JP2019108566A - Method of suppressing slag foaming and converter refining - Google Patents

Method of suppressing slag foaming and converter refining Download PDF

Info

Publication number
JP2019108566A
JP2019108566A JP2017240461A JP2017240461A JP2019108566A JP 2019108566 A JP2019108566 A JP 2019108566A JP 2017240461 A JP2017240461 A JP 2017240461A JP 2017240461 A JP2017240461 A JP 2017240461A JP 2019108566 A JP2019108566 A JP 2019108566A
Authority
JP
Japan
Prior art keywords
slag
discharge
converter
amount
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240461A
Other languages
Japanese (ja)
Other versions
JP6915522B2 (en
Inventor
玲洋 松澤
Tamahiro Matsuzawa
玲洋 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017240461A priority Critical patent/JP6915522B2/en
Publication of JP2019108566A publication Critical patent/JP2019108566A/en
Application granted granted Critical
Publication of JP6915522B2 publication Critical patent/JP6915522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a method of efficiently suppressing slag foaming in a slag discharging pan to increase an amount of discharged slag in a process of discharging slag from a converter to the slag discharging pan.SOLUTION: The method of suppressing slag foaming in a slag discharging pan when the slag is discharged from a furnace port to the slag discharging pan placed below a converter comprises: charging a sulfide minerals into the slag discharging pan before a start of slag discharging; determining a charging amount of the sulfide minerals before the start of the slag discharging so that S concentration in the slag at 1 minute after the start of the slag discharging will be 0.1% or more; and after the start of the slag discharging, charging additionally sulfide minerals before the S concentration in the slag becomes less than 0.1%; so that the S concentration in the slag is controlled to be 0.1 to 0.4% at finish of the slag discharging. The method can be used suitably as a method of suppressing slag foaming at the time of the slag discharging in a converter refining process, in which molten iron is charged into the converter, and desiliconization/dephosphorization refining or desiliconization refining is performed, then, the converter is tilted to discharge the slag from a furnace opening with the molten metal left in the furnace, and secondary refining is subsequently performed.SELECTED DRAWING: Figure 2

Description

本発明はスラグのフォーミング(泡立ち)抑制方法および転炉精錬方法に関する。   The present invention relates to a method for suppressing slag forming (foaming) and a converter refining method.

鉄鋼製造プロセスにおいて高炉などで製造された溶銑は、C濃度が4〜5質量%、P濃度が0.1質量%程度と高く、そのまま凝固させて銑鉄としたのでは加工性や靱性が低いために鉄鋼製品として用いることが困難である。したがって精錬プロセスにおいて脱燐・脱炭処理を行うとともに各種成分を調整して要求品質を満たす鋼を製造している。この脱燐・脱炭処理では酸素ガスやFeOを含むスラグにより溶鉄中のC、Pを酸化除去するが、溶銑に含まれるSiがPよりも酸化されやすいために、実質的には脱珪・脱燐・脱炭反応が並行して進行する。   The hot metal produced in blast furnaces and the like in the steel making process has a high C concentration of 4 to 5% by mass and a P concentration of approximately 0.1% by mass, and if solidified as it is into pig iron, it has low workability and toughness. It is difficult to use as steel products. Therefore, while carrying out dephosphorization and decarburization treatment in the refining process, various components are adjusted to produce steel satisfying the required quality. In this dephosphorization and decarburization treatment, C and P in the molten iron are oxidized and removed by the slag containing oxygen gas and FeO, but Si contained in the molten metal is more easily oxidized than P, so substantially desiliconization and decarburization Dephosphorization and decarburization reactions proceed in parallel.

現在、精錬プロセスは予備処理プロセスも含めて生産性と反応効率が良好な転炉方式が主流である。その操業方法としては、高炉溶銑を転炉に装入して脱珪・脱燐吹錬を行った後、吹錬を一旦停止して転炉を傾動させ、脱珪・脱燐スラグの一部を炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う方法(以降、連続処理方式と表記)が非特許文献1において開示されている。また別の操業方法としては、高炉溶銑を転炉に装入して脱珪吹錬を行った後、吹錬を一旦停止して転炉を傾動させ、脱珪スラグの一部を炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行い、さらに脱燐吹錬後は転炉から溶銑を一旦排出して脱燐スラグと分離し、該溶銑のみを別の転炉に再度装入して脱炭吹錬を行う方法(以降、分離処理方式と表記)が特許文献1で開示されている。前者は1基の転炉を用いる操業形態であって、炉口からのスラグ排出を脱珪・脱燐吹錬と脱炭吹錬の中間で行う方式である。後者は2基の転炉を用いる操業形態であって、そのうち1基の転炉を脱珪・脱燐吹錬に使用し、該転炉において炉口からのスラグ排出を脱珪吹錬と脱燐吹錬の中間で行う方式である。両者ともに、炉口からスラグを効率的に排出するために、吹錬中に発生するスラグのフォーミング(泡立ち)現象を利用してスラグの体積を増加させる点が共通している。   At present, the converter process, which has good productivity and reaction efficiency including the pretreatment process, is the mainstream in the refining process. As the operation method, after blast furnace hot metal is charged into the converter and desiliconation and dephosphorization blowing is performed, blowing is once stopped and the converter is tilted to partially remove the desiliconization and dephosphorization slag. Non-Patent Document 1 discloses a method (hereinafter, referred to as a continuous treatment method) in which the carbon black is discharged from the furnace opening and the converter is returned to the vertical direction and subsequently decarburization blowing is performed. As another operation method, after charging blast furnace hot metal to the converter and performing desiliconization blowing, temporarily stop the blowing and tilt the converter, and a part of the desiliconized slag from the furnace opening After draining and returning the converter vertically, dephosphorization blowing is continued, and after dephosphorization blowing, hot metal is once discharged from the converter and separated from dephosphorizing slag, and only the hot metal is transferred to another Patent Document 1 discloses a method of charging in a furnace again and performing decarburization blowing (hereinafter referred to as a separation treatment method). The former is an operation mode using one converter, and is a system in which slag discharge from the furnace opening is performed between desiliconization / dephosphorization blowing and decarburization blowing. The latter is an operation mode using two converters, one of which is used for desiliconization and dephosphorization blowing in which slag discharge from the furnace port is removed by desiliconization and removal. It is a method performed in the middle of phosphorus blowing. In both cases, in order to efficiently discharge the slag from the furnace port, it is common to increase the volume of the slag by utilizing the forming (foaming) phenomenon of the slag generated during blowing.

転炉スラグのフォーミングは、吹錬中に溶銑中のCと酸素ガスあるいはスラグ中のFeOが反応してCO気泡が多数生成し、スラグ中に滞留することで発生する。CO気泡が発生する反応は式(A)で表記される。
+FeO=CO(g)+Fe (A)
The forming of the converter slag is generated by reaction between C in the hot metal and oxygen gas in the molten metal or FeO in the slag to generate a large number of CO bubbles and staying in the slag. The reaction which CO bubble generate | occur | produces is described by Formula (A).
C + FeO = CO (g) + Fe (A)

連続処理方式、分離処理方式のいずれも、炉内でフォーミングしたスラグを炉口から排出し、転炉下方に設置した排滓鍋へ収容する。排滓鍋へのスラグ排出量が増加するほど、炉内に残留するSiO2やP25を少なくすることができるため、脱燐に必要なスラグの塩基度(CaO/SiO2)を確保する目的で投入する生石灰など精錬材の使用量を低減することができる。したがって短時間で多量のスラグを排出することが望ましいが、排滓鍋へ排出された後もスラグはフォーミングし、排滓鍋から溢れてしまうと周辺設備を焼損して復旧に多大な時間と労力を必要とする。スラグ排出速度を下げる、あるいはスラグ排出を一時中断するといった方法により溢れを回避することは可能であるが、これは生産性を低下させるため、スラグのフォーミングを抑制する物質が排滓鍋へ投入される。 In both the continuous treatment method and the separation treatment method, the slag formed in the furnace is discharged from the furnace port and accommodated in a waste pan installed below the converter. Since the amount of SiO 2 and P 2 O 5 remaining in the furnace can be reduced as the amount of slag discharged to the waste pan increases, the basicity (CaO / SiO 2 ) of slag required for dephosphorization is secured It is possible to reduce the amount of use of refining materials such as quicklime to be added for the purpose of Therefore, it is desirable to discharge a large amount of slag in a short time, but even after being discharged to the waste pan, the slag will be formed, and if it overflows the waste pan, the peripheral equipment will be burned and much time and labor will be restored. Need. Although it is possible to avoid the overflow by reducing the slag discharge rate or temporarily interrupting the slag discharge, this reduces the productivity, so a substance that suppresses slag forming is introduced into the waste pan. Ru.

フォーミングに伴う精錬容器からのスラグ溢れは、排滓鍋に限らず混銑車や溶銑鍋、転炉などでも生産性を阻害する事象である。このため、これまでに様々なフォーミング抑制方法が試みられてきた。従来のフォーミング抑制方法は大きく2つに分類できる。まず1つは気泡の生成を抑制する方法であり、例えば特許文献2では生ドロマイトのような炭酸塩を投入し、熱分解する際の吸熱によりCOガスの発生を抑制するフォーミング防止剤が開示されている。もう1つはスラグ内に滞留した気泡を破壊(破泡)する方法であり、例えば特許文献3ではパルプ廃滓を主体としたフォーミング鎮静剤が開示されている。このフォーミング鎮静剤はスラグ内で燃焼や熱分解の反応により急速にガスを発生し、その体積膨張エネルギーにより破泡してスラグを収縮させる。   Slag overflow from the smelting vessel accompanying forming is an event that impairs productivity not only in the discharge pan but also in a mixing car, a hot metal pan, a converter and the like. For this reason, various forming suppression methods have been attempted so far. Conventional forming suppression methods can be roughly classified into two. First, one method is to suppress the formation of air bubbles, and for example, Patent Document 2 discloses a forming inhibitor which inserts carbonate such as raw dolomite and suppresses generation of CO gas by heat absorption at the time of thermal decomposition. ing. The other is a method of breaking (breaking) bubbles retained in the slag. For example, Patent Document 3 discloses a forming soothing agent mainly composed of pulp waste. The forming sedative agent rapidly generates a gas in the slag by the reaction of combustion and thermal decomposition, and is ruptured by its volume expansion energy to shrink the slag.

COガス発生抑制と破泡促進の両方による鎮静方法として、特許文献4においてAlとSを含有するフォーミング抑制剤が開示されている。このフォーミング抑制機構は、スラグ中のFeOをAlで還元し気泡の発生を抑制するとともに、Sによりスラグ−メタル間の界面張力が低下して気泡が安定維持されにくくなるとされている。   Patent Document 4 discloses a forming inhibitor containing Al and S as a sedative method by both CO gas generation suppression and foam rupture promotion. While this forming suppression mechanism reduces FeO in the slag with Al to suppress the generation of bubbles, the interfacial tension between the slag and the metal is reduced by S and the bubbles are less likely to be stably maintained.

Sがスラグのフォーミング現象に及ぼす影響については非特許文献2においても開示されている。それによれば、S濃度が高くなるとCO気泡の発生速度が低下してCO気泡が生成しにくくなり、気泡が発生したとしてもスラグ−メタル間の接触角が増大して気泡径が大きくなるために短時間で破泡するとされている。   The influence of S on the forming phenomenon of slag is also disclosed in Non-Patent Document 2. According to this, when the concentration of S becomes high, the generation rate of CO bubbles decreases and it becomes difficult to form CO bubbles, and even if the bubbles are generated, the contact angle between slag and metal increases and the bubble diameter becomes large. It is said that the bubbles break in a short time.

特開2013−167015号公報JP, 2013-167015, A 特開2003−213314号公報Unexamined-Japanese-Patent No. 2003-213314 特開昭54−32116号公報JP-A-54-32116 特開2000−328122号公報JP 2000-328122 A

鉄と鋼、第87年(2001)第1号、第21〜28頁Iron and steel, 87th (2001) first issue, pages 21 to 28 鉄と鋼、第78年(1992)第11号、第1682〜1689頁Iron and steel, 78th year (1992) No. 11, pages 1682 to 1689

前記した連続処理方式や分離処理方式では、スラグが転炉の炉口から連続的に排出され、落下位置で激しく撹拌されるため、スラグ中に懸濁している銑鉄粒のCとスラグのFeOが反応して多量のCO気泡が継続的に発生し、排滓鍋の中でも急速にフォーミングする。排滓鍋の容積は転炉よりも大幅に小さいのが通例であるから、多量のスラグを転炉から短時間で排滓鍋へ排出するには、フォーミングを効率的に抑制しなければならない。   In the above-mentioned continuous processing method and separation processing method, since the slag is continuously discharged from the furnace port of the converter and is vigorously stirred at the dropping position, C of pig iron particles suspended in the slag and FeO of the slag are The reaction causes a large amount of CO bubbles to be continuously generated, and the foam is rapidly formed in the waste pan. Since the volume of the waste pan is typically much smaller than that of the converter, to discharge a large amount of slag from the converter to the waste pan in a short time, it is necessary to efficiently suppress forming.

この課題に対し、特許文献2〜3の方法はガス発生速度抑制あるいはガス散逸速度向上の片方のみの機構によりフォーミングを抑制する技術であるため、排滓鍋へ連続的に排出されて激しくフォーミングするスラグに対して十分な効果を得ることが難しい。特許文献4の方法は、Alがスラグ中のFeOを還元する際に発生する反応熱によりスラグの温度が上昇するが、CO気泡を発生する式(A)が吸熱反応であるために、CO気泡の発生速度が上昇してフォーミング抑制効果を阻害する恐れがある。   In order to address this problem, the methods of Patent Documents 2 to 3 are techniques for suppressing forming by only one mechanism of gas generation rate suppression or gas dissipation rate improvement, and therefore, they are continuously discharged to a waste pan and violently form. It is difficult to obtain sufficient effect on slag. In the method of Patent Document 4, although the temperature of the slag rises due to the heat of reaction generated when Al reduces FeO in the slag, the CO bubbles are generated because the formula (A) for generating CO bubbles is an endothermic reaction. There is a possibility that the rate of occurrence of may increase and inhibit the forming suppression effect.

本発明はこのような問題を鑑みてなされたもので、フォーミングしたスラグを炉口から連続的に排滓鍋へ排出するプロセスにおいて、排滓鍋内のスラグフォーミングを効率的に抑制することでスラグ排出量を向上させる方法を提供することを目的とする。本発明のフォーミング抑制方法は、1基の転炉で脱珪・脱燐吹錬、排滓および脱炭吹錬を連続して行う転炉精錬方式(連続処理方式)や、2基の転炉の片方で脱珪吹錬、排滓および脱燐吹錬を行う転炉精錬方式(分離処理方式)で用いることができる。   The present invention has been made in view of such problems, and in the process of continuously discharging formed slag from the furnace port to the discharge pan, the slag formation is efficiently suppressed by efficiently controlling the slag forming in the discharge pan. The purpose is to provide a method to improve emissions. The method for suppressing forming according to the present invention is a converter refining method (continuous processing method) in which desiliconation / dephosphorization blowing, scraping and decarburizing blowing are continuously performed in one converter, or two converters It can be used in the converter smelting system (separation processing system) which carries out desiliconization blowing, scraping and dephosphorization blowing on one side.

前記目的に沿う本発明に係るスラグのフォーミング抑制方法は、以下の通りである。
(1)転炉の下方に設置した排滓鍋へ、Sを20〜55質量%含有する硫化鉱物を投入するスラグのフォーミング抑制方法であって、
(i)前記転炉の炉口からスラグを排出する前に、式(1)を満たす量(wore)の硫化鉱物を前記排滓鍋へ投入し、さらに、
(ii)スラグの排出量(Wslag-A)が式(2)の条件を満たしている期間内に硫化鉱物を前記排滓鍋へ追加投入し、又は追加投入せず、
(iii)排滓前投入分も含めた排滓終了までの硫化鉱物の合計投入量(Wore)が式(3)を満たすことを特徴とする、スラグのフォーミング抑制方法。

Figure 2019108566
Figure 2019108566
Figure 2019108566
ore:硫化鉱物の排滓前投入量(kg)
ore:硫化鉱物の合計投入量(kg)
(%S) ore:硫化鉱物のS濃度(質量%)
slag-1:排滓開始から1分間の最大スラグ排出量(kg)
slag-A:硫化鉱物追加投入開始時のスラグ排出量(kg)
slag-T:合計スラグ排出量(kg)
(2)前記硫化鉱物の粒度は、粒径3〜20mmが80質量%以上であることを特徴とする、前記(1)に記載のスラグのフォーミング抑制方法。 The forming suppression method of the slag which concerns on this invention which meets the said objective is as follows.
(1) A method for suppressing slag forming by introducing a sulfided mineral containing 20 to 55% by mass of S into a waste pan installed below the converter,
(I) Before discharging slag from the furnace port of the converter, the sulfide mineral of an amount (w ore ) satisfying the formula (1) is introduced into the waste pan, and
(Ii) Add or not add sulfided minerals to the waste pan during a period in which the amount of slag discharge ( Wslag-A ) satisfies the condition of Formula (2),
(Iii) A method for suppressing the formation of slag, characterized in that the total amount (W ore ) of sulfided minerals to the end of the discharge including the pre-discharge portion satisfies the equation (3).
Figure 2019108566
Figure 2019108566
Figure 2019108566
w ore : Predischarge amount of sulfide mineral (kg)
W ore : Total input of sulfide minerals (kg)
(% S) ore : S concentration of sulfide mineral (mass%)
W slag-1 : Maximum slag discharge (kg) for 1 minute from the start of discharge
W slag-A : Slag emissions at the start of addition of sulfide minerals (kg)
W slag-T : Total slag discharge (kg)
(2) The method for suppressing slag forming according to (1), wherein the particle size of the sulfided mineral is 80% by mass or more in particle diameter 3 to 20 mm.

また、本発明に係る転炉精錬方法は、以下の通りである。
(3)1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う精錬方法において、脱燐吹錬後のスラグ排出時に前記(1)または(2)に記載のフォーミング抑制方法を用いることを特徴とした転炉精錬方法。
(4)2基の転炉の片方に溶銑を装入して脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う精錬方法において、脱珪吹錬後のスラグ排出時に前記(1)または(2)に記載のフォーミング抑制方法を用いることを特徴とした転炉精錬方法。
In addition, the converter refining method according to the present invention is as follows.
(3) After charging the molten metal into one converter and performing desiliconization and dephosphorization blowing, the converter is tilted while leaving the molten metal in the furnace to discharge slag from the furnace opening, In the refining method in which decarburization blowing is subsequently performed after returning the furnace to the vertical, the forming suppression method according to the above (1) or (2) is used at the time of slag discharge after dephosphorization blowing. Furnace smelting method.
(4) After the molten metal is charged into one side of the two converters and subjected to desiliconization blowing, the converter is tilted while leaving the molten metal in the furnace and the slag is discharged from the furnace opening, In the refining method in which dephosphorization blowing is subsequently performed after returning to the vertical direction, the converter according to (1) or (2) is used at the time of slag discharge after desiliconization blowing. How to refine.

本発明によれば、高濃度のSを含有する硫化鉱物を、スラグ排出前に排滓鍋内に投入し、さらに排滓開始後は前記排滓鍋内のスラグS濃度が0.1〜0.4%となるようにSを含有する鉱物を追加投入することで効率的にフォーミングを抑制でき、多量のスラグを排滓鍋へ排出できる。   According to the present invention, a sulfide mineral containing a high concentration of S is introduced into the waste pan before the slag is discharged, and the slag S concentration in the waste pan is 0.1 to 0 after the discharge is started. By additionally feeding the S-containing mineral so as to be 4%, it is possible to efficiently suppress the forming, and a large amount of slag can be discharged to the waste pan.

小型炉実験におけるスラグ高さの経時変化を示す図Diagram showing the time-dependent change of slag height in small scale furnace experiment 小型炉実験におけるスラグS濃度と最大フォーミング高さの関係を示す図Diagram showing the relationship between slag S concentration and maximum forming height in small scale furnace experiments 小型炉実験におけるスラグS濃度と最大COガス発生速度の関係を示す図Diagram showing the relationship between the slag S concentration and the maximum CO gas generation rate in a small furnace experiment 小型炉実験におけるスラグS濃度と気泡径の平均値の関係を示す図The figure which shows the relationship between the slag S concentration and the average value of the bubble diameter in the small scale furnace experiment 実機試験における排滓鍋スラグ高さの経時変化を示す図Figure showing time-dependent change of discharge ladle slag height in real machine test 実機試験における排滓中のスラグS濃度変化を示す図Diagram showing slag S concentration change during waste discharge in real machine test

以下、本発明の実施の形態について詳細に説明する。転炉における脱燐吹錬では、高速で酸素ジェットを溶銑表面に吹き付けることで溶銑中のPを酸化し、スラグへP25として除去している。これと並行して、溶銑中のSiも酸化され、スラグへSiO2として移行する。また、溶銑中のCは酸素ガスあるいはスラグ中のFeOと反応してCO気泡を発生し、その一部がスラグ内に滞留することでフォーミングが起こる。 Hereinafter, embodiments of the present invention will be described in detail. In dephosphorization blowing in the converter oxidizes P of molten iron by blowing oxygen jet at high speed hot metal surface, is removed as P 2 O 5 to the slag. At the same time, Si in the hot metal is also oxidized and transferred to the slag as SiO 2 . In addition, C in the hot metal reacts with oxygen gas or FeO in the slag to generate CO bubbles, and a part thereof is retained in the slag to cause forming.

スラグが適度にフォーミングした後、転炉の下方に設置した排滓鍋へ炉口からスラグを排出するが、排滓鍋の中でもフォーミングが発生する。これは、吹錬中に溶銑の一部が酸素ジェットにより引きちぎられてスラグ中に粒鉄として懸濁しており、この粒鉄中に含まれる炭素(C)が排滓鍋内でスラグ中のFeOと反応してCO気泡を発生するためである。   After the slag is appropriately formed, the slag is discharged from the furnace port to a discharge pan installed below the converter, but the forming also occurs in the discharge pan. This is because during the blasting, a part of the hot metal is torn off by the oxygen jet and suspended as granular iron in the slag, and carbon (C) contained in the granular iron is FeO in the slag in the waste pan. React to generate CO bubbles.

排滓鍋内では落下してきたスラグの運動エネルギーにより強い攪拌が起こり、CO気泡が多量に発生してスラグが激しくフォーミングする。そのためフォーミング抑制効果のある物質を投入し、スラグの溢れを防止する必要がある。   In the waste ladle, the kinetic energy of the falling slag causes strong agitation, and a large amount of CO bubbles are generated to cause the slag to form violently. Therefore, it is necessary to add a substance having a forming suppression effect to prevent the overflow of the slag.

発明者らは、非特許文献2においてスラグのS濃度が高くなるとCO気泡の発生速度低下および気泡径の増加が起こるとされていることに着目し、S含有物質を投入してスラグS濃度を高めれば、ガス発生速度の低下およびガス散逸速度の向上が起こり、その両方の作用により効率的にフォーミングを抑制できると考えた。そこで、前記した連続処理方式や分離処理方式の炉口排出スラグを想定した組成および温度の条件において、スラグのS濃度がフォーミング挙動に及ぼす影響を小型炉実験で検証した。   In Non-Patent Document 2, the inventors focused on the fact that when the concentration of S in the slag increases, the generation rate of CO bubbles decreases and the bubble diameter increases, and the S-containing material is added to the slag S concentration. If it is increased, it is thought that the decrease of the gas generation rate and the improvement of the gas dissipation rate occur, and both actions can effectively suppress the forming. Therefore, under the conditions of the composition and temperature that assume the above-described furnace throat exhaust slag of the continuous processing method and the separation processing method described above, the effect of the S concentration of slag on the forming behavior was verified by a small-sized furnace experiment.

すなわち、鉄坩堝内でスラグ100gを1350℃において溶解し、硫化鉄を加えてS濃度を調整した。このスラグに銑鉄を上方より投入し、一定の時間間隔で鉄棒をスラグに浸漬した。そして鉄棒のスラグ付着高さの経時変化を測定し、式(4)により最大フォーミング高さを算出してフォーミング抑制効果を評価した。

Figure 2019108566
0:銑鉄投入前のスラグ高さ(mm)
max:銑鉄投入後の最大スラグ高さ(mm) That is, 100 g of slag was melted at 1350 ° C. in an iron crucible, and iron sulfide was added to adjust the S concentration. To this slag was charged pig iron from above, and the iron rod was immersed in the slag at fixed time intervals. And the time-dependent change of slag adhesion | attachment height of an iron rod was measured, and the maximum forming height was computed by Formula (4), and the forming suppression effect was evaluated.
Figure 2019108566
H 0 : Slag height before feeding pig iron (mm)
H max : Maximum slag height after feeding of pig iron (mm)

スラグ付着高さの経時変化を図1に示す。硫化鉄なし(S=0.001%)の場合はスラグが大きくフォーミングしたが、硫化鉄を加えてスラグS濃度を上げるとフォーミングしにくくなった。スラグのS濃度と最大フォーミング高さの関係として図2に示す。スラグS濃度が0.1質量%以上であればフォーミングを大幅に抑制でき、0.4質量%超になるとほとんどフォーミングしなくなることが分かった。   The time-dependent change of slag adhesion height is shown in FIG. In the case of no iron sulfide (S = 0.001%), the forming of the slag was large, but when iron sulfide was added to increase the slag S concentration, forming became difficult. The relationship between the S concentration of slag and the maximum forming height is shown in FIG. It was found that when the slag S concentration is 0.1% by mass or more, the forming can be significantly suppressed, and when it exceeds 0.4% by mass, the forming hardly occurs.

この実験でCOガスの発生速度を流量計で測定したところ、図3に示すように、スラグのS濃度が高くなるほどCOガス発生速度の最大値は低下した。また、鉄棒に付着した気泡を任意に20個選択して気泡径を測定したところ、図4に示すようにスラグのS濃度が高くなるほど気泡径の平均値は増加した。これらの結果から、スラグS濃度を高めることでCO気泡の発生速度低下と気泡径の増加(破泡促進)が起こり、フォーミングを抑制できることが分かった。   When the generation rate of CO gas was measured with a flow meter in this experiment, as shown in FIG. 3, the maximum value of the CO gas generation rate decreased as the S concentration of the slag increased. In addition, when twenty air bubbles attached to the iron rod were arbitrarily selected and the cell diameter was measured, the average value of the cell diameter increased as the S concentration of the slag increased as shown in FIG. From these results, it was found that by increasing the concentration of slag S, the generation rate of CO bubbles decreases and the bubble diameter increases (breakdown promotion), thereby suppressing forming.

本発明では、S源として硫化物の鉱石(硫化鉱物)を用いる。その理由は、S品位が高いために少ない投入量でも効果を期待できること、密度が大きいためにそのまま投入してもスラグ内に十分侵入できること、有機物を含まないために熱分解に伴う黒煙の発生がないこと、といった利点があるからである。特に、黄鉄鉱や磁硫鉄鉱、閃マンガン鉱は、S以外に含まれる元素の大半がFeやMnのようなスラグの構成元素であり、不可避的不純物として含まれる可能性のあるCaO、SiO2、Al23、MgOもスラグの構成成分であるため、スラグへ投入しても重金属溶出などの環境汚染を引き起こすリスクは極めて低い。 In the present invention, sulfide ore (sulfide mineral) is used as the S source. The reason is that the effect can be expected even with a small input amount because the S grade is high, that it can sufficiently penetrate into the slag even if it is inserted as it is because of its high density, and the generation of black smoke accompanying pyrolysis because it does not contain organic matter It is because there is an advantage that there is no In particular, in the pyrite, pyrrhotite and pyrite, most elements other than S are elements of the slag such as Fe and Mn and may be contained as unavoidable impurities CaO, SiO 2 , Al Since 2 O 3 and MgO are also constituents of slag, the risk of causing environmental pollution such as elution of heavy metals is extremely low even if they are introduced into the slag.

次に、硫化鉱物の好適な組成範囲について説明する。硫化鉱物中に含まれるSをスラグ中に迅速に溶解させるには、スラグのS濃度と硫化鉱物のS濃度の差が大きいほど、即ち、硫化鉱物のS濃度が高い方が良い。この観点から、硫化鉱物のS濃度は20質量%以上である。20質量%未満では硫化鉱物に含まれるSがスラグへ迅速に溶解しにくく、フォーミング抑制効果が小さくなる。一方、S濃度は55質量%以下である。S濃度が55質量%超になると単体のSが硫化鉱物中に存在しやすくなるが、単体のSは沸点が低く、容易に蒸発してしまうためスラグ中には溶解しにくい。また蒸発したSは空気中の水分と反応して有毒なH2Sを発生する恐れもあり、作業環境面でも好ましくない。したがって、本発明では硫化鉱物のS濃度を20〜55質量%とする。 Next, the suitable composition range of a sulfide mineral is demonstrated. In order to rapidly dissolve S contained in sulfide minerals in the slag, the larger the difference between the S concentration of slag and the S concentration of sulfide minerals, that is, the higher the S concentration of sulfide minerals, the better. From this viewpoint, the sulfur concentration of the sulfide mineral is 20% by mass or more. If it is less than 20% by mass, S contained in the sulfide mineral is difficult to dissolve quickly in the slag, and the forming suppression effect is reduced. On the other hand, the S concentration is 55% by mass or less. When the S concentration exceeds 55% by mass, elemental S is easily present in the sulfide mineral, but the elemental S has a low boiling point and easily evaporates, so it is difficult to dissolve in the slag. In addition, the evaporated S may react with the water in the air to generate toxic H 2 S, which is not preferable in terms of working environment. Therefore, in the present invention, the S concentration of the sulfided mineral is set to 20 to 55% by mass.

硫化鉱物に含まれる不可避的不純物であるCaO、SiO2、Al23、MgOの合計濃度は30質量%以下であることが好ましい。これらの濃度が高い硫化鉱物はS濃度が相対的に低く、フォーミング抑制効果が小さくなりやすいためである。特にSiO2とAl23はスラグの粘度を高める作用を有し、MgOはスラグの融点を高める作用を有するため、フォーミングしたスラグ表面からのガスの散逸を阻害する恐れもある。したがって、硫化鉱物に含まれるこれらの成分の合計濃度は30質量%以下であることが好ましく、より好ましくは15質量%以下である。 The total concentration of CaO, SiO 2 , Al 2 O 3 and MgO, which are unavoidable impurities contained in the sulfided mineral, is preferably 30% by mass or less. It is because sulfide minerals having high concentrations of these have a relatively low S concentration, and the effect of suppressing forming tends to be small. In particular, SiO 2 and Al 2 O 3 have the effect of enhancing the viscosity of the slag, and MgO has the effect of enhancing the melting point of the slag, and therefore there is also the possibility of inhibiting the dissipation of gas from the surface of the formed slag. Therefore, the total concentration of these components contained in the sulfided mineral is preferably 30% by mass or less, more preferably 15% by mass or less.

硫化鉱物に含まれる水分は10質量%以下が好ましい。水分が高いと投入ホッパー内で固着して棚吊りが起きやすくなるためである。   The water content in the sulfided mineral is preferably 10% by mass or less. If the water content is high, it will stick in the input hopper and it will be easy to cause shelf suspension.

複数の硫化鉱物を混合する場合は、それぞれの硫化鉱物の組成を加重平均した組成が本発明の好適な範囲内にあれば良い。   In the case of mixing a plurality of sulfide minerals, the weighted average of the compositions of the sulfide minerals may be within the preferred range of the present invention.

次に、硫化鉱物の粒度は、粒径が3mm以上20mm以下の粒子が80質量%以上であることが好ましい。これは、粒度が過剰に細かいと粉塵として舞い上がり作業環境を悪化させるためである。また、20mm超の粒子はスラグへ迅速に溶解しにくく、フォーミング抑制効果が小さくなりやすいためである。   Next, as for the particle size of the sulfided mineral, it is preferable that particles having a particle diameter of 3 mm or more and 20 mm or less be 80% by mass or more. This is because if the particle size is too fine, it will fly up as dust and worsen the working environment. Moreover, it is because the particle | grains more than 20 mm are difficult to melt | dissolve in slag rapidly, and a forming inhibitory effect tends to become small.

Sによりフォーミングが抑制されるのは、非特許文献2で開示されているように、CO気泡の発生速度が低下し、かつ発生する気泡径が増加するためである。この機構に基づき、発明者らは、排滓鍋にあらかじめ硫化鉱物を投入してから排滓を行うことで、Sによるフォーミング抑制効果を発現させることを着想した。排滓初期は排滓鍋内のスラグ量が少なく、スラグが強く撹拌されてCO気泡が激しく発生するが、硫化鉱物をあらかじめ投入しておけばスラグのS濃度を高めやすく、少ない投入量でもフォーミングを効率的に抑制できると考えた。   As described in Non-Patent Document 2, the reason why the forming is suppressed by S is that the generation rate of CO bubbles decreases and the diameter of the generated bubbles increases. Based on this mechanism, the inventors conceived of expressing the forming suppression effect by S by putting in a sulfided mineral in a draining pot in advance and then discharging it. Although the amount of slag in the waste ladle is small at the initial stage of waste removal, the slag is strongly stirred and CO bubbles are generated violently, but if sulfide minerals are previously added, it is easy to increase the S concentration of slag and forming even with a small amount Was considered to be able to be efficiently suppressed.

この考えを検証するため、実機で試験を行った。すなわち、転炉へ溶銑を装入して脱珪・脱燐吹錬を行った後、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させ、炉体下方に設置した排滓鍋(内容積:70m3)に排出した。排滓鍋にはあらかじめ所定量の硫化鉱物を投入し、排滓鍋を保持する移動台車に取り付けた秤量機でスラグ排出量の経時変化を測定した。併せて、排滓鍋内の様子をビデオ撮影し、鍋底から鍋縁までの高さに対するスラグ面位置の割合から、スラグ高さを評価した。なお、排滓鍋の底面から鍋縁までの高さは4.5mである。スラグ組成は塩基度(CaO/SiO2)が1.0〜1.2、酸化鉄濃度が20〜30質量%、温度は1330〜1350℃であった。投入した硫化鉱物には黄鉄鉱(S濃度:49%)を用いた。 In order to verify this idea, tests were conducted on a real machine. That is, after the molten iron was charged into the converter and desiliconation and dephosphorization blowing was carried out, the blowing was temporarily suspended and the converter was tilted while leaving the molten iron in the furnace, and was installed below the furnace body. The solution was discharged into a waste pan (internal volume: 70 m 3 ). A predetermined amount of sulfide mineral was put into the waste pan in advance, and the time-dependent change of the slag discharge amount was measured by a weighing machine attached to a movable carriage holding the waste pan. At the same time, the situation in the waste pan was videotaped, and the slag height was evaluated from the ratio of the slag surface position to the height from the pan bottom to the pan edge. The height from the bottom of the waste pan to the rim of the pan is 4.5 m. The slag composition had a basicity (CaO / SiO 2 ) of 1.0 to 1.2, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1330 to 1350 ° C. Pyrite (S concentration: 49%) was used as the added sulfide mineral.

実機試験の結果を図5に示す。スラグ排出速度は毎分2.5tとした。硫化鉱物の排滓前投入量を多くするほど、排滓鍋内におけるスラグ高さの増大速度が遅くなる傾向が見られ、即ち、フォーミングの成長が遅くなり、スラグ面が鍋縁に到達するまでの時間が長くなった。   The result of the actual machine test is shown in FIG. The slag discharge rate was 2.5 t / min. As the amount of pre-discharge of sulfide minerals increases, the rate of increase of the slag height in the discharge pan tends to be slower, that is, the growth of forming becomes slower and the slag surface reaches the pan edge The time was longer.

図5において、曲線の傾きが大きいほどフォーミングの成長が速いことを意味している。硫化鉱物を排滓前に投入した水準では、図中に矢印を付与した時点から曲線の傾きが大きくなっており、フォーミングの成長が速くなる現象が見られた。硫化鉱物の排滓前投入量とスラグ排出量から算出したスラグS濃度の経時変化を図6に示す。図5でフォーミングの成長が速くなるのは、いずれもスラグS濃度が0.1%以下になったタイミングであった。すなわち、排滓初期は排滓鍋内スラグのS濃度が高いためにフォーミングが抑制されるが、次第にSが希釈されてS濃度が0.1%以下になるとフォーミングが起こりやすくなるといえる。このように、排滓前に硫化鉱物を投入することでフォーミングを抑制することができ、その効果が得られるスラグのS濃度は小型炉実験と同様に0.1%以上であることが分かった。   In FIG. 5, the larger the slope of the curve, the faster the growth of forming. At the level where sulfide minerals were introduced before displacement, the slope of the curve became large from the time when the arrow was given in the figure, and the phenomenon that the growth of forming was accelerated was observed. The time-dependent change of slag S density | concentration calculated from the discharge pre-discharge amount of a sulfide mineral and slag discharge amount is shown in FIG. The growth of forming in FIG. 5 is accelerated at all when the concentration of slag S becomes 0.1% or less. That is, although the S concentration of the slag in the waste ladle is high at the initial stage of discharge, forming is suppressed, but when S is gradually diluted and the S concentration becomes 0.1% or less, it can be said that forming easily occurs. As described above, it was found that the forming can be suppressed by feeding the sulfide mineral before discharging, and the S concentration of the slag from which the effect can be obtained is 0.1% or more as in the small-sized furnace experiment. .

排滓鍋へ排出されたスラグのフォーミングは、排滓開始から1分の間が最も激しい。そこで本発明では、排滓開始から1分間の間に排出されうる最大のスラグ量(Wslag-1)に対してスラグS濃度が0.1%以上となるように、硫化鉱物を排滓前に排滓鍋へ投入する。そのような条件を満足する硫化鉱物の排滓前投入量(wore)の範囲は式(5)(前記式(1)と同じ)で表される。なお、排滓開始から1分間の最大スラグ排出量(Wslag-1)は、過去のデータに基づいて定めることができる。例えば、排滓開始から1分間の平均スラグ排出量を1.2倍にした値として定めることができる。

Figure 2019108566
ore:硫化鉱物の排滓前投入量(kg)
slag-1:排滓開始から1分間の最大スラグ排出量(kg)
(%S) ore:硫化鉱物のS濃度(質量%) The forming of the slag discharged to the waste pan is most severe for 1 minute from the start of the discharge. Therefore, in the present invention, the sulfide mineral is removed before the discharge so that the slag S concentration is 0.1% or more with respect to the maximum amount of slag ( Wslag-1 ) which can be discharged in 1 minute from the start of the discharge. Into the waste pan. The range of the pre-discharge amount (w ore ) of the sulfide mineral satisfying such conditions is represented by the formula (5) (same as the formula (1)). In addition, the maximum slag discharge amount ( Wslag-1 ) for 1 minute from the discharge start can be determined based on the past data. For example, it can be set as a value obtained by multiplying the average slag discharge amount for one minute from the start of the discharge by 1.2.
Figure 2019108566
w ore : Predischarge amount of sulfide mineral (kg)
W slag-1 : Maximum slag discharge (kg) for 1 minute from the start of discharge
(% S) ore : S concentration of sulfide mineral (mass%)

硫化鉱物の排滓前投入量があまりに過剰な場合は排滓後のスラグS濃度が0.4%超となる恐れがある。加えて、過剰投入は硫化鉱物の溶解不良に繋がりやすい。したがって、過剰投入を避けるために、スラグ組成や温度、炉内スラグ量などの操業実績からスラグ排出量を予測し、硫化鉱物の排滓前投入量を調整するなどの手段を取ることが好ましい。   If the pre-discharge amount of sulfided minerals is excessively large, there is a possibility that the concentration of slag S after the discharge becomes 0.4% or more. In addition, excessive input tends to lead to poor dissolution of sulfide minerals. Therefore, in order to avoid excessive introduction, it is preferable to take measures such as predicting the amount of slag discharge from operation results such as the slag composition and temperature, the amount of in-furnace slag, and adjusting the pre-discharge amount of sulfided mineral.

排滓開始から1分間の最大スラグ排出量は、スラグ組成や温度、炉内スラグ量などに依存するが、これは各々の転炉における操業条件から実現しうる最大値を用いれば良い。   The maximum slag discharge amount for one minute from the start of the discharge depends on the slag composition, the temperature, the amount of slag in the furnace, etc., but the maximum value that can be realized from the operation conditions in each converter may be used.

排滓の進行に伴ってスラグのS濃度は徐々に低下する。前記したようにS濃度が0.1質量%以上であればフォーミング抑制効果は持続し、排滓鍋からスラグが溢れることなく排滓することができるが、0.1質量%未満になるとフォーミングが進行しやすくなる。したがって、硫化鉱物の排滓前投入量(wore)とスラグ排出量からスラグのS濃度を算出し、スラグのS濃度が0.1質量%未満となる前に硫化鉱物を追加投入する。この追加投入は、硫化鉱物追加投入開始時のスラグの排出量(Wslag-A)が式(6)(前記式(2)と同じ)の条件を満たしている期間内に開始する。

Figure 2019108566
ore:硫化鉱物の排滓前投入量(kg)
(%S) ore:硫化鉱物のS濃度(質量%)
slag-A:硫化鉱物追加投入開始時のスラグ排出量(kg) The concentration of S in the slag gradually decreases with the progress of the drainage. As described above, if the S concentration is 0.1% by mass or more, the forming suppression effect is maintained, and the slag can be discharged without overflowing from the waste pan, but if less than 0.1% by mass, the forming is It becomes easy to progress. Therefore, the S concentration of slag is calculated from the pre-discharge amount (w ore ) of sulfide minerals and the slag discharge amount, and sulfide minerals are additionally charged before the S concentration of slag becomes less than 0.1 mass%. This additional charging starts within a period in which the amount of slag discharge ( Wslag-A ) at the start of the additional introduction of sulfide mineral satisfies the condition of the equation (6) (same as the above equation (2)).
Figure 2019108566
w ore : Predischarge amount of sulfide mineral (kg)
(% S) ore : S concentration of sulfide mineral (mass%)
W slag-A : Slag emissions at the start of addition of sulfide minerals (kg)

この追加投入により、スラグS濃度を0.1質量%以上に維持する。一方で、小型炉の実験結果からスラグのS濃度は0.4質量%超とする必要はない。排滓後スラグのS濃度が過剰に高いと、散水処理や水没処理によりスラグを冷却する際に有害なH2Sガスが発生する恐れもある。したがって、排滓後のスラグS濃度は0.4質量%以下である。 By this additional charging, the slag S concentration is maintained at 0.1 mass% or more. On the other hand, it is not necessary to make S concentration of slag into 0.4 mass% or more from the experimental result of a small-sized furnace. If the S concentration of the post-discharge slag is excessively high, harmful H 2 S gas may be generated when the slag is cooled by water spray treatment or submersion treatment. Therefore, the slag S concentration after displacement is 0.4% by mass or less.

このことから、本発明において排滓前投入分も含めた排滓終了までの硫化鉱物の合計投入量(Wore)の範囲は式(7)(前記式(3)と同じ)で表される。

Figure 2019108566
ore:硫化鉱物の合計投入量(kg)
(%S) ore:硫化鉱物のS濃度(質量%)
slag-T:合計スラグ排出量(kg) From this, in the present invention, the range of the total input amount (W ore ) of sulfided minerals until the end of the discharge including the input before the discharge is represented by the formula (7) (same as the above formula (3)) .
Figure 2019108566
W ore : Total input of sulfide minerals (kg)
(% S) ore : S concentration of sulfide mineral (mass%)
W slag-T : Total slag discharge (kg)

なお、硫化鉱物の排滓前投入のみにより、排滓開始から排滓終了までスラグS濃度を0.1%以上に維持できる場合は、追加投入を行うか否かは当業者が任意に選択できる。   If the slag S concentration can be maintained at 0.1% or more from the start of the discharge to the end of the discharge only by the pre-discharge of the sulfide mineral, one skilled in the art can arbitrarily select whether or not to carry out the additional input. .

硫化鉱物は、排滓流の落下位置近傍へ投入することがより好ましい。この位置ではスラグが激しく撹拌されるため、硫化鉱物に含まれるSをより迅速にスラグへ溶解させることができ、フォーミングを効率的に抑制しやすくなる。   The sulfided mineral is more preferably charged near the dropping position of the drainage flow. At this position, since the slag is vigorously stirred, S contained in the sulfide mineral can be dissolved into the slag more quickly, and forming can be easily suppressed efficiently.

本発明の方法を実施することにより、転炉の炉口からスラグを排出する際の排滓鍋内におけるスラグのフォーミングを抑制でき、スラグ溢れを起こすことなく多量のスラグを転炉から排出できる。   By carrying out the method of the present invention, it is possible to suppress the forming of slag in the discharge pan when discharging the slag from the furnace port of the converter, and a large amount of slag can be discharged from the converter without causing the slag overflow.

本発明は、転炉へ溶銑を装入して吹錬を行い、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させて炉体下方に設置した排滓鍋にスラグを排出する転炉精錬方法に用いることができる。具体的には、1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う転炉吹錬方法である。また他の転炉吹錬方法としては、2基の転炉の片方において脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う転炉吹錬方法である。これらはフォーミング現象を利用して炉口からスラグを排出するという形態は同様であるから、本発明を用いることでその効果を享受できる。   In the present invention, the molten iron is charged into the converter and blowing is performed, and the blowing is temporarily interrupted and the converter is tilted while leaving the molten iron in the furnace, and the slag is disposed in the waste ladle installed below the furnace body. Can be used for converter smelting methods that discharge Specifically, after charging molten metal into one converter and performing desiliconization and dephosphorization blowing, the converter is tilted while leaving the molten metal in the furnace to discharge slag from the furnace opening. This is a converter blowing method in which decarburizing blowing is subsequently performed after returning the converter vertically. As another converter blowing method, after performing desiliconization blowing in one of the two converters, the converter is tilted while leaving the molten iron in the furnace to discharge slag from the furnace opening, It is a converter blowing method where dephosphorization blowing is continued after returning the converter vertically. Since the form which discharges slag from a furnace opening using a forming phenomenon is the same as these, the effect can be enjoyed by using this invention.

前記した精錬方法以外においても、ある精錬容器から別の精錬容器へスラグが排出・流出する段階でフォーミングの抑制が必要な場合は、本発明を用いることでスラグの溢れを抑制できる。   In the case where it is necessary to suppress the forming at the stage where the slag is discharged and flowed out from one smelting vessel to another smelting vessel other than the above-described smelting method, the overflow of the slag can be suppressed by using the present invention.

以下に表1〜3を基にして本発明の実施例を具体的に説明する。内容積300m3の転炉へ400tの溶銑を装入して吹錬を行い、吹錬を一旦中断して炉内に溶銑を残したまま転炉を傾動させ、炉体下方に設置した排滓鍋(底面から鍋縁までの高さ:4.5m、内容積:70m3)に排出した。排滓開始前には硫化鉱物を排滓鍋内に投入し、排滓開始後は所定量のスラグを排出したところから、硫化鉱物を排滓鍋内のスラグへ連続的に投入した。排滓中は排滓鍋内の様子を観察し、スラグ表面が排滓鍋の鍋縁の高さに到達した時点で排滓を終了した。スラグ表面が鍋縁高さまで到達しなかった場合は、排滓開始から4分経過した時点で排滓を終了した。表1〜3において、本発明範囲から外れる数値に下線を付している。 Examples of the present invention will be specifically described based on Tables 1 to 3 below. Perform blowing and charged molten iron 400t to the converter of the internal volume of 300 meters 3, temporarily tilt the left converter leaving the hot metal to be suspended within the furnace blowing, it was placed in the furnace body downward Haikasu It was discharged into a pot (height from the bottom to the rim of the pot: 4.5 m, internal volume: 70 m 3 ). Sulfide minerals were put into the waste pan before the discharge start, and after starting the discharge, a predetermined amount of slag was discharged, and then the sulfide minerals were continuously put into the slag in the discharge pot. During the discharge, the condition in the discharge pan was observed, and when the slag surface reached the height of the pan edge of the discharge pan, the discharge was finished. When the slag surface did not reach the pan edge height, the evacuation was finished at 4 minutes after the initiation of the evacuation. In Tables 1 to 3, numerical values outside the scope of the present invention are underlined.

排滓鍋を設置する移動台車に取り付けた秤量機で重量変化を測定し、各時点のスラグ排出量(Wslag)及びスラグ排出終了後の合計スラグ排出量(Wslag-T)を評価した。フォーミング抑制効果が優れるほど、合計スラグ排出量(Wslag-T)が高くなる。 The weight change was measured with a weighing machine attached to a movable carriage on which the waste pan was installed, and the slag discharge amount ( Wslag ) at each time point and the total slag discharge amount ( Wslag-T ) after the end of slag discharge were evaluated. As the forming suppression effect is more excellent, the total slag discharge amount ( Wslag-T ) becomes higher.

排滓量(合計スラグ排出量)は、排滓鍋でのスラグのフォーミングの他、転炉内のスラグ重量や排滓鍋の内容積などの影響を受ける。本実施例の条件では、表2に結果を示す連続処理方式で排滓量12t以上を、表3に結果を示す分離処理方式で排滓量8t以上を良好な排滓量とする。   The discharge amount (total slag discharge amount) is affected by the slag weight in the converter, the inner volume of the discharge pot, and the like in addition to the forming of the slag in the discharge pot. Under the conditions of the present embodiment, a displacement amount of 12 t or more is a continuous treatment method whose results are shown in Table 2, and a displacement amount of 8 t or more is a good displacement amount in a separation treatment method whose results are shown in Table 3.

排滓終了後にスラグ面の上方1mにおいて空気をサンプリングし、硫化水素の濃度を分析した。排滓鍋はスラグ処理場へ搬送して反転し、散水してスラグを冷却した。冷却中にスラグ面の上方1mにおいて空気をサンプリングし、硫化水素の濃度を分析した。   After the displacement, air was sampled 1 m above the slag surface, and the concentration of hydrogen sulfide was analyzed. The waste ladle was transported to the slag treatment plant and inverted, and water was sprayed to cool the slag. The air was sampled 1 m above the slag surface during cooling to analyze the concentration of hydrogen sulfide.

本実施例における硫化鉱物の成分組成を表1に示す。A1〜A2は黄鉄鉱、B1は硫化マンガン鉱であり、組成は本発明の範囲内である。C1〜C2は比較例であり、下線を示した項目が請求項記載の範囲外である。C2については試験的にS濃度を高めるため、黄鉄鉱と高純度硫黄の混合物とした。   The composition of the sulfided mineral in this example is shown in Table 1. A1 to A2 are pyrite and B1 is manganese sulfide ore, and the composition is within the scope of the present invention. C1 to C2 are comparative examples, and the underlined items are out of the scope of the claims. C2 was a mixture of pyrite and high purity sulfur to increase S concentration experimentally.

Figure 2019108566
Figure 2019108566

ここで、実施例が本発明の範囲内であることを判別する指標として「比率A」「比率B」「比率C」を定義する。まず「比率A」は式(8)より求められる数値である。この値が0.1以上であれば排滓前の硫化鉱物投入量は前記式(1)を満たす。

Figure 2019108566
ore:硫化鉱物の排滓前投入量(kg)
(%S) ore:硫化鉱物のS濃度(質量%)
slag-1:排滓開始から1分間の最大スラグ排出量(kg) Here, “ratio A”, “ratio B”, and “ratio C” are defined as indices for determining that the embodiment is within the scope of the present invention. First, "ratio A" is a numerical value obtained from equation (8). If this value is 0.1 or more, the amount of sulfide mineral input before displacement satisfies the formula (1).
Figure 2019108566
w ore : Predischarge amount of sulfide mineral (kg)
(% S) ore : S concentration of sulfide mineral (mass%)
W slag-1 : Maximum slag discharge (kg) for 1 minute from the start of discharge

また「比率B」は式(9)より求められる数値である。この値が0.1以上であれば前記式(2)を満たしており、追加投入を開始するタイミングは本発明の範囲内である。

Figure 2019108566
slag-A:硫化鉱物追加投入開始時のスラグ排出量(kg) Also, “ratio B” is a numerical value obtained from equation (9). If this value is 0.1 or more, the above equation (2) is satisfied, and the timing for starting the additional charging is within the scope of the present invention.
Figure 2019108566
W slag-A : Slag emissions at the start of addition of sulfide minerals (kg)

さらに「比率C」は式(10)より求められる数値である。この値が0.1〜0.4であれば前記式(3)を満たしており、硫化鉱物の合計投入量は本発明の範囲内である。

Figure 2019108566
ore:硫化鉱物の合計投入量(kg)
slag-T:合計スラグ排出量(kg) Furthermore, “ratio C” is a numerical value obtained from equation (10). If this value is 0.1 to 0.4, the above formula (3) is satisfied, and the total amount of sulfide minerals is within the scope of the present invention.
Figure 2019108566
W ore : Total input of sulfide minerals (kg)
W slag-T : Total slag discharge (kg)

表2に連続処理方式の脱珪・脱燐吹錬後の排滓における実施例を示す。スラグ組成は塩基度(CaO/SiO2)が1.0〜1.2、酸化鉄濃度が20〜30質量%であり、温度は1330〜1350℃であった。また、この条件における排滓開始から1分間の最大スラグ排出量(Wslag-1)は8000kgであった。 Table 2 shows an example of discharge after desiliconization and dephosphorization blowing in a continuous treatment system. The slag composition had a basicity (CaO / SiO 2 ) of 1.0 to 1.2, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1330 to 1350 ° C. Moreover, the maximum slag discharge amount ( Wslag-1 ) of 1 minute from the discharge start in this condition was 8000 kg.

実施例1〜7は発明例であり、いずれも硫化鉱物の投入方法が本発明の範囲内であったため、スラグが鍋縁高さに到達することなく4分間排滓でき、排滓量は12.0t以上になった。また発生H2S濃度は排滓中、スラグ冷却中のいずれも1ppm以下であった。なお、実施例6では3mm未満の質量割合が実施例1よりも多かったため、投入時に一部が舞い上がって排滓鍋に入らず、排滓量が実施例1よりも低くなった。また、実施例7では20mm以上の質量割合が実施例1よりも多かったため、スラグへの溶解が遅くなり、排滓量が実施例1よりも低くなった。 Examples 1 to 7 are invention examples, and since the method for feeding sulfide minerals is within the scope of the present invention, slag can be discharged for 4 minutes without reaching the height of the pan, and the amount of discharge is 12 It became more than .0t. Further, the generated H 2 S concentration was 1 ppm or less both during the discharge and during the slag cooling. In addition, in Example 6, since the mass ratio of less than 3 mm was larger than Example 1, a part rose up at the time of injection | throwing-in and did not enter into a drainage pan, and the displacement amount became lower than Example 1. Moreover, in Example 7, since the mass ratio of 20 mm or more was larger than Example 1, melt | dissolution to slag became late and the amount of displacement became lower than Example 1. FIG.

実施例8〜14は比較例である。実施例8では硫化鉱物を投入しなかったため排滓開始後1分でスラグが鍋縁高さに達し、排滓量は8.0tにとどまった。実施例9では硫化鉱物のS濃度が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後1.3分でスラグが鍋縁高さに達し、排滓量は9.0tにとどまった。実施例10では硫化鉱物のS濃度が本発明の範囲より過大であったためSの蒸発が多くなり、排滓中にH2Sが最大で1.2ppm発生した。実施例11では硫化鉱物の排滓前投入量が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後1.5分でスラグが鍋縁高さに達し、排滓量は9.5tにとどまった。実施例12では硫化鉱物の追加投入開始が本発明の範囲より遅かったため十分なフォーミング抑制効果が得られず、排滓開始後2.3分でスラグが鍋縁高さに達し、排滓量は11.5tにとどまった。実施例13では排滓前投入分も含めた硫化鉱物の合計投入量が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後2.2分でスラグが鍋縁高さに達し、排滓量は11.0tにとどまった。実施例14では排滓前投入分も含めた硫化鉱物の合計投入量が本発明の範囲より過大であったため、冷却中にH2Sが最大で1.2ppm発生した。 Examples 8 to 14 are comparative examples. In Example 8, since the sulfide mineral was not added, the slag reached the pan edge height one minute after the discharge start, and the discharge amount remained at 8.0 t. In Example 9, since the S concentration of the sulfide mineral is too small compared with the range of the present invention, the forming suppression effect is small, and the slag reaches the pan edge height 1.3 minutes after the discharge start, and the discharge amount is 9.0t. Stayed In Example 10, since the S concentration of the sulfide mineral was larger than the range of the present invention, evaporation of S increased, and H 2 S was generated up to 1.2 ppm in the waste. In Example 11, since the amount of pre-displacement of sulfide minerals was too small compared with the range of the present invention, the forming suppression effect is small, and the slag reaches the pan edge height 1.5 minutes after the initiation of the elimination, and the amount of evacuation is It was only 9.5t. In Example 12, since the start of the additional introduction of sulfide mineral is later than the range of the present invention, a sufficient forming suppression effect can not be obtained, and the slag reaches the pan edge height 2.3 minutes after the discharge start, and the discharge amount is It stayed at 11.5t. In Example 13, since the total input amount of sulfided minerals including the pre-discharge portion was too small compared with the range of the present invention, the forming suppression effect is small, and the slag height was 2.2 minutes after the start of the discharge. Reached a displacement of 11.0 t. In Example 14, since the total input amount of sulfided minerals including the pre-waste input amount was larger than the range of the present invention, H 2 S was generated at maximum 1.2 ppm during cooling.

Figure 2019108566
Figure 2019108566

表3に分離処理方式における脱珪吹錬後の排滓における実施例を示す。スラグ組成は塩基度(CaO/SiO2)が0.6〜0.8、酸化鉄濃度が20〜30質量%であり、温度は1300〜1330℃であった。また、この条件における排滓開始から1分間の最大スラグ排出量(Wslag-1)は5000kgであった。 Table 3 shows an example of scraping after desiliconization in the separation processing system. The slag composition had a basicity (CaO / SiO 2 ) of 0.6 to 0.8, an iron oxide concentration of 20 to 30% by mass, and a temperature of 1300 to 1330 ° C. Moreover, the maximum slag discharge amount ( Wslag-1 ) of 1 minute from the discharge start in this condition was 5000 kg.

実施例15〜21は発明例であり、いずれも硫化鉱物の投入方法が本発明の範囲内であったため、スラグが鍋縁高さに到達することなく4分間排滓でき、排滓量は8.0t以上になった。また発生H2S濃度は排滓中、スラグ冷却中のいずれも1ppm以下であった。なお、実施例20では3mm未満の質量割合が実施例15よりも多かったため、投入時に一部が舞い上がって排滓鍋に入らず、排滓量が実施例15よりも低くなった。また、実施例21では20mm以上の質量割合が実施例15よりも多かったため、スラグへの溶解が遅くなり、排滓量が実施例15よりも低くなった。 Since Examples 15 to 21 are invention examples, and all of the methods for feeding sulfide minerals were within the scope of the present invention, slag can be discharged for 4 minutes without reaching the pan edge height, and the discharge amount is 8 It became more than .0t. Further, the generated H 2 S concentration was 1 ppm or less both during the discharge and during the slag cooling. In addition, in Example 20, since the mass ratio of less than 3 mm was larger than Example 15, a part turned up at the time of injection, did not enter into a drainage pan, and the displacement amount became lower than Example 15. Moreover, in Example 21, since the mass ratio of 20 mm or more was larger than Example 15, melt | dissolution to slag became late and the amount of displacement became lower than Example 15.

実施例22〜27は比較例である。実施例22では硫化鉱物を投入しなかったため排滓開始後1分でスラグが鍋縁高さに達し、排滓量は5.0tにとどまった。実施例23では硫化鉱物のS濃度が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後1.5分でスラグが鍋縁高さに達し、排滓量は6.0tにとどまった。実施例24では硫化鉱物のS濃度が本発明の範囲より過大であったためSの蒸発が多くなり、排滓中にH2Sが最大で1.2ppm発生した。実施例25では硫化鉱物の排滓前投入量が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後1.5分でスラグが鍋縁高さに達し、排滓量は6.3tにとどまった。実施例26では排滓前投入分も含めた硫化鉱物の合計投入量が本発明の範囲より過小であったためフォーミング抑制効果が小さく、排滓開始後2分でスラグが鍋縁高さに達し、排滓量は7.5tにとどまった。実施例27では排滓前投入分も含めた硫化鉱物の合計投入量が本発明の範囲より過大であったため、冷却中にH2Sが最大で1.1ppm発生した。 Examples 22 to 27 are comparative examples. In Example 22, since the sulfide mineral was not added, the slag reached the pan edge height 1 minute after the discharge start, and the discharge amount remained at 5.0 t. In Example 23, since the S concentration of the sulfide mineral is too small compared with the range of the present invention, the forming suppression effect is small, and the slag reaches the pan edge height 1.5 minutes after the discharge start, and the discharge amount is 6.0t Stayed In Example 24, since the S concentration of the sulfide mineral was larger than the range of the present invention, evaporation of S increased, and H 2 S was generated at maximum 1.2 ppm in the waste. In Example 25, since the pre-displacement amount of sulfided mineral was too small compared with the range of the present invention, the forming suppression effect is small, and the slag reaches the pan edge height 1.5 minutes after the initiation of the displacement, and the displacement amount is It was only 6.3t. In Example 26, since the total input amount of sulfided minerals including the pre-discharge portion was smaller than the range of the present invention, the forming suppression effect is small, and the slag reaches the pan edge height 2 minutes after the start of the discharge, The displacement amount was only 7.5t. In Example 27, since the total input amount of sulfided minerals including the pre-discharge input amount was larger than the range of the present invention, H 2 S was generated at maximum 1.1 ppm during cooling.

Figure 2019108566
Figure 2019108566

Claims (4)

転炉の下方に設置した排滓鍋へSを20〜55質量%含有する硫化鉱物を投入するスラグのフォーミング抑制方法であって、
(i)前記転炉の炉口からスラグを排出する前に、式(1)を満たす量の硫化鉱物を前記排滓鍋へ投入し、さらに、
(ii)スラグ排出量が式(2)の条件を満たしている期間内に硫化鉱物を前記排滓鍋へ追加投入し、又は追加投入せず、
(iii)排滓前投入分も含めた排滓終了までの硫化鉱物の合計投入量が式(3)を満たすことを特徴とする、スラグのフォーミング抑制方法。
Figure 2019108566
Figure 2019108566
Figure 2019108566
ore:硫化鉱物の排滓前投入量(kg)
ore:硫化鉱物の合計投入量(kg)
(%S) ore:硫化鉱物のS濃度(質量%)
slag-1:排滓開始から1分間の最大スラグ排出量(kg)
slag-A:硫化鉱物追加投入開始時のスラグ排出量(kg)
slag-T:合計スラグ排出量(kg)
It is a forming suppression method of the slag which throws in the sulfided mineral which contains S 20-55 mass% to the waste ladle installed below the converter,
(I) Before discharging slag from the furnace port of the converter, an amount of sulfide mineral satisfying the formula (1) is introduced into the waste pan, and
(Ii) Add or not add sulfided mineral to the waste pan during a period in which the amount of slag discharge satisfies the condition of the formula (2),
(Iii) A method for suppressing the formation of slag, wherein the total input amount of sulfided minerals up to the end of the discharge including the pre-discharge portion satisfies the formula (3).
Figure 2019108566
Figure 2019108566
Figure 2019108566
w ore : Predischarge amount of sulfide mineral (kg)
W ore : Total input of sulfide minerals (kg)
(% S) ore : S concentration of sulfide mineral (mass%)
W slag-1 : Maximum slag discharge (kg) for 1 minute from the start of discharge
W slag-A : Slag emissions at the start of addition of sulfide minerals (kg)
W slag-T : Total slag discharge (kg)
前記硫化鉱物の粒度は、粒径3〜20mmが80質量%以上であることを特徴とする、請求項1に記載のスラグのフォーミング抑制方法。   The method for suppressing the formation of slag according to claim 1, wherein the particle size of the sulfided mineral is 80% by mass or more in a particle diameter of 3 to 20 mm. 1基の転炉に溶銑を装入して脱珪・脱燐吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱炭吹錬を行う精錬方法において、脱燐吹錬後のスラグ排出時に請求項1又は請求項2に記載のフォーミング抑制方法を用いることを特徴とした転炉精錬方法。   After charging the molten metal into one converter and performing desiliconization and dephosphorization blowing, the converter is tilted while leaving the molten metal in the furnace to discharge the slag from the furnace port, and the converter is vertical The converter refining method according to claim 1 or 2, wherein the decarburizing blowout is subsequently carried out after the dephosphorization blowout is carried out and the slag is discharged after the dephosphorization blowout. 2基の転炉の片方に溶銑を装入して脱珪吹錬を行った後、炉内に溶銑を残したまま転炉を傾動させてスラグを炉口から排出し、転炉を垂直に戻した後に引き続いて脱燐吹錬を行う精錬方法において、脱珪吹錬後のスラグ排出時に請求項1又は請求項2に記載のフォーミング抑制方法を用いることを特徴とした転炉精錬方法。   After charging the molten metal into one of the two converters and desiliconizing and blowing, the converter is tilted while leaving the molten metal in the furnace to discharge the slag from the furnace port, and the converter vertically made In the refinement method which carries out dephosphorization blowing subsequently after returning, the converter formation refining method characterized by using the forming suppression method according to claim 1 or 2 at the time of slag discharge after desiliconization blowing.
JP2017240461A 2017-12-15 2017-12-15 Slag forming suppression method and converter refining method Active JP6915522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017240461A JP6915522B2 (en) 2017-12-15 2017-12-15 Slag forming suppression method and converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240461A JP6915522B2 (en) 2017-12-15 2017-12-15 Slag forming suppression method and converter refining method

Publications (2)

Publication Number Publication Date
JP2019108566A true JP2019108566A (en) 2019-07-04
JP6915522B2 JP6915522B2 (en) 2021-08-04

Family

ID=67179138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240461A Active JP6915522B2 (en) 2017-12-15 2017-12-15 Slag forming suppression method and converter refining method

Country Status (1)

Country Link
JP (1) JP6915522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105571A (en) * 2018-12-27 2020-07-09 日本製鉄株式会社 Slag forming suppressing method and converter refining method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289110A (en) * 1991-03-18 1992-10-14 Nippon Steel Corp Method for killing slag foaming in melt-reduction refining operation
JP2008255446A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method for killing slag
JP2016148061A (en) * 2015-02-10 2016-08-18 Jfeスチール株式会社 Suppression method for foaming of molten slag and method for production of slag product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289110A (en) * 1991-03-18 1992-10-14 Nippon Steel Corp Method for killing slag foaming in melt-reduction refining operation
JP2008255446A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Method for killing slag
JP2016148061A (en) * 2015-02-10 2016-08-18 Jfeスチール株式会社 Suppression method for foaming of molten slag and method for production of slag product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105571A (en) * 2018-12-27 2020-07-09 日本製鉄株式会社 Slag forming suppressing method and converter refining method
JP7147550B2 (en) 2018-12-27 2022-10-05 日本製鉄株式会社 Slag foaming suppression method and converter refining method

Also Published As

Publication number Publication date
JP6915522B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP4196997B2 (en) Hot metal processing method
CA2715322C (en) Method for removing copper in steel scraps
JP5772339B2 (en) Reuse method of slag in ladle
JP6816777B2 (en) Slag forming suppression method and converter refining method
JP6753476B2 (en) Slag forming sedative material, slag forming sedative method and converter blowing method
JP2019108566A (en) Method of suppressing slag foaming and converter refining
KR101366304B1 (en) Desulfurizer for molten iron
JP2019194350A (en) Recycling method of converter slag
JP6835233B2 (en) Slag forming suppression method and converter refining method
JP5888194B2 (en) Desulfurization method for molten steel
JP7147550B2 (en) Slag foaming suppression method and converter refining method
JP4661305B2 (en) Hot metal decarburization refining method
JP6468084B2 (en) Converter discharge method
JP4687307B2 (en) Hot metal desulfurization method
JP2022041397A (en) Slag foaming depressing method and converter refining method
JP5574468B2 (en) Cast iron refining method and refining apparatus
JP6468083B2 (en) Converter discharge method
JP2008260997A (en) Desulfurization method of molten steel
SU1145036A1 (en) Steel melting method
JP5545148B2 (en) Molten steel refining method
JP6126355B2 (en) Hot metal desulfurization treatment method
RU2336310C2 (en) Method of melting of carbonic and low alloyed grades of steel
JP2006274430A (en) Agent and method for preventing slag foaming
JPH07179919A (en) Method for desulfurizing molten iron
UA18164U (en) Method for slag introduction in steel-smelting units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R151 Written notification of patent or utility model registration

Ref document number: 6915522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151