JP2019076862A - Methanation catalyst, manufacturing method therefor, and manufacturing method of methane using the same - Google Patents

Methanation catalyst, manufacturing method therefor, and manufacturing method of methane using the same Download PDF

Info

Publication number
JP2019076862A
JP2019076862A JP2017207233A JP2017207233A JP2019076862A JP 2019076862 A JP2019076862 A JP 2019076862A JP 2017207233 A JP2017207233 A JP 2017207233A JP 2017207233 A JP2017207233 A JP 2017207233A JP 2019076862 A JP2019076862 A JP 2019076862A
Authority
JP
Japan
Prior art keywords
ruthenium
carrier
particles
supported
ceria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017207233A
Other languages
Japanese (ja)
Other versions
JP6909405B2 (en
Inventor
真利 酒井
Masatoshi Sakai
真利 酒井
能宏 後藤
Yoshihiro Goto
能宏 後藤
晴雄 今川
Haruo Imagawa
晴雄 今川
雅幸 福井
Masayuki Fukui
雅幸 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017207233A priority Critical patent/JP6909405B2/en
Publication of JP2019076862A publication Critical patent/JP2019076862A/en
Application granted granted Critical
Publication of JP6909405B2 publication Critical patent/JP6909405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a methanation catalyst exhibiting high catalyst activity even at low temperature (for example 250°C or less).SOLUTION: There is provided a methanation catalyst containing a carrier consisting of at least one kind of metal oxide selected from a group consisting of titania, zirconia and alumina, a ceria particles carried on the carrier, and a ruthenium particle carried on the carrier, in which average particle diameter of the seria particle is 8 nm or less, carried amount of the seria particle is 0.3 to 10 pts.mass based on 100 pts.mass of the carrier, average particle diameter of the ruthenium particle is 8 nm or less, and carried amount of the ruthenium particle is 0.5 to 5 pts.mass based on 100 pts.mass of the carrier.SELECTED DRAWING: None

Description

本発明は、メタン化触媒、その製造方法、及びそれを用いたメタンの製造方法に関する。   The present invention relates to a methanation catalyst, a method for producing the same, and a method for producing methane using the same.

従来のメタン化反応はCOを原料とした反応であり、石油由来のCOからメタンを製造する方法等として実用化されている。これに対して、COを原料としたメタン化反応は、近年の地球温暖化対策におけるCOの有効利用の観点から注目されているが、未だ実用化には至っておらず、貴金属であるRuやベースメタル元素であるNiが、COを原料としたメタン化反応において高い活性を示す触媒として検討されている。 The conventional methanation reaction is a reaction using CO as a raw material, and is put to practical use as a method of producing methane from CO derived from petroleum. On the other hand, the methanation reaction using CO 2 as a raw material has attracted attention from the viewpoint of effective use of CO 2 in recent years against global warming, but it has not been put into practical use yet and Ru, which is a precious metal And Ni, which is a base metal element, are being studied as catalysts showing high activity in the methanation reaction using CO 2 as a raw material.

例えば、特開2009−131835号公報(特許文献1)には、チタニア、ジルコニア等の粉末状の担体にNi、Ru等の金属ナノ粒子が分散担持されており、前記金属ナノ粒子のうちの90%以上は粒径が10nm未満の粒子である二酸化炭素の水素還元用触媒が記載されている。また、特表2016−523182号公報(特許文献2)には、セリア系複合酸化物からなる担体にNi、Ru等の触媒活性元素が担持されているメタン化反応用触媒が記載されている。   For example, according to JP 2009-131835 A (Patent Document 1), metal nanoparticles such as Ni and Ru are dispersedly supported on a powdery carrier such as titania or zirconia, and 90 of the metal nanoparticles are used. There is described a catalyst for hydrogen reduction of carbon dioxide in which% or more is particles having a particle size of less than 10 nm. Further, JP-A-2016-523182 (Patent Document 2) describes a catalyst for a methanation reaction in which a catalytic active element such as Ni or Ru is supported on a carrier made of a ceria-based composite oxide.

しかしながら、Ni等のベースメタル元素は低温での触媒活性が低く、メタン収率が必ずしも十分に高いものではなかった。また、Ru等の貴金属は高コストであり、その使用量を少なくする必要があるため、十分に高い触媒活性が得られず、メタン収率が必ずしも十分に高いものではなかった。   However, base metal elements such as Ni have low catalytic activity at low temperatures, and the methane yield is not necessarily high enough. Further, noble metals such as Ru are expensive, and the amount thereof needs to be reduced, so that sufficiently high catalytic activity can not be obtained, and the methane yield is not necessarily high enough.

特開2009−131835号公報JP, 2009-131835, A 特表2016−523182号公報Japanese Patent Application Publication No. 2016-523182

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、低温(例えば、250℃以下)であっても高い触媒活性を示すメタン化触媒、その製造方法、及びそれを用いたメタンの製造方法を提供することを目的とする。   The present invention has been made in view of the problems of the above-mentioned prior art, and a methanation catalyst exhibiting high catalytic activity even at low temperatures (for example, 250 ° C. or less), a method for producing the same, and methane using the same The purpose is to provide a manufacturing method of

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、チタニア等の金属酸化物からなる担体に微粒子状のセリアとルテニウムとを担持させることによって、セリア粒子とルテニウム粒子の担持量が少ない場合であっても、低温(例えば、250℃以下)において高い触媒活性が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors supported the amount of ceria particles and ruthenium particles by supporting fine particle ceria and ruthenium on a carrier composed of metal oxide such as titania. It has been found that high catalytic activity can be obtained at a low temperature (for example, 250 ° C. or less) even when the amount of C is small, and the present invention has been completed.

すなわち、本発明のメタン化触媒は、チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体と、前記担体に担持されたセリア粒子と、前記担体に担持されたルテニウム粒子とを含有し、
前記セリア粒子の平均粒子径が8nm以下であり、前記セリア粒子の担持量が前記担体100質量部に対して0.3〜10質量部であり、
前記ルテニウム粒子の平均粒子径が8nm以下であり、前記ルテニウム粒子の担持量が前記担体100質量部に対して0.5〜5質量部である、
ことを特徴とするものである。
That is, the methanation catalyst of the present invention is supported on a support comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina, ceria particles supported on the support, and the support Containing ruthenium particles,
The average particle diameter of the ceria particles is 8 nm or less, and the amount of the ceria particles supported is 0.3 to 10 parts by mass with respect to 100 parts by mass of the carrier,
The average particle diameter of the ruthenium particles is 8 nm or less, and the supported amount of the ruthenium particles is 0.5 to 5 parts by mass with respect to 100 parts by mass of the carrier.
It is characterized by

本発明のメタン化触媒においては、下記式:   In the methanation catalyst of the present invention, the following formula:

〔前記式中、セリア及びルテニウムの担持量は担体100質量部に対する担持量(質量部)である。〕
で求められる担体表面の被覆率が1〜80%であることが好ましい。
[In the above-mentioned formula, the loading amount of ceria and ruthenium is the loading amount (parts by mass) with respect to 100 parts by mass of the carrier. ]
It is preferable that the coverage of the support | carrier surface calculated | required by these is 1-80%.

また、本発明のメタン化触媒の製造方法は、チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体に、セリア粒子の担持量が前記担体100質量部に対して0.3〜10質量部となるように、有機酸セリウム錯体を付着させる工程と、
前記担体に、ルテニウム粒子の担持量が前記担体100質量部に対して0.5〜5質量部となるように、ルテニウム有機錯体を付着させる工程と、
前記有機酸セリウム錯体をセリア粒子に変換せしめる工程と、
前記ルテニウム有機錯体をルテニウム粒子に変換せしめる工程と、
を含むことを特徴とする。
In the method for producing a methanation catalyst according to the present invention, the amount of ceria particles supported on a carrier comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina is 100 parts by mass of the carrier. Depositing an organic acid cerium complex so as to be 0.3 to 10 parts by mass;
Attaching a ruthenium organic complex to the carrier such that the supported amount of ruthenium particles is 0.5 to 5 parts by mass with respect to 100 parts by mass of the carrier;
Converting the organic acid cerium complex into ceria particles;
Converting the ruthenium organic complex into ruthenium particles;
It is characterized by including.

本発明のメタン化触媒の製造方法においては、前記担体に有機酸セリウム錯体を付着させた後、前記有機酸セリウム錯体をセリアに変換せしめて、セリア粒子が担持された前記担体を得る工程と、
前記セリア粒子が担持された担体にルテニウム有機錯体を付着させた後、前記ルテニウム有機錯体をルテニウムに変換せしめて、前記担体にセリア粒子とルテニウム粒子とが担持された触媒を得る工程と、
を含むことが好ましい。
In the method for producing a methanation catalyst according to the present invention, an organic acid cerium complex is attached to the support, and then the organic acid cerium complex is converted to ceria to obtain the support on which ceria particles are supported;
Attaching a ruthenium organic complex to the carrier on which the ceria particles are supported, and converting the ruthenium organic complex to ruthenium to obtain a catalyst in which the ceria particles and the ruthenium particles are supported on the carrier;
Is preferred.

さらに、本発明のメタンの製造方法は、前記本発明のメタン化触媒に、二酸化炭素と水素との混合ガスを接触せしめることを特徴とする。   Furthermore, the process for producing methane of the present invention is characterized in that the mixed gas of carbon dioxide and hydrogen is brought into contact with the methanation catalyst of the present invention.

なお、本発明のメタン化触媒が低温(例えば、250℃以下)であっても高い触媒活性を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明のメタン化触媒においては、二酸化炭素の吸着点として作用するセリア粒子が担持されている。このセリア粒子は微粒子状で担持されているため、吸着活性に優れており、二酸化炭素の吸着が促進されると推察される。また、本発明のメタン化触媒においては、二酸化炭素と水素との反応において活性点として作用するルテニウム粒子が担持されている。このルテニウム粒子も微粒子状で担持されているため、触媒活性に優れており、二酸化炭素と水素との反応を促進させると推察される。さらに、本発明のメタン化触媒においては、ルテニウム粒子を微粒子状で安定化させる作用を有するチタニア等の金属酸化物が表面に露出しており、かつ、還元雰囲気において部分還元されたチタニア等の金属酸化物が二酸化炭素のC=O結合へ影響を与えると考えられることから、これら金属酸化物のルテニウム粒子への相互作用及び二酸化炭素への相互作用がともに二酸化炭素と水素との反応を促進させると推察される。   The reason why the methanation catalyst of the present invention exhibits high catalytic activity even at a low temperature (for example, 250 ° C. or less) is not necessarily clear, but the present inventors speculate as follows. That is, in the methanation catalyst of the present invention, ceria particles which act as adsorption points for carbon dioxide are supported. Since the ceria particles are supported in the form of fine particles, they are excellent in adsorption activity, and it is presumed that adsorption of carbon dioxide is promoted. Further, in the methanation catalyst of the present invention, ruthenium particles acting as an active site in the reaction of carbon dioxide and hydrogen are supported. Since the ruthenium particles are also supported in the form of fine particles, they are excellent in catalytic activity, and are presumed to promote the reaction between carbon dioxide and hydrogen. Furthermore, in the methanation catalyst of the present invention, a metal oxide such as titania having the effect of stabilizing ruthenium particles in the form of fine particles is exposed on the surface, and a metal such as titania partially reduced in a reducing atmosphere Since the oxides are believed to affect the C = O bond of carbon dioxide, the interaction of these metal oxides with ruthenium particles and the interaction with carbon dioxide both promote the reaction of carbon dioxide with hydrogen. It is guessed.

さらに、本発明のメタン化触媒においては、このようなセリア粒子及びルテニウム粒子が近接した状態で、チタニア、ジルコニア等の金属酸化物からなる担体の表面に微細担持されており、セリア−ルテニウム−担体金属からなる三層界面が多く存在するため、セリア粒子による前記作用、ルテニウム粒子による前記作用、及びチタニア等の金属酸化物による前記作用が効果的に発揮され、低温(例えば、250℃以下)であっても高い触媒活性が得られると推察される。   Furthermore, in the methanation catalyst of the present invention, the ceria-ruthenium-support is finely supported on the surface of a support made of a metal oxide such as titania or zirconia in a state where such ceria particles and ruthenium particles are in close proximity to each other. Since many trilayer interfaces made of metal exist, the above action by ceria particles, the above action by ruthenium particles, and the above action by metal oxides such as titania are effectively exhibited, and at low temperature (for example, 250 ° C. or less) It is presumed that high catalytic activity can be obtained even if it is present.

本発明によれば、低温(例えば、250℃以下)であっても高い触媒活性を示すメタン化触媒を得ることができる。また、このような本発明のメタン化触媒を用いることによって、低温(例えば、250℃以下)であっても二酸化炭素から高収率でメタンを製造することが可能となる。   According to the present invention, a methanation catalyst can be obtained which exhibits high catalytic activity even at low temperatures (eg, 250 ° C. or less). Moreover, by using such a methanation catalyst of the present invention, it is possible to produce methane from carbon dioxide with high yield even at low temperature (for example, 250 ° C. or less).

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail in line with its preferred embodiments.

〔メタン化触媒〕
先ず、本発明のメタン化触媒について説明する。本発明のメタン化触媒は、チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体と、前記担体に担持されたセリア粒子と、前記担体に担持されたルテニウム粒子とを含有するものである。
[Methanation catalyst]
First, the methanation catalyst of the present invention will be described. The methanation catalyst of the present invention comprises a support comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina, ceria particles supported by the support, and ruthenium particles supported by the support And are contained.

本発明のメタン化触媒に用いられる担体は、チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなるものである、このような金属酸化物からなる担体を用いることによって、低温(例えば、250℃以下)であっても高い触媒活性を示すメタン化触媒を得ることができる。これらの金属酸化物の中でも、より高い触媒活性を得ることができるという観点から、チタニア、ジルコニアが好ましく、チタニアが特に好ましい。   The support used for the methanation catalyst of the present invention is a support comprising such a metal oxide, which comprises at least one metal oxide selected from the group consisting of titania, zirconia and alumina. It is possible to obtain a methanation catalyst which exhibits high catalytic activity even at low temperatures (eg, 250 ° C. or less). Among these metal oxides, titania and zirconia are preferable, and titania is particularly preferable, from the viewpoint that higher catalytic activity can be obtained.

このような担体の平均粒子径としては特に制限はないが、0.02〜10μmが好ましく、0.03〜1μmがより好ましい。また、比表面積についても特に制限はないが、1〜250m/gが好ましく、3〜200m/gがより好ましい。なお、このような担体の平均粒子径は、例えば、電子顕微鏡観察やX線回折測定におけるScherrer法等によって、また、比表面積は、例えば、BET法等によって、測定することができる。 The average particle size of such a carrier is not particularly limited, but is preferably 0.02 to 10 μm, and more preferably 0.03 to 1 μm. No particular limitation on the specific surface area is preferably 1~250m 2 / g, 3~200m 2 / g is more preferable. The average particle size of such a carrier can be measured, for example, by the Scherrer method or the like in electron microscope observation or X-ray diffraction measurement, and the specific surface area can be measured, for example, by the BET method or the like.

本発明のメタン化触媒においては、このような担体に、平均粒子径が8nm以下のセリア粒子が担持されている。セリア粒子の平均粒子径が前記上限を超えると、触媒活性が低下する。このようなセリア粒子の平均粒子径としては、より高い触媒活性が得られるという観点から、6nm以下が好ましく、4nm以下がより好ましい。また、セリア粒子の平均粒子径の下限としては特に制限はないが、0.5nm以上が好ましい。なお、このようなセリア粒子の平均粒子径は、Scherrer法により求めることができ、Scherrer法により求めることが困難な場合には、電子顕微鏡観察により求めてもよい。   In the methanation catalyst of the present invention, ceria particles having an average particle diameter of 8 nm or less are supported on such a carrier. When the average particle size of the ceria particles exceeds the above upper limit, the catalytic activity is reduced. The average particle size of such ceria particles is preferably 6 nm or less, more preferably 4 nm or less, from the viewpoint of obtaining higher catalytic activity. The lower limit of the average particle size of the ceria particles is not particularly limited, but is preferably 0.5 nm or more. The average particle size of such ceria particles can be determined by the Scherrer method, and when it is difficult to determine the ceria particles by the Scherrer method, it may be determined by electron microscope observation.

また、本発明のメタン化触媒においては、前記担体100質量部に対して、0.3〜10質量部のセリア粒子が担持されている。セリア粒子の担持量が前記下限未満になると、二酸化炭素の吸着点が少なくなるため、触媒活性が低下する。他方、セリア粒子の担持量が前記上限を超えると、担体表面の被覆率が大きくなりすぎ、二酸化炭素のメタン化反応に有効なセリア−ルテニウム−担体金属からなる三層界面の量が少なくなるため、触媒活性が低下する。このようなセリア粒子の担持量としては、より高い触媒活性が得られるという観点から、前記担体100質量部に対して、0.5〜8質量部が好ましく、1〜6質量部がより好ましい。なお、セリア粒子の担持量は蛍光X線分析により求めることができる。   In the methanation catalyst of the present invention, 0.3 to 10 parts by mass of ceria particles are supported with respect to 100 parts by mass of the carrier. When the loading amount of ceria particles is less than the above lower limit, the adsorption point of carbon dioxide is reduced, so that the catalytic activity is reduced. On the other hand, if the loading amount of ceria particles exceeds the above upper limit, the coverage of the support surface becomes too large, and the amount of trilayer interface consisting of ceria-ruthenium-support metal effective for carbonation methanation reaction decreases. , The catalytic activity is reduced. The amount of the ceria particles supported is preferably 0.5 to 8 parts by mass, and more preferably 1 to 6 parts by mass, with respect to 100 parts by mass of the carrier, from the viewpoint of obtaining higher catalytic activity. The amount of ceria particles supported can be determined by fluorescent X-ray analysis.

さらに、本発明のメタン化触媒においては、前記担体に、平均粒子径が8nm以下のルテニウム粒子が担持されている。ルテニウム粒子の平均粒子径が前記上限を超えると、触媒活性が低下する。このようなルテニウム粒子の平均粒子径としては、より高い触媒活性が得られるという観点から、7nm以下が好ましく、5nm以下がより好ましく、3nm以下が更に好ましい。また、ルテニウム粒子の平均粒子径の下限としては特に制限はないが、0.5nm以上が好ましい。なお、このようなルテニウム粒子の平均粒子径は、COパルス吸着法により求めることができる。   Furthermore, in the methanation catalyst of the present invention, ruthenium particles having an average particle diameter of 8 nm or less are supported on the carrier. When the average particle size of the ruthenium particles exceeds the above upper limit, the catalyst activity is reduced. The average particle diameter of such ruthenium particles is preferably 7 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less, from the viewpoint of obtaining higher catalytic activity. The lower limit of the average particle size of the ruthenium particles is not particularly limited, but is preferably 0.5 nm or more. The average particle size of such ruthenium particles can be determined by a CO pulse adsorption method.

また、本発明のメタン化触媒においては、前記担体100質量部に対して、0.5〜5質量部のルテニウム粒子が担持されている。ルテニウム粒子の担持量が前記下限未満になると、二酸化炭素のメタン化反応における活性点が少なくなるため、触媒活性が低下する。他方、ルテニウム粒子の担持量が前記上限を超えると、担体表面の被覆率が大きくなりすぎ、二酸化炭素のメタン化反応に有効なセリア−ルテニウム−担体金属からなる三層界面の量が少なくなるため、触媒活性が低下する。このようなルテニウム粒子の担持量としては、より高い触媒活性が得られるという観点から、前記担体100質量部に対して、0.7〜4質量部が好ましく、1〜3質量部がより好ましい。なお、ルテニウム粒子の担持量は蛍光X線分析により求めることができる。   Further, in the methanation catalyst of the present invention, 0.5 to 5 parts by mass of ruthenium particles are supported with respect to 100 parts by mass of the carrier. When the supported amount of ruthenium particles is less than the above lower limit, the active point in the methanation reaction of carbon dioxide is reduced, so that the catalytic activity is reduced. On the other hand, if the loading amount of ruthenium particles exceeds the above upper limit, the coverage of the support surface becomes too large, and the amount of trilayer interface consisting of ceria-ruthenium-support metal effective for carbonation methanation reaction decreases. , The catalytic activity is reduced. The loading amount of such ruthenium particles is preferably 0.7 to 4 parts by mass, and more preferably 1 to 3 parts by mass, with respect to 100 parts by mass of the carrier, from the viewpoint of obtaining higher catalytic activity. The supported amount of ruthenium particles can be determined by fluorescent X-ray analysis.

このような本発明のメタン化触媒においては、下記式:   In such a methanation catalyst of the present invention, the following formula:

〔前記式中、セリア及びルテニウムの担持量は担体100質量部に対する担持量(質量部)である。〕
で求められる担体表面の被覆率が1〜80%であることが好ましい。担体表面の被覆率が前記下限未満になると、セリア粒子及びルテニウム粒子の担持量が少なく、触媒活性が低下する傾向にあり、他方、前記上限を超えると、二酸化炭素のメタン化反応に有効なセリア−ルテニウム−担体金属からなる三層界面の量が少なくなり、触媒活性が低下する傾向にある。このような担体表面の被覆率としては、より高い触媒活性が得られるという観点から、3〜75%が好ましく、5〜70%がより好ましい。
[In the above-mentioned formula, the loading amount of ceria and ruthenium is the loading amount (parts by mass) with respect to 100 parts by mass of the carrier. ]
It is preferable that the coverage of the support | carrier surface calculated | required by these is 1-80%. When the coverage of the support surface is less than the lower limit, the amount of ceria particles and ruthenium particles supported is small and the catalytic activity tends to decrease, and when the upper limit is exceeded, ceria effective for methanation reaction of carbon dioxide The amount of the three-layer interface consisting of ruthenium-support metal decreases, and the catalytic activity tends to decrease. The coverage of such a support surface is preferably 3 to 75%, and more preferably 5 to 70%, from the viewpoint that higher catalytic activity can be obtained.

〔メタン化触媒の製造方法〕
次に、本発明のメタン化触媒の製造方法について説明する。本発明のメタン化触媒の製造方法は、チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体に、得られる触媒におけるセリア粒子の担持量が上述した担持量となるように、有機酸セリウム錯体を付着させる工程と、
前記担体に、得られる触媒におけるルテニウム粒子の担持量が上述した担持量となるように、ルテニウム有機錯体を付着させる工程と、
前記有機酸セリウム錯体をセリアに変換せしめる工程と、
前記ルテニウム有機錯体をルテニウムに変換せしめる工程と、
を含んでいる。
[Method for producing methanation catalyst]
Next, the method for producing the methanation catalyst of the present invention will be described. In the method for producing a methanation catalyst of the present invention, the amount of supported ceria particles in the obtained catalyst is the above-described supported amount on a support comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina Depositing an organic acid cerium complex so that
Attaching a ruthenium organic complex to the carrier such that the supported amount of ruthenium particles in the obtained catalyst is the above-described supported amount;
Converting the organic acid cerium complex to ceria;
Converting the ruthenium organic complex to ruthenium;
Contains.

本発明のメタン化触媒の製造方法においては、前記担体に有機酸セリウム錯体及びルテニウム有機錯体を付着させた後、それぞれセリア粒子及びルテニウム粒子に変換せしめてもよいし、前記担体に有機酸セリウム錯体を付着させた後、この有機酸セリウム錯体をセリア粒子に変換し、次に、このセリア粒子が担持された担体にルテニウム有機錯体を付着させた後、このルテニウム有機錯体をルテニウム粒子に変換してもよい。   In the method for producing a methanation catalyst according to the present invention, the organic acid cerium complex and the ruthenium organic complex may be attached to the support and then converted into ceria particles and ruthenium particles, respectively. The cerium complex of this organic acid is converted to ceria particles, and then the ruthenium organic complex is attached to the carrier on which the ceria particles are supported, and then this ruthenium organic complex is converted to ruthenium particles. It is also good.

このような本発明のメタン化触媒の製造方法に用いられる担体は、前記本発明のメタン化触媒に用いられる担体として説明した金属酸化物からなる担体である。   The support used in the method for producing the methanation catalyst of the present invention is a support composed of the metal oxide described as the support used for the methanation catalyst of the present invention.

前記有機酸セリウム錯体としては、クエン酸セリウム、酢酸セリウム(III)一水和物、シュウ酸セリウム(III)九水和物、2−エチルヘキサン酸セリウム等が挙げられる。このような有機酸セリウム錯体を用いることによって、微細なセリア粒子を前記担体に担持することができる。一方、硝酸セリウム等のセリウムの無機酸塩を用いた場合には、セリア粒子の平均粒子径が大きくなり、触媒活性が低下する。   Examples of the organic acid cerium complex include cerium citrate, cerium (III) acetate monohydrate, cerium (III) oxalate nonahydrate, cerium 2-ethylhexanoate and the like. Fine ceria particles can be supported on the carrier by using such an organic acid cerium complex. On the other hand, when an inorganic acid salt of cerium such as cerium nitrate is used, the average particle size of the ceria particles becomes large, and the catalytic activity decreases.

また、前記ルテニウム有機錯体としては、ドデカカルボニル三ルテニウム、トリス(アセチルアセトナト)ルテニウム(III)、ジクロロトリカルボニルルテニウム(II)、ペンタカルボニルルテニウム、2−エチルヘキサン酸ルテニウム、ナフテン酸ルテニウム、酢酸ルテニウム等が挙げられる。このようなルテニウム有機錯体を用いることによって、微細なルテニウム粒子を前記担体に担持することができる。一方、硝酸ルテニウム等のルテニウムの無機酸塩を用いた場合には、ルテニウム粒子の平均粒子径が大きくなり、触媒活性が低下する。   Moreover, as the ruthenium organic complex, dodecacarbonyltriruthenium, tris (acetylacetonato) ruthenium (III), dichlorotricarbonylruthenium (II), pentacarbonylruthenium, ruthenium 2-ethylhexanoate, ruthenium naphthenate, ruthenium acetate Etc. Fine ruthenium particles can be supported on the support by using such a ruthenium organic complex. On the other hand, when an inorganic acid salt of ruthenium such as ruthenium nitrate is used, the average particle size of the ruthenium particles is increased, and the catalytic activity is reduced.

前記担体に有機酸セリウム錯体及びルテニウム有機錯体を付着させる方法としては特に制限はないが、操作が簡便であるという観点から、前記担体に、有機酸セリウム錯体を含む溶液やルテニウム有機錯体を含む溶液を含浸させた後、乾燥等により溶媒を除去する方法(含浸法)が好ましい。   There is no particular limitation on the method of attaching the organic acid cerium complex and the ruthenium organic complex to the carrier, but from the viewpoint that the operation is simple, the carrier contains a solution containing an organic acid cerium complex or a ruthenium organic complex The method of removing the solvent by drying etc. (impregnation method) is preferred after impregnating with.

また、前記有機酸セリウム錯体及びルテニウム有機錯体をそれぞれセリア粒子及びルテニウム粒子に変換する方法としては特に制限はなく、前記有機酸セリウム錯体は、例えば、大気雰囲気下、400〜600℃で2〜5時間加熱することによってセリア粒子に変換することができ、また、ルテニウム有機錯体は、例えば、大気雰囲気下、120〜150℃で5〜24時間加熱することによってルテニウム粒子に変換することができる。   Moreover, there is no restriction | limiting in particular as a method to convert the said organic acid cerium complex and ruthenium organic complex into a ceria particle and a ruthenium particle, respectively, For example, the said organic acid cerium complex is 2-5 at 400-600 degreeC in air | atmosphere atmosphere. It can be converted to ceria particles by heating for a time, and the ruthenium organic complex can be converted to ruthenium particles by heating at 120 to 150 ° C. for 5 to 24 hours, for example, in the atmosphere.

〔メタンの製造方法〕
次に、本発明のメタンの製造方法について説明する。本発明のメタンの製造方法は、前記本発明のメタン化触媒に、二酸化炭素と水素との混合ガスを接触せしめることによって、メタンを製造する方法である。本発明のメタン化触媒を用いることによって、低温(例えば250℃以下、好ましくは200℃以下)であっても二酸化炭素からメタンを高収率で製造することができる。
[Method of producing methane]
Next, the process for producing methane of the present invention will be described. The method for producing methane of the present invention is a method for producing methane by bringing a mixed gas of carbon dioxide and hydrogen into contact with the methanation catalyst of the present invention. By using the methanation catalyst of the present invention, methane can be produced in high yield from carbon dioxide even at low temperature (eg, 250 ° C. or less, preferably 200 ° C. or less).

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
先ず、クエン酸(和光純薬工業株式会社製)119.7g及び酢酸セリウム(III)一水和物(和光純薬工業株式会社製)53.6gをイオン交換水250mlに溶解し、さらに、25%アンモニア水(和光純薬工業株式会社製)73gを添加し、3時間攪拌してクエン酸セリウム水溶液を得た。
Example 1
First, 119.7 g of citric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 53.6 g of cerium acetate (III) monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in 250 ml of ion-exchanged water, and 25 % Aqueous ammonia (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred for 3 hours to obtain a cerium citrate aqueous solution.

次に、チタニア(石原産業株式会社製「CR−EL」、平均粒子径:0.25μm、比表面積:6.8m/g)10gをイオン交換水150mlに分散させ、さらに、前記クエン酸セリウム水溶液1.8gを添加し、得られた分散液を蒸発乾固させ、チタニア担体にクエン酸セリウムが付着した粉末を得た。この粉末を110℃で一晩乾燥させた後、大気雰囲気下、500℃で2時間焼成して、有機酸錯体由来のセリア粒子が担持されたチタニア担体(以下、単に「セリア担持チタニア担体」ともいう)を得た。 Next, 10 g of titania (“CR-EL” manufactured by Ishihara Sangyo Co., Ltd., average particle size: 0.25 μm, specific surface area: 6.8 m 2 / g) is dispersed in 150 ml of ion-exchanged water, and the above-mentioned cerium citrate An aqueous solution of 1.8 g was added, and the obtained dispersion was evaporated to dryness to obtain a powder in which cerium citrate adhered to the titania carrier. This powder is dried at 110 ° C. overnight, and then calcined at 500 ° C. for 2 hours in the air atmosphere to support the ceria particles derived from the organic acid complex (hereinafter referred to simply as “ceria-supported titania carrier”) Say).

次に、ドデカカルボニル三ルテニウム(和光純薬工業株式会社製)0.11gをテトラヒドロフラン30mlに溶解し、さらに、前記セリア担持チタニア担体2.5gを添加し、得られた分散液を30分間攪拌した。その後、攪拌しながら前記分散液の温度を0〜25℃に保持して減圧乾燥を行い、テトラヒドロフランを除去し、前記セリア担持チタニア担体にドデカカルボニル三ルテニウムが付着した粉末を得た。この粉末を大気雰囲気下、150℃で15時間加熱して、チタニア担体に有機酸錯体由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。   Next, 0.11 g of dodecacarbonyltriruthenium (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 ml of tetrahydrofuran, and further 2.5 g of the ceria-supported titania carrier was added, and the obtained dispersion was stirred for 30 minutes. . After that, drying was performed under reduced pressure while maintaining the temperature of the dispersion at 0 to 25 ° C. while stirring to remove tetrahydrofuran, to obtain a powder in which dodecacarbonyltriruthenium adheres to the ceria-supported titania carrier. The powder was heated at 150 ° C. for 15 hours in an air atmosphere to obtain a catalyst in which the ceria particles derived from the organic acid complex and the ruthenium particles derived from the organic complex were supported on the titania carrier.

(実施例2)
前記クエン酸セリウム水溶液の添加量を3.7gに変更した以外は実施例1と同様にしてチタニア担体に有機酸錯体由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。
(Example 2)
A catalyst was prepared in the same manner as in Example 1 except that the addition amount of the aqueous solution of cerium citrate was changed to 3.7 g, thereby obtaining a catalyst in which the ceria particles derived from the organic acid complex and the ruthenium particles derived from the organic complex were supported on the titania carrier. .

(実施例3)
前記クエン酸セリウム水溶液の添加量を9.6gに変更した以外は実施例1と同様にしてチタニア担体に有機酸錯体由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。
(Example 3)
A catalyst was prepared in the same manner as in Example 1 except that the addition amount of the aqueous solution of cerium citrate was changed to 9.6 g, thereby obtaining a catalyst in which the ceria particles derived from the organic acid complex and the ruthenium particles derived from the organic complex were supported on the titania carrier. .

(比較例1)
ドデカカルボニル三ルテニウム(和光純薬工業株式会社製)0.11gをテトラヒドロフラン30mlに溶解し、さらに、セリア(阿南化成株式会社製「SCH−2」、平均粒子径:0.26μm、比表面積:27m/g)2.5gを添加し、得られた分散液を30分間攪拌した。その後、攪拌しながら前記分散液の温度を0〜25℃に保持して減圧乾燥を行い、テトラヒドロフランを除去し、セリア担体にドデカカルボニル三ルテニウムが付着した粉末を得た。この粉末を大気雰囲気下、150℃で15時間加熱して、セリア担体に有機錯体由来のルテニウム粒子が担持された触媒を得た。
(Comparative example 1)
0.11 g of dodecacarbonyl triruthenium (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 30 ml of tetrahydrofuran, and ceria (manufactured by Anan Kasei Co., Ltd. "SCH-2", average particle size: 0.26 μm, specific surface area: 27 m) 2.5 g were added and the resulting dispersion was stirred for 30 minutes. Then, the temperature of the dispersion was maintained at 0 to 25 ° C. while stirring, and drying under reduced pressure was performed to remove tetrahydrofuran, to obtain a powder in which dodecacarbonyltriruthenium adheres to the ceria carrier. The powder was heated at 150 ° C. for 15 hours in an air atmosphere to obtain a catalyst in which ruthenium particles derived from an organic complex were supported on a ceria support.

(比較例2)
セリアの代わりにチタニア(石原産業株式会社製「CR−EL」)2.5gを用いた以外は比較例1と同様にしてチタニア担体に有機錯体由来のルテニウム粒子が担持された触媒を得た。
(Comparative example 2)
A catalyst was prepared in the same manner as in Comparative Example 1 except that 2.5 g of titania ("CR-EL" manufactured by Ishihara Sangyo Co., Ltd.) was used instead of ceria to obtain a catalyst in which ruthenium particles derived from organic complexes were supported on a titania carrier.

(比較例3)
硝酸ルテニウム溶液(田中貴金属工業株式会社製、濃度:50g/L)4.08mlをイオン交換水100mlに添加して混合し、さらに、チタニア(石原産業株式会社製「CR−EL」)10gを添加し、得られた分散液をホットスターラー上で蒸発乾固させ、チタニア担体に硝酸ルテニウムが付着した粉末を得た。この粉末を大気雰囲気下、400℃で5時間加熱して、チタニア担体に硝酸塩由来のルテニウム粒子が担持された触媒を得た。
(Comparative example 3)
A ruthenium nitrate solution (Tanaka Kikinzoku Kogyo Co., Ltd., concentration: 50 g / L) 4.08 ml is added to 100 ml of ion-exchanged water and mixed, and further 10 g of titania ("CR-EL" manufactured by Ishihara Sangyo Co., Ltd.) is added The resulting dispersion was evaporated to dryness on a hot stirrer to obtain a powder in which ruthenium nitrate was attached to the titania carrier. The powder was heated at 400 ° C. for 5 hours in an air atmosphere to obtain a catalyst in which ruthenium particles derived from nitrate were supported on a titania carrier.

(比較例4)
先ず、チタニア(石原産業株式会社製「CR−EL」)10gをイオン交換水150mlに分散させ、硝酸セリウム(III)六水和物(和光純薬工業株式会社製)1.33gを添加し、得られた分散液を蒸発乾固させ、チタニア担体に硝酸セリウムが付着した粉末を得た。この粉末を110℃で一晩乾燥させた後、大気雰囲気下、500℃で2時間焼成して、硝酸塩由来のセリア粒子が担持されたチタニア担体を得た。
(Comparative example 4)
First, 10 g of titania ("CR-EL" manufactured by Ishihara Sangyo Co., Ltd.) is dispersed in 150 ml of ion-exchanged water, and 1.33 g of cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is added. The obtained dispersion was evaporated to dryness to obtain a powder in which cerium nitrate was attached to the titania carrier. The powder was dried at 110 ° C. overnight, and then fired at 500 ° C. for 2 hours in an air atmosphere to obtain a titania carrier on which nitrate-derived ceria particles were supported.

次に、有機酸錯体由来のセリア粒子が担持されたチタニア担体の代わりに硝酸塩由来のセリア粒子が担持されたチタニア担体2.5gを用いた以外は実施例1と同様にしてチタニア担体に硝酸塩由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。   Next, in the same manner as in Example 1 except that 2.5 g of a titania carrier on which a nitrate-derived ceria particle is supported is used instead of the titania carrier on which an organic acid complex-derived ceria particle is loaded, the nitrate-derived titania carrier is used. The catalyst on which the ceria particles of the present invention and the ruthenium particles derived from the organic complex were supported was obtained.

(比較例5)
前記クエン酸セリウム水溶液の量を20.2gに変更した以外は実施例1と同様にして、チタニア担体に有機酸錯体由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。
(Comparative example 5)
A catalyst was obtained in the same manner as in Example 1 except that the amount of the aqueous solution of cerium citrate was changed to 20. 2 g, and a catalyst in which ceria particles derived from an organic acid complex and ruthenium particles derived from an organic complex were supported on a titania carrier .

(実施例4)
先ず、チタニアの代わりにジルコニア(第一稀元素化学工業株式会社製「RC−100」、平均粒子径:約3μm、比表面積:85m/g)10gを用い、前記クエン酸セリウム水溶液の添加量を9.6gに変更した以外は実施例1と同様にして、有機酸錯体由来のセリア粒子が担持されたジルコニア担体(以下、単に「セリア担持ジルコニア担体」ともいう)を得た。
(Example 4)
First, 10 g of zirconia ("RC-100" manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., average particle size: about 3 μm, specific surface area: 85 m 2 / g) is used instead of titania, and the addition amount of the aqueous solution of cerium citrate In the same manner as in Example 1 except that 9.6 g was changed to 9.6 g, a zirconia support on which ceria particles derived from an organic acid complex were supported (hereinafter, also simply referred to as "ceria supported zirconia support") was obtained.

次に、前記セリア担持チタニア担体の代わりに前記セリア担持ジルコニア担体2.5gを用いた以外は実施例1と同様にして、ジルコニア担体に有機酸錯体由来のセリア粒子と有機錯体由来のルテニウム粒子とが担持された触媒を得た。   Next, in the same manner as in Example 1 except that 2.5 g of the ceria-supported zirconia support was used instead of the ceria-supported titania support, ceria particles derived from an organic acid complex and ruthenium particles derived from an organic complex were used as a zirconia support. Obtained a supported catalyst.

(比較例6)
セリアの代わりにジルコニア(第一稀元素化学工業株式会社製「RC−100」)2.5gを用いた以外は比較例1と同様にしてジルコニア担体に有機錯体由来のルテニウム粒子が担持された触媒を得た。
(Comparative example 6)
A catalyst having ruthenium particles derived from an organic complex supported on a zirconia support in the same manner as in Comparative Example 1 except that 2.5 g of zirconia ("RC-100" manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was used instead of ceria I got

実施例1〜4及び比較例1〜6で得られた触媒について、セリア粒子及びルテニウム粒子の平均粒子径、セリア粒子及びルテニウム粒子の担持量、担体表面の被覆率、並びに触媒活性を以下の方法により測定した。   With respect to the catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 6, the average particle diameter of ceria particles and ruthenium particles, the loading amount of ceria particles and ruthenium particles, the coverage of the support surface, and the catalyst activity were as follows. It measured by.

<セリア粒子の平均粒子径>
チタニア担体に担持されたセリア粒子については、Scherrer法により平均粒子径を測定した。すなわち、試料水平型多目的X線回折装置(株式会社リガク製「UltimaIV」)を用い、CuKαをX線源として使用し、2θ=10°〜80°の範囲について、各触媒のX線回折パターンを測定した。得られたX線回折パターンに基づいて、Scherrerの式によりセリア粒子の平均粒子径を算出した。その結果を表1に示す。
<Average particle size of ceria particles>
The average particle size of the ceria particles supported on the titania carrier was measured by the Scherrer method. That is, using a sample horizontal multipurpose X-ray diffractometer ("Ultima IV" manufactured by Rigaku Corporation), CuKα is used as an X-ray source, and the X-ray diffraction pattern of each catalyst is calculated for a range of 2θ = 10 ° -80 °. It was measured. Based on the obtained X-ray diffraction pattern, the average particle size of the ceria particles was calculated by the Scherrer equation. The results are shown in Table 1.

また、ジルコニア担体に担持されたセリア粒子については、電子顕微鏡観察により平均粒子径を測定した。すなわち、走査透過型電子顕微鏡(株式会社日立ハイテクノロジーズ製「HD−2700」)を用いて、ジルコニア担体に担持されたセリア粒子を観察した。得られたSEM像において、無作為に50個のセリア粒子を抽出して、それらの粒子径(粒子が真球状でない場合には外接円の直径)を測定し、それらを平均してセリア粒子の平均粒子径を求めた。その結果を表2に示す。   Moreover, about the ceria particle | grains carry | supported by the zirconia support | carrier, the average particle diameter was measured by electron microscope observation. That is, the ceria particles supported on the zirconia support were observed using a scanning transmission electron microscope ("HD-2700" manufactured by Hitachi High-Technologies Corporation). In the obtained SEM image, 50 ceria particles are randomly extracted, their particle sizes (diameter of circumscribed circle when the particles are not spherical) are measured, and they are averaged to obtain ceria particles The average particle size was determined. The results are shown in Table 2.

<ルテニウム粒子の平均粒子径>
COパルス吸着法によりルテニウム粒子の平均粒子径を測定した。先ず、触媒200mgを反応管に充填し、Hガス(100%)を流量30ml/分で導入しながら400℃で15分間の還元前処理を行なった。次に、Heガスを流量30ml/分で導入しながら触媒を−78℃まで冷却して安定させた後、−78℃の温度下でCOガス(100%)を反応管に0.082ml/パルスの条件でパルス状に導入して触媒にCOを吸着させた。このときのCOの導入量と排出量とからCOの吸着量を求めた。得られたCO吸着量からルテニウム粒子の平均粒子径を算出した。その結果を表1〜2に示す。
<Average particle size of ruthenium particles>
The average particle size of the ruthenium particles was measured by the CO pulse adsorption method. First, 200 mg of the catalyst was charged in a reaction tube, and reduction pretreatment was carried out at 400 ° C. for 15 minutes while introducing H 2 gas (100%) at a flow rate of 30 ml / min. Next, the catalyst is cooled and stabilized to -78 ° C while introducing He gas at a flow rate of 30 ml / min, and then CO2 gas (100%) is introduced into the reaction tube at a temperature of -78 ° C and 0.082 ml / pulse. The catalyst was introduced in the form of pulses under the following conditions to adsorb CO. The amount of CO adsorption was determined from the amount of CO introduced and the amount released. The average particle size of the ruthenium particles was calculated from the obtained CO adsorption amount. The results are shown in Tables 1-2.

<セリア粒子及びルテニウム粒子の担持量>
先ず、走査型蛍光X線分析装置(株式会社リガク製「ZSX PRIMUS II」)を用いて触媒の組成分析を行い、得られた結果に基づいて、担体100質量部に対するセリア粒子及びルテニウム粒子の担持量をそれぞれ求めた。その結果を表1〜2に示す。
<Supported amount of ceria particles and ruthenium particles>
First, composition analysis of the catalyst is performed using a scanning fluorescent X-ray analyzer ("ZSX PRIMUS II" manufactured by Rigaku Corporation), and based on the obtained result, the support of ceria particles and ruthenium particles relative to 100 parts by mass of the support The quantities were determined respectively. The results are shown in Tables 1-2.

<担体表面の被覆率>
セリア粒子及びルテニウム粒子の平均粒子径、セリア粒子及びルテニウム粒子の担持量、及び担体の比表面積を用いて、下記式:
<Coverage of carrier surface>
Using the average particle size of ceria particles and ruthenium particles, the loading amount of ceria particles and ruthenium particles, and the specific surface area of the support, the following formula:

に従って、担体表面のセリア粒子及びルテニウム粒子による被覆率を求めた。その結果を表1〜2に示す。 According to the above, the coverage of the support surface with ceria particles and ruthenium particles was determined. The results are shown in Tables 1-2.

<触媒活性>
得られた触媒を粒径0.5〜1.0mmのペレット状に成形した後、この触媒ペレット0.5g及び予熱材としてSiC(粒径約5mm)20粒を反応管に充填し、H(21%)+N(79%)の混合ガスを流量475ml/分で導入しながら300℃で30分間の還元前処理を行なった。次に、触媒を100℃まで降温した後、CO(5%)+H(20%)+N(75%)の原料混合ガスを流量500ml/分で反応管に供給しながら、150℃から250℃までの範囲において、3分間かけて25℃昇温させた後、その温度で20分間保持する操作を繰り返した。保持した温度において、温度保持開始から12分後及び19分後の触媒出ガス中の二酸化炭素量及びメタン量を、ガスクロマトグラフを用いて測定し、メタンの収率を求めた。その結果を表1〜2に示す。なお、担体がチタニア又はセリアの場合(実施例1〜3及び比較例1〜5)には、200℃におけるメタンの収率、ジルコニアの場合(実施例4及び比較例6)には、225℃におけるメタンの収率を示した。
<Catalytic activity>
The obtained catalyst is formed into pellets of 0.5 to 1.0 mm in particle size, 0.5 g of this catalyst pellet and 20 particles of SiC (about 5 mm in particle size) as a preheating material are charged in a reaction tube, and H 2 A reduction pretreatment of 30 minutes at 300 ° C. was performed while introducing a mixed gas of (21%) + N 2 (79%) at a flow rate of 475 ml / min. Next, after lowering the temperature of the catalyst to 100 ° C., the raw material mixed gas of CO 2 (5%) + H 2 (20%) + N 2 (75%) is supplied to the reaction tube at a flow rate of 500 ml / min. After heating up 25 degreeC over 3 minutes in the range to 250 degreeC, the operation hold | maintained for 20 minutes at the temperature was repeated. At the held temperature, the amount of carbon dioxide and the amount of methane in the catalyst output gas after 12 minutes and 19 minutes from the start of temperature holding were measured using a gas chromatograph to determine the yield of methane. The results are shown in Tables 1-2. In the case where the carrier is titania or ceria (Examples 1 to 3 and Comparative Examples 1 to 5), the yield of methane at 200 ° C., and in the case of zirconia (Example 4 and Comparative Example 6), 225 ° C. It shows the yield of methane in

表1に示した結果から明らかなように、チタニア担体にセリア粒子とルテニウム粒子とが担持されている触媒(実施例1〜3)は、セリア担体又はチタニア担体にルテニウム粒子のみが担持されている触媒(比較例1〜2)に比べて触媒活性が高くなった。このことから、高いメタン化活性を得るためには、チタニア担体上でセリア粒子とルテニウム粒子とが共存する必要があることがわかった。また、硝酸ルテニウムを用いてチタニア担体にルテニウム粒子を担持した場合(比較例3)には、ルテニウム有機錯体を用いてチタニア担体にルテニウム粒子を担持した場合(実施例1〜3及び比較例2)に比べて、ルテニウム粒子の平均粒子径が大きくなり、触媒活性が低くなった。このことから、高いメタン化活性を得るためには、チタニア担体上にルテニウムが微粒子として存在する必要があることがわかった。さらに、硝酸セリウムを用いてチタニア担体にセリア粒子を担持した場合(比較例4)には、有機酸セリウム錯体を用いてチタニア担体にセリア粒子を担持した場合(実施例1〜3)に比べて、セリア粒子の平均粒子径が大きくなり、触媒活性が低くなった。このことから、高いメタン化活性を得るためには、セリアも微粒子として存在する必要があることがわかった。また、チタニア担体上にセリア及びルテニウムが微粒子として共存している触媒であっても、セリア粒子の担持量が多く、担体表面の被覆率が大きすぎる場合(比較例5)には、所定量のセリア粒子及びルテニウム粒子が担持され、担体表面の被覆率が所定の範囲にある場合(実施例1〜3)に比べて、触媒活性が低くなった。このことから、高いメタン化活性を得るためには、チタニア担体の表面にはセリア粒子及びルテニウム粒子で覆われていない領域、すなわち、チタニアが露出している領域が必要であることがわかった。   As apparent from the results shown in Table 1, in the catalyst (Examples 1 to 3) in which the ceria particles and the ruthenium particles are supported on the titania carrier, only the ruthenium particles are supported on the ceria carrier or the titania carrier The catalytic activity was higher than that of the catalyst (Comparative Examples 1 and 2). From this, it was found that ceria particles and ruthenium particles need to coexist on the titania support in order to obtain high methanation activity. In addition, when ruthenium particles are supported on a titania carrier using ruthenium nitrate (Comparative Example 3), when ruthenium particles are supported on a titania carrier using a ruthenium organic complex (Examples 1 to 3 and Comparative Example 2) In comparison with the above, the average particle size of the ruthenium particles is larger and the catalytic activity is lower. From this, it was found that ruthenium needs to be present as fine particles on a titania support in order to obtain high methanation activity. Furthermore, when ceria particles are supported on the titania carrier using cerium nitrate (Comparative Example 4), when ceria particles are supported on the titania carrier using an organic acid cerium complex (Examples 1 to 3) The average particle size of the ceria particles was increased, and the catalytic activity was lowered. From this, it was found that in order to obtain high methanation activity, ceria also needs to be present as fine particles. In addition, even if the catalyst includes ceria and ruthenium in the form of fine particles on the titania carrier, the amount of ceria particles supported is large, and the coverage of the carrier surface is too large (Comparative Example 5). Ceria particles and ruthenium particles were supported, and the catalytic activity was lower than when the coverage of the support surface was in a predetermined range (Examples 1 to 3). From this, it was found that in order to obtain high methanation activity, a region not covered with ceria particles and ruthenium particles, that is, a region in which titania is exposed is required on the surface of the titania carrier.

また、表2に示した結果から明らかなように、ジルコニア担体に微粒子状のセリア粒子とルテニウム粒子とが担持されている触媒(実施例4)は、ジルコニア担体に微粒子状のルテニウムのみが担持されている触媒(比較例6)に比べて触媒活性が高くなった。このことから、担体としてジルコニア担体を用いた場合にも、高いメタン化活性を得るためには、微粒子状のセリアとルテニウムとが共存する必要があることがわかった。   Further, as apparent from the results shown in Table 2, in the catalyst (Example 4) in which the particulate ceria particles and the ruthenium particles are carried on the zirconia carrier, only the particulate ruthenium is carried on the zirconia carrier. The catalytic activity was higher than that of the catalyst (Comparative Example 6). From this, it was found that it is necessary to coexist fine particle ceria and ruthenium in order to obtain high methanation activity even when using a zirconia support as the support.

以上説明したように、本発明によれば、低温(例えば、250℃以下)であっても高い触媒活性を示すメタン化触媒を得ることが可能となる。したがって、本発明のメタンの製造方法は、このようなメタン化触媒を用いているため、低温(例えば、250℃以下)においても二酸化炭素から高収率でメタンを製造することができる方法として有用である。   As described above, according to the present invention, it is possible to obtain a methanation catalyst that exhibits high catalytic activity even at low temperatures (for example, 250 ° C. or less). Therefore, the process for producing methane of the present invention is useful as a process capable of producing methane from carbon dioxide in high yield even at low temperatures (eg, 250 ° C. or less) because such a methanation catalyst is used. It is.

Claims (5)

チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体と、前記担体に担持されたセリア粒子と、前記担体に担持されたルテニウム粒子とを含有し、
前記セリア粒子の平均粒子径が8nm以下であり、前記セリア粒子の担持量が前記担体100質量部に対して0.3〜10質量部であり、
前記ルテニウム粒子の平均粒子径が8nm以下であり、前記ルテニウム粒子の担持量が前記担体100質量部に対して0.5〜5質量部である、
ことを特徴とするメタン化触媒。
A carrier comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina, ceria particles supported by the carrier, and ruthenium particles supported by the carrier,
The average particle diameter of the ceria particles is 8 nm or less, and the amount of the ceria particles supported is 0.3 to 10 parts by mass with respect to 100 parts by mass of the carrier,
The average particle diameter of the ruthenium particles is 8 nm or less, and the supported amount of the ruthenium particles is 0.5 to 5 parts by mass with respect to 100 parts by mass of the carrier.
A methanation catalyst characterized by
下記式:
〔前記式中、セリア及びルテニウムの担持量は担体100質量部に対する担持量(質量部)である。〕
で求められる担体表面の被覆率が1〜80%であることを特徴とする請求項1に記載のメタン化触媒。
Following formula:
[In the above-mentioned formula, the loading amount of ceria and ruthenium is the loading amount (parts by mass) with respect to 100 parts by mass of the carrier. ]
2. The methanation catalyst according to claim 1, wherein the coverage of the support surface determined by the above is 1 to 80%.
チタニア、ジルコニア及びアルミナからなる群から選択される少なくとも1種の金属酸化物からなる担体に、セリア粒子の担持量が前記担体100質量部に対して0.3〜10質量部となるように、有機酸セリウム錯体を付着させる工程と、
前記担体に、ルテニウム粒子の担持量が前記担体100質量部に対して0.5〜5質量部となるように、ルテニウム有機錯体を付着させる工程と、
前記有機酸セリウム錯体をセリア粒子に変換せしめる工程と、
前記ルテニウム有機錯体をルテニウム粒子に変換せしめる工程と、
を含むことを特徴とするメタン化触媒の製造方法。
A carrier comprising at least one metal oxide selected from the group consisting of titania, zirconia and alumina, such that the amount of ceria particles supported is 0.3 to 10 parts by weight with respect to 100 parts by weight of the carrier Depositing an organic acid cerium complex;
Attaching a ruthenium organic complex to the carrier such that the supported amount of ruthenium particles is 0.5 to 5 parts by mass with respect to 100 parts by mass of the carrier;
Converting the organic acid cerium complex into ceria particles;
Converting the ruthenium organic complex into ruthenium particles;
A process for producing a methanation catalyst, comprising:
前記担体に有機酸セリウム錯体を付着させた後、前記有機酸セリウム錯体をセリアに変換せしめて、セリア粒子が担持された前記担体を得る工程と、
前記セリア粒子が担持された担体にルテニウム有機錯体を付着させた後、前記ルテニウム有機錯体をルテニウムに変換せしめて、前記担体にセリア粒子とルテニウム粒子とが担持された触媒を得る工程と、
を含むことを特徴とする請求項3に記載のメタン化触媒の製造方法。
After attaching the organic acid cerium complex to the carrier, converting the organic acid cerium complex to ceria to obtain the carrier on which the ceria particles are supported;
Attaching a ruthenium organic complex to the carrier on which the ceria particles are supported, and converting the ruthenium organic complex to ruthenium to obtain a catalyst in which the ceria particles and the ruthenium particles are supported on the carrier;
The method for producing a methanation catalyst according to claim 3, comprising
請求項1又は2に記載のメタン化触媒に、二酸化炭素と水素との混合ガスを接触せしめることを特徴とするメタンの製造方法。   A process for producing methane, comprising contacting a mixed gas of carbon dioxide and hydrogen with the methanation catalyst according to claim 1 or 2.
JP2017207233A 2017-10-26 2017-10-26 Methaneization catalyst, its production method, and methane production method using it Active JP6909405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207233A JP6909405B2 (en) 2017-10-26 2017-10-26 Methaneization catalyst, its production method, and methane production method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207233A JP6909405B2 (en) 2017-10-26 2017-10-26 Methaneization catalyst, its production method, and methane production method using it

Publications (2)

Publication Number Publication Date
JP2019076862A true JP2019076862A (en) 2019-05-23
JP6909405B2 JP6909405B2 (en) 2021-07-28

Family

ID=66627041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207233A Active JP6909405B2 (en) 2017-10-26 2017-10-26 Methaneization catalyst, its production method, and methane production method using it

Country Status (1)

Country Link
JP (1) JP6909405B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224993A1 (en) 2021-04-21 2022-10-27 大阪瓦斯株式会社 Molded body of carbon dioxide methanation catalyst and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119385A (en) * 1978-03-10 1979-09-17 Satoyuki Inui Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it
JPS62129147A (en) * 1985-11-28 1987-06-11 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JP2002316049A (en) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk Catalyst for cleaning exhaust gas and manufacturing method for the same
JP2006043683A (en) * 2004-06-30 2006-02-16 Toyota Motor Corp Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas
JP2006281201A (en) * 2005-03-10 2006-10-19 Japan Science & Technology Agency Method for preparing metal nanoparticles and structural body of carbon nanofiber
JP2009131835A (en) * 2007-10-30 2009-06-18 Toyama Univ Catalyst and method for deoxidizing carbon dioxide with hydrogen
JP2016163879A (en) * 2015-02-28 2016-09-08 株式会社フルヤ金属 Method for producing supported catalyst
JP2016179466A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 EXHAUST GAS PURIFICATION CATALYST, NOx STORAGE REDUCTION TYPE CATALYST AND EXHAUST GAS PURIFICATION METHOD
JP2017170430A (en) * 2016-03-16 2017-09-28 株式会社東芝 Catalyst for fuel synthesis and fuel synthesis system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119385A (en) * 1978-03-10 1979-09-17 Satoyuki Inui Novel carried catalyst and method of methanizing carbon dioxide or monoxide using it
JPS62129147A (en) * 1985-11-28 1987-06-11 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JP2002316049A (en) * 2001-04-20 2002-10-29 Daiken Kagaku Kogyo Kk Catalyst for cleaning exhaust gas and manufacturing method for the same
JP2006043683A (en) * 2004-06-30 2006-02-16 Toyota Motor Corp Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas
JP2006281201A (en) * 2005-03-10 2006-10-19 Japan Science & Technology Agency Method for preparing metal nanoparticles and structural body of carbon nanofiber
JP2009131835A (en) * 2007-10-30 2009-06-18 Toyama Univ Catalyst and method for deoxidizing carbon dioxide with hydrogen
JP2016163879A (en) * 2015-02-28 2016-09-08 株式会社フルヤ金属 Method for producing supported catalyst
JP2016179466A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 EXHAUST GAS PURIFICATION CATALYST, NOx STORAGE REDUCTION TYPE CATALYST AND EXHAUST GAS PURIFICATION METHOD
JP2017170430A (en) * 2016-03-16 2017-09-28 株式会社東芝 Catalyst for fuel synthesis and fuel synthesis system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. TADA ET AL.: "Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 cat", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 39, JPN6021020627, 2014, pages 10090 - 10100, ISSN: 0004521885 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224993A1 (en) 2021-04-21 2022-10-27 大阪瓦斯株式会社 Molded body of carbon dioxide methanation catalyst and method for producing the same

Also Published As

Publication number Publication date
JP6909405B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
US11766663B2 (en) Functional nanoscale metal oxides for stable metal single atom and cluster catalysts
KR20110129394A (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP5581314B2 (en) Exhaust gas purification catalyst
US9233356B2 (en) Exhaust gas purification catalyst and production method thereof
WO2016037059A1 (en) High porosity cerium and zirconium containing oxide
US20140113810A1 (en) Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them
JP2012223667A (en) Columnar ceria catalyst
JPWO2013021506A1 (en) Redox material for thermochemical water splitting and hydrogen production method
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
JP2011016090A (en) Exhaust gas cleaning catalyst and method of manufacturing the same
US9358527B2 (en) Exhaust gas purification catalyst and production method thereof
CN106944094B (en) Catalyst for exhaust gas purification
JP2017100120A (en) Method for producing catalyst for methane oxidation removal, and catalyst for methane oxidation removal
JP5969410B2 (en) Exhaust gas purification catalyst and method for producing the same
JP6851225B2 (en) Exhaust gas purification catalyst, its manufacturing method, and exhaust gas purification equipment using it
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
WO2021132335A1 (en) Solid solution nanoparticles, method for producing same, dispersion liquid of solution solid nanoparticles, and catalyst
JP2012120939A (en) Method for manufacturing catalyst and catalyst
JP6306468B2 (en) Process for producing dissimilar metal polynuclear complex containing Pd and Au
JP2003245554A (en) Hydrogen generating catalyst
JP4665458B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2023088762A (en) Method for manufacturing ammonia synthesis catalyst carrier and method for manufacturing ammonia synthesis catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6909405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150