JP2019128263A - Measurement device, robot, and method for measurement - Google Patents

Measurement device, robot, and method for measurement Download PDF

Info

Publication number
JP2019128263A
JP2019128263A JP2018010241A JP2018010241A JP2019128263A JP 2019128263 A JP2019128263 A JP 2019128263A JP 2018010241 A JP2018010241 A JP 2018010241A JP 2018010241 A JP2018010241 A JP 2018010241A JP 2019128263 A JP2019128263 A JP 2019128263A
Authority
JP
Japan
Prior art keywords
rotating body
measurement
sensor
wall
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010241A
Other languages
Japanese (ja)
Other versions
JP7033937B2 (en
Inventor
弘明 長井
Hiroaki Nagai
弘明 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2018010241A priority Critical patent/JP7033937B2/en
Publication of JP2019128263A publication Critical patent/JP2019128263A/en
Application granted granted Critical
Publication of JP7033937B2 publication Critical patent/JP7033937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

To provide a measurement device, a robot, and a method for measurement that can stably and smoothly measure a plurality of parts continuously.SOLUTION: The measurement device includes: a rotational body (21), which can rotate on an arbitrary object; and a sensor (31) located in the position of the rotational body which moves by rotating, the sensor measuring the object on which the rotational body rotates. The robot (1) includes the measurement device and a mobile body (11), which moves by rotating on the rotational body. The rotational body, which is provided with the sensor in the position where the rotational body moves by rotating, is rolled on the surface of the measurement target object and the measurement target object is measured by the sensor.SELECTED DRAWING: Figure 1

Description

本発明は、測定装置、ロボット及び測定方法に関する。   The present invention relates to a measuring apparatus, a robot, and a measuring method.

循環流動床(CFB:Circulating Fluidized Bed)ボイラの火炉は、循環材の流動により内壁が摩耗及び減肉する。このため、このような火炉においては、作業員が定期的に肉厚を測定し、火炉が損傷しないよう検査を行っている。   In the furnace of a circulating fluidized bed (CFB) boiler, the inner wall is worn and thinned by the flow of the circulating material. For this reason, in such furnaces, workers regularly measure the wall thickness and inspect the furnace to prevent damage.

従来、構造物の天井又は壁などを検査対象として、遠隔操作できる飛行体により検査対象の近傍まで検査機器を移動させ、この検査機器を用いて検査対象を検査することが提案されている(例えば特許文献1を参照)。また、特許文献1には、飛行体に回転可能なプロテクトフレームを設け、プロテクトフレームを天井面又は壁面に接触させかつ転がしながら、飛行体を天井面又は壁面に沿って移動させることが示されている。   2. Description of the Related Art Conventionally, it has been proposed that an inspection device is moved to the vicinity of the inspection object by a remotely operated flying object with the ceiling or wall of the structure as an inspection object, and the inspection object is inspected using this inspection apparatus (for example, See Patent Document 1). Patent Document 1 shows that a flying protector is provided with a rotatable protection frame, and the flying object is moved along the ceiling surface or wall surface while the protection frame is in contact with the ceiling surface or wall surface and rolling. There is.

特開2016−026946号公報JP, 2006-026946, A

本発明者らは、飛行体に測定装置を搭載し、この測定装置で火炉の内壁の肉厚を測定することを検討した。しかしながら、肉厚の測定には火炉の内壁に測定装置の探触子を接触させる必要がある。一方、測定箇所を変える際には測定装置の探触子を内壁から離して飛行体を移動させる必要がある。このため、火炉の内壁の複数の測定箇所について、連続的に肉厚を測定する場合に、飛行体を用いた構成では、スムースで安定した測定が困難であると考えられた。   The present inventors considered mounting a measuring device on the flying object and measuring the wall thickness of the inner wall of the furnace with this measuring device. However, for measuring the wall thickness, it is necessary to bring the probe of the measuring device into contact with the inner wall of the furnace. On the other hand, when changing the measurement point, it is necessary to move the flying object by moving the probe of the measuring device away from the inner wall. For this reason, it has been considered that smooth and stable measurement is difficult with the configuration using the flying object when continuously measuring the thickness at a plurality of measurement locations on the inner wall of the furnace.

また、測定対象物に接触せずに測定を行う測定装置であったとしても、飛行体に測定装置を搭載した構成では、測定装置と測定対象物との距離を高精度で一定に保つことが難しく、これによりスムースで安定的な測定が難しいと考えられた。また、プロテクトフレームで飛行体と測定対象との間隔を一定に保った構成でも、飛行体の斜度を高い精度で一定に保つことが難しいため、スムースで安定的な測定が難しいと考えられた。   In addition, even if the measurement device performs measurement without contacting the measurement object, the configuration in which the measurement device is mounted on the flying object can keep the distance between the measurement device and the measurement object constant with high accuracy. It was considered difficult, which made smooth and stable measurement difficult. In addition, even with a configuration in which the distance between the flying object and the measurement object is kept constant with the protect frame, it is difficult to keep the flying object's slope constant with high accuracy. .

本発明は、複数箇所の測定を連続的に行う場合に、スムースにかつ安定的に測定を行うことのできる測定装置、ロボット及び測定方法を提供することを目的とする。   An object of the present invention is to provide a measuring apparatus, a robot, and a measuring method capable of performing measurement smoothly and stably when measuring a plurality of locations continuously.

本発明に係る測定装置は、
任意の物体上を転がり可能な回転体と、
前記回転体の回転移動する部位に設けられ、前記回転体が転がる物体の測定を行うセンサと、
を備える構成とした。
The measuring apparatus according to the present invention is
A rotating body that can roll on any object;
A sensor provided at a portion where the rotating body rotates, and measuring an object on which the rotating body rolls;
It was set as the structure provided with.

本発明に係るロボットは、
上記の測定装置と、
前記回転体を転がしながら移動する移動体と、
を備える構成とした。
The robot according to the present invention is
The above measuring device;
A moving body that moves while rolling the rotating body;
It was set as the structure provided with.

本発明に係る測定方法は、
回転移動する部位にセンサが設けられた回転体を測定対象物の面に転がし、前記センサによって前記測定対象物の測定を行う方法とした。
The measurement method according to the present invention includes:
In this method, a rotating body provided with a sensor at a portion to be rotationally moved is rolled on the surface of a measurement object, and the measurement of the measurement object is performed by the sensor.

本発明によれば、複数箇所の測定を連続的に行う場合に、スムースにかつ安定的に測定できるという効果が得られる。   ADVANTAGE OF THE INVENTION According to this invention, when performing measurement of several places continuously, the effect that it can measure smoothly and stably is acquired.

本発明のロボットの実施形態を示す斜視図である。It is a perspective view which shows embodiment of the robot of this invention. 測定対象物としての火炉の内壁を示す一部破断斜視図である。It is a partially broken perspective view which shows the inner wall of the furnace as a measuring object. 回転体の転がり面の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the rolling surface of a rotary body. 回転体の転がり面の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the rolling surface of a rotary body. 回転体の転がり面の第3変形例を示す断面図である。It is sectional drawing which shows the 3rd modification of the rolling surface of a rotary body. 本発明の測定装置の実施形態を示す図である。It is a figure which shows embodiment of the measuring apparatus of this invention.

以下、本発明の実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明のロボットの実施形態を示す斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view showing an embodiment of the robot of the present invention.

本実施形態のロボット1は、遠隔操作可能な無人の飛行体(所謂ドローン)11と、プロテクター機能を有する回転体21と、回転体21に設けられた複数のセンサ31及び複数の液剤保持体35とを備える。   The robot 1 of this embodiment includes an unmanned flying body (so-called drone) 11 that can be remotely operated, a rotating body 21 having a protector function, a plurality of sensors 31 provided on the rotating body 21, and a plurality of liquid agent holding bodies 35. And

飛行体11は、中央の本体部12と、ホバーリングを可能とする4組みのプロペラ14と、飛行体11がホバーリングした状態で水平方向の推進力を及ぼすことが可能な前進プロペラ16とを備える。本体部12は、遠隔操作信号を受信する受信機と、プロペラ14と前進プロペラ16とを制御する制御装置と、センサ31のセンサ信号を入力して保持又は無線送信する測定信号処理部とを備える。4組みのプロペラ14は、本体部12に支持フレームを介して支持され、モータにより回転駆動される。前進プロペラ16は、本体部12に支持フレームを介して支持されモータにより回転駆動される。飛行体11は、本発明に係る移動体の一例に相当する。前進プロペラ16は、本発明に係る押付作用部の一例に相当する。   The flying object 11 includes a main body 12 at the center, four sets of propellers 14 that enable hovering, and a forward propeller 16 that can exert a thrust in the horizontal direction when the flying object 11 is hovered. Prepare. The main body 12 includes a receiver that receives a remote operation signal, a control device that controls the propeller 14 and the forward propeller 16, and a measurement signal processing unit that inputs and holds or wirelessly transmits the sensor signal of the sensor 31. . The four sets of propellers 14 are supported on the main body 12 via a support frame and are driven to rotate by a motor. The forward propeller 16 is supported on the main body 12 via a support frame and is rotationally driven by a motor. The flying object 11 corresponds to an example of the moving object according to the present invention. The forward propeller 16 corresponds to an example of a pressing action unit according to the present invention.

回転体21は、所定の回転軸を中心に回転可能に支持されている。回転体21は回転軸方向に見て円形の外周部を有し、外周部を任意の物体の面に接触させてこの面上を転がることができる。2つの回転体21は、互いの回転軸が同軸上にあり、本体部12及び4組みのプロペラ14の一方の側と他方の側(4組みのプロペラ14を水平に配置した場合に水平方向の一方とその逆方)とにそれぞれ配置される。回転体21は、その回転軸に沿って見たときに、本体部12及び4組みのプロペラ14が内包される大きさを有する。   The rotating body 21 is rotatably supported around a predetermined rotation axis. The rotating body 21 has a circular outer peripheral portion when viewed in the direction of the rotation axis, and can be rolled on this surface by bringing the outer peripheral portion into contact with the surface of an arbitrary object. The two rotating bodies 21 have coaxial axes of rotation, and one side and the other side of the main body 12 and the four sets of propellers 14 (when the four sets of propellers 14 are arranged horizontally, One and vice versa). The rotating body 21 has a size in which the main body 12 and the four sets of propellers 14 are contained when viewed along the rotation axis.

前進プロペラ16は、4組みのプロペラ14が水平に配置されたときに、2つの回転体21にその回転軸と垂直でかつ水平な方向に推力を及ぼす向きに設けられている。すなわち、前進プロペラ16の回転軸方向は、プロペラ14の回転軸方向と回転体21の回転軸方向とが成す平面に交差する。   The forward propeller 16 is provided in a direction in which thrust is exerted on the two rotating bodies 21 in a direction perpendicular to the rotating shaft and in a horizontal direction when the four propellers 14 are arranged horizontally. That is, the rotation axis direction of the forward propeller 16 intersects the plane formed by the rotation axis direction of the propeller 14 and the rotation axis direction of the rotating body 21.

複数のセンサ31は、測定対象物に接触して測定対象物の肉厚を測定可能な超音波センサであり、回転体21の外周部に設けられている。複数のセンサ31は、回転体21の外周部に等間隔に設けられていてもよい。複数のセンサ31の信号線は、例えば回転体21の内面又は内部、回転接続用コネクタ、及び、回転体21の支持フレームを介して本体部12に接続されている。   The plurality of sensors 31 are ultrasonic sensors capable of measuring the thickness of the measurement object by contacting the measurement object, and are provided on the outer peripheral portion of the rotating body 21. The plurality of sensors 31 may be provided at equal intervals on the outer peripheral portion of the rotating body 21. The signal lines of the plurality of sensors 31 are connected to the main body 12 via, for example, the inner surface or the inside of the rotating body 21, a rotation connection connector, and a support frame of the rotating body 21.

液剤保持体35は、カプラント(接触媒質)を含んだスポンジなどであり、回転体21の外周部に設けられ、測定対象物に接触することで測定対象物にカプラントを注ぐことができる。カプラントとはセンサ31の探触子と測定対象物との間で超音波を伝播させやすくする液体である。   The liquid agent holding body 35 is a sponge or the like containing coplanar (contact medium), and is provided on the outer peripheral portion of the rotating body 21 so that the coplanar can be poured onto the measuring object by contacting the measuring object. The couplant is a liquid that facilitates the propagation of ultrasonic waves between the probe of the sensor 31 and the object to be measured.

図2は、測定対象物の一例である火炉の内壁を示す一部破断斜視図である。   FIG. 2 is a partially broken perspective view showing an inner wall of a furnace as an example of a measurement object.

火炉の内壁80は、鉛直方向に延びるパイプ82と隣接する一対のパイプ82の間を接続するフィン84とを含む。火炉は例えば30m程度の高さを有するものがあり、作業員が内壁80の各高さの肉厚を測定するには、足場を組んで測定箇所まで登る必要があるなど、煩雑な作業が必要となる。肉厚の測定は、主に内壁80のパイプ82の部分について行われ、内壁80の肉厚の測定は、水平方向の各位置及び各高さで行うことが要求される。   The inner wall 80 of the furnace includes a vertically extending pipe 82 and a fin 84 connecting between a pair of adjacent pipes 82. Some furnaces have a height of, for example, about 30 m, and it is necessary for workers to measure the wall thickness of each height of the inner wall 80, which requires complicated work such as building a scaffold and climbing to the measurement location. It becomes. The measurement of the wall thickness is performed mainly on the portion of the pipe 82 of the inner wall 80, and the wall thickness measurement of the inner wall 80 is required to be performed at each position in the horizontal direction and at each height.

<ロボットを用いた測定方法>
本実施形態のロボット1を用いて内壁80の肉厚を測定するには、先ず、飛行体11を内壁80の近傍でホバーリングさせ、かつ、前進プロペラ16を駆動して、2つの回転体21の外周部を内壁80のパイプ82の部分に押し付ける。
<Measurement method using a robot>
In order to measure the wall thickness of the inner wall 80 using the robot 1 of the present embodiment, first, the flying object 11 is hovered in the vicinity of the inner wall 80 and the forward propeller 16 is driven to drive the two rotating bodies 21. Is pressed against the pipe 82 portion of the inner wall 80.

そして、前進プロペラ16の駆動を継続しつつ、ホバーリング作用を及ぼすプロペラ14の駆動の強弱を変化させ、飛行体11を内壁80に沿って昇降させる。これにより、回転体21はその外周部を内壁80に接触させつつ内壁80上を転がって昇降する。このとき、複数のセンサ31が順々に内壁80に接触し、同一のパイプ82について所定間隔ごとに各高さの肉厚を測定する。   Then, while continuing to drive the forward propeller 16, the driving strength of the propeller 14 that exerts a hovering action is changed, and the flying object 11 is moved up and down along the inner wall 80. Thus, the rotating body 21 rolls up and down on the inner wall 80 while bringing the outer peripheral portion thereof into contact with the inner wall 80. At this time, the plurality of sensors 31 sequentially contact the inner wall 80 and measure the thickness of each height of the same pipe 82 at predetermined intervals.

なお、回転体21の回転量を検出するエンコーダを設け、エンコーダの出力(高さ位置の情報)と複数のセンサ31の出力(肉厚の情報)とを対応づける処理を行うようにしてもよい。これにより、連続的に得られる肉厚の情報の各々がどの高さの情報であるのか識別することが可能となる。また、飛行体11に、高度計、レーザ変位計、加速度センサを設け、測定時の高さ位置の情報及び水平方向の位置の情報と、肉厚の情報とを対応づける処理を行うようにしてもよい。これらにより、連続的に得られる肉厚の情報の各々が、内壁80のどの位置のものであるのか識別することが可能となる。   An encoder that detects the amount of rotation of the rotating body 21 may be provided, and processing for associating the outputs (height position information) of the encoders with the outputs (thickness information) of the plurality of sensors 31 may be performed. . This makes it possible to identify which height information each piece of continuously obtained thickness information is. Further, the flying object 11 is provided with an altimeter, a laser displacement meter, and an acceleration sensor so as to perform processing for associating height position information and horizontal position information during measurement with thickness information. Good. Accordingly, it is possible to identify which position on the inner wall 80 each piece of thickness information obtained continuously.

このような昇降方向の測定処理を、飛行体11の水平方向の位置を変えて繰り返し行うことで、内壁80の水平方向の各位置、各高さについてパイプ82の肉厚の情報を得ることができる。   By repeatedly performing the measurement process in the ascending / descending direction while changing the position of the flying body 11 in the horizontal direction, it is possible to obtain information on the thickness of the pipe 82 for each position and height in the horizontal direction of the inner wall 80. it can.

以上のように、本実施形態のロボット1によれば、飛行体11を測定対象物である火炉の内壁80に沿って昇降させることで、回転体21が内壁80の面上を転がって昇降する。さらに、複数のセンサ31が回転体21の外周に設けられているので、回転体21が測定対象物の面上を転がることで複数のセンサ31が順次測定対象物に接触していく。そして、センサ31が測定対象物に接触したときの測定信号を収集することで、内壁80の鉛直方向の複数の箇所の肉厚の測定結果が得られる。したがって、内壁80の複数の箇所で連続的に肉厚を測定する場合に、スムースにかつ安定的な測定を実現できる。   As described above, according to the robot 1 of the present embodiment, the rotating body 21 rolls up and down on the surface of the inner wall 80 by moving the flying body 11 up and down along the inner wall 80 of the furnace as the measurement object. . Furthermore, since the plurality of sensors 31 are provided on the outer periphery of the rotating body 21, the plurality of sensors 31 sequentially contact the measuring object as the rotating body 21 rolls on the surface of the measuring object. And the measurement result of the thickness of the several location of the perpendicular direction of the inner wall 80 is acquired by collecting the measurement signal when the sensor 31 contacts a measuring object. Therefore, in the case where the wall thickness is continuously measured at a plurality of locations on the inner wall 80, smooth and stable measurement can be realized.

また、本実施形態のロボット1によれば、回転体21の外周部を内壁80に押し付ける前進プロペラ16が設けられている。これにより、回転体21を測定対象物の面上に安定的に転がすことができ、よりスムースにかつより安定的に測定対象物の測定を行うことができる。また、飛行体11は、ホバーリング作用を及ぼす4組みのプロペラ14に加えて、前進プロペラ16を備えるので、回転体21に所定の押付力を及ぼしたまま、飛行体11を壁面に沿って昇降させる運転操作が容易になる。   Further, according to the robot 1 of the present embodiment, the forward propeller 16 that presses the outer peripheral portion of the rotating body 21 against the inner wall 80 is provided. Thereby, the rotating body 21 can be stably rolled on the surface of the measurement object, and the measurement object can be measured more smoothly and more stably. In addition, the flying object 11 includes the forward propeller 16 in addition to the four sets of propellers 14 that exert a hovering action, so that the flying object 11 is moved up and down along the wall surface while applying a predetermined pressing force to the rotating body 21. Driving operation is easy.

<変形例>
続いて、回転体の転がり面の変形例について説明する。図3は、回転体の転がり面の第1変形例を示す断面図である。
<Modification>
Then, the modification of the rolling surface of a rotary body is demonstrated. FIG. 3 is a cross-sectional view showing a first modified example of the rolling surface of the rotating body.

第1変形例の回転体21は、その外周部に、内壁80のフィン84の部分に嵌る転がり面S1を有する。さらに、第1変形例の回転体21には、外周縁部の軸方向の両側に、探触方向を軸方向に向けた複数のセンサ31が設けられている。なお、センサ31は、回転体21の軸方向の片方のみに設けられていてもよい。ここで、軸方向とは、回転体21の回転軸方向を意味する。   The rotating body 21 of the first modified example has a rolling surface S1 fitted to the portion of the fin 84 of the inner wall 80 at the outer peripheral portion thereof. Furthermore, the rotating body 21 of the first modification is provided with a plurality of sensors 31 whose probe directions are directed in the axial direction on both sides of the outer peripheral edge in the axial direction. The sensor 31 may be provided only on one side of the rotating body 21 in the axial direction. Here, the axial direction means the rotation axis direction of the rotating body 21.

このような構成によれば、飛行体11を昇降する際に、回転体21を内壁80のフィン84に沿わせて、回転体21を転がすことができ、回転体21の位置が安定する。さらに、回転体21の縁部の側方にセンサ31が設けられているので、センサ31の探触方向がパイプ82の方を向き、これによりパイプ82の肉厚を測定することができる。   According to such a configuration, when the flying body 11 is moved up and down, the rotating body 21 can be rolled along the fins 84 of the inner wall 80, and the position of the rotating body 21 is stabilized. Further, since the sensor 31 is provided on the side of the edge of the rotating body 21, the probe direction of the sensor 31 is directed toward the pipe 82, whereby the thickness of the pipe 82 can be measured.

図4は、回転体の転がり面の第2変形例を示す断面図である。   FIG. 4 is a cross-sectional view showing a second modification of the rolling surface of the rotating body.

第2変形例の回転体21は、その外周部に、パイプ82の外周面が嵌る凹部S2を有する。凹部S2は、回転体21の外周部の一周に渡って、回転方向に延びるように設けられている。また、第2変形例の回転体21には、凹部S2の内面の複数箇所にセンサ31が設けられている。複数のセンサ31は、回転体21の周方向、及び、回転体21の回転軸に沿った断面上における凹部S2の内面に沿った方向に、所定間隔を開けて配置されている。   The rotating body 21 of the second modified example has a recess S2 in which the outer peripheral surface of the pipe 82 is fitted on the outer peripheral portion thereof. The recess S <b> 2 is provided so as to extend in the rotation direction over the entire circumference of the outer peripheral portion of the rotating body 21. The rotating body 21 of the second modification is provided with sensors 31 at a plurality of locations on the inner surface of the recess S2. The plurality of sensors 31 are arranged at predetermined intervals in the circumferential direction of the rotating body 21 and in the direction along the inner surface of the recess S <b> 2 on the cross section along the rotation axis of the rotating body 21.

このような構成によれば、飛行体11を昇降する際に、回転体21を内壁80のパイプ82に沿わせて、回転体21を転がすことができ、回転体21の位置が安定する。そして、回転体21の凹部S2の内面に設けられたセンサ31で、パイプ82の肉厚を測定することができる。また、凹部S2の内面には、横方向(回転体21の回転軸方向)に配置を異ならせて複数のセンサ31が設けられているので、1本のパイプ82について周方向に位置の異なる複数箇所の肉厚を測定することができる。   According to such a configuration, when the flying body 11 is moved up and down, the rotating body 21 can be rolled along the pipe 82 of the inner wall 80, and the position of the rotating body 21 is stabilized. The thickness of the pipe 82 can be measured by the sensor 31 provided on the inner surface of the recess S2 of the rotating body 21. In addition, since a plurality of sensors 31 are provided on the inner surface of the recess S2 with different arrangements in the lateral direction (rotational axis direction of the rotating body 21), a plurality of different positions in the circumferential direction of one pipe 82 are provided. The thickness of the part can be measured.

図5は、回転体の転がり面の第3変形例を示す断面図である。   FIG. 5 is a cross-sectional view showing a third modification of the rolling surface of the rotating body.

第3変形例の回転体21は、その外周部に、隣接する一対のパイプ82の外周面が嵌る2列の凹部S4と、一対のパイプ82の間のフィン84の部分に嵌る凸部S3とが設けられている。2列の凹部S4とその間の凸部S3とは、回転体21の外周部の一周に渡って、回転方向に延びるように設けられている。複数のセンサ31は、回転体21の周方向、及び、回転体の回転軸に沿った断面上における凹部S4の内面に沿った方向に、所定間隔を開けて配置されている。   The rotating body 21 of the third modified example has two rows of concave portions S4 in which the outer peripheral surfaces of a pair of adjacent pipes 82 are fitted on the outer peripheral portion, and a convex portion S3 that fits in a portion of the fin 84 between the pair of pipes 82. Is provided. The two rows of concave portions S4 and the convex portions S3 therebetween are provided so as to extend in the rotational direction over the entire circumference of the outer peripheral portion of the rotating body 21. The plurality of sensors 31 are arranged at predetermined intervals in the circumferential direction of the rotating body 21 and in the direction along the inner surface of the recess S4 on the cross section along the rotation axis of the rotating body.

このような構成によれば、飛行体11を昇降する際に、回転体21を内壁80のパイプ82及びフィン84の部分に沿わせて、回転体21を転がすことができ、回転体21の位置が安定する。そして、回転体21の凹部S4の内面に設けられたセンサ31で、パイプ82の肉厚を測定することができる。また、凹部S4の内面には横方向(回転体21の回転軸方向)に配置を異ならせて複数のセンサ31が設けられているので、1本のパイプ82について周方向に位置の異なる複数箇所の肉厚を測定することができる。なお、回転体21は、外周部に凹部S4を設けず凸部S3のみを有する構成としてもよい。   According to such a configuration, when the flying body 11 is moved up and down, the rotating body 21 can be rolled along the pipe 82 and the fins 84 of the inner wall 80, and the position of the rotating body 21 can be changed. Becomes stable. The thickness of the pipe 82 can be measured by the sensor 31 provided on the inner surface of the recess S4 of the rotating body 21. In addition, since the plurality of sensors 31 are provided on the inner surface of the recess S4 with different arrangements in the lateral direction (rotational axis direction of the rotating body 21), a plurality of locations with different positions in the circumferential direction of one pipe 82 are provided. Can be measured. The rotating body 21 may be configured to have only the convex portion S3 without providing the concave portion S4 on the outer peripheral portion.

(実施形態2)
図6は、本発明の測定装置の実施形態を示す斜視図である。
Second Embodiment
FIG. 6 is a perspective view showing an embodiment of the measuring apparatus of the present invention.

本実施形態の測定装置50は、人の手で回転体21を測定対象物の面上に転がして、測定対象物の測定を行うことのできる装置である。測定装置50は、回転体21と、回転体21の外周部に設けられた複数のセンサ31及び複数の液剤保持体35と、回転体21を回転自在に支持するロッド55と、回転体21の中央に設けられた永久磁石58とを備える。永久磁石58は、本発明に係る押付作用部の一例に相当する。   The measuring device 50 according to the present embodiment is a device that can measure the measurement object by rolling the rotating body 21 on the surface of the measurement object with a human hand. The measuring device 50 includes a rotating body 21, a plurality of sensors 31 and a plurality of liquid agent holding bodies 35 provided on the outer periphery of the rotating body 21, a rod 55 that rotatably supports the rotating body 21, and the rotating body 21. And a permanent magnet 58 provided in the center. The permanent magnet 58 corresponds to an example of the pressing operation unit according to the present invention.

回転体21、複数のセンサ31及び複数の液剤保持体35は、上述したロボット1に含まれる構成と同様である。   The rotating body 21, the plurality of sensors 31, and the plurality of liquid agent holding members 35 are the same as the configuration included in the robot 1 described above.

ロッド55は把持部55aを有し、作業員は把持部55aを持って回転体21を測定対象物の面上に押し当てることができる。   The rod 55 has a gripping portion 55a, and the operator can hold the gripping portion 55a and press the rotating body 21 onto the surface of the measurement object.

永久磁石58は、測定対象物が火炉の内壁80のように強磁性体から構成される場合に、回転体21の外周部を測定対象物に押し付ける力を回転体21に作用させる。   The permanent magnet 58 applies a force to the rotating body 21 to press the outer periphery of the rotating body 21 against the measuring object when the measuring object is made of a ferromagnetic material like the inner wall 80 of the furnace.

本実施形態の測定装置50によれば、回転体21を測定対象物の面上を転がるように移動させることで、複数のセンサ31が、順次、測定対象物に接触し、その箇所の測定を行っていく。したがって、測定対象物の複数の箇所についてスムースにかつ安定的に測定を行うことができる。   According to the measuring apparatus 50 of the present embodiment, by moving the rotating body 21 so as to roll on the surface of the measurement object, the plurality of sensors 31 sequentially contact the measurement object and measure the location. I will go. Therefore, it is possible to perform measurement smoothly and stably at a plurality of locations on the measurement object.

また、実施形態の測定装置50によれば、永久磁石58により、回転体21の外周部を内壁80に押し付ける作用が及ぼされるので、これにより回転体21を測定対象物の面上に安定的に押し付けることができる。したがって、よりスムースにかつより安定的に測定対象物の測定を行うことができる。   Further, according to the measuring apparatus 50 of the embodiment, the permanent magnet 58 exerts an action of pressing the outer peripheral portion of the rotating body 21 against the inner wall 80, so that the rotating body 21 can be stably placed on the surface of the measurement object. It can be pressed. Therefore, it is possible to measure the measurement object more smoothly and more stably.

以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限られない。例えば、上記実施形態では、センサとして肉厚を測定する超音波センサを適用した例を説明した。しかし、本発明に係るセンサとしては、電気抵抗検知式厚さ計、渦電流検知式厚さ計、EMAT(Electromagnetic Acoustic Transducer)探触子など、様々なセンサを適用してもよい。また、上記実施形態では、測定対象物の肉厚を測定する例を示したが、本発明は、亀裂又は腐食などの欠陥測定に利用しても良いし、その他、種々の測定に利用しても良い。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment. For example, in the above-described embodiment, an example in which an ultrasonic sensor that measures the thickness is applied as the sensor has been described. However, as the sensor according to the present invention, various sensors such as an electric resistance detection type thickness meter, an eddy current detection type thickness meter, and an EMAT (Electromagnetic Acoustic Transducer) probe may be applied. Moreover, although the example which measures the thickness of a measuring object was shown in the said embodiment, this invention may be utilized for defect measurements, such as a crack or corrosion, and is utilized for various measurement other than that. Also good.

また、上記実施形態のロボット1では、移動体として飛行体11を例にとって説明したが、本発明に係るロボットの移動体は、例えばクローラによって走行する走行体であってもよい。クローラを壁に磁気吸着する構成とすることで、壁面に沿って昇降させる走行体を実現することもできる。また、上記実施形態のロボット1では、回転体21がプロテクトフレームとして機能する例を示したが、回転体はプロテクトフレームとして機能しないような小さな径を有する構成であってもよい。また、小さな径の回転体を、移動体の例えば前方上下左右などの3箇所以上に設けてもよい。   Further, in the robot 1 of the above-described embodiment, the flying object 11 is described as an example of the moving object. However, the moving object of the robot according to the present invention may be a traveling object that travels by a crawler, for example. With the configuration in which the crawler is magnetically attracted to the wall, it is also possible to realize a traveling body that is moved up and down along the wall surface. Further, in the robot 1 of the above-described embodiment, the example in which the rotating body 21 functions as the protect frame has been described, but the rotating body may have a small diameter that does not function as the protect frame. Moreover, you may provide a rotary body of a small diameter in three or more places, such as a front, up, down, left and right of a moving body.

また、上記実施形態では、回転体の周方向に複数のセンサを設けた例を示したが、例えば小さい径の回転体であれば、あるいは、長い間隔ごとに測定を行う場合には、回転体における周方向の1範囲のみにセンサが設けられていてもよい。また、上記実施形態では、センサとして測定対象物に接触して所定の測定を行う構成を示したが、測定対象物に接触せずに近接して測定を行う構成としてもよい。この場合、センサは回転体の外周部より所定長さ内方など、回転体の回転移動する部位に配置すればよい。   Moreover, in the said embodiment, although the example which provided the some sensor in the circumferential direction of the rotary body was shown, for example, if it is a rotary body with a small diameter, or when measuring every long space | interval, the rotary body The sensor may be provided only in one range in the circumferential direction in. Moreover, although the said embodiment showed the structure which contacts a measuring object and performs a predetermined measurement as a sensor, it is good also as a structure which measures in proximity | contact, without contacting a measuring object. In this case, the sensor may be disposed at a portion where the rotational movement of the rotating body is performed, such as a predetermined length inward of the outer peripheral portion of the rotating body.

また、上記実施形態では、回転体として、車輪状の形態を示したが、回転体は、任意の物体上で様々な方向に転がり可能な球体としてもよいし、1つの回転軸を中心に回転する半球状の構成としてもよい。その他、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   In the above embodiment, a wheel-like form is shown as the rotating body. However, the rotating body may be a sphere that can roll in various directions on an arbitrary object, and rotates around one rotation axis. It is good also as a hemispherical structure. In addition, the details shown in the embodiments can be changed as appropriate without departing from the spirit of the invention.

1 ロボット
11 飛行体
12 本体部
14 プロペラ
16 前進プロペラ
21 回転体
31 センサ
35 液剤保持体
S1 転がり面
S2、S4 凹部
S3 凸部
50 測定装置
55 ロッド
58 永久磁石
DESCRIPTION OF SYMBOLS 1 Robot 11 Flying body 12 Main body part 14 Propeller 16 Forward propeller 21 Rotating body 31 Sensor 35 Liquid agent holding body S1 Rolling surface S2, S4 Concave part S3 Convex part 50 Measuring device 55 Rod 58 Permanent magnet

Claims (8)

任意の物体上を転がり可能な回転体と、
前記回転体の回転移動する部位に設けられ、前記回転体が転がる物体の測定を行うセンサと、
を備える測定装置。
A rotating body that can roll on any object;
A sensor provided at a portion where the rotating body rotates, and measuring an object on which the rotating body rolls;
A measuring apparatus comprising:
前記センサは、前記回転体の外周部に設けられ、前記回転体が転がる物体に接触しながら測定を行う、
請求項1記載の測定装置。
The sensor is provided on an outer peripheral portion of the rotating body, and performs measurement while contacting the rolling object of the rotating body.
The measuring apparatus according to claim 1.
前記センサは測定対象物の欠陥又は厚みを測定するように構成されている、
請求項1又は請求項2記載の測定装置。
The sensor is configured to measure a defect or thickness of the measurement object;
The measuring apparatus according to claim 1 or 2.
前記回転体の外周部に回転方向に延びる凹部、凸部又はその両方が設けられている、
請求項1から請求項3のいずれか一項に記載の測定装置。
The outer circumferential portion of the rotating body is provided with a concave portion, a convex portion, or both that extend in the rotational direction,
The measuring apparatus according to any one of claims 1 to 3.
前記回転体に前記回転体が転がる面へ押し付ける力を作用させる押付作用部を備える、
請求項1から請求項4のいずれか一項に記載の測定装置。
It has a pressing action unit that applies a force to the rotating body to press the surface on which the rotating body rolls.
The measuring apparatus as described in any one of Claims 1-4.
請求項1から請求項5のいずれか一項に記載の測定装置と、
前記回転体を転がしながら移動する移動体と、
を備えるロボット。
A measuring apparatus according to any one of claims 1 to 5,
A moving body that moves while rolling the rotating body;
Robot equipped with.
前記移動体は壁面に沿って昇降可能に構成されている、
請求項6記載のロボット。
The moving body is configured to be movable up and down along the wall surface,
The robot according to claim 6.
回転移動する部位にセンサが設けられた回転体を測定対象物の面に転がし、前記センサによって前記測定対象物の測定を行う測定方法。   A measurement method in which a rotating body provided with a sensor at a rotationally moving portion is rolled onto a surface of a measurement object, and the measurement object is measured by the sensor.
JP2018010241A 2018-01-25 2018-01-25 Measuring device and measuring method Active JP7033937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010241A JP7033937B2 (en) 2018-01-25 2018-01-25 Measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010241A JP7033937B2 (en) 2018-01-25 2018-01-25 Measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2019128263A true JP2019128263A (en) 2019-08-01
JP7033937B2 JP7033937B2 (en) 2022-03-11

Family

ID=67473044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010241A Active JP7033937B2 (en) 2018-01-25 2018-01-25 Measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP7033937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102083132B1 (en) * 2019-12-12 2020-02-28 우현선박기술 주식회사 Drone system for inspecting and measuring ships with ultrasonic wave thickness measurement technology and sending capabilities
JP2021081161A (en) * 2019-11-22 2021-05-27 三菱パワー株式会社 Boiler inside inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101628A (en) * 1997-09-25 1999-04-13 Sumitomo Metal Ind Ltd Roll profile measuring device
JP2001099779A (en) * 1999-09-29 2001-04-13 Toyota Central Res & Dev Lab Inc Road surface condition detecting device
JP2001324317A (en) * 2000-05-12 2001-11-22 Nkk Plant Engineering Corp Thickness measuring instrument and thickness measuring method
JP2010101656A (en) * 2008-10-21 2010-05-06 Toyota Motor Corp Method and device for measuring film thickness
JP2016080704A (en) * 2014-10-16 2016-05-16 ベーヴエーゲー・ベルクウエルク− ウント・ヴアルツウエルク・マシイネンバウ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Flatness measurement roller having measurement bar in strip traveling direction
JP2017171032A (en) * 2016-03-22 2017-09-28 富士通株式会社 Flight machine and use method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101628A (en) * 1997-09-25 1999-04-13 Sumitomo Metal Ind Ltd Roll profile measuring device
JP2001099779A (en) * 1999-09-29 2001-04-13 Toyota Central Res & Dev Lab Inc Road surface condition detecting device
JP2001324317A (en) * 2000-05-12 2001-11-22 Nkk Plant Engineering Corp Thickness measuring instrument and thickness measuring method
JP2010101656A (en) * 2008-10-21 2010-05-06 Toyota Motor Corp Method and device for measuring film thickness
JP2016080704A (en) * 2014-10-16 2016-05-16 ベーヴエーゲー・ベルクウエルク− ウント・ヴアルツウエルク・マシイネンバウ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Flatness measurement roller having measurement bar in strip traveling direction
JP2017171032A (en) * 2016-03-22 2017-09-28 富士通株式会社 Flight machine and use method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081161A (en) * 2019-11-22 2021-05-27 三菱パワー株式会社 Boiler inside inspection method
KR102083132B1 (en) * 2019-12-12 2020-02-28 우현선박기술 주식회사 Drone system for inspecting and measuring ships with ultrasonic wave thickness measurement technology and sending capabilities

Also Published As

Publication number Publication date
JP7033937B2 (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US9759540B2 (en) Articulating CMM probe
JP2018533006A5 (en)
JP5650224B2 (en) ROLLING ELEMENT FOR RUNNING VEHICLE IN ALL DIRECTIONS AND VEHICLE HAVING THE ROLLING ELEMENT
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP2019128263A (en) Measurement device, robot, and method for measurement
CN105698731A (en) Apparatus for detecting inner and outer diameters of ball cage
JP2018069391A5 (en) Grinding apparatus and rolling bearing manufacturing method using the same
JP2017519203A5 (en)
KR20150088924A (en) Roundness measuring system of large bearing
US20140197829A1 (en) Mobile carrier system for at least one sensor element designed for non-destructive testing
JP2011053165A (en) Device and method for detecting position of moving carriage of trackless type
JP5740283B2 (en) Pipe thickness measuring device
JP2020030070A (en) Ultrasonic flaw detection method and flaw detector
JP2012145441A (en) Workpiece dimension measuring apparatus
JP6398488B2 (en) Apparatus and method for measuring surface roughness of raceway in rolling bearing
JP2008196881A (en) Device and method for measuring thickness distribution of cross section of tire
JP2004127995A5 (en)
CN205506026U (en) Outside diameter detection device in ball cage
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
RU156049U1 (en) Eddy Current Scanner
JP6936728B2 (en) Displacement measuring device
JP5510068B2 (en) Defect detection device for workpiece surface
JP2966028B2 (en) Manual ultrasonic flaw detector
CN204963836U (en) But reducing steel pipe bi -polar displacement ovality detecting system based on six linkages
KR102528095B1 (en) Movable apparatus for detecting defect of thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7033937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150