JP2011137226A5 - Method for producing metal fine particles, metal fine particles produced by this production method, and apparatus for producing metal fine particles - Google Patents

Method for producing metal fine particles, metal fine particles produced by this production method, and apparatus for producing metal fine particles Download PDF

Info

Publication number
JP2011137226A5
JP2011137226A5 JP2010271979A JP2010271979A JP2011137226A5 JP 2011137226 A5 JP2011137226 A5 JP 2011137226A5 JP 2010271979 A JP2010271979 A JP 2010271979A JP 2010271979 A JP2010271979 A JP 2010271979A JP 2011137226 A5 JP2011137226 A5 JP 2011137226A5
Authority
JP
Japan
Prior art keywords
fine particles
metal
metal fine
cavity
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010271979A
Other languages
Japanese (ja)
Other versions
JP5769287B2 (en
JP2011137226A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010271979A priority Critical patent/JP5769287B2/en
Priority claimed from JP2010271979A external-priority patent/JP5769287B2/en
Publication of JP2011137226A publication Critical patent/JP2011137226A/en
Publication of JP2011137226A5 publication Critical patent/JP2011137226A5/en
Application granted granted Critical
Publication of JP5769287B2 publication Critical patent/JP5769287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属微粒子の製造方法及びこの製造方法により製造される金属微粒子並びに金属微粒子の製造装置に関するものであり、更に詳しくは、反応液に電磁波を均一に照射して加熱することにより、金属ナノ粒子を短時間で、連続的に製造することを可能にする金属微粒子の製造方法及びこの製造方法により製造される金属微粒子並びに金属微粒子の製造装置に関するものである。 The present invention relates to a method for producing metal fine particles, a metal fine particle produced by this production method , and a device for producing metal fine particles . More specifically, the present invention relates to a metal by heating a reaction solution by uniformly irradiating it with electromagnetic waves. The present invention relates to a method for producing fine metal particles that enables continuous production of nanoparticles in a short period of time, a fine metal particle produced by this production method, and an apparatus for producing fine metal particles .

したがって本発明は、粒子径分布の狭い金属ナノ粒子を、短時間で、高い収率で、かつ高エネルギー効率で、連続的に合成することを可能とする金属ナノ粒子材料の製造方法及びこの製造方法により製造される金属微粒子並びに金属微粒子の製造装置を提供することを目的とするものである。 Accordingly, the present invention is a narrow metal nanoparticles of particle size distribution in a short time, in high yields, and with high energy efficiency, a manufacturing method and the manufacturing of the metal nanoparticle material makes it possible to continuously synthesize An object of the present invention is to provide metal fine particles produced by the method and a metal fine particle production apparatus .

本発明の上記金属微粒子の製造は、電磁波の定在波TM mn0 (mは0以上、nは1以上の整数)を形成させることができる共振空洞内に配置された流通管内に金属前駆物質を含有する反応液流通させ、一方、その流通管の長さ方向にわたって、均一かつ集中的に電磁波を流通管内に向けて照射し、均一に加熱し、金属微粒子を生成させる金属ナノ粒子の連続的製造方法により実施できる。
本発明の製造方法により、好ましくは、平均粒子径が約100nm以下の粒子径を有する金属微粒子を製造することができる。本明細書において、金属微粒子の粒子径の平均粒子径は、後述の実施例に示すように、ナノ粒子懸濁液の動的光散乱により測定された値をいう。
本発明に用いられる流通管は、マイクロ波を透過しやすいものが望ましく、該容器の材質としては、例えば、ガラス、石英、アルミナ、フッ素樹脂テフロン(登録商標)、プラスチック、ポリエチル・エーテル・ケトン樹脂などがあげられる。しかし、本発明は、これらに限定されるものではなく、これらと同等の材質のものであれば、同様に使用することができる。
流通管の管壁の厚さは、好ましくは0.05〜10mm、より好ましくは0.1〜2mmである。管壁の厚さを上記範囲にすることにより安定した金属ナノ粒子の連続合成が可能であり、管壁の厚さが薄すぎては反応管としての流通管の形状を維持することが困難であり、また反応管内の圧力変動による破損の可能性があり、厚すぎてはマイクロ波の伝達ロスによる加熱効率の低下という問題を生ずる。
流通管中の金属前駆物質含有液に対する電磁波(マイクロ波)の照射強度は好ましくは0.1mW〜20kW、より好ましくは1mW〜100Wである。電磁波の照射強度がこの範囲内で、金属前駆体の還元が起こり、金属微粒子が生成する。電磁波強度が低すぎると、金属微粒子が生成せず、高すぎると、流通溶液が沸騰する。また流通管中の金属前駆物質含有液の送液速度は、好ましくは0.1ml/h〜5l/h、より好ましくは5〜200ml/hである。送液速度を上記の範囲に調節することにより、目的のサイズの金属微粒子が生成する。送液速度が大きすぎると、液は沸騰しないが粒子径のnmオーダーの金属微粒子が得られにくく、小さすぎると液が沸騰し、目的の粒径の金属微粒子が得られにくくなる。
The metal fine particles of the present invention are produced by placing a metal precursor in a flow tube arranged in a resonance cavity that can form an electromagnetic wave standing wave TM mn0 (m is an integer of 0 or more and n is an integer of 1 or more). A continuous reaction of metal nanoparticles that circulates the contained reaction liquid and irradiates electromagnetic waves uniformly and intensively toward the inside of the flow pipe in the length direction of the flow pipe and uniformly heats it to generate metal fine particles. It can be implemented by a manufacturing method.
By the production method of the present invention, preferably, metal fine particles having an average particle size of about 100 nm or less can be produced. In the present specification, the average particle diameter of the metal fine particles refers to a value measured by dynamic light scattering of a nanoparticle suspension, as shown in Examples described later.
The flow tube used in the present invention is preferably one that easily transmits microwaves. Examples of the material of the container include glass, quartz, alumina, fluororesin Teflon (registered trademark), plastic, polyethyl ether ketone resin Etc. However, the present invention is not limited to these, and can be used in the same manner as long as they are made of the same material as these.
The thickness of the pipe wall of the flow pipe is preferably 0.05 to 10 mm, more preferably 0.1 to 2 mm. By making the tube wall thickness within the above range, stable metal nanoparticles can be continuously synthesized. If the tube wall thickness is too thin, it is difficult to maintain the shape of the flow tube as a reaction tube. In addition, there is a possibility of breakage due to pressure fluctuation in the reaction tube, and if it is too thick, there arises a problem that heating efficiency is lowered due to transmission loss of microwaves.
The irradiation intensity of the electromagnetic wave (microwave) with respect to the metal precursor containing liquid in the flow pipe is preferably 0.1 mW to 20 kW, more preferably 1 mW to 100 W. When the irradiation intensity of the electromagnetic wave is within this range, reduction of the metal precursor occurs and metal fine particles are generated. When the electromagnetic wave intensity is too low, metal fine particles are not generated, and when it is too high, the circulating solution boils. The liquid feed rate of the metal precursor containing liquid in the flow pipe is preferably 0.1 ml / h to 5 l / h, more preferably 5 to 200 ml / h. By adjusting the liquid feeding speed to the above range, metal fine particles having a target size are generated. If the liquid feeding speed is too high, the liquid will not boil, but it will be difficult to obtain metal fine particles of the order of nm, and if it is too small, the liquid will boil and it will be difficult to obtain metal fine particles of the desired particle diameter.

本発明では、上述のような、照射するマイクロ波周波数が2.4〜2.5GHzでは内径が2.9ミリメートル以下のサイズの流通管を用いることが重要である。流通管の外径及び長さについては、特に制限されるものではなく、また、キャビティ内に配置される流通管の形状及び構造についても、適宜設計することができる。
In the present invention, it is important to use a flow pipe having an inner diameter of 2.9 mm or less at a microwave frequency of 2.4 to 2.5 GHz as described above. The outer diameter and length of the flow pipe are not particularly limited, and the shape and structure of the flow pipe disposed in the cavity can be designed as appropriate.

Claims (8)

電磁波の定在波TM mn0 (mは0以上、nは1以上の整数)を形成させることができる共振空洞内に配置された流通管内に金属前駆物質を含有する反応液流通させ、その流通管の長さ方向にわたって、均一かつ集中的に電磁波を流通管内に向けて照射し、均一に加熱し、金属微粒子を生成させる金属微粒子の製造方法。 Electromagnetic standing wave TM mn0 (m is 0 or more, n represents an integer of 1 or more) is circulated reaction solution containing the metal precursor to the distribution pipe disposed within the resonance cavity can be formed, its over the length of the flow tube, uniformly and intensively irradiated toward the electromagnetic wave distribution tube, uniformly heating method of metal fine particles to produce fine metal particles. 前記流通管が、テフロン(登録商標)製である請求項1に記載の金属微粒子の製造方法。 The flow tube, Teflon method for producing metal fine particles according to (registered trademark) der Ru claim 1. 前記反応液に用いる液媒体が、前記反応液の金属化合物を還元する作用を有する化合物を含有する請求項1又は2に記載の金属微粒子の製造方法。 The method for producing metal fine particles according to claim 1 or 2 , wherein the liquid medium used for the reaction liquid contains a compound having an action of reducing the metal compound of the reaction liquid . 前記反応液もしくは反応生成液の温度を制御し、電磁波照射による生成金属微粒子の粒径を均一に制御する請求項1〜3のいずれか1項に記載の金属微粒子の製造方法。 The method for producing metal fine particles according to any one of claims 1 to 3, wherein the temperature of the reaction liquid or reaction product liquid is controlled to uniformly control the particle diameter of the generated metal fine particles by electromagnetic wave irradiation . 前記共振空胴内にTM mn0 の前記定在波を安定して形成させるために、円筒型の前記共振空胴の内径を変化させる請求項1〜4のいずれか1項に記載の金属微粒子の製造方法。 The metal fine particle according to any one of claims 1 to 4, wherein an inner diameter of the cylindrical resonance cavity is changed in order to stably form the standing wave of TM mn0 in the resonance cavity . Production method. 前記共振空胴内にTM mn0 の前記定在波を安定して形成させるために、照射する電磁波の周波数を調整する機構もしくはそれと同等の効果を及ぼす機構を有している請求項1〜5のいずれか1項に記載の金属微粒子の製造方法。 6. A mechanism for adjusting the frequency of an electromagnetic wave to be irradiated or a mechanism for exerting an equivalent effect in order to stably form the standing wave of TM mn0 in the resonance cavity. The manufacturing method of the metal microparticle of any one of Claims 1. TM  TM mn0mn0 (mは0以上、nは1以上の整数)の定在波が形成できるキャビティを内部に有する空胴共振器と、前記キャビティにマイクロ波を照射するマイクロ波発振器と、前記キャビティ内に配置された流通管と、前記流通管の片側に取り付けられ、反応液を前記流通管に送液する送液ポンプとを備えた金属微粒子の製造装置。(M is an integer greater than or equal to 0 and n is an integer greater than or equal to 1) A cavity resonator having a cavity capable of forming a standing wave therein, a microwave oscillator for irradiating the cavity with microwaves, and a cavity disposed in the cavity An apparatus for producing fine metal particles, comprising: a distribution pipe, and a liquid feed pump that is attached to one side of the flow pipe and feeds the reaction liquid to the flow pipe. 請求項1〜6のいずれか1項に記載の金属微粒子の製造方法により製造される金属微粒子。  The metal microparticle manufactured by the manufacturing method of the metal microparticle of any one of Claims 1-6.
JP2010271979A 2009-12-05 2010-12-06 Method for producing metal fine particles Expired - Fee Related JP5769287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271979A JP5769287B2 (en) 2009-12-05 2010-12-06 Method for producing metal fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009277108 2009-12-05
JP2009277108 2009-12-05
JP2010271979A JP5769287B2 (en) 2009-12-05 2010-12-06 Method for producing metal fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015085862A Division JP6436305B2 (en) 2009-12-05 2015-04-20 Metal fine particle production method and metal fine particle production apparatus

Publications (3)

Publication Number Publication Date
JP2011137226A JP2011137226A (en) 2011-07-14
JP2011137226A5 true JP2011137226A5 (en) 2013-07-25
JP5769287B2 JP5769287B2 (en) 2015-08-26

Family

ID=44348912

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2010271979A Expired - Fee Related JP5769287B2 (en) 2009-12-05 2010-12-06 Method for producing metal fine particles
JP2015085862A Expired - Fee Related JP6436305B2 (en) 2009-12-05 2015-04-20 Metal fine particle production method and metal fine particle production apparatus
JP2017000288A Pending JP2017218667A (en) 2009-12-05 2017-01-04 Production method of metal fine particles and production apparatus of metal fine particles
JP2020036319A Pending JP2020111831A (en) 2009-12-05 2020-03-03 Production method of metal fine particle and production apparatus of metal fine particle

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2015085862A Expired - Fee Related JP6436305B2 (en) 2009-12-05 2015-04-20 Metal fine particle production method and metal fine particle production apparatus
JP2017000288A Pending JP2017218667A (en) 2009-12-05 2017-01-04 Production method of metal fine particles and production apparatus of metal fine particles
JP2020036319A Pending JP2020111831A (en) 2009-12-05 2020-03-03 Production method of metal fine particle and production apparatus of metal fine particle

Country Status (1)

Country Link
JP (4) JP5769287B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769287B2 (en) * 2009-12-05 2015-08-26 国立研究開発法人産業技術総合研究所 Method for producing metal fine particles
JP5888804B2 (en) * 2011-07-11 2016-03-22 国立研究開発法人産業技術総合研究所 Method for producing metal fine particles
JP6303499B2 (en) * 2011-09-12 2018-04-04 国立研究開発法人産業技術総合研究所 Continuous synthesis method and continuous synthesis apparatus for core / shell nanoparticles of metal core / oxide shell
JP6362206B2 (en) * 2013-09-19 2018-07-25 株式会社新光化学工業所 Copper nanoparticle colloid, copper nanoparticle, copper nanoparticle paste using the same, copper nanoparticle core-shell metal, copper nanoparticle colloid production apparatus, copper nanoparticle colloid production method
WO2016104522A1 (en) * 2014-12-22 2016-06-30 株式会社新光化学工業所 Process and device for producing nanoparticles, and nanoparticles produced thereby
JP6145601B2 (en) * 2016-02-10 2017-06-14 国立研究開発法人産業技術総合研究所 Method for producing metal fine particles and solvent containing metal fine particles for microwave irradiation
JP2017226916A (en) * 2016-06-20 2017-12-28 株式会社新光化学工業所 Production method of fine particles and production apparatus and fine particles
JP7233041B2 (en) * 2016-08-10 2023-03-06 矢崎総業株式会社 Hydrogen production equipment
JP6795424B2 (en) * 2017-02-22 2020-12-02 トヨタ自動車株式会社 Manufacturing method of silver nanoparticles
JP7018644B2 (en) * 2017-10-18 2022-02-14 国立研究開発法人産業技術総合研究所 Reaction product manufacturing equipment and its method
JP7239297B2 (en) * 2018-10-22 2023-03-14 トヨタ自動車株式会社 Method for producing silver nanowires
CN210183589U (en) * 2019-01-22 2020-03-24 南京先欧仪器制造有限公司 Continuous liquid material microwave treatment equipment
WO2023162235A1 (en) * 2022-02-28 2023-08-31 株式会社安川電機 Metal wire joining method and metal wire joining system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3775053D1 (en) * 1986-12-30 1992-01-16 Hallsworth & Associates Pty Lt IMPROVEMENTS IN THE FORMATION OF METAL ALKOXYDES AND METAL POWDERS BY MEANS OF MICROWAVE RADIATION.
US5471037A (en) * 1992-08-18 1995-11-28 E. I. Du Pont De Nemours And Company Process for preparing polymeric material with microwave
DE69733660T2 (en) * 1996-11-04 2006-05-18 Materials Modification, Inc. MICROWAVE PLASMA CHEMICAL SYNTHESIS OF ULTRAFINE POWDER
JP3005683B1 (en) * 1999-03-05 2000-01-31 大阪大学長 Method for producing ultrafine particles and ultrafine particles
JP2001044175A (en) * 1999-07-26 2001-02-16 Shibaura Mechatronics Corp Plasma processing apparatus
JP3740528B2 (en) * 2002-02-05 2006-02-01 独立行政法人産業技術総合研究所 Fine particle manufacturing method
US6833019B1 (en) * 2003-01-31 2004-12-21 The United States Of America As Represented By The Secretary Of The Navy Microwave assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process
JP2005133128A (en) * 2003-10-29 2005-05-26 Canon Inc Apparatus and method for plasma treatment
JP4759668B2 (en) * 2004-05-11 2011-08-31 株式会社Idx Microwave heating device
JP4022590B2 (en) * 2005-03-25 2007-12-19 株式会社エーイーティー Microwave plasma generator
KR100809982B1 (en) * 2006-09-21 2008-03-06 삼성전기주식회사 Method for manufacturing copper nanoparticles using microwave
JP2008202125A (en) * 2007-02-22 2008-09-04 Tokai Rubber Ind Ltd Method for manufacturing nanoparticle-containing solution, and conductive paste
JP2008246394A (en) * 2007-03-30 2008-10-16 3R Corp Method and apparatus for producing nanoparticle
JP2009064603A (en) * 2007-09-05 2009-03-26 Iwatani Internatl Corp Conductive paste for mlcc
JP5268047B2 (en) * 2007-09-25 2013-08-21 株式会社Idx Microwave chemical reactor
KR100956684B1 (en) * 2007-10-26 2010-05-10 삼성전기주식회사 Manufacturing apparatus of nano-metal
JP5300014B2 (en) * 2009-03-10 2013-09-25 独立行政法人産業技術総合研究所 Method and apparatus for continuous microwave irradiation to fluid
JP5769287B2 (en) * 2009-12-05 2015-08-26 国立研究開発法人産業技術総合研究所 Method for producing metal fine particles

Similar Documents

Publication Publication Date Title
JP2011137226A5 (en) Method for producing metal fine particles, metal fine particles produced by this production method, and apparatus for producing metal fine particles
JP5769287B2 (en) Method for producing metal fine particles
Yu et al. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene
Karatutlu et al. Liquid-phase synthesis of nanoparticles and nanostructured materials
Pal et al. Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent
JP5300014B2 (en) Method and apparatus for continuous microwave irradiation to fluid
Song et al. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells
Horikoshi et al. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles
Ching Lau et al. Microwave intensified synthesis: batch and flow chemistry
Low et al. Sonoproduction of nanobiomaterials–A critical review
Dzido et al. Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy
Zhu et al. Site-selective growth of Ag nanoparticles controlled by localized surface plasmon resonance of nanobowl arrays
Saleem et al. Microwave-Promoted Continuous Flow Systems in Nanoparticle Synthesis—A Perspective
Mănoiu et al. Obtaining silver nanoparticles by sonochemical methods
Dzido et al. Fabrication of silver nanoparticles in a continuous flow, low temperature microwave-assisted polyol process
Wang et al. From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route
Wang et al. Recent advances and challenges in ultrafast photonics enabled by metal nanomaterials
JP5408566B2 (en) Microwave heating of conductive thin films
Janbua et al. Directed synthesis, growth process and optical properties of monodispersed CaWO 4 microspheres via a sonochemical route
Khademalrasool et al. Rapid synthesis of silver nanowires during the polyol-microwave method and COMSOL multiphysics simulation of electromagnetic heating
KR100956684B1 (en) Manufacturing apparatus of nano-metal
Ali Preparation of gold nanoparticles by pulsed laser ablation in NaOH solution
JP2009001468A5 (en)
González-Rivera et al. Magnetothermally-responsive nanocarriers using confined phosphorylated halloysite nanoreactor for in situ iron oxide nanoparticle synthesis: A MW-assisted solvothermal approach
Horikoshi et al. 14. Microwave-assisted synthesis of nanoparticles