗料は、正極活物質、バインダー及び溶媒を含み、必要に応じて導電材が混合されている。溶媒には、例えば、水、N−メチル−2−ピロリドン等を用いることができる。   The positive electrode 20 is produced by applying a paint containing a positive electrode active material on the positive electrode current collector 22 and drying it. The coating material containing a positive electrode active material contains a positive electrode active material, a binder, and a solvent, and a conductive material is mixed as necessary. As the solvent, for example, water, N-methyl-2-pyrrolidone, or the like can be used.

塗料における正極活物質、導電材、バインダーの構成比率は、質量比で80wt%〜98wt%:0.1wt%〜10wt%:0.1wt%〜10wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。   The composition ratio of the positive electrode active material, the conductive material, and the binder in the paint is preferably 80 wt% to 98 wt%: 0.1 wt% to 10 wt%: 0.1 wt% to 10 wt% in mass ratio. These mass ratios are adjusted so as to be 100 wt% as a whole. The mixing method of the components constituting the paint is not particularly limited, and the mixing order is not particularly limited.

そして作製した塗料を、正極集電体22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。   Then, the prepared paint is applied to the positive electrode current collector 22. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

続いて、正極集電体22に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22を、80℃〜150℃の雰囲気下で乾燥させればよい。そして、正極集電体22上に正極活物質層24が形成された正極20が得られる。   Subsequently, the solvent in the paint applied to the positive electrode current collector 22 is removed. The removal method is not particularly limited. For example, the positive electrode current collector 22 to which the paint is applied may be dried in an atmosphere of 80 ° C. to 150 ° C. And the positive electrode 20 in which the positive electrode active material layer 24 was formed on the positive electrode collector 22 is obtained.

負極30は、負極集電体32として用いる金属箔を準備する。準備した金属箔を焼結して金属膜を構成する結晶粒子の平均結晶子サイズを調整する。結晶粒子の平均結晶子サイズと焼結温度とはある程度の相関があり、焼結温度が高くなると平均結晶子サイズは大きくなる。そのため、厳密な検量線が準備できればその検量線に従って金属箔を焼結することで、所定の負極集電体32が得られる。平均結晶子サイズを380Å以上4000Å以下とするためには、焼結温度は200℃から350℃程度とすることが好ましい。   For the negative electrode 30, a metal foil used as the negative electrode current collector 32 is prepared. The prepared metal foil is sintered to adjust the average crystallite size of the crystal particles constituting the metal film. There is a certain degree of correlation between the average crystallite size of the crystal grains and the sintering temperature, and the average crystallite size increases as the sintering temperature increases. Therefore, if a strict calibration curve can be prepared, the predetermined negative electrode current collector 32 can be obtained by sintering the metal foil according to the calibration curve. In order to set the average crystallite size to 380 to 4000 mm, the sintering temperature is preferably about 200 ° C. to 350 ° C.

一方で、焼結炉内は温度分布や様々な要因により平均結晶子サイズは同条件で焼結しても変動することが多い。380Å以上4000Å以下という領域内で、平均結晶子サイズを厳密に制御することは難しい。そこで、焼結後にX線回折により平均結晶子サイズを測定し、特定の範囲内に収まっているものを負極集電体32として利用する。   On the other hand, the average crystallite size in the sintering furnace often fluctuates even when sintered under the same conditions due to temperature distribution and various factors. It is difficult to strictly control the average crystallite size within the region of 380 to 4000 mm. Therefore, the average crystallite size is measured by X-ray diffraction after sintering, and a material that falls within a specific range is used as the negative electrode current collector 32.

金属膜を焼結する際は、還元雰囲気または真空中で焼結することが好ましい。例えば、銅等は酸化しやすい。還元雰囲気または真空中で焼結することで、負極集電体32内に酸化銅が形成されることを抑制し、導電性が不均一化することをより抑制できる。   When the metal film is sintered, it is preferable to sinter in a reducing atmosphere or vacuum. For example, copper and the like are easily oxidized. By sintering in a reducing atmosphere or in vacuum, it is possible to suppress the formation of copper oxide in the negative electrode current collector 32 and to further suppress the non-uniform conductivity.

金属リチウム以外のSi、Sn等を負極活物質層34として用いる場合は、負極活物質、バインダー及び溶媒を含む溶媒を、負極集電体32に塗布し、溶媒を除去する。溶媒を除去する際に、負極集電体32を焼結してもよい。   When Si, Sn, or the like other than metallic lithium is used as the negative electrode active material layer 34, a solvent containing a negative electrode active material, a binder, and a solvent is applied to the negative electrode current collector 32, and the solvent is removed. When removing the solvent, the negative electrode current collector 32 may be sintered.

次いで作製した正極20と負極30とを、セパレータ10を介して積層し、電解液と共に、外装体50内に封入する。例えば、正極20と、負極30と、セパレータ10とを積層し、予め作製した袋状の外装体50に、発電部40を入れる。電解液は、外装体50内に注入してもよいし、発電部40内に含浸させてもよい。   Next, the produced positive electrode 20 and negative electrode 30 are stacked with the separator 10 interposed between them, and sealed in the outer package 50 together with the electrolytic solution. For example, the positive electrode 20, the negative electrode 30, and the separator 10 are stacked, and the power generation unit 40 is placed in a bag-shaped exterior body 50 that is manufactured in advance. The electrolytic solution may be injected into the outer package 50 or may be impregnated in the power generation unit 40.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。   Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible.

(実施例1)
まず正極を準備した。正極活物質としてNCA(組成式:Li1.0Ni0.78Co0.19Al0.03)、導電材としてカーボンブラック、バインダーとしてPVDFを準備した。これらを溶媒中で混合し、塗料を作製し、アルミ箔からなる正極集電体上に塗布した。正極活物質と導電材とバインダーの質量比は、95:2:3とした。塗布後に、溶媒は除去した。
Example 1
First, a positive electrode was prepared. NCA (composition formula: Li 1.0 Ni 0.78 Co 0.19 Al 0.03 O 2 ) was prepared as the positive electrode active material, carbon black as the conductive material, and PVDF as the binder. These were mixed in a solvent to prepare a paint, and applied onto a positive electrode current collector made of aluminum foil. The mass ratio of the positive electrode active material, the conductive material, and the binder was 95: 2: 3. After application, the solvent was removed.

次いで負極集電体を準備した。銅箔を設定温度200℃で焼結し、X線回折により平均結晶子サイズを求めた。そして、平均結晶子サイズが380Åのものを負極集電体として用いた。   Next, a negative electrode current collector was prepared. The copper foil was sintered at a set temperature of 200 ° C., and the average crystallite size was determined by X-ray diffraction. Then, an average crystallite size of 380 mm was used as the negative electrode current collector.

そして作製された正極と負極とをセパレータを介して積層し発電部を作製した。正極と負極の積層数は1層とした。セパレータには、ポリエチレンとポリプロピレンの積層体を用いた。得られた発電部を非水電解液に含浸させてから外装体内に封入した。電解液にはN−メチル−N−プロピルピロリジニウムビス(フルオロスルホニル)イミド(P13−FSI)を用い、1mol/Lの濃度となるようにリチウムビス(トリフルオロメタンスルホニル)イミド(Li−TFSI)を溶解させたものを用いた。そして得られたリチウム二次電池の充放電を行い、充電時のリチウム二次電池の放電時のリチウム二次電池に対する膨張率を求めた。膨張率は、「充電時と放電時とのリチウム二次電池の体積差」/「放電時のリチウム二次電池の体積」×100で求めた。 And the produced positive electrode and the negative electrode were laminated | stacked through the separator, and the electric power generation part was produced. The number of stacked positive and negative electrodes was one. For the separator, a laminate of polyethylene and polypropylene was used. The obtained power generation part was impregnated with a nonaqueous electrolytic solution and then enclosed in the exterior body. N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide (P 13 -FSI) is used as the electrolyte, and lithium bis (trifluoromethanesulfonyl) imide (Li-TFSI) is used so as to have a concentration of 1 mol / L. ) Was used. And the obtained lithium secondary battery was charged / discharged, and the expansion coefficient for the lithium secondary battery during discharge of the lithium secondary battery during charge was determined. The expansion coefficient was determined by “volume difference of lithium secondary battery during charging and discharging” / “volume of lithium secondary battery during discharging” × 100.

(実施例2〜5)
実施例2は、平均結晶子サイズが400Åのものを負極集電体として選択した点が実施例1と異なり、実施例3は、平均結晶子サイズが500Åのものを負極集電体として選択した点が実施例1と異なり、実施例4は、平均結晶子サイズが600Åのものを負極集電体として選択した点が実施例1と異なり、実施例5は、平均結晶子サイズが800Åのものを負極集電体として選択した点が実施例1と異なる。その他の条件は、実施例1と同様としてサイクル回数を求めた。
(Examples 2 to 5)
Example 2 was different from Example 1 in that an average crystallite size of 400 Å was selected as the negative electrode current collector, and Example 3 selected an average crystallite size of 500 と し て as the negative electrode current collector. Unlike Example 1, Example 4 differs from Example 1 in that an average crystallite size of 600 mm is selected as the negative electrode current collector, and Example 5 has an average crystallite size of 800 mm. Example 1 is different from Example 1 in that is selected as the negative electrode current collector. The other conditions were the same as in Example 1, and the number of cycles was determined.

(実施例6〜9)
実施例6〜9は、銅箔を設定温度350℃で焼結した点が実施例1と異なる。そして実施例6では平均結晶子サイズが1000Åのものを負極集電体として選択し、実施例7では平均結晶子サイズが2000Åのものを負極集電体として選択し、実施例8では平均結晶子サイズが3000Åのものを負極集電体として選択し、実施例9では平均結晶子サイズが4000Åのものを負極集電体として選択した。その他の条件は、実施例1と同様にして膨張率を求めた。
(Examples 6 to 9)
Examples 6 to 9 differ from Example 1 in that the copper foil was sintered at a set temperature of 350 ° C. In Example 6, an average crystallite size of 1000 mm is selected as the negative electrode current collector, in Example 7, an average crystallite size of 2000 mm is selected as the negative electrode current collector, and in Example 8, the average crystallite size is selected. Those having a size of 3000 mm were selected as the negative electrode current collector. In Example 9, those having an average crystallite size of 4000 mm were selected as the negative electrode current collector. The other conditions were the same as in Example 1 to obtain the expansion coefficient.

(比較例1)
比較例1は、銅箔を未焼結で用いた点が実施例1と異なる。比較例1は平均結晶子サイズが300Åのものを負極集電体として選択した。その他の条件は、実施例1と同様にして膨張率を求めた。
(Comparative Example 1)
Comparative Example 1 is different from Example 1 in that the copper foil was used unsintered. In Comparative Example 1, one having an average crystallite size of 300 mm was selected as the negative electrode current collector. The other conditions were the same as in Example 1 to obtain the expansion coefficient.

(比較例2、3)
比較例2,3は、銅箔を設定温度100℃で焼結した点が実施例1と異なる。そして比較例2では平均結晶子サイズが340Åのものを負極集電体として選択し、比較例3では平均結晶子サイズが360Åのものを負極集電体として選択した。その他の条件は、実施例1と同様にして膨張率を求めた。
(Comparative Examples 2 and 3)
Comparative Examples 2 and 3 differ from Example 1 in that the copper foil was sintered at a set temperature of 100 ° C. In Comparative Example 2, an average crystallite size of 340 mm was selected as the negative electrode current collector, and in Comparative Example 3, an average crystallite size of 360 mm was selected as the negative electrode current collector. The other conditions were the same as in Example 1 to obtain the expansion coefficient.

(比較例4〜6)
比較例4〜6は、銅箔を設定温度350℃で焼結した点が実施例1と異なる。そして比較例4では平均結晶子サイズが4200Åのものを負極集電体として選択し、比較例5では平均結晶子サイズが4500Åのものを負極集電体として選択し、比較例6では平均結晶子サイズが5000Åのものを負極集電体として用いた。その他の条件は、実施例1と同様にして膨張率を求めた。
(Comparative Examples 4-6)
Comparative Examples 4 to 6 differ from Example 1 in that the copper foil was sintered at a set temperature of 350 ° C. In Comparative Example 4, an average crystallite size of 4200 mm is selected as the negative electrode current collector, in Comparative Example 5, an average crystallite size of 4500 mm is selected as the negative electrode current collector, and in Comparative Example 6, the average crystallite size is selected. A negative electrode current collector having a size of 5000 mm was used. The other conditions were the same as in Example 1 to obtain the expansion coefficient.

Figure 2019140056
Figure 2019140056

表1に示すように、平均結晶子サイズが380Å以上4000Å以下の範囲内において、リチウム二次電池の膨張率が抑制された。   As shown in Table 1, the expansion rate of the lithium secondary battery was suppressed when the average crystallite size was in the range of 380 to 4000 mm.

(実施例10〜20)
次いで、平均結晶子サイズを800Åに固定して、X線回折測定における(200)面における半値幅d1と(220)面における半値幅d2との関係性を変更した。これらの関係性は、焼結条件により変化すると考えられるが明確な制御因子が不明なため、設定温度200℃で焼結後の負極集電体の表面をX線回折により測定し、半値幅の関係が以下の実施例の関係を満たすものを抽出した。その他の条件は、実施例5と同様にして膨張率を求めた。
(Examples 10 to 20)
Next, the average crystallite size was fixed at 800 mm, and the relationship between the half-value width d1 on the (200) plane and the half-value width d2 on the (220) plane in X-ray diffraction measurement was changed. These relationships are thought to change depending on the sintering conditions, but since the clear control factor is unknown, the surface of the negative electrode current collector after sintering at a set temperature of 200 ° C. is measured by X-ray diffraction, Those whose relationships satisfy the relationships of the following examples were extracted. The other conditions were the same as in Example 5 to obtain the expansion coefficient.

Figure 2019140056
Figure 2019140056

(実施例21〜29)
次いで、平均結晶子サイズを800Åに固定して、結晶粒子サイズを変更した。結晶粒子サイズは、焼結時間および焼結炉内の真空度を変えて制御した。その他の条件は、実施例5と同様にして膨張率を求めた。
(Examples 21 to 29)
Subsequently, the average crystallite size was fixed at 800 mm, and the crystal grain size was changed. The crystal grain size was controlled by changing the sintering time and the degree of vacuum in the sintering furnace. The other conditions were the same as in Example 5 to obtain the expansion coefficient.

Figure 2019140056
Figure 2019140056

10 セパレータ
20 正極
22 正極集電体
24 正極活物質層
30 負極
32 負極集電体
34 負極活物質層
40 発電部
50 外装体
60,62 リード
100 リチウム二次電池
DESCRIPTION OF SYMBOLS 10 Separator 20 Positive electrode 22 Positive electrode collector 24 Positive electrode active material layer 30 Negative electrode 32 Negative electrode collector 34 Negative electrode active material layer 40 Power generation part 50 Exterior body 60, 62 Lead 100 Lithium secondary battery

Claims (6)

銅、ニッケル、ステンレス、チタンからなる群から選択される少なくとも一つの結晶粒子を有し、
前記結晶粒子の平均結晶子サイズが380Å以上4000Å以下である、負極集電体。
Having at least one crystal particle selected from the group consisting of copper, nickel, stainless steel, titanium,
A negative electrode current collector, wherein an average crystallite size of the crystal particles is 380 to 4000 mm.
X線回折測定における(200)面における半値幅d1と、(220)面における半値幅d2と、が1.1≦d2/d1≦1.4の関係を満たす、請求項1に記載の負極集電体。   2. The negative electrode collector according to claim 1, wherein a half-value width d1 in the (200) plane and a half-value width d2 in the (220) plane satisfy a relationship of 1.1 ≦ d2 / d1 ≦ 1.4 in the X-ray diffraction measurement. Electric body. 前記結晶粒子の大きさが1.5μm以上2.5μm以下である、請求項1又は2に記載の負極集電体。   The negative electrode current collector according to claim 1 or 2, wherein a size of the crystal particles is 1.5 µm or more and 2.5 µm or less. 請求項1〜3のいずれか一項に記載の負極集電体を備えた、負極。   A negative electrode comprising the negative electrode current collector according to claim 1. 前記負極集電体の少なくとも一面に負極活物質層として金属リチウムを備える、請求項4に記載の負極。   The negative electrode according to claim 4, comprising metallic lithium as a negative electrode active material layer on at least one surface of the negative electrode current collector. 請求項4又は5に記載の負極と、
前記負極と対向する正極と、
前記負極と前記正極との間に位置するセパレータと、を備えるリチウム二次電池。
The negative electrode according to claim 4 or 5,
A positive electrode facing the negative electrode;
A lithium secondary battery comprising: a separator positioned between the negative electrode and the positive electrode.
JP2018024836A 2018-02-15 2018-02-15 Negative electrode current collector, negative electrode and lithium secondary battery Active JP6489252B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024836A JP6489252B1 (en) 2018-02-15 2018-02-15 Negative electrode current collector, negative electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024836A JP6489252B1 (en) 2018-02-15 2018-02-15 Negative electrode current collector, negative electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP6489252B1 JP6489252B1 (en) 2019-03-27
JP2019140056A true JP2019140056A (en) 2019-08-22

Family

ID=65895219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024836A Active JP6489252B1 (en) 2018-02-15 2018-02-15 Negative electrode current collector, negative electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6489252B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200318A1 (en) * 2020-03-30 2021-10-07 住友化学株式会社 Metal particles and lithium ion secondary battery negative electrode active substance

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057688A1 (en) * 2007-10-31 2009-05-07 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and process for producing the electrolytic copper foil
JP2010103006A (en) * 2008-10-24 2010-05-06 Sony Corp Anode collector, anode, and secondary battery
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP2012241232A (en) * 2011-05-19 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper alloy foil and current collector for secondary battery using the same
WO2013018473A1 (en) * 2011-07-29 2013-02-07 古河電気工業株式会社 Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
WO2013176115A1 (en) * 2012-05-22 2013-11-28 三井金属鉱業株式会社 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
JP2014009364A (en) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The Electrolytic copper foil, negative pole electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014115681A1 (en) * 2013-01-24 2014-07-31 古河電気工業株式会社 Electrolytic copper foil and method for producing same
WO2014119355A1 (en) * 2013-01-29 2014-08-07 古河電気工業株式会社 Electrolytic copper foil and process for producing same
JP2014175071A (en) * 2013-03-06 2014-09-22 Sony Corp Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electric power storage system, electric motor-driven tool, and electronic device
JP2016223018A (en) * 2016-08-23 2016-12-28 三井金属鉱業株式会社 Surface treated copper foil, negative electrode power collection body, and negative material of nonaqueous secondary battery
JP2017517637A (en) * 2014-03-20 2017-06-29 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper stay, current collector including the same, negative electrode and lithium battery
JP2017519112A (en) * 2014-03-20 2017-07-13 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper stay, current collector including the same, negative electrode and lithium battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057688A1 (en) * 2007-10-31 2009-05-07 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and process for producing the electrolytic copper foil
JP2010103006A (en) * 2008-10-24 2010-05-06 Sony Corp Anode collector, anode, and secondary battery
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP2012241232A (en) * 2011-05-19 2012-12-10 Jx Nippon Mining & Metals Corp Rolled copper alloy foil and current collector for secondary battery using the same
WO2013018473A1 (en) * 2011-07-29 2013-02-07 古河電気工業株式会社 Metal foil with coating layer and method for producing same, secondary cell electrode and method for producing same, and lithium ion secondary cell
WO2013176115A1 (en) * 2012-05-22 2013-11-28 三井金属鉱業株式会社 Copper foil, negative electrode current collector, and negative electrode material for non-aqueous secondary battery
JP2014009364A (en) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The Electrolytic copper foil, negative pole electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014115681A1 (en) * 2013-01-24 2014-07-31 古河電気工業株式会社 Electrolytic copper foil and method for producing same
WO2014119355A1 (en) * 2013-01-29 2014-08-07 古河電気工業株式会社 Electrolytic copper foil and process for producing same
JP2014175071A (en) * 2013-03-06 2014-09-22 Sony Corp Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electric power storage system, electric motor-driven tool, and electronic device
JP2017517637A (en) * 2014-03-20 2017-06-29 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper stay, current collector including the same, negative electrode and lithium battery
JP2017519112A (en) * 2014-03-20 2017-07-13 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. Electrolytic copper stay, current collector including the same, negative electrode and lithium battery
JP2016223018A (en) * 2016-08-23 2016-12-28 三井金属鉱業株式会社 Surface treated copper foil, negative electrode power collection body, and negative material of nonaqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200318A1 (en) * 2020-03-30 2021-10-07 住友化学株式会社 Metal particles and lithium ion secondary battery negative electrode active substance

Also Published As

Publication number Publication date
JP6489252B1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
US10903491B2 (en) Rechargeable lithium-ion battery chemistry with fast charge capability and high energy density
KR101739708B1 (en) Solid solution of transition metal oxide containing lithium and non-aqueous electrolyte secondary battery using the solid solution of transition metal oxide containing lithium in positive electrode
JP5761098B2 (en) Active material and lithium ion secondary battery using the same
JP4988169B2 (en) Lithium secondary battery
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JPWO2016129527A1 (en) Nonaqueous electrolyte secondary battery and positive electrode of nonaqueous electrolyte secondary battery
JP2019169376A (en) Positive electrode and lithium ion secondary battery
EP3657579B1 (en) Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP6558453B1 (en) Negative electrode current collector, negative electrode and lithium secondary battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
JP6981027B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2018170128A (en) Current collector for lithium secondary battery and lithium secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP2021096928A (en) Composite material, method for producing composite material, method for manufacturing electrode, positive electrode and lithium ion secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP6489252B1 (en) Negative electrode current collector, negative electrode and lithium secondary battery
JP6489251B1 (en) Negative electrode current collector, negative electrode and lithium secondary battery
JP6493582B1 (en) Negative electrode and lithium secondary battery
CN110959222A (en) Non-aqueous electrolyte secondary battery
JP6465229B1 (en) Negative electrode current collector, negative electrode and lithium secondary battery
JP2022077319A (en) Anode active material
JP2021096901A (en) Lithium ion secondary battery
JP6447652B2 (en) Current collector for lithium secondary battery and lithium secondary battery
JP2022149660A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180705

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R150 Certificate of patent or registration of utility model

Ref document number: 6489252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150