JP2019079789A - Preparing method of electrode for vanadium redox battery - Google Patents

Preparing method of electrode for vanadium redox battery Download PDF

Info

Publication number
JP2019079789A
JP2019079789A JP2018181203A JP2018181203A JP2019079789A JP 2019079789 A JP2019079789 A JP 2019079789A JP 2018181203 A JP2018181203 A JP 2018181203A JP 2018181203 A JP2018181203 A JP 2018181203A JP 2019079789 A JP2019079789 A JP 2019079789A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
vanadium redox
vinyl acetate
electrode
redox battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018181203A
Other languages
Japanese (ja)
Other versions
JP6700360B2 (en
Inventor
李道玉
Daoyu Li
彭穂
Sui Peng
▲韓▼慧果
Huiguo Han
▲陳▼勇
Yong Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Original Assignee
Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd filed Critical Chengdu Advanced Metal Materials Industry Technology Research Institute Co Ltd
Publication of JP2019079789A publication Critical patent/JP2019079789A/en
Application granted granted Critical
Publication of JP6700360B2 publication Critical patent/JP6700360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

SOLUTION: A preparing method includes a step (a) of pretreatment of carbon nanotubes, a step (b) of preparation of vanadium oxide gel, a step (c) of blending of ethylene vinyl acetate copolymer and carbon nanotubes and the like, and a step (d) of foaming a composition of the ethylene vinyl acetate copolymer and the carbon nanotubes, which is a step of taking an appropriate amount of composition prepared in the step (c), placing the composition in a mold with the electrode size and thickness required for an assembled vanadium redox battery, foaming the composition at 160 to 190°C for 15 to 30 minutes, cooling the composition to the room temperature, leaving the composition for 24 to 36 hours at the room temperature, and removing and preparing a product.EFFECT: (1) A low cost and easy preparation method is provided. (2) A chemical formula and a functional group are adjusted according to different requirements of a vanadium redox battery. (3) The amount of introduced active functional groups is large and the control is easily performed. (4) The conductivity of a prepared product is easily controlled.SELECTED DRAWING: None

Description

本発明は、バナジウムレドックス電池の電極材料を調製する方法、特に、バナジウムレドックス電池用の電極を調製する方法に関する。   The present invention relates to a method of preparing an electrode material of a vanadium redox battery, in particular to a method of preparing an electrode for a vanadium redox battery.

バナジウムレドックス電池は、基本的に、エンドプレート、バイポーラプレート、電極およびダイヤフラムなどの主要材料から成る大規模なエネルギー貯蔵に適した比較的クリーンな電池システムである。バナジウムレドックス電池の最も重要な構成要素の1つとして、電極およびその関連特性(コストおよび処理技術などを含む)は、バナジウムレドックス電池システムの研究開発にとって重要な側面となっている。バナジウム電極の研究開発において、研究者らは、金属材料、グラファイト板、炭素電極の詳細な調査を行い、現在ではポリアクリロニトリル炭素繊維フェルトがバナジウムレドックス電池に用いられている電極材料の中で最も一般的であるが、バナジウムレドックス電池の要求を満たすことができないことを発見した。その主な理由は以下の通りである。(1)現在市販されている炭素繊維フェルトはバナジウムレドックス電池用に特別に製造されていないので、電池におけるその活性は不十分である。使用前に、グラファイトフェルトの表面を処理してその性能を改善しなければならない。グラファイトフェルトの一般的な処理方法としては、金属イオン改質、酸処理、熱処理、アンモニア化処理、電気化学的処理および総合的な処理などがある。比較的熟慮された処理方法は、酸処理のような工業生産を実現することができるが、深刻な環境汚染、複雑な操作、熱処理中の高エネルギー消費のような不利点がある。これらの処理方法は、炭素繊維フェルトの活性を高める一方で、炭素繊維フェルトの表面上のグラファイト層の構造を損なう可能性があり、その結果、炭素繊維フェルトの導電性を低下させる可能性がある。また、金属改質により、バナジウムレドックス電池の性能に好ましくない不純物がいくらか導入される場合があり、プラズマ処理やアンモニア化処理が工業生産を実現するのは難しい。(2)炭素繊維フェルトは高価であり、使用前に活性化処理が必要となり、大きなコストアップにつながる。バナジウムレドックス電池の開発において、価格は市場で販売できるかどうかを決定する重要な要因である。したがって、価格を下げることは効果的にバナジウムレドックス電池の開発を促進する。   Vanadium redox batteries are basically relatively clean battery systems suitable for large-scale energy storage consisting of main materials such as end plates, bipolar plates, electrodes and diaphragms. As one of the most important components of vanadium redox batteries, the electrodes and their associated characteristics (including cost and processing technology etc.) are important aspects for research and development of vanadium redox battery systems. In the research and development of vanadium electrodes, researchers conducted a detailed investigation of metal materials, graphite plates, and carbon electrodes, and polyacrylonitrile carbon fiber felt is currently the most common electrode material used in vanadium redox batteries. It has been discovered that the requirements of vanadium redox batteries can not be met. The main reasons are as follows. (1) Since carbon fiber felts currently marketed are not specially manufactured for vanadium redox batteries, their activity in batteries is insufficient. Before use, the surface of the graphite felt must be treated to improve its performance. Typical methods for treating graphite felt include metal ion modification, acid treatment, heat treatment, ammonification treatment, electrochemical treatment and comprehensive treatment. Relatively considered treatment methods can realize industrial production such as acid treatment, but have disadvantages such as severe environmental pollution, complicated operation, high energy consumption during heat treatment. While these treatments increase the activity of the carbon fiber felt, they can damage the structure of the graphite layer on the surface of the carbon fiber felt, and as a result, can reduce the conductivity of the carbon fiber felt. . Also, metal modification may introduce some impurities that are not desirable for the performance of vanadium redox batteries, and it is difficult for plasma treatment and ammonification treatment to realize industrial production. (2) Carbon fiber felt is expensive and requires activation treatment before use, leading to significant cost increase. In the development of vanadium redox batteries, price is an important factor in determining whether it can be marketed. Thus, lowering the price effectively promotes the development of vanadium redox batteries.

本発明により解決すべき技術的課題は、バナジウムレドックス電池用の電極を低コストで、さらなる後処理なしに調製する方法を提供することである。   The technical problem to be solved by the present invention is to provide a method for preparing an electrode for a vanadium redox battery at low cost without further aftertreatment.

本発明の技術的課題を解決するための技術スキームは、バナジウムレドックス電池用の電極の調製方法において:
(a)カーボンナノチューブの前処理ステップであって:多層カーボンナノチューブを選択して、質量%で5%の過酸化水素中に浸漬し、常温で5〜8時間超音波処理した後、遠心分離処理を行い;続いてカーボンナノチューブを蒸留水で2〜3回浸出させた後、乾燥させ、濃硫酸と濃硝酸との混酸溶液に1:2〜5の固液体積比で乾燥させたカーボンナノチューブを浸漬した後、常温で6〜10時間超音波処理を行い、固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行い;
上記の「固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行う」操作を2〜3回繰り返し、そしてカーボンナノチューブを70〜90℃で乾燥させるステップと;
(b)酸化バナジウムゲルの調製ステップであって:高純度の五酸化バナジウムを準備して98%の濃度の硫酸に1:1〜3の固液体積比で添加した後、濃硫酸の5〜10倍の体積の蒸留水を加え、系が室温に冷却されるまで10〜30rpsの回転速度で撹拌し、50〜65℃で乾燥させて、粉砕するステップと;
(c)エチレン酢酸ビニル共重合体のカーボンナノチューブ等との混合ステップであって:酢酸ビニル含有率が20%未満のエチレン酢酸ビニル共重合体を選択し、エチレン酢酸ビニル共重合体:カーボンナノチューブ:酸化バナジウムゲル:発泡剤を100:50〜70:1〜3:5〜10の質量比に従ってそれぞれ準備し、カーボンナノチューブと酸化バナジウムゲルと発泡剤とを均一に混合してカーボンナノチューブ混合物を得、エチレン酢酸ビニル共重合体とカーボンナノチューブ混合物とを順次添加して15〜30分間精製し、その後ツインローラを通過させてチップ化および破砕するステップと;
(d)エチレン酢酸ビニル共重合体とカーボンナノチューブとの混合物の発泡ステップであって:ステップ(c)で調製された混合物を適量採取し、組み立てられたバナジウムレドックス電池に必要な電極の大きさと厚さを有する型に入れ、160〜190℃で15〜30分間発泡させ、室温になるまで冷却し、室温で24〜36時間静置し、生成物を取り出して調製するステップと;
を含む方法である。
The technical scheme for solving the technical problem of the present invention is a method of preparing an electrode for vanadium redox battery:
(A) A pretreatment step of carbon nanotubes: Multi-wall carbon nanotubes are selected, immersed in 5% by weight of hydrogen peroxide, ultrasonicated at normal temperature for 5 to 8 hours, and then centrifuged Subsequently, the carbon nanotubes are leached with distilled water two to three times, dried, and dried in a mixed acid solution of concentrated sulfuric acid and concentrated nitric acid at a solid-liquid volume ratio of 1: 2 to 5; After immersion, sonicate at room temperature for 6 to 10 hours, dilute with distilled water 3 to 5 times the volume of the solid-liquid mixture, and allow to settle completely until carbon nanotubes are precipitated, solid-liquid separation Do;
Repeat the above operation “dilute with 3 to 5 times the volume of the solid-liquid mixture, leave it until the carbon nanotubes are completely precipitated, and perform solid-liquid separation” a couple of times, and carbon Drying the nanotubes at 70-90 ° C .;
(B) Preparation step of vanadium oxide gel: after preparing vanadium pentoxide of high purity and adding it to sulfuric acid of 98% concentration at a solid-liquid volume ratio of 1: 1 to 3, then 5 to 5 of concentrated sulfuric acid Adding 10 volumes of distilled water, stirring at a rotational speed of 10-30 rps until the system is cooled to room temperature, drying at 50-65 ° C. and grinding;
(C) mixing the ethylene vinyl acetate copolymer with carbon nanotubes etc .: selecting an ethylene vinyl acetate copolymer having a vinyl acetate content of less than 20%; ethylene vinyl acetate copolymer: carbon nanotubes: Vanadium oxide gel: a foaming agent is prepared according to a mass ratio of 100: 50 to 70: 1 to 3: 5 to 10, respectively, and the carbon nanotube, the vanadium oxide gel and the foaming agent are uniformly mixed to obtain a carbon nanotube mixture Ethylene-vinyl acetate copolymer and a mixture of carbon nanotubes are sequentially added and purified for 15 to 30 minutes, and then passed through a twin roller for chipping and crushing;
(D) foaming step of a mixture of ethylene vinyl acetate copolymer and carbon nanotubes: taking an appropriate amount of the mixture prepared in step (c), size and thickness of electrode required for assembled vanadium redox battery Putting in molds, foaming at 160 to 190 ° C. for 15 to 30 minutes, cooling to room temperature, standing at room temperature for 24 to 36 hours, taking out the product and preparing;
Method.

さらに、ステップ(a)における多層カーボンナノチューブの長さ−直径比は、50〜80である。   Furthermore, the length-diameter ratio of the multi-walled carbon nanotube in step (a) is 50-80.

さらに、ステップ(a)における多層カーボンナノチューブの過酸化水素に対する固液体積比は、1:2〜5の範囲である。   Furthermore, the solid-liquid volume ratio of multi-walled carbon nanotubes to hydrogen peroxide in step (a) is in the range of 1: 2-5.

さらに、ステップ(a)における濃硫酸と濃硝酸との混酸溶液において、濃硫酸の質量分率は98%であり、濃硝酸の質量分率は60%である。   Furthermore, in the mixed acid solution of concentrated sulfuric acid and concentrated nitric acid in step (a), the mass fraction of concentrated sulfuric acid is 98%, and the mass fraction of concentrated nitric acid is 60%.

さらに、ステップ(a)における濃硫酸の濃硝酸に対する体積比は3:1である。   Furthermore, the volume ratio of concentrated sulfuric acid to concentrated nitric acid in step (a) is 3: 1.

さらに、ステップ(c)における発泡剤は、アゾ化合物発泡剤またはスルホニルヒドラジド化合物発泡剤である。   Furthermore, the blowing agent in step (c) is an azo compound blowing agent or a sulfonyl hydrazide compound blowing agent.

さらに、ステップ(c)におけるチップ化および破砕に使用されるツインローラの上部ローラの温度は70〜90℃であり、ローラフレーム間の距離は1〜2mmである。   Furthermore, the temperature of the upper roller of the twin roller used for chipping and crushing in step (c) is 70 to 90 ° C., and the distance between the roller frames is 1 to 2 mm.

本発明の有益な効果は、該方法の非常に明白な技術的利点にある:(1)低コストかつ簡単な調製方法である。該方法は、現在の炭素繊維フェルトで活性化された電極と比較して、製造後の電池の連続使用が可能であり、簡単な製造および低エネルギー消費という利点がある。従来のスキームでは、炭素繊維フェルトの黒鉛化プロセスを制御することは非常に困難であり、反応温度および雰囲気条件は非常に厳しく、二次活性化処理はそれに応じてコストおよび環境汚染を増大させる。(2)処方および官能基は、バナジウムレドックス電池の異なる要件に従って容易に調整される:本発明によって提供される方法におけるカーボンナノチューブおよび酸化バナジウムは、グラフェン、酸化ビスマスなどの他の導電性物質で置き換えることができ、処方およびマトリックス材料は、オンデマンドでの調製を実現するために必要に応じて直接置き換えることができる。(3)導入される活性官能基の量は多く、制御が容易である。(4)調製された生成物の導電性を、容易に制御することができる。本発明は、バナジウムレドックス電池用の電極の調製に特に適している。   The beneficial effects of the invention lie in the very obvious technical advantages of the method: (1) low cost and simple preparation methods. The method allows continuous use of the battery after manufacture as compared to current carbon fiber felt activated electrodes, and has the advantage of simple manufacture and low energy consumption. In the conventional scheme, it is very difficult to control the graphitization process of carbon fiber felt, the reaction temperature and atmosphere conditions are very strict, and the secondary activation treatment correspondingly increases cost and environmental pollution. (2) Formulation and functional groups are easily adjusted according to the different requirements of vanadium redox batteries: carbon nanotubes and vanadium oxide in the method provided by the present invention are replaced by other conductive materials such as graphene, bismuth oxide The formulation and matrix material can be directly replaced as needed to achieve on-demand preparation. (3) The amount of active functional groups introduced is large and easy to control. (4) The conductivity of the prepared product can be easily controlled. The invention is particularly suitable for the preparation of electrodes for vanadium redox batteries.

バナジウムレドックス電池用の電極の調製方法は:
(a)カーボンナノチューブの前処理ステップであって:多層カーボンナノチューブを選択して、質量%で5%の過酸化水素中に浸漬し、常温で5〜8時間超音波処理した後、遠心分離処理を行い;続いてカーボンナノチューブを蒸留水で2〜3回浸出させた後、乾燥させ、濃硫酸と濃硝酸との混酸溶液に固液体積比1:2〜5で乾燥させたカーボンナノチューブを浸漬した後、常温で6〜10時間超音波処理を行い、固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行い;上記の「固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行う」操作を2〜3回繰り返し、そしてカーボンナノチューブを70〜90℃で乾燥させるステップと;(b)酸化バナジウムゲルの調製ステップであって:高純度の五酸化バナジウムを準備して98%の濃度の硫酸に固液体積比1:1〜3で添加した後、濃硫酸の5〜10倍の体積の蒸留水を加え、系が室温に冷却されるまで10〜30rpsの回転速度で撹拌し、50〜65℃で乾燥させ、粉砕するステップと;(c)エチレン酢酸ビニル共重合体のカーボンナノチューブ等との混合ステップであって:酢酸ビニル含有率が20%未満のエチレン酢酸ビニル共重合体を選択し、エチレン酢酸ビニル共重合体:カーボンナノチューブ:酸化バナジウムゲル:発泡剤を100:50〜70:1〜3:5〜10の質量比に従ってそれぞれ準備し、まずカーボンナノチューブと酸化バナジウムゲルと発泡剤とを均一に混合してカーボンナノチューブ混合物を得、エチレン酢酸ビニル共重合体とカーボンナノチューブ混合物とを順次添加して15〜30分間精製し、その後ツインローラを通過させてチップ化および破砕するステップと;(d)エチレン酢酸ビニル共重合体とカーボンナノチューブとの混合物の発泡ステップであって:ステップ(c)で調製された混合物を適量採取し、組み立てられたバナジウムレドックス電池に必要な電極の大きさと厚さを有する型に入れ、160〜190℃で15〜30分間発泡させ、室温になるまで冷却し、室温で24〜36時間静置し、生成物を取り出して調製するステップとを含む。
The preparation method of the electrode for vanadium redox battery is:
(A) A pretreatment step of carbon nanotubes: Multi-wall carbon nanotubes are selected, immersed in 5% by weight of hydrogen peroxide, ultrasonicated at normal temperature for 5 to 8 hours, and then centrifuged Subsequently, the carbon nanotubes are leached with distilled water two or three times and then dried, and the carbon nanotubes dried at a solid-liquid volume ratio of 1: 2 to 5 are dipped in a mixed acid solution of concentrated sulfuric acid and concentrated nitric acid. Then, sonicate at room temperature for 6 to 10 hours, dilute with distilled water 3 to 5 times the volume of the solid-liquid mixture, and allow to settle completely until carbon nanotubes are precipitated. Perform the above-mentioned operation “dilute with 3 to 5 times the volume of the solid-liquid mixture, leave it until the carbon nanotubes are completely precipitated, and perform solid-liquid separation” 2-3 times. And 7 carbon nanotubes And (b) preparing vanadium oxide gel: adding highly pure vanadium pentoxide and adding it to sulfuric acid at 98% concentration by volume ratio of 1: 1 to 1: 3. Then, add 5 to 10 volumes of distilled water of concentrated sulfuric acid, stir at a rotational speed of 10 to 30 rps until the system is cooled to room temperature, dry at 50 to 65 ° C., and grind; c) mixing step of ethylene vinyl acetate copolymer with carbon nanotubes etc .: selecting ethylene vinyl acetate copolymer having vinyl acetate content less than 20%, ethylene vinyl acetate copolymer: carbon nanotube: oxidation Vanadium gel: A foaming agent is prepared respectively according to a mass ratio of 100: 50 to 70: 1 to 3: 5 to 10, and first, carbon nanotubes, vanadium oxide gel and the foaming agent are equalized. Obtaining a mixture of carbon nanotubes in the mixture, sequentially adding ethylene vinyl acetate copolymer and the mixture of carbon nanotubes, purifying for 15 to 30 minutes, and then passing through a twin roller for chipping and crushing; B) foaming step of a mixture of ethylene vinyl acetate copolymer and carbon nanotubes: taking an appropriate amount of the mixture prepared in step (c) to obtain the size and thickness of the electrode necessary for the assembled vanadium redox battery Placing in a mold, foaming at 160-190 ° C. for 15-30 minutes, cooling to room temperature, standing at room temperature for 24-36 hours, removing the product and preparing.

エチレン酢酸ビニル共重合体は、EVAとしても知られている。一般に、市販されているエチレン酢酸ビニル共重合体は、要件を満たすことができる酢酸ビニル含有率が20%未満である。実際の製造では、精製および最適化のために、以下のスキームが提供される:ステップ(a)における多層カーボンナノチューブの長さ−直径比は50〜80であり;ステップ(a)における多層カーボンナノチューブの過酸化水素に対する固液体積比は、1:2〜5の範囲である。濃硫酸と濃硝酸との混酸溶液では、濃硫酸の質量分率は98%であり、濃硝酸の質量分率は60%である。また、ステップ(a)における濃硫酸の濃硝酸に対する体積比は、好ましくは、3:1である。ステップ(c)における発泡剤は、好ましくは、アゾ化合物発泡剤またはスルホニルヒドラジド化合物発泡剤である。さらに、ステップ(c)におけるチップ化および破砕に使用されるツインローラの上部ローラの温度は70〜90℃であり、ローラフレーム間の距離は1〜2mmである。   Ethylene vinyl acetate copolymers are also known as EVA. Generally, commercially available ethylene vinyl acetate copolymers have a vinyl acetate content that can meet the requirements is less than 20%. In actual production, the following scheme is provided for purification and optimization: length-diameter ratio of multi-walled carbon nanotubes in step (a) is 50-80; multi-walled carbon nanotubes in step (a) The solid-liquid volume ratio of hydrogen peroxide to hydrogen peroxide is in the range of 1: 2 to 5. In the mixed acid solution of concentrated sulfuric acid and concentrated nitric acid, the mass fraction of concentrated sulfuric acid is 98%, and the mass fraction of concentrated nitric acid is 60%. Also, the volume ratio of concentrated sulfuric acid to concentrated nitric acid in step (a) is preferably 3: 1. The blowing agent in step (c) is preferably an azo compound blowing agent or a sulfonyl hydrazide compound blowing agent. Furthermore, the temperature of the upper roller of the twin roller used for chipping and crushing in step (c) is 70 to 90 ° C., and the distance between the roller frames is 1 to 2 mm.

実施例1
ステップ(a)に従って処理したカーボンナノチューブ50gとステップ(b)で得られたバナジウム酸化ゲル1gとアゾ化合物発泡剤5gを準備し、均一に混合し、ツインローラが70℃で保持されローラフレーム間の距離が1mmであるときに、100gのEVAの存在下で3分間精製する。次に、カーボンナノチューブ混合物を添加し、15分間精製し、精製した混合物を粉砕して型に入れ、165℃で25分間発泡させ、24時間静置して冷却すると、組み立てられたバナジウムレドックス電池は、電流効率が90.1%、電圧効率が85.4%であった。
Example 1
Prepare 50 g of carbon nanotubes treated according to step (a), 1 g of vanadium oxide gel obtained in step (b), and 5 g of azo compound foaming agent, mix uniformly, and maintain twin rollers at 70 ° C. When the distance is 1 mm, purify for 3 minutes in the presence of 100 g of EVA. The carbon nanotube mixture is then added, the mixture is purified for 15 minutes, and the purified mixture is crushed into molds, allowed to foam at 165 ° C. for 25 minutes, allowed to stand for 24 hours and allowed to cool, the assembled vanadium redox battery The current efficiency was 90.1% and the voltage efficiency was 85.4%.

実施例2
ステップ(a)に従って処理したカーボンナノチューブ60gとステップ(b)で得られたバナジウム酸化ゲル1gとアゾ化合物発泡剤8gを準備し、均一に混合し、ツインローラが80℃で保持されローラフレーム間の距離が1.2mmであるときに、100gのEVAの存在下で3分間精製する。次に、カーボンナノチューブ混合物を添加し、17分間精製し、精製した混合物を粉砕して型に入れ、170℃で25分間発泡させ、30時間静置して冷却すると、組み立てられたバナジウムレドックス電池は、電流効率が91.3%、電圧効率が86.4%であった。
Example 2
60 g of carbon nanotubes treated according to step (a), 1 g of vanadium oxide gel obtained in step (b) and 8 g of azo compound foaming agent are prepared and mixed uniformly, and twin rollers are held at 80 ° C. Purify for 3 minutes in the presence of 100 g of EVA when the distance is 1.2 mm. The carbon nanotube mixture is then added, purified for 17 minutes, and the purified mixture is crushed into molds, allowed to foam at 170 ° C. for 25 minutes, allowed to stand for 30 hours and allowed to cool, the assembled vanadium redox battery The current efficiency was 91.3% and the voltage efficiency was 86.4%.

実施例3
ステップ(a)に従って処理したカーボンナノチューブ70gとステップ(b)で得られたバナジウム酸化ゲル1gとアゾ化合物発泡剤9gを準備し、均一に混合し、ツインローラが90℃で保持されローラフレーム間の距離が1.5mmであるときに、100gのEVAの存在下で3分間精製する。次に、カーボンナノチューブ混合物を添加し、27分間精製し、精製した混合物を粉砕して型に入れ、180℃で15分間発泡させ、36時間静置して冷却すると、組み立てられたバナジウムレドックス電池は、電流効率が92.3%、電圧効率が86.9%であった。
Example 3
70 g of carbon nanotubes treated according to step (a), 1 g of vanadium oxide gel obtained in step (b) and 9 g of azo compound foaming agent are prepared and mixed uniformly, twin rollers are held at 90 ° C. Purify for 3 minutes in the presence of 100 g of EVA when the distance is 1.5 mm. The carbon nanotube mixture is then added, purified for 27 minutes, and the purified mixture is crushed into molds, allowed to foam at 180 ° C. for 15 minutes, allowed to stand for 36 hours and allowed to cool, the assembled vanadium redox battery The current efficiency was 92.3% and the voltage efficiency was 86.9%.

上記の実施例により調製されたバナジウムレドックス電池用の電極は、低コストかつ簡単な調製方法などの明らかな技術的利点を有する。   The electrodes for vanadium redox batteries prepared according to the above examples have obvious technical advantages such as low cost and simple preparation methods.

Claims (7)

バナジウムレドックス電池用の電極の調製方法において:
(a)カーボンナノチューブの前処理ステップであって:多層カーボンナノチューブを選択して、質量%で5%の過酸化水素中に浸漬し、常温で5〜8時間超音波処理した後、遠心分離処理を行い;続いて前記カーボンナノチューブを蒸留水で2〜3回浸出させた後、乾燥させ、濃硫酸と濃硝酸との混酸溶液に1:2〜5の固液体積比で乾燥させたカーボンナノチューブを浸漬した後、常温で6〜10時間超音波処理を行い、固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、前記カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行い;
上記の「固液混合物の体積の3〜5倍の体積の蒸留水で希釈し、カーボンナノチューブが完全に沈殿するまで静置し、固液分離を行う」操作を2〜3回繰り返し、そして前記カーボンナノチューブを70〜90℃で乾燥させるステップと;
(b)酸化バナジウムゲルの調製ステップであって:高純度の五酸化バナジウムを準備して98%の濃度の硫酸に1:1〜3の固液体積比で添加した後、前記濃硫酸の5〜10倍の体積の蒸留水を加え、系が室温に冷却されるまで10〜30rpsの回転速度で撹拌し、50〜65℃で乾燥させて、粉砕するステップと;
(c)エチレン酢酸ビニル共重合体の前記カーボンナノチューブ等との混合ステップであって:酢酸ビニル含有率が20%未満のエチレン酢酸ビニル共重合体を選択し、エチレン酢酸ビニル共重合体:カーボンナノチューブ:酸化バナジウムゲル:発泡剤を100:50〜70:1〜3:5〜10の質量比に従ってそれぞれ準備し、まず前記カーボンナノチューブと前記酸化バナジウムゲルと前記発泡剤とを均一に混合してカーボンナノチューブ混合物を得、エチレン酢酸ビニル共重合体と前記カーボンナノチューブ混合物とを順次添加して15〜30分間精製し、その後ツインローラを通過させてチップ化および破砕するステップと、
(d)エチレン酢酸ビニル共重合体と前記カーボンナノチューブとの混合物の発泡ステップであって:ステップ(c)で調製された前記混合物を適量採取し、前記組み立てられたバナジウムレドックス電池に必要な電極の大きさと厚さを有する型に入れ、160〜190℃で15〜30分間発泡させ、室温になるまで冷却し、室温で24〜36時間静置し、生成物を取り出して調製するステップと、
を含む、調製方法。
In the preparation method of electrode for vanadium redox battery:
(A) A pretreatment step of carbon nanotubes: Multi-wall carbon nanotubes are selected, immersed in 5% by weight of hydrogen peroxide, ultrasonicated at normal temperature for 5 to 8 hours, and then centrifuged Subsequently, the carbon nanotubes are leached with distilled water two to three times, dried, and dried in a mixed acid solution of concentrated sulfuric acid and concentrated nitric acid at a solid-liquid volume ratio of 1: 2 to 5 Soak the plate, sonicate at room temperature for 6 to 10 hours, dilute with distilled water 3 to 5 times the volume of the solid-liquid mixture, and let it stand until the carbon nanotubes are completely precipitated, Perform liquid separation;
Repeat the above operation “dilute with 3 to 5 times the volume of the solid-liquid mixture, leave it until the carbon nanotubes are completely precipitated, and perform solid-liquid separation” a few times, and Drying the carbon nanotubes at 70-90 ° C .;
(B) Preparation step of vanadium oxide gel: after preparing highly pure vanadium pentoxide and adding it to sulfuric acid of 98% concentration at a solid-liquid volume ratio of 1: 1 to 3, 5 of the concentrated sulfuric acid Adding ~ 10 volumes of distilled water, stirring at a rotational speed of 10-30 rps until the system is cooled to room temperature, drying at 50-65 ° C. and grinding;
(C) mixing the ethylene-vinyl acetate copolymer with the carbon nanotubes etc .: selecting an ethylene-vinyl acetate copolymer having a vinyl acetate content of less than 20%; ethylene-vinyl acetate copolymer: carbon nanotubes : Vanadium oxide gel: A foaming agent is prepared according to a mass ratio of 100: 50 to 70: 1 to 3: 5 to 10, first, the carbon nanotube, the vanadium oxide gel and the foaming agent are uniformly mixed to obtain carbon Obtaining a nanotube mixture, sequentially adding an ethylene-vinyl acetate copolymer and the carbon nanotube mixture, purifying for 15 to 30 minutes, and then passing through a twin roller for chipping and crushing;
(D) A foaming step of a mixture of ethylene vinyl acetate copolymer and the carbon nanotube: an appropriate amount of the mixture prepared in step (c) is collected to obtain an electrode necessary for the assembled vanadium redox battery Put in a mold having a size and thickness, foam at 160 to 190 ° C. for 15 to 30 minutes, cool to room temperature, stand at room temperature for 24 to 36 hours, take out and prepare a product,
A method of preparation, including
ステップ(a)における前記多層カーボンナノチューブの長さ−直径比は50〜80である、請求項1に記載のバナジウムレドックス電池用の電極の調製方法。   The method for preparing an electrode for a vanadium redox battery according to claim 1, wherein the length-diameter ratio of the multi-walled carbon nanotube in step (a) is 50-80. ステップ(a)における前記多層カーボンナノチューブの過酸化水素に対する固液体積比は1:2〜5である、請求項1に記載のバナジウムレドックス電池用の電極の調製方法。   The method for preparing an electrode for a vanadium redox battery according to claim 1, wherein the solid-liquid volume ratio of the multi-walled carbon nanotube to hydrogen peroxide in step (a) is 1: 2-5. ステップ(a)における濃硫酸と濃硝酸との混酸溶液において、濃硫酸の質量分率は98%であり、濃硝酸の質量分率は60%である、請求項1に記載のバナジウムレドックス電池用の電極の調製方法。   The vanadium redox battery according to claim 1, wherein in the mixed acid solution of concentrated sulfuric acid and concentrated nitric acid in step (a), the mass fraction of concentrated sulfuric acid is 98%, and the mass fraction of concentrated nitric acid is 60%. Of preparation of electrodes. ステップ(a)における濃硫酸の濃硝酸に対する体積比は3:1である、請求項4に記載のバナジウムレドックス電池用の電極の調製方法。   The method for preparing an electrode for a vanadium redox battery according to claim 4, wherein the volume ratio of concentrated sulfuric acid to concentrated nitric acid in step (a) is 3: 1. ステップ(c)における発泡剤は、アゾ化合物発泡剤またはスルホニルヒドラジド化合物発泡剤である、請求項1に記載のバナジウムレドックス電池用の電極の調製方法。   The method for preparing an electrode for a vanadium redox battery according to claim 1, wherein the foaming agent in step (c) is an azo compound foaming agent or a sulfonyl hydrazide compound foaming agent. ステップ(c)におけるチップ化および破砕に使用される前記ツインローラの前記上部ローラの温度は70〜90℃であり、ローラフレーム間の距離は1〜2mmである、請求項1に記載のバナジウムレドックス電池用の電極の調製方法。   The vanadium redox compound according to claim 1, wherein the temperature of the upper roller of the twin roller used for chipping and crushing in step (c) is 70 to 90 ° C and the distance between roller frames is 1 to 2 mm. Method of preparing an electrode for a battery.
JP2018181203A 2017-10-25 2018-09-27 Method for preparing electrodes for vanadium redox batteries Active JP6700360B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711009857.XA CN107623132B (en) 2017-10-25 2017-10-25 Method for preparing electrode for vanadium battery
CN201711009857.X 2017-10-25

Publications (2)

Publication Number Publication Date
JP2019079789A true JP2019079789A (en) 2019-05-23
JP6700360B2 JP6700360B2 (en) 2020-05-27

Family

ID=61093021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181203A Active JP6700360B2 (en) 2017-10-25 2018-09-27 Method for preparing electrodes for vanadium redox batteries

Country Status (2)

Country Link
JP (1) JP6700360B2 (en)
CN (1) CN107623132B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094120A (en) * 2021-11-23 2022-02-25 成都先进金属材料产业技术研究院股份有限公司 Integrated graphite electrode for vanadium cell and vanadium cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878915B (en) * 2018-08-30 2021-01-26 成都先进金属材料产业技术研究院有限公司 Porous carbon material for covering carbon nanotube layer for vanadium battery and vanadium battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228059A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Dipole plate for redox flow battery
JP2013539177A (en) * 2010-08-25 2013-10-17 アプライド マテリアルズ インコーポレイテッド Flow battery system
JP2016186084A (en) * 2016-06-03 2016-10-27 リケンテクノス株式会社 Resin composition
JP2017050186A (en) * 2015-09-02 2017-03-09 大日本印刷株式会社 Gas diffusion layer for battery, membrane electrode assembly for battery using the gas diffusion layer for battery, member for battery, battery, and method for producing the gas diffusion layer for battery
JP2017183017A (en) * 2016-03-29 2017-10-05 ブラザー工業株式会社 Vanadium redox secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651201B (en) * 2009-08-19 2011-11-09 湖南维邦新能源有限公司 Electrode materials and all-vanadium redox flow battery containing electrode materials
CN102468492A (en) * 2010-11-09 2012-05-23 中国科学院金属研究所 Surface modification treatment method for increasing activity of vanadium battery electrode materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228059A (en) * 2010-04-16 2011-11-10 Sumitomo Electric Ind Ltd Dipole plate for redox flow battery
US20130037760A1 (en) * 2010-04-16 2013-02-14 Sumitomo Electric Industries, Ltd. Bipolar plate for redox flow battery
JP2013539177A (en) * 2010-08-25 2013-10-17 アプライド マテリアルズ インコーポレイテッド Flow battery system
JP2017050186A (en) * 2015-09-02 2017-03-09 大日本印刷株式会社 Gas diffusion layer for battery, membrane electrode assembly for battery using the gas diffusion layer for battery, member for battery, battery, and method for producing the gas diffusion layer for battery
JP2017183017A (en) * 2016-03-29 2017-10-05 ブラザー工業株式会社 Vanadium redox secondary battery
JP2016186084A (en) * 2016-06-03 2016-10-27 リケンテクノス株式会社 Resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094120A (en) * 2021-11-23 2022-02-25 成都先进金属材料产业技术研究院股份有限公司 Integrated graphite electrode for vanadium cell and vanadium cell
CN114094120B (en) * 2021-11-23 2023-10-27 成都先进金属材料产业技术研究院股份有限公司 Integrated graphite electrode for vanadium battery and vanadium battery

Also Published As

Publication number Publication date
JP6700360B2 (en) 2020-05-27
CN107623132A (en) 2018-01-23
CN107623132B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN109437172B (en) Sodium ion intercalation Ti3C2MXene material and preparation method thereof
WO2015106720A1 (en) Method for producing super activated charcoal from biomass power plant ash
CN108400297B (en) Silicon-based lithium ion battery cathode material and preparation method thereof
CN104037393B (en) A kind of tin/graphene/carbon fiber composite lithium cell cathode material preparation method
CN106602012A (en) Flexible thin-film electrode and preparation method and application thereof
CN105460917A (en) Nitrogen-doped carbon nanotube adopting hierarchical structure and preparation method
CN103227327A (en) Pyrolysis preparation method of two-dimensional nano-sheet-layer lithium ion battery negative electrode material
CN106784654A (en) A kind of preparation method of graphene coated cobalt acid lithium material
CN103787311A (en) Preparation methods of graphene-carbon nanotube composite thin film and electrochemical capacitor
CN110255527A (en) A kind of preparation method and applications of the oxygen-enriched hard carbon material of biomass derived
CN112573530B (en) Sulfur species activated SiO 2 Preparation method of lithium battery negative electrode material
CN104045080A (en) Activated graphene sheet and preparation method thereof
JP2019079789A (en) Preparing method of electrode for vanadium redox battery
CN107611412A (en) A kind of tin ash/porous carbon composite lithium ion battery negative material and preparation method
CN105776170B (en) A kind of preparation method of the nitrogenous multistage pore canal Carbon Materials of block
CN113078322A (en) Graphene-silicon negative electrode material with lithium battery cycling stability and preparation method thereof
CN103832997A (en) Graphene/carbon black composite material, preparation method and application thereof
CN104638248B (en) A kind of preparation method of graphene/lead compound composite
CN113860289B (en) Method for purifying carbon nano tube
CN103117390B (en) A kind of graphene oxide derivative lithium salt and its production and use
CN110649258B (en) Preparation method of three-dimensional porous tin oxide graphene composite electrode material
CN106450231A (en) Preparation method of stannic oxide particle/graphene nano-composite negative electrode material
WO2023184994A1 (en) Preparation method for and use of porous microsphere carbon negative electrode material
WO2023071337A1 (en) Method for preparing graphene-based sodium ion battery negative electrode material
CN106129349A (en) A kind of anode material for lithium-ion batteries ammonium vanadate/Graphene and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250