JP2019072690A - Reaction product producing apparatus and method therefor - Google Patents

Reaction product producing apparatus and method therefor Download PDF

Info

Publication number
JP2019072690A
JP2019072690A JP2017202013A JP2017202013A JP2019072690A JP 2019072690 A JP2019072690 A JP 2019072690A JP 2017202013 A JP2017202013 A JP 2017202013A JP 2017202013 A JP2017202013 A JP 2017202013A JP 2019072690 A JP2019072690 A JP 2019072690A
Authority
JP
Japan
Prior art keywords
reaction product
raw material
reaction
belt body
reaction space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017202013A
Other languages
Japanese (ja)
Other versions
JP7018644B2 (en
Inventor
西岡 将輝
Masateru Nishioka
将輝 西岡
正人 宮川
Masato Miyagawa
正人 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017202013A priority Critical patent/JP7018644B2/en
Publication of JP2019072690A publication Critical patent/JP2019072690A/en
Application granted granted Critical
Publication of JP7018644B2 publication Critical patent/JP7018644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a reaction product producing apparatus in which a raw material can continuously be fed into the reaction space in order to stably obtain a reaction product.SOLUTION: Provided is a reaction product producing apparatus for continuously feeding a raw material into the reaction space in order to obtain a reaction product. The apparatus is characterized in comprising a belt body being a mesh body with pores communicating in the thickness direction, and moving over the reaction space, and a raw material feeding unit for continuously providing a raw material liquid that is a raw material or contains a raw material into pores of the belt body in short of the reaction space.SELECTED DRAWING: Figure 1

Description

本発明は、原材料を反応空間内で反応させて得られる反応生成物の製造装置及びその方法に関し、特に、反応空間内に連続して原材料を供給し反応生成物を連続的に取り出し得る反応生成物製造装置及びその方法に関する。   The present invention relates to an apparatus and method for producing a reaction product obtained by reacting raw materials in a reaction space, and in particular, a reaction product capable of continuously feeding raw materials into the reaction space and continuously taking out the reaction products. The present invention relates to an object manufacturing apparatus and a method thereof.

粉体の製造方法として、所定の成分組成で得られた固体材料を機械的に破砕又は粉砕する固体粉砕法や、やはり所定の成分組成で得られた溶湯にガスや液体を吹き付けて微細液滴にして凝固させるアトマイズ法などが知られている。かかる方法は得ようとする材料を粉体に加工する加工プロセスである。一方、PVDやCVDなどのような気相反応法や、水溶液中のイオン反応による難溶性沈殿物を分離し粉体を得る液相反応法なども知られている。かかる方法は反応プロセスであるが、生成される生成物が粉体として分離取り出し可能である。この後者のプロセスにおいて、反応装置内に連続して原材料を供給し反応生成物である粉体を得る製造方法も提案されている。   As a powder production method, a solid pulverization method of mechanically crushing or pulverizing a solid material obtained with a predetermined component composition, a fine droplet by spraying a gas or a liquid on a molten metal also obtained with a predetermined component composition The atomization method etc. which are solidified are known. Such a method is a processing process of processing the material to be obtained into powder. On the other hand, gas phase reaction methods such as PVD and CVD, and liquid phase reaction methods for separating poorly soluble precipitates by ion reaction in an aqueous solution to obtain powder are also known. Such a method is a reaction process, but the product produced can be separated and taken out as a powder. In this latter process, a production method has also been proposed in which raw materials are continuously fed into the reactor to obtain a powder which is a reaction product.

例えば、特許文献1では、フラックス中でのレーザ熱分解によるSiC粉体の製造方法として、シラン(SiH4)及びアセチレン(C22)の混合ガスからなるフラックスにレーザ光線を与え熱分解を生じさせ、連続的にナノメートルサイズ又はサブミクロンサイズのSiC粉体を製造する方法を開示している。フラックスは注入装置によって水平方向に延びるように形成され、これを上下方向に横切るようにレーザ光を与える相互作用ゾーンが設けられる。この相互作用ゾーンではフラックス内で熱分解が生じ、SiC粉体が生成され、相互作用ゾーンの外で取り出されるのである。 For example, in Patent Document 1, as a method for producing SiC powder by laser pyrolysis in a flux, a laser beam is given to a flux composed of a mixed gas of silane (SiH 4 ) and acetylene (C 2 H 2 ) to perform pyrolysis. Disclosed is a method of producing and continuously producing nanometer-sized or submicron-sized SiC powder. The flux is formed to extend in the horizontal direction by the injection device, and an interaction zone for providing laser light is provided to traverse the flux in the vertical direction. In this interaction zone, thermal decomposition occurs in the flux to produce SiC powder, which is removed outside the interaction zone.

また、特許文献2では、液相反応によるチタン酸バリウム微粒子の製造方法として、チタン化合物水溶液にバリウム塩水溶液を混合し、アルカリ水溶液を添加後、反応管内で亜臨界又は超臨界状態の水と水熱反応させて、30nm以下の立方晶又は50nm以下の正方晶チタン酸バリウムのナノ粒子を製造する流通式超臨界水熱法を開示している。原料スラリーを高温水とともに反応管に導き、混合し反応させ、反応後のスラリーを回収して乾燥させるとチタン酸バリウム微粒子を得られるのである。   In Patent Document 2, as a method for producing barium titanate fine particles by liquid phase reaction, an aqueous solution of a barium salt is mixed with an aqueous solution of a titanium compound, and after adding an aqueous alkali solution, water and water in a subcritical or supercritical state in a reaction tube A flow-through supercritical hydrothermal method is disclosed that is thermally reacted to produce cubic crystals of 30 nm or less or tetragonal barium titanate nanoparticles of 50 nm or less. The raw material slurry is introduced into a reaction tube together with high temperature water, mixed and reacted, and the slurry after reaction is recovered and dried to obtain barium titanate fine particles.

更に、特許文献3では、電磁波を照射することで金属微粒子を製造する方法として、金属前駆物質を含む反応液を流通管内に流通させながら、電磁波の照射空間を通過させる方法を開示している。照射空間内に定在波を形成する共振空胴を与えることにより、反応液を攪拌させなくとも、金属微粒子懸濁液を得ることが出来て、連続的に金属微粒子を生成させ得るとしている。   Furthermore, Patent Document 3 discloses, as a method of producing metal fine particles by irradiating an electromagnetic wave, a method of passing an electromagnetic wave irradiation space while circulating a reaction liquid containing a metal precursor in a flow pipe. By providing a resonant cavity for forming a standing wave in the irradiation space, it is possible to obtain a metal fine particle suspension without stirring the reaction solution, and to continuously generate metal fine particles.

特開2012−40555号公報JP 2012-40555 特開2011−45859号公報JP 2011-45859 A 特開2011−137226号公報JP 2011-137226 A

反応空間内に連続して原材料を供給し反応生成物を連続的に取り出す製造方法を考える。かかる場合、反応生成物の生成状態をモニタし、原材料の供給に関する供給パラメータ及び反応空間の反応制御パラメータにフィードバックさせることが行われる。ここで、製造安定性の観点からは原材料の供給を安定させることが望まれる。また、原材料が液体又はこれを含んだ液体として与えられ且つ反応生成物が粉体であるような場合には、反応生成物が液体中に漂いやすくこれを安定的に反応空間の外部に取り出すことも必要となる。   Consider a production method in which raw materials are continuously fed into the reaction space and the reaction product is continuously taken out. In such a case, the generation state of the reaction product is monitored and fed back to the feed parameters related to the feed of raw materials and the reaction control parameters of the reaction space. Here, from the viewpoint of production stability, it is desirable to stabilize the supply of raw materials. Also, in the case where the raw material is provided as a liquid or a liquid containing the same and the reaction product is a powder, the reaction product easily drifts in the liquid and is stably taken out of the reaction space. Is also needed.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、反応空間内に連続して原材料を供給し反応生成物を安定的に得ることのできる反応生成物製造装置及び反応生成物製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a reaction product capable of continuously supplying raw materials into a reaction space and stably obtaining a reaction product. An object of the present invention is to provide an apparatus for producing a product and a method for producing a reaction product.

本発明による反応生成物製造装置は、反応空間内に連続して原材料を供給し反応生成物を得る反応生成物製造装置であって、厚さ方向に連通する気孔を有するメッシュ体であって前記反応空間内を横切って移動するベルト体と、前記反応空間の手前で前記ベルト体の前記気孔内に前記原材料である又は前記原材料を含む原材料液体を連続的に与えていく原材料供給部と、を含むことを特徴とする。   The reaction product producing apparatus according to the present invention is a reaction product producing apparatus for continuously supplying raw materials into a reaction space to obtain a reaction product, which is a mesh body having pores communicating in a thickness direction, A belt body moving across the inside of the reaction space; and a raw material supply unit for continuously supplying a raw material liquid which is the raw material or contains the raw material into the pores of the belt body before the reaction space. It is characterized by including.

かかる発明によれば、メッシュ体で反応空間内に連続して原材料液体を供給するとともに、安定的に反応生成物を反応空間の外部に取り出すことができる。   According to this invention, the raw material liquid can be continuously supplied into the reaction space by the mesh body, and the reaction product can be stably taken out of the reaction space.

上記した発明において、前記反応生成物は粉体であることを特徴としてもよい。かかる発明によれば、液体中に漂いやすい粉体、特に、微細粉体であっても安定的に反応生成物を反応空間の外部に取り出すことができるのである。   In the above invention, the reaction product may be a powder. According to this invention, it is possible to stably take out the reaction product out of the reaction space, even if it is powder which easily drifts in the liquid, particularly fine powder.

上記した発明において、前記ベルト体は複数からなり、重ね合わせて前記反応空間に送られるとともに、前記ベルト体のそれぞれに前記原材料供給部を与えられていることを特徴としてもよい。かかる発明によれば、重ね合わせた複数のベルト体の間での原材料液体の移動を利用して反応生成物を得ることができる。   In the invention described above, the belt body may be composed of a plurality of belts, and may be stacked and sent to the reaction space, and the raw material supply portion may be provided to each of the belt bodies. According to this invention, it is possible to obtain a reaction product by utilizing the movement of the raw material liquid between the plurality of superposed belt bodies.

上記した発明において、前記反応空間の手前にはピンチロールが設けられることを特徴としてもよい。かかる発明によれば、複数のベルト体の間での原材料液体の移動を促し、反応空間での反応を促進させることができる。   In the above invention, a pinch roll may be provided in front of the reaction space. According to this invention, the movement of the raw material liquid between the plurality of belt bodies can be promoted, and the reaction in the reaction space can be promoted.

上記した発明において、前記反応空間において前記ベルト体に向けて電磁波照射を行う照射部を含むことを特徴としてもよい。かかる発明によれば、電磁波照射による反応生成物を得ることができる。   In the above-described invention, the reaction space may include an irradiation unit for irradiating an electromagnetic wave toward the belt body. According to this invention, the reaction product by electromagnetic wave irradiation can be obtained.

さらに本発明による反応生成物製造方法は、反応空間内に連続して原材料を供給し反応生成物を得る製造方法であって、厚さ方向に連通する気孔を有するメッシュ体であって前記反応空間内を横切って移動するベルト体の前記気孔内に前記反応空間の手前で前記原材料である又は前記原材料を含む原材料液体を連続的に与えることを特徴とする。   Furthermore, the reaction product production method according to the present invention is a production method in which raw materials are continuously supplied into the reaction space to obtain a reaction product, which is a mesh body having pores communicating in the thickness direction, and the reaction space It is characterized in that a raw material liquid which is the raw material or contains the raw material is continuously provided in the pores of the belt body moving across the inside, before the reaction space.

かかる発明によれば、メッシュ体で反応空間内に連続して原材料液体を供給するとともに、安定的に反応生成物を反応空間の外部に取り出すことができる。   According to this invention, the raw material liquid can be continuously supplied into the reaction space by the mesh body, and the reaction product can be stably taken out of the reaction space.

上記した発明において、前記反応生成物は粉体であることを特徴としてもよい。かかる発明によれば、液体中に漂いやすい粉体、特に、微細粉体であっても安定的に反応生成物を反応空間の外部に取り出すことができるのである。   In the above invention, the reaction product may be a powder. According to this invention, it is possible to stably take out the reaction product out of the reaction space, even if it is powder which easily drifts in the liquid, particularly fine powder.

上記した発明において、前記ベルト体は複数からなり、重ね合わせて前記反応空間に送られるとともに、前記ベルト体のそれぞれに前記原材料液体を与えることを特徴としてもよい。かかる発明によれば、重ね合わせた複数のベルト体の間での原材料液体の移動を利用して反応生成物を得ることができる。   In the invention described above, the belt body may be composed of a plurality of belts, and may be stacked and sent to the reaction space, and the raw material liquid may be supplied to each of the belt bodies. According to this invention, it is possible to obtain a reaction product by utilizing the movement of the raw material liquid between the plurality of superposed belt bodies.

上記した発明において、前記反応空間において前記ベルト体に向けて電磁波照射を行うことを特徴としてもよい。かかる発明によれば、電磁波照射による反応生成物を得ることができる。   In the above-described invention, electromagnetic wave irradiation may be performed toward the belt body in the reaction space. According to this invention, the reaction product by electromagnetic wave irradiation can be obtained.

上記した発明において、定在波を形成させて前記ベルト体の幅方向の電界強度又は磁界強度を制御するよう前記電磁波照射を行うことを特徴としてもよい。かかる発明によれば、反応生成物をより安定的に得ることができる。   In the above invention, the electromagnetic wave may be irradiated to form a standing wave to control the electric field strength or the magnetic field strength in the width direction of the belt body. According to this invention, the reaction product can be obtained more stably.

本発明による1つの実施例における反応生成物製造装置のブロック図である。FIG. 1 is a block diagram of a reaction product production apparatus in one embodiment according to the present invention. 本実施例における反応生成物製造装置によって製造したCuナノ粒子の透過型電子顕微鏡による観察像である。It is the observation image by the transmission electron microscope of Cu nanoparticle manufactured by the reaction product manufacturing apparatus in a present Example. 粘性の高い原材料液体を用いて製造したCuナノ粒子の透過型電子顕微鏡による観察像である。It is the observation image by a transmission electron microscope of Cu nanoparticle manufactured using the highly viscous raw material liquid. 他の実施例における反応生成物製造装置のブロック図である。It is a block diagram of the reaction product manufacturing apparatus in another Example. 図4に示す反応生成物製造装置によって製造したCuナノ粒子の透過型電子顕微鏡による観察像である。It is the observation image by the transmission electron microscope of Cu nanoparticle manufactured by the reaction product manufacturing apparatus shown in FIG. 図4に示す反応生成物製造装置によって製造したAgナノ粒子の透過型電子顕微鏡による観察像である。It is the observation image by the transmission electron microscope of Ag nanoparticle manufactured by the reaction product manufacturing apparatus shown in FIG. さらに他の実施例における反応生成物製造装置のブロック図である。It is a block diagram of the reaction product manufacturing apparatus in another Example. 図7に示す反応生成物製造装置によって製造したCuナノ粒子の透過型電子顕微鏡による観察像である。It is the observation image by a transmission electron microscope of Cu nanoparticle manufactured by the reaction product manufacturing apparatus shown in FIG. さらに他の実施例における反応生成物製造装置のブロック図である。It is a block diagram of the reaction product manufacturing apparatus in another Example. さらに他の実施例における反応生成物製造装置のブロック図である。It is a block diagram of the reaction product manufacturing apparatus in another Example.

[実施例1]
以下に、本発明による1つの実施例である反応生成物製造装置について、図1を用いて説明する。
Example 1
Below, the reaction product manufacturing apparatus which is one Example by this invention is demonstrated using FIG.

図1に示すように、反応生成物製造装置10は、内部に反応空間9を有する反応容器1と、反応容器1の外部から反応空間9を横切ってさらに反応容器の外部まで移動するベルト体2と、ベルト体2を移動させるためのローラ4及び5を含む。つまり、反応容器1は連続処理のための容器であり、少なくともベルト体2を通過させるための開口部を有する。また、反応容器1に対し、ベルト体2の搬送方向(右向き)の手前(左)側には原材料供給部6が備えられ、奥(右)側には反応生成物である粉体を取り出す粉体取出部7が備えられる。   As shown in FIG. 1, the reaction product production apparatus 10 has a reaction container 1 having a reaction space 9 inside, and a belt body 2 moving from the outside of the reaction container 1 across the reaction space 9 to the outside of the reaction container. And rollers 4 and 5 for moving the belt body 2. That is, the reaction vessel 1 is a vessel for continuous processing, and has at least an opening for passing the belt body 2. In addition, the raw material supply unit 6 is provided on the front side (left) side of the transport direction (rightward) of the belt body 2 with respect to the reaction container 1, and the powder as the reaction product is taken out on the back side (right). A body removing unit 7 is provided.

ここで、原材料供給部6は、製造しようとする粉体の原材料を含む原材料液体を滴下するなどしてベルト体2に連続的に与える塗工器の如きである。ここで、原材料が液体の場合には、かかる原材料をそのまま又は他の液体と混合して原材料液体とする。また、原材料が液体以外の場合には、他の液体に混合して原材料液体とすることができる。さらに、ベルト体2は厚さ方向に貫通する気孔を有するメッシュ体からなり、原材料液体を表面張力やこれに伴う毛管現象によって気孔に保持して搬送して反応空間9に供給することができ、反応空間9を通過しつつ、搬送される原材料液体から生成される粉体を粉体取出部7まで搬送することができる。粉体取出部7は、例えば、上方から気体や液体による流体をベルト体2に流下させるなどして、ベルト体2の気孔から粉体を分離させて下方に落下させて回収することができる。上方や下方に向けて吸引するなどしてもよい。   Here, the raw material supply unit 6 is like a coater which continuously gives the belt body 2 by dropping the raw material liquid containing the raw material of the powder to be produced. Here, when the raw material is a liquid, the raw material is used as it is or mixed with another liquid to form a raw material liquid. Moreover, when a raw material is except a liquid, it can be mixed with another liquid and it can be set as a raw material liquid. Furthermore, the belt body 2 is a mesh body having pores penetrating in the thickness direction, and the raw material liquid can be held in the pores by surface tension and capillary action accompanying this, transported and supplied to the reaction space 9 While passing through the reaction space 9, the powder generated from the raw material liquid to be conveyed can be conveyed to the powder extraction unit 7. The powder take-out portion 7 can separate the powder from the pores of the belt 2 and drop it downward and collect it, for example, by causing the fluid of gas or liquid to flow down onto the belt 2 from above. Suction may be performed upward or downward.

原材料液体から粉体を生成させるために、反応生成物製造装置10は、例えば、マイクロ波を発振して反応空間9において原材料液体の加熱を行うマイクロ波加熱装置20をさらに備える。マイクロ波加熱装置20は反応空間9をマイクロ波領域とする矩形共振器などであり、制御回路21、発振器22、マイクロ波増幅器23、アイソレータ24、整合器25を含む。制御回路21は、反応空間9に向けられた電磁界センサ26及び赤外線温度計27からの検知信号をフィードバックさせ、マイクロ波加熱装置20を制御することができる。マイクロ波加熱装置20のその他の詳細については公知であるので説明を省略する。   In order to generate powder from the raw material liquid, the reaction product production apparatus 10 further includes, for example, a microwave heating apparatus 20 that oscillates a microwave and heats the raw material liquid in the reaction space 9. The microwave heating device 20 is a rectangular resonator or the like in which the reaction space 9 is a microwave region, and includes a control circuit 21, an oscillator 22, a microwave amplifier 23, an isolator 24, and a matching unit 25. The control circuit 21 can control the microwave heating device 20 by feeding back detection signals from the electromagnetic field sensor 26 and the infrared thermometer 27 directed to the reaction space 9. The other details of the microwave heating device 20 are known and will not be described.

以上により、反応生成物製造装置10は、原材料液体をベルト体2に連続的に与えて気孔に収容させて反応空間9に供給し、マイクロ波加熱によって粉体を生成することができる。生成された粉体はさらにベルト体2に搬送されて、粉体取出部7でベルト体2から分離されて取り出される。このように、原材料液体の供給、反応、取り出しを全て連続的に処理できるから、生成された粉体を安定的に取り出すことができる。なお、反応生成物を粉体とする場合について説明したが、粉体以外のもの、例えば、液体などであっても同様とし得る。   As described above, the reaction product manufacturing apparatus 10 can continuously supply the raw material liquid to the belt body 2, store the raw material liquid in the pores, supply the raw material liquid to the reaction space 9, and generate powder by microwave heating. The generated powder is further conveyed to the belt body 2 and separated from the belt body 2 by the powder takeout portion 7 and taken out. As described above, since the supply, reaction, and removal of the raw material liquid can be all continuously processed, the generated powder can be stably removed. In addition, although the case where a reaction product was made into powder was demonstrated, even if it is a thing other than powder, for example, a liquid, it can be made the same.

また、粉体取出部7で反応生成物である粉体の生成状態をモニタして、原材料液体の供給量や反応空間9の加熱温度などの反応を制御するパラメータにフィードバックさせることも考えられるが、反応応答性が低い場合など、このようなフィードバック制御の難しいこともある。このような場合であっても、上記した反応生成物製造装置10であれば、原材料をベルト体2によって反応空間9に搬送することで原材料液体の供給量を安定させ得て、反応空間9での反応を安定させ得る。さらに、ベルト体2によって反応生成物を反応空間9から外部に取り出すことで反応生成物の取出し量も安定させ得る。つまり、フィードバック制御を用いずとも、反応空間9内に連続して原材料を供給し反応生成物を安定的に得ることができる。   It is also conceivable to monitor the generation state of the powder which is the reaction product in the powder take-out part 7 and feed it back to the parameters for controlling the reaction such as the supply amount of the raw material liquid and the heating temperature of the reaction space 9 There are also cases where such feedback control is difficult, such as when the response is low. Even in such a case, in the case of the reaction product producing apparatus 10 described above, the raw material is transported to the reaction space 9 by the belt body 2 so that the supply amount of the raw material liquid can be stabilized. Can stabilize the reaction. Further, by taking out the reaction product from the reaction space 9 to the outside by the belt body 2, the taken-out amount of the reaction product can also be stabilized. That is, raw materials can be continuously supplied into the reaction space 9 and reaction products can be stably obtained without using feedback control.

例えば、原材料を含む液体を閉鎖された流路に流して反応領域に搬送させるような装置であると、流れの不安定による搬送速度の不揃いや、流路への付着物との予期しない反応、反応の進行に伴う体積の増加や気体の発生による圧力の変動、液送ポンプの断熱圧縮や剪断力による予期しない反応の進行などの問題が考えられるが、上記したベルト体2による原材料の搬送を行う反応生成物製造装置10であれば、このような問題は発生しない。また、原材料がスラリーなどの高粘度の液体であっても、ベルト体2の搬送において影響はなく、原材料液体の供給量を安定させ得る。   For example, if the apparatus is such that the liquid containing the raw material flows in the closed channel and is transported to the reaction zone, the transport speed may be uneven due to the instability of the flow, or an unexpected reaction with deposits on the channel. Although there may be problems such as increase in volume with reaction progress, fluctuation of pressure due to generation of gas, and progress of unexpected reaction due to adiabatic compression of the liquid transfer pump and shear force, transportation of raw materials by the above-mentioned belt body 2 Such a problem does not occur in the case of the reaction product production apparatus 10 to be performed. Further, even if the raw material is a high viscosity liquid such as a slurry, there is no influence on the conveyance of the belt body 2 and the supply amount of the raw material liquid can be stabilized.

なお、マイクロ波以外の、高周波、テラヘルツ波、赤外線、可視光線、紫外線等の電磁波を用いてもよい。また、マイクロ波を含めたこれら電磁波は、反応空間9におけるベルト体2の幅方向における電界強度や磁界強度を一様にするように特定の波長を有する定在波として照射されてもよい。これによって、反応をより安定させ得る。   In addition, you may use electromagnetic waves, such as a high frequency, a terahertz wave, infrared rays, a visible ray, an ultraviolet-ray other than a microwave. Further, these electromagnetic waves including microwaves may be irradiated as a standing wave having a specific wavelength so as to make the electric field strength and the magnetic field strength in the width direction of the belt 2 in the reaction space 9 uniform. This may make the reaction more stable.

また、反応空間9において原材料液体の温度を制御する方法としては、熱風や冷風を吹き付ける方法や、ベルト体2に電熱線などの発熱体を組み込んでベルト体2を加熱する方法なども用い得る。   Further, as a method of controlling the temperature of the raw material liquid in the reaction space 9, a method of blowing hot air or cold air, a method of incorporating a heating element such as an electric heating wire into the belt 2 and heating the belt 2 may be used.

上記した反応生成物製造装置10を用いてCuナノ粒子を製造したのでその詳細について図2を用いて説明する。   Since Cu nanoparticles were produced using the above-described reaction product production apparatus 10, the details thereof will be described with reference to FIG.

溶媒をエチレングリコールとして、酢酸銅20mM、ポリビニルピロリドン(重量平均分子量10,000)を2質量%、ジメチルアミンボラン50mMを溶解させた原材料液体を用いて、ベルト(シート)体2を紙製ウエスで構成して移動速度を0.2cm/秒とし、反応空間9内において温度を100℃とするように放射温度制御によってマイクロ波加熱装置20を制御し、2.45GHzのマイクロ波を発振した。このとき、反応空間9の通過に約80秒の時間を要した。すなわち、加熱時間は約80秒である。なお、ベルト体2の移動速度を原材料液体の送液速度に換算すると約4mL/分である。粉体取出部7においてエタノールを流下させて生成された粉体を回収したところ、回収された粉体を含む液体の外観色はCuナノ粒子を含む懸濁液に特有の赤褐色を呈し、Cuナノ粒子を得られた。得られた粉体を透過型電子顕微鏡で観察したところ、図2(a)に示す観察像より、粒子径は3〜5nmであった。また、ベルト体2としてポリエステル製の不織布を用いた場合、粒子径2〜3nm及び10nm前後の混在する粉体を回収できた(図2(b))。   Using a raw material liquid in which 20 mM of copper acetate, 2% by mass of polyvinyl pyrrolidone (weight average molecular weight: 10,000) and 50 mM of dimethylamine borane are dissolved using ethylene glycol as a solvent, the belt (sheet) body 2 is made of paper waste. The moving speed was set to 0.2 cm / sec, and the microwave heating device 20 was controlled by radiation temperature control so that the temperature was set to 100 ° C. in the reaction space 9, and a microwave of 2.45 GHz was oscillated. At this time, it took about 80 seconds to pass through the reaction space 9. That is, the heating time is about 80 seconds. In addition, it is about 4 mL / min, when the moving speed of the belt body 2 is converted into the liquid feeding speed of a raw material liquid. When the powder generated by letting ethanol flow down in the powder outlet 7 is collected, the appearance color of the liquid containing the collected powder exhibits a reddish brown characteristic of the suspension containing Cu nanoparticles, and the Cu nano Particles were obtained. When the obtained powder was observed with a transmission electron microscope, the particle diameter was 3 to 5 nm according to the observation image shown in FIG. 2 (a). Moreover, when the nonwoven fabric made from polyester was used as the belt body 2, the powder with which particle diameters 2-3 nm and around 10 nm mixed was able to be collect | recovered (FIG. 2 (b)).

同様に、本実施例による反応生成物製造装置10を用いて、粘性が非常に高い原材料液体にてCuナノ粒子を製造したので、その詳細について図3を用いて説明する。溶媒をグリセリンとして酢酸銅20mM、ポリビニルピロリドン(重量平均分子量10,000)を30質量%、ジメチルアミンボラン50mMを溶解させた原材料液体(粘度:11.5Pa・s(25℃))を用いて、同様にマイクロ波加熱を行った。エタノールによって粒子径3〜5nmの粉体を回収でき、一般に市販されているシリンジポンプやプランジャーポンプでは送液の困難な高粘性の原材料液体を用いてナノ粒子の粉体を製造できた。   Similarly, using the reaction product production apparatus 10 according to the present example, Cu nanoparticles were produced using a raw material liquid having a very high viscosity, so the details will be described using FIG. Using a raw material liquid (viscosity: 11.5 Pa · s (25 ° C.)) in which 20 mM of copper acetate, 30 mass% of polyvinyl pyrrolidone (weight average molecular weight: 10,000) and 50 mM of dimethylamine borane are dissolved using glycerin as a solvent Microwave heating was performed similarly. The powder of particle size of 3 to 5 nm can be recovered by ethanol, and the powder of nanoparticles can be manufactured using a highly viscous raw material liquid which is difficult to be fed by a syringe pump or plunger pump which is generally marketed.

同様に、本実施例による反応生成物製造装置10を用いて他の粉体や液体を製造したので以下に例示する。   Similarly, other powders and liquids were produced using the reaction product production apparatus 10 according to the present embodiment, and therefore, they are exemplified below.

溶媒をエチレングリコールとして塩化ルテニウム2mM及び2,2’−ビピリジン10mMを溶解させた原材料溶液を用いて、マイクロ波によって130℃に加熱し、同様に蛍光試薬であるRu錯体([Ru(bpy)3]2+)を得ることができた。ここでは、ベルト体2としてガラス繊維体を使用した。 Using a raw material solution in which 2 mM of ruthenium chloride and 10 mM of 2,2′-bipyridine are dissolved using ethylene glycol as a solvent, the mixture is heated to 130 ° C. by microwave and Ru complex ([Ru (bpy) 3 2+ ) could be obtained. Here, a glass fiber body was used as the belt body 2.

さらに、溶媒をエチレングリコールとして硝酸銀50mMとポリビニルピロリドン(重量平均分子量10,000)を15質量%とを溶解させた原材料液体を用いて、粒子径10〜20nmのAgナノ粒子を製造することができた。ここでは、ベルト体2としてガラス繊維体を使用した。硝酸銀200mMを用いた場合、粒子径30〜100nmのAgナノ粒子を製造することができた。なお、ポリビニルピロリドンのエチレングリコール溶液に硝酸銀の粉末を溶解させずに混合して(5秒間)原材料液体として、加熱完了まで3分以内としても、粒子径5〜20nmのAgナノ粒子を得ることができた。ここでも、ベルト体2としてガラス繊維体を使用した。   Furthermore, Ag nanoparticles having a particle diameter of 10 to 20 nm can be produced using a raw material liquid in which 50 mM of silver nitrate and 15 mass% of polyvinyl pyrrolidone (weight average molecular weight of 10,000) are dissolved using ethylene glycol as a solvent. The Here, a glass fiber body was used as the belt body 2. When silver nitrate 200 mM was used, Ag nanoparticles with a particle diameter of 30 to 100 nm could be produced. In addition, it mixes without dissolving the powder of silver nitrate in the ethylene glycol solution of polyvinylpyrrolidone (5 seconds), and obtains Ag nanoparticles with a particle diameter of 5 to 20 nm as a raw material liquid even within 3 minutes until heating is completed. did it. Here too, a glass fiber body was used as the belt body 2.

なお、反応生成物製造装置10は、マイクロ波加熱以外の原理によって原材料液体を反応させる装置構成としてもよい。例えば、反応空間9内において加圧ローラによってベルト体を加圧して高圧・超臨界反応を得たり、超音波によって反応させるソノケミストリ反応を得たり、剪断力を付与してメカノケミカル反応を得たりしてもよい。   The reaction product production apparatus 10 may be configured as an apparatus that causes the raw material liquid to react by a principle other than microwave heating. For example, the belt body is pressurized by a pressure roller in the reaction space 9 to obtain a high pressure / supercritical reaction, a sonochemical reaction to be reacted by an ultrasonic wave is obtained, or a shear force is applied to obtain a mechanochemical reaction You may

[実施例2]
反応生成物製造装置の他の実施例について、図4から図6を用いて説明する。
Example 2
Another embodiment of the reaction product production apparatus will be described with reference to FIGS. 4 to 6.

図4に示すように、反応生成物製造装置12は、第1ベルト体2aと第2ベルト体2bとを備え、それぞれに対して原材料供給部6a及び6bが備えられ、第1原材料液体及び第2原材料液体(あるいは原材料粉末)を別々に供給できる。第1ベルト体2a及び第2ベルト体2bは、ともに厚さ方向に貫通する気孔を有するメッシュ体からなる。ローラ4によって、第1ベルト体2a及び第2ベルト体2bを互いに重ねて接触させ、第1原材料液体及び第2原材料液体(あるいは粉末)を第1ベルト体及び/又は第2ベルト体に移動・混合させて反応させることができる。なお、反応空間9の手前にピンチロールを設けて、ベルト体間での原材料液体の移動を促してもよい。その他は反応生成物製造装置10と同様である。   As shown in FIG. 4, the reaction product production apparatus 12 includes the first belt body 2 a and the second belt body 2 b, and the raw material supply units 6 a and 6 b are provided for each of them. 2 Raw material liquid (or raw material powder) can be supplied separately. The first belt body 2a and the second belt body 2b are both mesh bodies having pores penetrating in the thickness direction. The first belt body 2a and the second belt body 2b are brought into contact with each other by the roller 4, and the first raw material liquid and the second raw material liquid (or powder) are transferred to the first belt body and / or the second belt body It can be mixed and reacted. A pinch roll may be provided in front of the reaction space 9 to promote the movement of the raw material liquid between the belt bodies. Others are the same as the reaction product production apparatus 10.

反応生成物製造装置12においても生成された粉体を安定的に取り出すことができるが、さらに2種類の原材料液体による反応から得られる粉体を製造することができる。   Although the produced powder can be stably taken out also in the reaction product production apparatus 12, it is possible to produce a powder obtained from the reaction by two kinds of raw material liquids.

例えば、溶媒をエチレングリコールとして酢酸銅40mM及びポリビニルピロリドン4質量%を溶解させた第1原材料液体と、ジメチルアミンボラン100mMをエチレングリコールに溶解させた第2原材料液体とを、それぞれ第1ベルト体2aと第2ベルト体2bとに搬送させて反応空間9内で100℃に加熱して反応させたところ、粒子径5nm前後のCuナノ粒子を製造することができた。なお、第1ベルト体2a及び第2ベルト体2bにはともにセルロース製メッシュを用いた。得られたCuナノ粒子の透過型電子顕微鏡による観察像を図5に示す。   For example, a first raw material liquid in which 40 mM of copper acetate and 4 mass% of polyvinyl pyrrolidone are dissolved using ethylene glycol as a solvent, and a second raw material liquid in which 100 mM of dimethylamine borane is dissolved in ethylene glycol C. and the second belt body 2 b were heated and reacted at 100 ° C. in the reaction space 9. As a result, Cu nanoparticles having a particle diameter of about 5 nm could be produced. In addition, the mesh made of cellulose was used for both the 1st belt body 2a and the 2nd belt body 2b. An observation image of the obtained Cu nanoparticles by a transmission electron microscope is shown in FIG.

他の例として、エチレングリコールによる第1原材料液体と、硝酸銀及びポリビニルピロリドンの混合粉末による第2原材料粉末とを、それぞれ第1ベルト体2aと第2ベルト体2bとに搬送させて反応空間9内で100℃に加熱して反応させたところ、粒子径10〜100nm前後のAgナノ粒子を製造することができた。なお、供給したエチレングリコールに硝酸銀及びポリビニルピロリドンが全て溶解した場合、硝酸銀1000mM、ポリビニルピロリドン15重量%の原材料液体に相当する。また、第1ベルト体2a及び第2ベルト体2bにはともにセルロース製メッシュを用いた。得られたAgナノ粒子の透過型電子顕微鏡による観察像を図6に示す。   As another example, the first raw material liquid made of ethylene glycol and the second raw material powder made of mixed powder of silver nitrate and polyvinyl pyrrolidone are transported to the first belt body 2a and the second belt body 2b, respectively, in the reaction space 9 The reaction was carried out by heating to 100 ° C., and it was possible to produce Ag nanoparticles with a particle diameter of about 10 to 100 nm. When silver nitrate and polyvinyl pyrrolidone are all dissolved in the supplied ethylene glycol, it corresponds to a raw material liquid of 1000 mM of silver nitrate and 15% by weight of polyvinyl pyrrolidone. Moreover, the mesh made of cellulose was used for the 1st belt body 2a and the 2nd belt body 2b. The observation image by the transmission electron microscope of the obtained Ag nanoparticle is shown in FIG.

[実施例3]
反応生成物製造装置のさらに他の実施例について、図7及び図8を用いて説明する。
[Example 3]
Another embodiment of the reaction product production apparatus will be described with reference to FIGS. 7 and 8.

図7に示すように、反応生成物製造装置13は、第1ベルト体2aと第2ベルト体2bとの間に配置される第3ベルト体2cを備える。第3ベルト体2cは原材料供給部を設けられておらず、ローラ4によって第1ベルト体2a及び第2ベルト体2bの間に挟まれて接触し、第1原材料液体及び第2原材料液体を吸収するように移動・混合させて反応させることができる。また、ローラ5の奥側では各ベルト体は分離され、第3ベルト体2cに粉体取出部7が備えられる。その他は反応生成物製造装置12と同様である。   As shown in FIG. 7, the reaction product production device 13 includes a third belt body 2 c disposed between the first belt body 2 a and the second belt body 2 b. The third belt body 2c is not provided with the raw material supply portion, and is sandwiched between and in contact with the first belt body 2a and the second belt body 2b by the roller 4 to absorb the first raw material liquid and the second raw material liquid. It can be moved, mixed and reacted as it is. Further, on the back side of the roller 5, the respective belt members are separated, and the powder takeout portion 7 is provided in the third belt member 2c. Others are the same as the reaction product production apparatus 12.

反応生成物製造装置13においても生成された粉体を安定的に取り出すことができるが、さらに2種類の原材料液体を第3ベルト体2cに吸収させて反応させることができる。   Although the generated powder can be stably taken out also in the reaction product production apparatus 13, two kinds of raw material liquids can be absorbed by the third belt body 2c and reacted.

例えば、溶媒をエチレングリコールとして銅40mM及びポリビニルピロリドン4質量%を溶解させた第1原材料液体と、ジメチルアミンボラン100mMをエチレングリコールに溶解させた第2原材料液体とを、それぞれ第1ベルト体2aと第2ベルト体2bとに搬送させて第3ベルト体2cに吸収させる。さらに、反応空間9内で100℃に加熱して反応させたところ、粒子径3〜5nm前後のCuナノ粒子を製造することができた。なお、第1ベルト体2a、第2ベルト体2b及び第3ベルト体3cには紙製ウエスを用いた。得られたCuナノ粒子の透過型電子顕微鏡による観察像を図8に示す。   For example, a first raw material liquid in which 40 mM of copper and 4 mass% of polyvinyl pyrrolidone are dissolved using ethylene glycol as a solvent, and a second raw material liquid in which 100 mM of dimethylamine borane is dissolved in ethylene glycol It is conveyed by the second belt body 2b and absorbed by the third belt body 2c. Furthermore, when heated to 100 ° C. in the reaction space 9 and reacted, Cu nanoparticles having a particle diameter of about 3 to 5 nm could be produced. In addition, the paper waste cloth was used for the 1st belt body 2a, the 2nd belt body 2b, and the 3rd belt body 3c. An observation image of the obtained Cu nanoparticles by a transmission electron microscope is shown in FIG.

[実施例4]
反応生成物製造装置のさらに他の実施例について、図9を用いて説明する。
Example 4
Yet another embodiment of the reaction product production apparatus will be described with reference to FIG.

図9に示すように、反応生成物製造装置14は、第3ベルト体2c’に、第1原材料液体及び第2原材料液体の反応を促進させる触媒を担持させるとともに、これを環状にしてループさせている。また、環状の第3ベルト体2c’の一部には、熱処理等によって触媒を還元させ、再生する触媒再生部31を備える。その他は、反応生成物製造装置13と同様である。   As shown in FIG. 9, the reaction product production apparatus 14 causes the third belt body 2c 'to carry a catalyst that promotes the reaction of the first raw material liquid and the second raw material liquid, and makes it loop and loop. ing. Further, a catalyst regenerating unit 31 is provided on a part of the annular third belt 2c 'to reduce and regenerate the catalyst by heat treatment or the like. Others are the same as the reaction product production apparatus 13.

反応生成物製造装置14においても生成された粉体を安定的に取り出すことができるが、さらに触媒によって2種類の原材料液体の反応を促進することができる。また、環状に第3ベルト体2c’を配置して触媒再生部31を設けることで、触媒を再利用できて効率的である。   Although the produced powder can be stably taken out also in the reaction product production apparatus 14, the catalyst can further promote the reaction of the two raw material liquids. Further, by arranging the third belt body 2c 'in a ring shape and providing the catalyst regenerating unit 31, the catalyst can be reused, which is efficient.

[実施例5]
反応生成物製造装置のさらに他の実施例について、図10を用いて説明する。
[Example 5]
Yet another embodiment of the reaction product production apparatus will be described with reference to FIG.

図10に示すように、反応生成物製造装置15は、ベルト体2の下側に重なって反応空間9内に移動する3つの分級のためのベルト体3a,3b,3cを備える。ベルト体3a,3b,3cのそれぞれは、厚さ方向に貫通する気孔の径を上から順に小さくしており、通過させ得る粉体の粒子径を順に細かくするようにされている。反応空間9の手前側ではベルト体2に原材料供給部6が備えられるとともに、反応空間9の奥側ではベルト体3a,3b,3cにそれぞれ粉体取出部7a,7b,7cが備えられる。   As shown in FIG. 10, the reaction product production apparatus 15 is provided with three classification belt bodies 3a, 3b, 3c which move below the belt body 2 into the reaction space 9. As shown in FIG. In each of the belts 3a, 3b, 3c, the diameter of the pores penetrating in the thickness direction is made smaller in order from the top, and the particle diameter of the powder which can be passed is made smaller in order. At the front side of the reaction space 9, the belt body 2 is provided with the raw material supply unit 6, and at the back side of the reaction space 9, the belt bodies 3a, 3b, 3c are respectively provided with powder extracting portions 7a, 7b, 7c.

ベルト体2によって供給された原材料液体によって反応空間9内で粉体が生成される。生成された粉体は、その粒径の大きなものから順に粉体取出部7a、粉体取出部7b、粉体取出部7cに落下し回収される。つまり分級ベルト体3a〜3cによって粉体を分級することができる。取出し時に既に粉体が分級されており効率的である。   The raw material liquid supplied by the belt body 2 generates powder in the reaction space 9. The generated powder is dropped and collected in order from the particle with the largest particle diameter to the powder outlet 7a, the powder outlet 7b and the powder outlet 7c. That is, the powder can be classified by the classification belt bodies 3a to 3c. The powder is already classified at the time of removal, which is efficient.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。   Although the representative embodiments according to the present invention and the modifications based thereon are described above, the present invention is not necessarily limited thereto. Those skilled in the art will be able to find various alternative embodiments without departing from the scope of the appended claims.

2 ベルト体
6 原材料供給部
7 粉体取出部
9 反応空間
10 反応生成物製造装置
2 Belt Body 6 Raw Material Supply Unit 7 Powder Removal Unit 9 Reaction Space 10 Reaction Product Production Device

Claims (10)

反応空間内に連続して原材料を供給し反応生成物を得る反応生成物製造装置であって、
厚さ方向に連通する気孔を有するメッシュ体であって前記反応空間内を横切って移動するベルト体と、
前記反応空間の手前で前記ベルト体の前記気孔内に前記原材料である又は前記原材料を含む原材料液体を連続的に与えていく原材料供給部と、を含むことを特徴とする反応生成物製造装置。
What is claimed is: 1. A reaction product manufacturing apparatus for continuously supplying raw materials into a reaction space to obtain a reaction product,
A mesh body having pores communicating in a thickness direction, the belt body moving across the reaction space;
An apparatus for producing a reaction product, comprising: a raw material supply unit for continuously supplying a raw material liquid which is the raw material or contains the raw material into the pores of the belt body before the reaction space.
前記反応生成物は粉体であることを特徴とする請求項1記載の反応生成物製造装置。   The reaction product production apparatus according to claim 1, wherein the reaction product is a powder. 前記ベルト体は複数からなり、重ね合わせて前記反応空間に送られるとともに、前記ベルト体のそれぞれに前記原材料供給部を与えられていることを特徴とする請求項1又は2に記載の反応生成物製造装置。   The reaction product according to claim 1 or 2, characterized in that the belt body is composed of a plurality of pieces and is superposed and sent to the reaction space, and the raw material supply portion is provided to each of the belt bodies. manufacturing device. 前記反応空間の手前にはピンチロールが設けられることを特徴とする請求項3記載の反応生成物製造装置。   The reaction product manufacturing apparatus according to claim 3, wherein a pinch roll is provided in front of the reaction space. 前記反応空間において前記ベルト体に向けて電磁波照射を行う照射部を含むことを特徴とする請求項1乃至4のうちの1つに記載の反応生成物製造装置。   The reaction product manufacturing apparatus according to any one of claims 1 to 4, further comprising an irradiation unit that irradiates the belt body with an electromagnetic wave in the reaction space. 反応空間内に連続して原材料を供給し反応生成物を得る製造方法であって、
厚さ方向に連通する気孔を有するメッシュ体であって前記反応空間内を横切って移動するベルト体の前記気孔内に前記反応空間の手前で前記原材料である又は前記原材料を含む原材料液体を連続的に与えることを特徴とする反応生成物製造方法。
A production method for continuously supplying raw materials into a reaction space to obtain a reaction product,
A mesh body having pores communicating in a thickness direction, wherein a raw material liquid which is the raw material or which contains the raw material is continuously formed in the pores of the belt body moving across the reaction space before the reaction space. A method for producing a reaction product, characterized in that
前記反応生成物は粉体であることを特徴とする請求項6記載の反応生成物製造方法。   The method for producing a reaction product according to claim 6, wherein the reaction product is a powder. 前記ベルト体は複数からなり、重ね合わせて前記反応空間に送られるとともに、前記ベルト体のそれぞれに前記原材料液体を与えることを特徴とする請求項6又は7に記載の反応生成物製造方法。   The reaction product manufacturing method according to claim 6 or 7, wherein the belt body is composed of a plurality of pieces, and is superimposed and sent to the reaction space, and the raw material liquid is applied to each of the belt bodies. 前記反応空間において前記ベルト体に向けて電磁波照射を行うことを特徴とする請求項6乃至8のうちの1つに記載の反応生成物製造方法。   The reaction product manufacturing method according to any one of claims 6 to 8, wherein electromagnetic wave irradiation is performed toward the belt body in the reaction space. 定在波を形成させて前記ベルト体の幅方向の電界強度又は磁界強度を制御するよう前記電磁波照射を行うことを特徴とする請求項9記載の反応生成物製造方法。

The reaction product manufacturing method according to claim 9, wherein the electromagnetic wave irradiation is performed so as to form a standing wave and control an electric field strength or a magnetic field strength in a width direction of the belt body.

JP2017202013A 2017-10-18 2017-10-18 Reaction product manufacturing equipment and its method Active JP7018644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202013A JP7018644B2 (en) 2017-10-18 2017-10-18 Reaction product manufacturing equipment and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202013A JP7018644B2 (en) 2017-10-18 2017-10-18 Reaction product manufacturing equipment and its method

Publications (2)

Publication Number Publication Date
JP2019072690A true JP2019072690A (en) 2019-05-16
JP7018644B2 JP7018644B2 (en) 2022-02-14

Family

ID=66542893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202013A Active JP7018644B2 (en) 2017-10-18 2017-10-18 Reaction product manufacturing equipment and its method

Country Status (1)

Country Link
JP (1) JP7018644B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048525A (en) * 1999-08-09 2001-02-20 Nobuko Hasuyama Method for producing zeolite and device for producing zeolite
JP2009166348A (en) * 2008-01-16 2009-07-30 Seiko Epson Corp Device for processing waste liquid
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
WO2017124057A1 (en) * 2016-01-14 2017-07-20 Folia Water, Inc. Substrates with metal nanoparticles, related articles, and a continuous process for making same
JP2017529298A (en) * 2014-07-30 2017-10-05 ジェネラル ナノ、エルエルシーGeneral Nano,LLC Carbon nanotube sheet structure and manufacturing method thereof
JP2019504951A (en) * 2016-02-11 2019-02-21 シーメンス インダストリー インコーポレイテッドSiemens Industry, Inc. Hidden external hinge that rotates 180 degrees

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048525A (en) * 1999-08-09 2001-02-20 Nobuko Hasuyama Method for producing zeolite and device for producing zeolite
JP2009166348A (en) * 2008-01-16 2009-07-30 Seiko Epson Corp Device for processing waste liquid
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
JP2017529298A (en) * 2014-07-30 2017-10-05 ジェネラル ナノ、エルエルシーGeneral Nano,LLC Carbon nanotube sheet structure and manufacturing method thereof
WO2017124057A1 (en) * 2016-01-14 2017-07-20 Folia Water, Inc. Substrates with metal nanoparticles, related articles, and a continuous process for making same
JP2019504941A (en) * 2016-01-14 2019-02-21 フォリア ウォーター インコーポレイテッド Substrates comprising metal nanoparticles, related articles, and continuous processes for making them
JP2019504951A (en) * 2016-02-11 2019-02-21 シーメンス インダストリー インコーポレイテッドSiemens Industry, Inc. Hidden external hinge that rotates 180 degrees

Also Published As

Publication number Publication date
JP7018644B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
Harish et al. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review
Horikoshi et al. Microwaves in nanoparticle synthesis: fundamentals and applications
Agasti et al. One pot synthesis of crystalline silver nanoparticles
Okuyama et al. Preparation of nanoparticles via spray route
KR100288095B1 (en) Manufacturing method of silver powder by aerosol decomposition
KR101129610B1 (en) Induction plasma synthesis of nanopowders
Ghaem et al. Characterization of cobalt oxide nanoparticles produced by laser ablation method: Effects of laser fluence
RU2489232C1 (en) Method of producing metal nano-sized powders
JP2017218667A (en) Production method of metal fine particles and production apparatus of metal fine particles
US9630162B1 (en) Reactor and method for production of nanostructures
JP5866690B2 (en) Method for producing spherical nanoparticles and spherical nanoparticles obtained by the production method
KR101346321B1 (en) Graphene-carbon nanotubes nanostructure and method of manufacturing the same
Kim et al. Evaporation crystallization of RDX by ultrasonic spray
JP2011137226A5 (en) Method for producing metal fine particles, metal fine particles produced by this production method, and apparatus for producing metal fine particles
Shariq et al. Application of Gold (III) Acetate as a new precursor for the synthesis of gold nanoparticles in PEG through ultrasonic spray pyrolysis
Bensebaa Wet production methods
Purwanto et al. Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis
Janbua et al. Direct synthesis and growth mechanism of metal molybdate (AMoO4; A= Ca and Ba) fine particles via the Mechanochemical method
JP2019072690A (en) Reaction product producing apparatus and method therefor
Lee et al. Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis
CN206240095U (en) A kind of device for preparing ultrathin composite powder
Preuksarattanawut et al. Fabrication of silver hollow microspheres by sodium hydroxide in glycerol solution
Ishigaki et al. Synthesis of functional nanocrystallites through reactive thermal plasma processing
JP2016017028A (en) Method for producing bctz nanoparticles
KR101166986B1 (en) Method for manufacturing silver powder from silver nitrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220125

R150 Certificate of patent or registration of utility model

Ref document number: 7018644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150