JP2019053953A - Carbon black and method for manufacturing the same - Google Patents

Carbon black and method for manufacturing the same Download PDF

Info

Publication number
JP2019053953A
JP2019053953A JP2017178927A JP2017178927A JP2019053953A JP 2019053953 A JP2019053953 A JP 2019053953A JP 2017178927 A JP2017178927 A JP 2017178927A JP 2017178927 A JP2017178927 A JP 2017178927A JP 2019053953 A JP2019053953 A JP 2019053953A
Authority
JP
Japan
Prior art keywords
carbon black
fluorine
treatment
ratio
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017178927A
Other languages
Japanese (ja)
Inventor
章史 八尾
Akifumi Yao
章史 八尾
啓之 大森
Noriyuki Omori
啓之 大森
聖唯 鈴木
Shoi Suzuki
聖唯 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2017178927A priority Critical patent/JP2019053953A/en
Priority to PCT/JP2018/033564 priority patent/WO2019059035A1/en
Publication of JP2019053953A publication Critical patent/JP2019053953A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

To provide: a method for manufacturing carbon black for a conductive assistant of an electrode of a nonaqueous electrolyte secondary battery, which can enhance the cycle characteristics of a nonaqueous electrolyte secondary battery by performing a surface modification treatment on carbon black in comparison to the cycle characteristics achieved without performing such a surface modification treatment; and carbon black obtained by the method.SOLUTION: The carbon black is to be used as a conductive assistant of a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode and an electrolyte, of which the BET specific surface area is no less than 35 m/g and less than 100 m/g, the ratio of fluorine atoms to carbon atoms, namely F/C ratio is no less than 0.002 and less than 0.025, and the ratio of oxygen atoms to the carbon atoms, namely O/C ratio is no less than 0.01 and less than 0.1, which are measured XPS analysis.SELECTED DRAWING: None

Description

本発明はリチウムイオン二次電池に代表される非水電解質二次電池の電極に導電助剤として用いられるカーボンブラック及びその製造方法、前記カーボンブラックを含む非水電解質二次電池用電極及びその製造方法、前記電極を含む非水電解質二次電池に関する。   The present invention relates to a carbon black used as a conductive auxiliary agent for an electrode of a nonaqueous electrolyte secondary battery represented by a lithium ion secondary battery, a method for producing the same, an electrode for a nonaqueous electrolyte secondary battery containing the carbon black, and a production thereof The present invention relates to a method and a non-aqueous electrolyte secondary battery including the electrode.

リチウムイオン二次電池などの非水電解質二次電池の正極及び負極には、活物質として正極には主に金属の複合酸化物が、負極には主に黒鉛などの炭素系材料が使用され、それぞれ導電助剤としてのカーボンブラックや黒鉛微粉末、および結着材を含むペーストを集電体である金属箔に塗布し、集電体上に電極層を形成するペースト型電極が用いられている。   For the positive electrode and negative electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a metal composite oxide is mainly used for the positive electrode as an active material, and a carbon-based material such as graphite is mainly used for the negative electrode. A paste type electrode is used in which a paste containing carbon black or graphite fine powder as a conductive additive and a binder is applied to a metal foil as a current collector to form an electrode layer on the current collector. .

近年、リチウムイオン二次電池を採用した電気自動車が増えている。自動車用非水電解質二次電池の特性として重要なものに、単位時間あたりに流せる電流量の大きさを示す出力特性と、充放電を繰り返しても放電容量を維持できるサイクル特性がある。   In recent years, the number of electric vehicles that employ lithium ion secondary batteries has increased. Important characteristics of the non-aqueous electrolyte secondary battery for automobiles include an output characteristic indicating the amount of current that can flow per unit time and a cycle characteristic that can maintain the discharge capacity even after repeated charge and discharge.

非水電解質二次電池の出力特性を改善するためには、電池の内部抵抗をできるだけ低減させることが重要であり、そのために電極中の導電ネットワークを形成する導電助剤を電極材料全体に均一かつ高濃度に分散させることで電極抵抗を低下させる技術がある。カーボンブラックはストラクチャーと呼ばれる一次粒子が鎖状に繋がった構造を有しているので、ストラクチャーの凝集や切断を防いで、電極材料中に適度に分散させるために分散剤を使用する必要がある。特許文献1は、分散剤として窒素系界面活性剤を用いることで正極活物質と導電助剤である炭素材料とを均一に分散させる方法を開示している。また、特許文献2は、トリアジン誘導体等を分散剤として用いることで、正極活物質とバインダーと導電助剤である炭素材料を安定に分散させる方法を開示している。   In order to improve the output characteristics of the non-aqueous electrolyte secondary battery, it is important to reduce the internal resistance of the battery as much as possible. For this reason, the conductive auxiliary agent that forms the conductive network in the electrode is uniformly distributed throughout the electrode material. There is a technique for reducing electrode resistance by dispersing it at a high concentration. Since carbon black has a structure in which primary particles called a structure are connected in a chain form, it is necessary to use a dispersing agent in order to prevent the structure from agglomerating and cutting and to appropriately disperse it in the electrode material. Patent Document 1 discloses a method of uniformly dispersing a positive electrode active material and a carbon material that is a conductive additive by using a nitrogen-based surfactant as a dispersant. Patent Document 2 discloses a method of stably dispersing a positive electrode active material, a binder, and a carbon material as a conductive auxiliary agent by using a triazine derivative or the like as a dispersant.

一方、カーボンブラックの表面改質方法として、特許文献3は、オイルやプラスチック、ゴムなどに添加するカーボンブラックをフッ素処理することにより、マトリックスとの親和性を向上させる方法を開示している。また、特許文献4は、塗料、インキ、樹脂等に添加するカーボンブラックをフッ素と酸素とを所定割合で並存させてカーボンブラックの酸化処理を行うことにより、カーボンブラックの分散性を向上させる方法を開示している。   On the other hand, as a surface modification method for carbon black, Patent Document 3 discloses a method for improving affinity with a matrix by subjecting carbon black added to oil, plastic, rubber, or the like to fluorine treatment. Patent Document 4 discloses a method for improving the dispersibility of carbon black by performing an oxidation treatment of carbon black added to paints, inks, resins, etc. in a predetermined ratio of fluorine and oxygen. Disclosure.

また、特許文献5は、好ましくは酸素で希釈したフッ素ガスで親水化処理されたカーボンブラックやカーボン繊維などの炭素系導電材と電極活物質の混合物をフッ素樹脂存在下において上記フッ素樹脂が溶融する温度以上、上記電極活物質が熱分解しない温度以下で焼成することによって複合化した電極材料を用いることにより、高出力かつ高エネルギー密度のリチウム電池を作製する方法を開示している。   Patent Document 5 describes that a mixture of a carbon-based conductive material such as carbon black or carbon fiber and an electrode active material that has been hydrophilicized with a fluorine gas diluted with oxygen is preferably melted in the presence of the fluororesin. A method of producing a lithium battery having a high output and a high energy density by using an electrode material combined by firing at a temperature not lower than a temperature and not higher than a temperature at which the electrode active material is not thermally decomposed is disclosed.

特開2011−14457号公報JP 2011-14457 A 特開2013−73724号公報JP 2013-73724 A 特開昭60−191011号公報JP-A-60-191011 特開平9−40881号公報Japanese Patent Laid-Open No. 9-40881 特開2015−228290号公報Japanese Patent Laying-Open No. 2015-228290 特開2016−9564号公報JP-A-2006-9564

導電助剤として用いられるカーボンブラックはペーストへの分散性が悪いことが知られている。そのため、分散剤が用いられる。しかし、特許文献6によれば、特許文献1に記載の界面活性剤は、一般的な正極活物質として用いられるコバルト酸リチウムを用いると電池反応時に分解が起こるためサイクル特性に劣るという問題点があることが指摘されている。また特許文献2に記載の化合物も分散性が不十分であり、決して酸化安定性に優れるわけでもないのでサイクル特性に問題が残ることが指摘されている。また、分散剤は電池にとっては不純物となる。   It is known that carbon black used as a conductive aid has poor dispersibility in paste. Therefore, a dispersant is used. However, according to Patent Document 6, the surfactant described in Patent Document 1 has a problem in that when lithium cobaltate used as a general positive electrode active material is used, decomposition occurs during battery reaction, resulting in poor cycle characteristics. It has been pointed out that there is. In addition, it has been pointed out that the compound described in Patent Document 2 also has a problem in cycle characteristics because the dispersibility is insufficient and the oxidation stability is not always excellent. Further, the dispersant becomes an impurity for the battery.

また、特許文献3および4には、炭素系材料をフッ素処理することにより分散状態が向上することが記載されており、特許文献5では、複合化された電極材料を得るための炭素系導電材を、酸素で希釈したフッ素ガスで処理することで親水化することが記載されているが、表面改質したカーボンブラックをリチウムイオン二次電池の電極の導電助剤として使用した場合の評価は特に記載されていなかった。   Patent Documents 3 and 4 describe that the dispersion state is improved by treating the carbon-based material with fluorine. Patent Document 5 discloses a carbon-based conductive material for obtaining a composite electrode material. Is treated with a fluorine gas diluted with oxygen. However, the evaluation when the surface-modified carbon black is used as a conductive aid for an electrode of a lithium ion secondary battery is described in particular. It was not listed.

したがって、本発明は、カーボンブラックに表面改質処理を行うことでペーストへの分散性を向上させて、未処理の場合に比べて非水電解質二次電池のサイクル特性を向上させることができる非水電解質二次電池の電極の導電助剤用のカーボンブラックの製造方法及び、その方法で得られたカーボンブラックを提供することを目的とする。   Therefore, the present invention improves the dispersibility in the paste by subjecting the carbon black to the surface modification treatment, and can improve the cycle characteristics of the nonaqueous electrolyte secondary battery as compared with the case of no treatment. It aims at providing the carbon black obtained by the manufacturing method of the carbon black for the conductive support agent of the electrode of a water electrolyte secondary battery, and the method.

本発明者等は、上記目的を達成すべく種々検討した結果、リチウムイオン二次電池等の非水電解質二次電池用電極の導電助剤として適したカーボンブラックを得るためには、フッ素により表面改質処理したカーボンブラックの表面のフッ素および酸素の元素比を適切な範囲に管理する必要があることが分かった。フッ素ガスの濃度を特定範囲に設定し、残部を不活性ガスとした処理ガスを使用する、特定温度におけるフッ素による表面改質処理(以下、「フッ素処理」という)後に、気体の水と接触させる後処理を行うことでこの元素比を制御することができ、フッ素処理したカーボンブラックを用いた電極を用いると、電池の内部抵抗を低くし、かつ電池のサイクル特性を向上させることができることを見出した。   As a result of various studies to achieve the above-mentioned object, the present inventors have found that carbon black suitable as a conductive aid for an electrode for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery has been It was found that the elemental ratio of fluorine and oxygen on the surface of the modified carbon black needs to be controlled within an appropriate range. Use a treatment gas with the concentration of fluorine gas in a specific range and the remainder as an inert gas. After surface modification treatment with fluorine at a specific temperature (hereinafter referred to as “fluorine treatment”), contact with gaseous water It has been found that the element ratio can be controlled by performing post-treatment, and that the internal resistance of the battery can be lowered and the cycle characteristics of the battery can be improved by using an electrode using carbon black subjected to fluorine treatment. It was.

すなわち、本発明は、正極、負極、および電解質を有する非水電解質二次電池の導電助剤として用いられるカーボンブラックであって、BET比表面積が20m/g以上であって100m/g未満であり、XPS分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比が0.002以上であって0.025未満であり、かつ、酸素原子の炭素原子に対する割合、即ちO/C比が0.01以上であって0.1未満である前記カーボンブラックを提供する。 That is, the present invention is a carbon black used as a conductive auxiliary for a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, and an electrolyte, and has a BET specific surface area of 20 m 2 / g or more and less than 100 m 2 / g. And the ratio of fluorine atoms to carbon atoms, that is, the F / C ratio is 0.002 or more and less than 0.025, and the ratio of oxygen atoms to carbon atoms, that is, O / O, measured by XPS analysis. The carbon black having a C ratio of 0.01 or more and less than 0.1 is provided.

また、本発明は、BET比表面積が25m/g以上であって95m/g以下のカーボンブラックを、10℃から50℃において、フッ素ガス及び不活性ガスからなる処理ガスと接触させるフッ素処理工程と、ここで、前記処理ガス中のフッ素ガスの濃度が0.01〜5体積%であり、フッ素処理後のカーボンブラックを気体の水と接触させる後処理工程と、を含む、カーボンブラックの製造方法の製造方法も提供する。 Further, the present invention is that the 95 m 2 / g or less of carbon black comprising a BET specific surface area set at 25m 2 / g or more, at 50 ° C. from 10 ° C., fluorine treatment of contacting with the processing gas consisting of fluorine gas and inert gas And a post-treatment step in which the concentration of fluorine gas in the treatment gas is 0.01 to 5% by volume, and the fluorine-treated carbon black is brought into contact with gaseous water. A manufacturing method of the manufacturing method is also provided.

本発明により、カーボンブラックに表面改質処理を行うことで、未処理の場合に比べて非水電解質二次電池のサイクル特性を向上させることができる、非水電解質二次電池の電極の導電助剤用のカーボンブラックの製造方法及び、その方法で得られたカーボンブラックを提供することが可能となる。また、本発明によればカーボンブラックの電極作製用ペーストへの分散性を向上させることができる。   According to the present invention, it is possible to improve the cycle characteristics of the non-aqueous electrolyte secondary battery by performing surface modification treatment on the carbon black, compared to the case where the carbon black is not treated. It becomes possible to provide a method for producing carbon black for an agent and carbon black obtained by the method. Further, according to the present invention, the dispersibility of carbon black in the electrode preparation paste can be improved.

以下、本発明の実施態様について以下に説明する。なお、本発明の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, embodiments of the present invention will be described. It should be noted that the scope of the present invention is not limited by these descriptions, and can be changed and implemented as appropriate without departing from the spirit of the present invention other than the following examples.

本発明では、カーボンブラックに対して、フッ素処理工程を行い、さらに後処理工程を行う。フッ素処理を行う前のカーボンブラック(以下、未処理カーボンブラックと呼ぶことがある)のBET比表面積は、25m/g以上95m/g以下であることが好ましく、30m/g以上75m/g以下であることがより好ましい。このようなカーボンブラックとしては、油を不完全燃焼させるオイルファーネス法により得られるファーネスブラック、アセチレンガスを熱分解させるアセチレン法により得られるアセチレンブラックなどが挙げられる。例えば、TIMCAL社からSuper P(商標)として市販されているカーボンブラックを使用することができる。なお、フッ素処理の前と後処理の後とで、BET比表面積は大きな変化をせず、通常は±10%以内の変化にとどまる。従って、本発明の方法によるフッ素処理と後処理後のカーボンブラック(以下、処理後カーボンブラック又は表面改質カーボンブラックと呼ぶことがある)のBET比表面積は、20m/g以上100m/g未満であり、好ましくは25以上95m/g以下であり、30m/g以上75m/g以下である。なお、カーボンブラックのBET比表面積は、ASTM D 3037に準拠した方法で測定される。 In the present invention, a fluorine treatment process is performed on the carbon black, and a post-treatment process is further performed. Before the carbon black performing fluorine process BET specific surface area (hereinafter, may be referred to as untreated carbon black) is preferably not more than 25 m 2 / g or more 95m 2 / g, 30m 2 / g or more 75 m 2 / G or less is more preferable. Examples of such carbon black include furnace black obtained by an oil furnace method in which oil is incompletely burned, and acetylene black obtained by an acetylene method in which acetylene gas is thermally decomposed. For example, carbon black commercially available as Super P ™ from TIMCAL can be used. It should be noted that the BET specific surface area does not change greatly before and after the fluorine treatment, and usually remains within ± 10%. Therefore, the BET specific surface area of carbon black after fluorine treatment and post-treatment by the method of the present invention (hereinafter sometimes referred to as post-treatment carbon black or surface-modified carbon black) is 20 m 2 / g or more and 100 m 2 / g. It is less than, Preferably it is 25 or more and 95 m < 2 > / g or less, and is 30 m < 2 > / g or more and 75 m < 2 > / g or less. The BET specific surface area of carbon black is measured by a method based on ASTM D 3037.

まず、本発明では、フッ素処理を行う前に、未処理カーボンブラックに吸着している水分を加熱や真空脱気により除去するのが好ましい。これは、水分が残存していると、フッ素と反応してフッ化水素を発生し、製造装置等に悪影響を与えかねないためである。   First, in the present invention, it is preferable to remove moisture adsorbed on the untreated carbon black by heating or vacuum degassing before the fluorine treatment. This is because if moisture remains, it reacts with fluorine to generate hydrogen fluoride, which may adversely affect the production apparatus and the like.

本発明のフッ素処理法では、カーボンブラックを、通常、円筒形の容器の中に仕込む。ここに、フッ素濃度が所定の範囲になるように調整した処理ガスを流通させることにより、フッ素化、即ちカーボンブラックの表面にフッ素原子を化学結合させてC−F結合を形成させる。容器材質は、金属材料であれば安全に処理が可能であるが、連続的な処理を行う上では、耐腐食性の観点からSUS304やSUS316といったステンレス鋼材料やニッケルが望ましい。   In the fluorine treatment method of the present invention, carbon black is usually charged into a cylindrical container. Here, by passing a processing gas adjusted so that the fluorine concentration is within a predetermined range, fluorination, that is, fluorine atoms are chemically bonded to the surface of carbon black to form C—F bonds. The container material can be safely processed as long as it is a metal material. However, from the viewpoint of corrosion resistance, stainless steel materials such as SUS304 and SUS316 and nickel are desirable for continuous processing.

フッ素処理における処理ガスは、フッ素ガスと不活性ガスからなる。処理ガス中のフッ素ガスの濃度は0.01〜5体積%であり、0.05〜4体積%であることが好ましい。フッ素ガス濃度がこの範囲にあると、後処理後のF/C比及びO/C比が所望の範囲にあるカーボンブラックを得ることができ、内部抵抗値を増加させることなく、良好なサイクル特性を持つ非水電解質二次電池が得られる。処理ガス中にはフッ素と不活性ガス以外のガス、例えば酸素、が混入しないことが好ましく、もし混入したとしても、混入したガスの濃度が1体積%以下であることが好ましい。例えば、処理ガス中に酸素が混入すると、後処理後のO/C比を所望のO/C比に制御することが困難となるうえ、カーボンブラックとの反応が急激に進行し、場合によっては粉塵爆発の可能性がある。   The treatment gas in the fluorine treatment is composed of fluorine gas and inert gas. The concentration of the fluorine gas in the processing gas is 0.01 to 5% by volume, and preferably 0.05 to 4% by volume. When the fluorine gas concentration is within this range, carbon black having the desired F / C ratio and O / C ratio after the post-treatment can be obtained, and good cycle characteristics can be obtained without increasing the internal resistance value. A non-aqueous electrolyte secondary battery having It is preferable that a gas other than fluorine and an inert gas, such as oxygen, is not mixed in the processing gas, and even if mixed, the concentration of the mixed gas is preferably 1% by volume or less. For example, when oxygen is mixed in the processing gas, it becomes difficult to control the O / C ratio after the post-treatment to a desired O / C ratio, and the reaction with the carbon black proceeds rapidly. Possible dust explosion.

処理温度が50℃を超える高温では、想定以上のフッ素化の進行により爆発の危険性が伴ったり、10℃未満の低温では、冷却状態を作り出すために冷却のための装置やエネルギーが必要になったりとコスト面が課題となるため、室温付近での処理が望ましい。ただし、カーボンブラックとフッ素との接触時に発熱がある場合には、反応の制御のため、冷却水等を用いて、装置を冷却してもよい。   When the processing temperature is higher than 50 ° C, there is a risk of explosion due to the progress of fluorination more than expected, and when the processing temperature is lower than 10 ° C, cooling equipment and energy are required to create a cooling state. Since the cost is a problem, it is desirable to perform the treatment at around room temperature. However, in the case where heat is generated at the time of contact between carbon black and fluorine, the apparatus may be cooled using cooling water or the like for controlling the reaction.

処理時間に関しては、カーボンブラックとフッ素が満遍なく接触するために十分な時間が必要で、10分以上を確保することが望ましく、30分以上であることがさらに望ましい。長すぎる場合には、導電助剤としての性能に影響はないが、生産効率が低下するため、2時間以内であることが望ましい。また、フッ素処理後、カーボンブラックに物理吸着したフッ素、つまり表面改質に寄与していないフッ素を可能な限り除去するため、真空状態にし、脱気することが好ましい。   Regarding the treatment time, sufficient time is required for the carbon black and fluorine to uniformly contact each other, and it is desirable to ensure 10 minutes or more, and more desirably 30 minutes or more. If it is too long, there is no effect on the performance as a conductive additive, but the production efficiency is lowered, so that it is preferably within 2 hours. In addition, after the fluorine treatment, it is preferable to deaerate in a vacuum state in order to remove as much as possible the fluorine physically adsorbed on the carbon black, that is, fluorine not contributing to the surface modification.

処理圧力は特に制限されないが、安全性の観点からは700Torr(93.3kPa)以下であるのが好ましく、500Torr(66.7kPa)以下であるのがより好ましい。また十分な反応速度を得るために、10Torr(1.3kPa)以上であることが好ましく、50Torr(6.7kPa)以上であるのがより好ましい。好ましい処理ガスの流量は反応装置の大きさや構造によって異なるため、適宜調整すればよい。   The processing pressure is not particularly limited, but is preferably 700 Torr (93.3 kPa) or less, more preferably 500 Torr (66.7 kPa) or less from the viewpoint of safety. In order to obtain a sufficient reaction rate, it is preferably 10 Torr (1.3 kPa) or more, and more preferably 50 Torr (6.7 kPa) or more. Since the preferable flow rate of the processing gas varies depending on the size and structure of the reaction apparatus, it may be appropriately adjusted.

フッ素処理後、カーボンブラックを、気体の水、例えば所定の湿度を含む大気や、水蒸気に暴露することで、後処理工程を行う。後処理工程は10〜30℃で行うことができるが、加熱せずに、周囲温度や常温で処理することができる。また、相対湿度で30〜80%の大気に暴露する場合は、2時間以上48時間以内の処理を行えば良く、相対湿度100%の水蒸気で暴露する場合には、30分以上2時間以内の処理を行えば良い。   After the fluorine treatment, the carbon black is exposed to gaseous water, for example, air containing a predetermined humidity or water vapor to perform a post-treatment process. The post-treatment step can be performed at 10 to 30 ° C., but can be performed at ambient temperature or normal temperature without heating. In addition, when exposed to the atmosphere of 30 to 80% at a relative humidity, the treatment may be performed for 2 hours or more and 48 hours or less, and when exposed to a water vapor of 100% relative humidity for 30 minutes or more and 2 hours or less. What is necessary is just to process.

カーボンブラックの表面には、フッ素処理により、C−F基等が生成する。後処理工程では、HOの作用により、カーボンブラックの表面にあるC−F基が、C−OF基、C−OH基やCOOH基などに変換され、表面が改質される。表面が改質されたカーボンブラックは、電極作製用のペーストへの分散性が、改質前に比べて向上すると考えられる。この変換は、後処理工程終了後1時間程度で完了すると推測される。但し、カーボンブラック中の一部のC−F基は、フッ素原子が結合する炭素原子の他の炭素原子との結合状況の違いなどにより、FがCに強固に結合しており、HOと反応せずに残存する。
なお、後処理工程にて生成するフッ化水素は、その後、真空脱気して、除去することができる。
A C—F group or the like is generated on the surface of carbon black by fluorine treatment. In the post-treatment step, the C—F group on the surface of the carbon black is converted into a C—OF group, a C—OH group, a COOH group, or the like by the action of H 2 O, and the surface is modified. It is considered that the carbon black whose surface is modified has improved dispersibility in the paste for electrode preparation as compared with that before the modification. This conversion is estimated to be completed in about one hour after the end of the post-processing step. However, some of the C-F group in the carbon black, due to differences in binding conditions with other carbon atoms of the carbon atoms to which fluorine atoms are bonded, are firmly bonded to F is C, H 2 O Remains without reacting.
Note that hydrogen fluoride generated in the post-treatment step can be removed by vacuum degassing thereafter.

このとき、後処理工程後の処理後カーボンブラックの表面のXPS(X線光電子分光)分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比は0.002以上0.025未満であり、0.005以上0.02以下が望ましい。また、酸素原子の炭素原子に対する割合、即ちO/C比は0.01以上0.1未満であり、0.02以上0.08未満であることが望ましい。F/C比とO/C比が上記の範囲内であれば、フッ素や炭素に由来する抵抗の上昇を抑制しつつ、電極作製用のペーストへの分散性が向上して、カーボンブラックがネットワークを形成しやすくなる。   At this time, the ratio of fluorine atoms to carbon atoms, that is, the F / C ratio, measured by XPS (X-ray photoelectron spectroscopy) analysis on the surface of the post-treatment carbon black after the post-treatment step is 0.002 or more and less than 0.025. Yes, 0.005 or more and 0.02 or less are desirable. Further, the ratio of oxygen atoms to carbon atoms, that is, the O / C ratio is 0.01 or more and less than 0.1, and preferably 0.02 or more and less than 0.08. If the F / C ratio and the O / C ratio are within the above ranges, the dispersibility in the paste for electrode preparation is improved while suppressing the increase in resistance derived from fluorine and carbon, and carbon black is a network. It becomes easy to form.

後処理工程後の処理後カーボンブラックのF/C比とO/C比が高く、カーボンブラックの表面にフッ素原子や酸素原子が多すぎる場合、電池の内部抵抗が上昇し、電池のサイクル特性が悪化する。その原因は明らかではないが、本発明者らは、以下のように推測する。例えば、カーボンブラックの表面のフッ素原子や酸素原子が、不純物となり、カーボンブラックの形成するネットワークにおいて、カーボンブラックとカーボンブラックの間の接触抵抗が高くなることが考えられる。また、フッ素原子や酸素原子が多すぎる場合、過度のフッ素化反応により、カーボンブラックの縮合ベンゼン環が破壊された結果、カーボンブラック上のπ電子の移動が阻害され、カーボンブラック自体の導電性が悪化することが考えられる。   If the F / C ratio and O / C ratio of the carbon black after treatment after the post-treatment process is high and there are too many fluorine atoms or oxygen atoms on the surface of the carbon black, the internal resistance of the battery will increase, and the cycle characteristics of the battery will Getting worse. Although the cause is not clear, the present inventors presume as follows. For example, it is conceivable that fluorine atoms and oxygen atoms on the surface of carbon black become impurities, and in the network formed by carbon black, the contact resistance between carbon black and carbon black increases. In addition, when there are too many fluorine atoms or oxygen atoms, the condensed benzene ring of carbon black is destroyed by excessive fluorination reaction. As a result, the movement of π electrons on carbon black is inhibited, and the conductivity of carbon black itself is reduced. It is possible to get worse.

つぎに、本発明のカーボンブラックを用いた非水電解質二次電池について述べる。非水電解質二次電池用電解液と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な負極材料と、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な正極材料を用いる電気化学ディバイスを非水電解質二次電池と呼ぶ。   Next, a non-aqueous electrolyte secondary battery using the carbon black of the present invention will be described. Non-aqueous electrolyte secondary battery electrolyte solution, negative electrode material capable of reversibly inserting and removing alkali metal ions such as lithium ions and sodium ions, or alkaline earth metal ions, lithium ions and sodium ions An electrochemical device using a positive electrode material into which alkali metal ions or alkaline earth metal ions can be reversibly inserted and removed is called a non-aqueous electrolyte secondary battery.

本発明の非水電解質二次電池は、本発明の処理後カーボンブラックを用いることが特徴であり、その他の構成部材には一般の非水電解質二次電池に使用されているものが用いられる。即ち、リチウムの吸蔵及び放出が可能な正極及び負極、金属箔からなる集電体、セパレータ、容器等から成る。   The nonaqueous electrolyte secondary battery of the present invention is characterized by using the treated carbon black of the present invention, and the other components used are those used in general nonaqueous electrolyte secondary batteries. That is, it consists of positive and negative electrodes capable of inserting and extracting lithium, a current collector made of metal foil, a separator, a container, and the like.

負極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられ、正極としては、特に限定されないが、リチウムイオンやナトリウムイオンを始めとするアルカリ金属イオン、又はアルカリ土類金属イオンが可逆的に挿入−脱離可能な材料が用いられる。   The negative electrode is not particularly limited, but a material capable of reversibly inserting and desorbing alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions is used, and the positive electrode is not particularly limited. However, materials in which alkali metal ions such as lithium ions and sodium ions or alkaline earth metal ions can be reversibly inserted and removed are used.

本発明の処理後カーボンブラックを負極の導電助剤として用いる場合、リチウムイオンなどを吸蔵および放出することが可能な負極活物質、結着材、処理後カーボンブラックおよび分散媒を混合し、スラリー化したのち、集電体である金属箔へと塗布し、乾燥、加圧し、負極層を形成する。リチウムイオンなどを吸蔵および放出することが可能な種々の材料としては、例えば、カチオンがリチウムの場合、負極材料としてリチウム金属、リチウムと他の金属との合金及び金属間化合物や、人造黒鉛や天然黒鉛、活性炭などの炭素材料、金属酸化物、金属窒化物等が用いられる。   When carbon black after the treatment of the present invention is used as a conductive additive for the negative electrode, a negative electrode active material capable of occluding and releasing lithium ions, a binder, the treated carbon black and a dispersion medium are mixed to form a slurry. After that, it is applied to a metal foil as a current collector, dried and pressurized to form a negative electrode layer. Examples of various materials capable of inserting and extracting lithium ions include, for example, when the cation is lithium, lithium metal as an anode material, alloys and intermetallic compounds of lithium with other metals, artificial graphite and natural materials. Carbon materials such as graphite and activated carbon, metal oxides, metal nitrides and the like are used.

本発明の処理後カーボンブラックを正極の導電助剤として用いる場合、リチウムイオンなどを吸蔵および放出することが可能な正極活物質、結着材、処理後カーボンブラック、分散媒とを混合し、スラリー化したのち、集電体である金属箔へと塗布し、乾燥、加圧し、正極を形成する。また、スラリー化の前に、正極活物質と処理後カーボンブラック、導電助剤などを、ボールミルなどで乾式混合してもよい。リチウム電池及びリチウムイオン二次電池の場合、活物質としては、例えば、LiCoO、LiNiO、LiMnO、LiMn等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO、LiCoPO、LiMnPO等の遷移金属のリン酸化合物、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物等を用いられる。あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。 When carbon black after treatment of the present invention is used as a conductive additive for the positive electrode, a positive electrode active material capable of occluding and releasing lithium ions, a binder, carbon black after treatment, and a dispersion medium are mixed, and slurry Then, it is applied to a metal foil as a current collector, dried and pressurized to form a positive electrode. Further, before the slurrying, the positive electrode active material, the treated carbon black, the conductive auxiliary agent, and the like may be dry-mixed with a ball mill or the like. In the case of a lithium battery and a lithium ion secondary battery, examples of the active material include lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metal composite oxides A mixture of a plurality of transition metals such as Co, Mn, Ni, etc., a part of the transition metal of the lithium-containing transition metal composite oxide substituted with a metal other than the transition metal, LiFePO 4 called olivine , LiCoPO 4, phosphoric acid compound of a transition metal such as LiMnPO 4, oxides such as TiO 2, V 2 O 5, MoO 3, is used to TiS 2, sulfides such as FeS or the like. Alternatively, conductive polymers such as polyacetylene, polyparaphenylene, polyaniline, and polypyrrole, activated carbon, polymers that generate radicals, carbon materials, and the like are used.

正極層又は負極層の電極層中に含まれる導電助剤の量、すなわち、スラリー中の固体成分に占める導電助剤の量は、0.1〜20質量%であることが好ましく、0.5〜10質量%含むことがより好ましく、1〜8質量%含むことがさらに好ましい。   The amount of the conductive additive contained in the electrode layer of the positive electrode layer or the negative electrode layer, that is, the amount of the conductive additive in the solid component in the slurry is preferably 0.1 to 20% by mass, It is more preferable to contain 10 mass%, and it is more preferable to contain 1-8 mass%.

正極や負極材料に用いられる結着材としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が用いられる。また、溶媒としてはN−メチル−2−ピロリドン(以降「NMP」)などの有機溶媒、水などの水系溶媒などが用いられる。   As a binder used for the positive electrode or the negative electrode material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, or the like is used. As the solvent, an organic solvent such as N-methyl-2-pyrrolidone (hereinafter “NMP”), an aqueous solvent such as water, and the like are used.

以下に本発明の実施例を比較例とともに挙げるが、本発明は以下の実施例に制限されるものではない。   Examples of the present invention are listed below together with comparative examples, but the present invention is not limited to the following examples.

[実施例1]
<フッ素処理及び後処理後(以下「処理後」という)カーボンブラックの作製>
未処理カーボンブラックとして、BET比表面積62m/gのもの(Super P Li(商標),TIMCAL社製)を用い、容積5LのSUS304製容器に封入し、内部を真空引きし、カーボンブラックに吸着している水分を除去した。ここに、窒素で0.05体積%に希釈したフッ素を200Torr(26.7kPa)封入し、その後30分間にわたって総流量0.5SLMで流通させた。なお、上記の反応は室温(25℃)で行った。流通終了後、容器内を窒素にて十分に置換した。その後、容器内を再び真空状態まで減圧し、一晩脱気することにより、カーボンブラックに吸着したフッ素を可能な限り除去した。続いて、容器内を大気圧まで復圧し、24時間、大気(気温25℃、相対湿度45〜50%)に曝した。これらの操作により得られた、処理後カーボンブラックはXPS(「PHI VersaProbe II」、アルバックファイ社製、X線源:Al、X線:AlKα線(1486.6eV)、出力:23.8W、ビーム径:100μm)にてその表面組成を測定した。また、ASTM D 3037に準拠した方法でそのBET比表面積を測定した。
[Example 1]
<Production of carbon black after fluorine treatment and after treatment (hereinafter referred to as "after treatment")
Untreated carbon black having a BET specific surface area of 62 m 2 / g (Super P Li (trademark), manufactured by TIMCAL) is enclosed in a 5 L SUS304 container, the inside is evacuated, and adsorbed on the carbon black Removed moisture. Here, 200 Torr (26.7 kPa) of fluorine diluted to 0.05% by volume with nitrogen was sealed, and then allowed to flow at a total flow rate of 0.5 SLM for 30 minutes. In addition, said reaction was performed at room temperature (25 degreeC). After the end of distribution, the inside of the container was sufficiently replaced with nitrogen. Thereafter, the inside of the container was again depressurized to a vacuum state and deaerated overnight to remove as much as possible the fluorine adsorbed on the carbon black. Subsequently, the inside of the container was restored to atmospheric pressure and exposed to the atmosphere (temperature 25 ° C., relative humidity 45-50%) for 24 hours. The treated carbon black obtained by these operations is XPS (“PHI VersaProbe II”, manufactured by ULVAC-PHI, X-ray source: Al, X-ray: AlKα ray (1486.6 eV), output: 23.8 W, beam The surface composition was measured at a diameter of 100 μm). Further, the BET specific surface area was measured by a method based on ASTM D 3037.

<正極の作製>
正極活物質として、LiNi1/3Co1/3Mn1/3(NCM)粉末及び実施例1で製造した処理後カーボンブラックを、ボールミルを用いて30分間乾式混合し、結着材であるポリフッ化ビニリデン(以降「PVDF」)を予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCM合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、100℃1時間乾燥し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用NMC正極を得た。正極中の固形分比率は、NCM:処理後カーボンブラック:PVDF=85:5:10(質量比)とした。
<Preparation of positive electrode>
As a positive electrode active material, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) powder and the treated carbon black produced in Example 1 were dry-mixed for 30 minutes using a ball mill, and a binder was used. An NCM mixture paste was prepared by uniformly dispersing and mixing certain polyvinylidene fluoride (hereinafter referred to as “PVDF”) in NMP, mixing, and adding NMP for viscosity adjustment. This paste was applied onto an aluminum foil (current collector), dried at 100 ° C. for 1 hour, and pressurized with a roller at 4 kN / m 2 to obtain a test NMC positive electrode processed into a predetermined size. . The solid content ratio in the positive electrode was NCM: carbon black after treatment: PVDF = 85: 5: 10 (mass ratio).

<黒鉛負極の作製>
負極活物質として、黒鉛粉末を、結着材であるPVDFを予め溶解させたNMP中に均一に分散させ、混練機を用いて2000rpmで20分間混合し、さらに粘度調整用NMPを加え、黒鉛合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、50℃で1時間乾燥し、ローラーで4kN/mで加圧を行った後に、所定のサイズに加工した試験用黒鉛負極を得た。負極中の固形分比率は、黒鉛粉末:PVDF=90:10(質量比)とした。
<Preparation of graphite negative electrode>
As a negative electrode active material, graphite powder was uniformly dispersed in NMP in which PVDF as a binder was previously dissolved, mixed at 2000 rpm for 20 minutes using a kneader, and further NMP for viscosity adjustment was added. An agent paste was prepared. This paste was applied onto a copper foil (current collector), dried at 50 ° C. for 1 hour, pressurized with a roller at 4 kN / m 2 , and then a test graphite negative electrode processed into a predetermined size was obtained. It was. The solid content ratio in the negative electrode was graphite powder: PVDF = 90: 10 (mass ratio).

<非水電解質二次電池の作製>
上記の試験用NCM正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、非水溶媒を含浸させ、非水電解質二次電池を得た。なお、非水溶媒としてエチレンカーボネート(以降「EC」)、プロピレンカーボネート(以降「PC」)、ジメチルカーボネート(以降「DMC」)、エチルメチルカーボネート(以降「EMC」)の体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてヘキサフルオロリン酸リチウム(以降「LiPF」)を1.0mol/Lの濃度となるように溶解し、電解液を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。
<Preparation of nonaqueous electrolyte secondary battery>
An aluminum laminate outer cell (capacity 30 mAh) comprising the above test NCM positive electrode, test graphite negative electrode, and cellulose separator was impregnated with a nonaqueous solvent to obtain a nonaqueous electrolyte secondary battery. The volume ratio of ethylene carbonate (hereinafter “EC”), propylene carbonate (hereinafter “PC”), dimethyl carbonate (hereinafter “DMC”), and ethyl methyl carbonate (hereinafter “EMC”) as the non-aqueous solvent is 2: 1: 3. : 4 was used, and lithium hexafluorophosphate (hereinafter referred to as “LiPF 6 ”) was dissolved as a solute in the solvent to a concentration of 1.0 mol / L to prepare an electrolytic solution. In addition, said preparation was performed maintaining a liquid temperature at 25 degreeC.

<電池評価>
<評価1:電池の内部抵抗の測定>
実施例・比較例に係る非水電解質二次電池のそれぞれについて、以下の評価を実施した。
まず、作製したセルを用いて、25℃の環境温度で、以下の条件でコンディショニングを実施した。すなわち、初回充放電として、充電上限電圧4.3V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧4.3V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。その後電池の内部抵抗を測定した。表1には、各実施例および比較例における内部抵抗の測定結果を記載した。なお、表1に記載の内部抵抗の数値は、比較例1の内部抵抗を100とした場合の相対値であり、低いほど好ましい。
<Battery evaluation>
<Evaluation 1: Measurement of battery internal resistance>
The following evaluation was implemented about each of the nonaqueous electrolyte secondary battery which concerns on an Example and a comparative example.
First, conditioning was performed using the fabricated cell at an environmental temperature of 25 ° C. under the following conditions. That is, as the first charge / discharge, the battery is charged at a constant current and constant voltage at a charging upper limit voltage of 4.3 V and a 0.1 C rate (3 mA), and discharged at a 0.2 C rate (6 mA) constant current up to a discharge end voltage of 3.0 V. Thereafter, charging / discharging cycle is performed three times by charging at a constant current / constant voltage at a charging upper limit voltage of 4.3V and a 0.2C rate (6 mA) and discharging at a constant current of 0.2C (6 mA) to a discharge end voltage of 3.0V. Repeated. Thereafter, the internal resistance of the battery was measured. Table 1 shows the measurement results of the internal resistance in each example and comparative example. In addition, the numerical value of internal resistance of Table 1 is a relative value when the internal resistance of the comparative example 1 is set to 100, and it is so preferable that it is low.

<評価2:高温サイクル特性の測定>
上記コンディショニングを実施後、55℃の環境温度で充電上限電圧4.3V、3Cレート(90mA)で定電流定電圧充電した後、放電終止電圧3.0Vまで3Cレート(90mA)定電流で放電し、この充放電を100サイクル繰り返した。100サイクル目の放電容量の、初期(1サイクル目)の放電容量に対する割合をサイクル容量維持率とし、セルの高温サイクル特性を評価した。なお、表1に記載の100サイクル後のサイクル特性の数値は、比較例1の100サイクル後の放電容量維持率を100とした場合の相対値であり、高いほど好ましい。
<Evaluation 2: Measurement of high-temperature cycle characteristics>
After performing the above conditioning, after charging at a constant current and constant voltage at an upper limit voltage of 4.3 V and a 3 C rate (90 mA) at an environmental temperature of 55 ° C., the battery is discharged at a constant current of 3 C (90 mA) to a discharge end voltage of 3.0 V. This charging / discharging was repeated 100 cycles. The ratio of the discharge capacity at the 100th cycle to the initial (first cycle) discharge capacity was defined as the cycle capacity retention rate, and the high temperature cycle characteristics of the cell were evaluated. In addition, the numerical value of the cycle characteristic after 100 cycles described in Table 1 is a relative value when the discharge capacity retention rate after 100 cycles of Comparative Example 1 is 100, and the higher the value, the more preferable.

[実施例2]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を2体積%にし、フッ素との接触時間を10分にした以外は、実施例1と同様の試験を行った。
[実施例3]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を0.5体積%にした以外は、実施例1と同様の試験を行った。
[実施例4]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を2体積%にした以外は、実施例1と同様の試験を行った。
[実施例5]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を4体積%にした以外は、実施例1と同様の試験を行った。
[Example 2]
The same test as in Example 1 was performed except that the concentration of diluted fluorine used was 2% by volume and the contact time with fluorine was 10 minutes when producing carbon black after the treatment.
[Example 3]
The same test as in Example 1 was performed except that the concentration of diluted fluorine used was changed to 0.5% by volume in the production of carbon black after the treatment.
[Example 4]
The same test as in Example 1 was performed except that the concentration of diluted fluorine used was changed to 2% by volume in the production of carbon black after the treatment.
[Example 5]
The same test as in Example 1 was performed, except that the concentration of diluted fluorine used was changed to 4% by volume in the production of carbon black after the treatment.

[実施例6]
処理後カーボンブラックの作製に際し、希釈フッ素と接触させる際の圧力を50Torr(6.7kPa)にした以外は、実施例5と同様の試験を行った。
[実施例7]
処理後カーボンブラックの作製に際し、希釈フッ素と接触させる際の圧力を500Torr(66.7kPa)にした以外は、実施例4と同様の試験を行った。
[実施例8]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を4体積%にし、希釈フッ素と接触させる際の圧力を500Torr(66.7kPa)にした以外は、実施例4と同様の試験を行った。
[Example 6]
The same test as in Example 5 was performed except that the pressure when contacting with diluted fluorine was changed to 50 Torr (6.7 kPa) when producing carbon black after the treatment.
[Example 7]
In the production of carbon black after the treatment, the same test as in Example 4 was performed, except that the pressure when contacting with diluted fluorine was 500 Torr (66.7 kPa).
[Example 8]
In the production of carbon black after the treatment, the same test as in Example 4 was performed except that the concentration of diluted fluorine used was 4% by volume and the pressure when contacting with diluted fluorine was 500 Torr (66.7 kPa). .

[実施例9]
処理後カーボンブラックの作製に際し、未処理カーボンブラックとしてBET比表面積45m/gのカーボンブラック(Super C45(商標),TIMCAL社製)を用いた以外は、実施例1と同様の試験を行った。
[実施例10]
処理後カーボンブラックの作製に際し、希釈フッ素と接触させる際の処理時間を90分にした以外は、実施例9と同様の試験を行った。
[実施例11]
処理後カーボンブラックの作製に際し、処理温度を40℃にし、処理時間を10分にした以外は、実施例2と同様の試験を行った。
[実施例12]
処理後カーボンブラックの作製に際し、処理温度を40℃にし、処理時間を10分にし、後処理工程にて気体の水として、常温の水蒸気(相対湿度100%の窒素ガス)を1時間供給した以外は、実施例2と同様の試験を行った。
[Example 9]
The same test as in Example 1 was performed except that carbon black having a BET specific surface area of 45 m 2 / g (Super C45 (trademark), manufactured by TIMCAL) was used as the untreated carbon black in the production of the treated carbon black. .
[Example 10]
The same test as in Example 9 was performed, except that the treatment time for contacting with diluted fluorine was set to 90 minutes when producing the carbon black after the treatment.
[Example 11]
The same test as in Example 2 was performed except that the processing temperature was set to 40 ° C. and the processing time was set to 10 minutes when producing the carbon black after the processing.
[Example 12]
In preparation of post-treatment carbon black, the treatment temperature was set to 40 ° C., the treatment time was set to 10 minutes, and water vapor at normal temperature (nitrogen gas with a relative humidity of 100%) was supplied for 1 hour as gaseous water in the post-treatment process. The same test as in Example 2 was performed.

[比較例1]
フッ素処理工程に代えて、フッ素を含まない窒素ガスを流通させた以外は、実施例1と同様の試験を行った。
[比較例2]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を0.005体積%にした以外は、実施例1と同様の試験を行った。
[比較例3]
処理後カーボンブラックの作製に際し、使用した希釈フッ素の濃度を7体積%にした以外は、実施例1と同様の試験を行った。
[比較例4]
処理後カーボンブラックの作製に際し、フッ素の濃度を4体積%にし、酸素の濃度を10体積%とし窒素で希釈したガスを流通させる以外は、実施例1と同様の試験を行った。
[Comparative Example 1]
Instead of the fluorine treatment step, the same test as in Example 1 was performed except that nitrogen gas not containing fluorine was circulated.
[Comparative Example 2]
The same test as in Example 1 was performed, except that the concentration of diluted fluorine used was changed to 0.005% by volume in the production of carbon black after the treatment.
[Comparative Example 3]
The same test as in Example 1 was performed, except that the concentration of diluted fluorine used was changed to 7% by volume in the production of the carbon black after the treatment.
[Comparative Example 4]
In the production of carbon black after the treatment, the same test as in Example 1 was performed except that the concentration of fluorine was 4% by volume, the concentration of oxygen was 10% by volume, and a gas diluted with nitrogen was circulated.

[比較例5]
処理後カーボンブラックの作製に際し、希釈フッ素と接触させる際の処理温度を80℃とした以外は、実施例1と同様の試験を行った。
[比較例6]
処理後カーボンブラックの作製に際し、後処理工程にて酸素ガスを供給した以外は、実施例1と同様の試験を行った。
[比較例7]
処理後カーボンブラックの作製に際し、後処理工程にて窒素ガスを供給した以外は、実施例1と同様の試験を行った。
[比較例8]
処理後カーボンブラックの作製に際し、未処理カーボンブラックとして実施例9で使用したカーボンブラックを用い、フッ素処理工程において、フッ素を含まない窒素ガスを流通させた以外は、実施例1と同様の試験を行った。
[Comparative Example 5]
The same test as in Example 1 was performed except that the treatment temperature when contacting with diluted fluorine was set to 80 ° C. in the production of carbon black after the treatment.
[Comparative Example 6]
The same test as in Example 1 was performed except that oxygen gas was supplied in the post-treatment process when producing the post-treatment carbon black.
[Comparative Example 7]
The same test as in Example 1 was performed except that nitrogen gas was supplied in the post-treatment process when producing the post-treatment carbon black.
[Comparative Example 8]
The same test as in Example 1 was performed except that the carbon black used in Example 9 was used as an untreated carbon black in the preparation of the treated carbon black, and nitrogen gas not containing fluorine was circulated in the fluorine treatment process. went.

実施例1〜12の結果と比較例1〜8の結果より、フッ素濃度0.05〜5体積%の範囲の希釈フッ素ガスとカーボンブラックとを接触させ、気体の水と接触させる後処理工程を行うことにより、XPS分析により測定した、フッ素原子の炭素原子に対する割合、即ちF/C比が0.001以上0.025未満であり、かつ、酸素原子の炭素原子に対する割合、即ちO/C比が0.1以上0.2未満であることを特徴とする処理後カーボンブラックを得られることがわかる。また、これらの範囲にある処理後カーボンブラックを用いて作製した非水電解質二次電池は、フッ素濃度が上記範囲外であるか又は酸素ガスを含む希釈フッ素による処理を施したカーボンブラックに比べて、内部抵抗値が低下しており、かつ高い放電容量維持率を維持していることがわかる。なお、XPS分析により、実施例1〜12の処理後カーボンブラックの表面には、C−OF基、C−OH基、又はCOOH基の少なくとも一つの官能基が存在していたことがわかった。   From the results of Examples 1 to 12 and the results of Comparative Examples 1 to 8, a post-treatment step of bringing diluted fluorine gas in a range of 0.05 to 5% by volume of fluorine and carbon black into contact with gaseous water is performed. By performing the XPS analysis, the ratio of fluorine atoms to carbon atoms, that is, the F / C ratio is 0.001 or more and less than 0.025, and the ratio of oxygen atoms to carbon atoms, that is, the O / C ratio. It can be seen that post-treatment carbon black can be obtained, wherein the carbon black is 0.1 or more and less than 0.2. In addition, the non-aqueous electrolyte secondary battery manufactured using the treated carbon black in these ranges is compared with carbon black whose fluorine concentration is outside the above range or which has been treated with diluted fluorine containing oxygen gas. It can be seen that the internal resistance value is reduced and a high discharge capacity retention rate is maintained. XPS analysis revealed that at least one functional group of a C—OF group, a C—OH group, or a COOH group was present on the surface of the treated carbon black in Examples 1 to 12.

一方、比較例2の結果より、フッ素濃度0.005体積%では、表面改質がほとんど進行しておらず、F/C比およびO/C値にもほとんど変化が見られず、内部抵抗値およびサイクル特性にも変化が見られなかった。また、比較例3の結果より、フッ素濃度7体積%では、F/C比およびO/C値が大きく上昇していたものの、内部抵抗値が増大し、サイクル特性が低下した。これは、フッ素濃度が高すぎ、カーボンブラックの表面の荒れが著しく、電荷の輸送を阻害したためと考えられる。   On the other hand, from the result of Comparative Example 2, when the fluorine concentration was 0.005 vol%, the surface modification hardly progressed, and the F / C ratio and the O / C value hardly changed, and the internal resistance value was There was no change in the cycle characteristics. From the results of Comparative Example 3, when the fluorine concentration was 7% by volume, the F / C ratio and the O / C value increased greatly, but the internal resistance value increased and the cycle characteristics deteriorated. This is presumably because the fluorine concentration was too high, the surface of the carbon black was extremely rough, and charge transport was inhibited.

比較例4では、フッ素と酸素を窒素で希釈したガスでカーボンブラックを処理したため、処理後カーボンブラックのO/C値が高くなり、内部抵抗値が増大し、サイクル特性が低下した。これは、フッ素と酸素によるフッ素処理により、カーボンブラックの架橋構造が変化し、炭素−炭素間の導電パスが阻害されたため、内部抵抗値が増大したものと思われる。   In Comparative Example 4, since carbon black was treated with a gas obtained by diluting fluorine and oxygen with nitrogen, the O / C value of the treated carbon black increased, the internal resistance value increased, and the cycle characteristics deteriorated. This is presumably because the cross-linking structure of carbon black was changed by the fluorine treatment with fluorine and oxygen, and the conductive path between carbon and carbon was inhibited, so that the internal resistance value was increased.

比較例5では、処理温度が80℃であるため、フッ素処理が強力に進行し、処理後カーボンブラックのF/C比が大きく上昇した。フッ素処理の際に、カーボンブラックの表面に荒れが生じたと考えられ、内部抵抗値が増大し、サイクル特性が低下した。   In Comparative Example 5, since the treatment temperature was 80 ° C., the fluorine treatment proceeded strongly, and the F / C ratio of the treated carbon black was greatly increased. It was considered that the surface of the carbon black was roughened during the fluorine treatment, the internal resistance value increased, and the cycle characteristics deteriorated.

比較例6では、フッ素処理後の後処理工程にて、酸素ガスにて暴露したが、比較例7と同等の高いF/C比を持ち、さらに、CF基がCOF基などに変わったり、不安定な結合状態であった末端置換基が酸化されたりしたと見られるO/C比の上昇が見られた。比較例6では、内部抵抗値が高く、サイクル特性は低下した。   In Comparative Example 6, it was exposed to oxygen gas in the post-treatment process after the fluorine treatment, but it has a high F / C ratio equivalent to that of Comparative Example 7, and the CF group is changed to a COF group or the like. An increase in the O / C ratio, which seems to be that the terminal substituents that were in a stable bound state were oxidized, was observed. In Comparative Example 6, the internal resistance value was high, and the cycle characteristics deteriorated.

比較例7では、カーボンブラックをフッ素処理後に不活性ガスにて後処理工程を行ったため、処理後カーボンブラックにフッ素成分が多量に残った上に、処理前カーボンブラックと比較してO/C比がほとんど増えていないことから、COH基やCOOH基の生成もなかったと考えられ、内部抵抗値が高く、サイクル特性も低かった。   In Comparative Example 7, since the carbon black was subjected to a post-treatment step with an inert gas after the fluorine treatment, a large amount of fluorine components remained in the carbon black after the treatment, and the O / C ratio compared with the carbon black before the treatment. Therefore, it was considered that no COH group or COOH group was generated, and the internal resistance value was high and the cycle characteristics were low.

Figure 2019053953
Figure 2019053953

Claims (12)

非水電解質二次電池の電極の導電助剤として用いられるカーボンブラックであって、
BET比表面積が20m/g以上であって100m/g未満であり、
XPS分析により測定した、フッ素原子の炭素原子に対する割合であるF/C比が0.002以上であって0.025未満であり、かつ、酸素原子の炭素原子に対する割合であるO/C比が0.01以上であって0.1未満であるカーボンブラック。
Carbon black used as a conductive aid for electrodes of nonaqueous electrolyte secondary batteries,
BET specific surface area is 20 m 2 / g or more and less than 100 m 2 / g,
The F / C ratio, which is the ratio of fluorine atoms to carbon atoms, measured by XPS analysis is 0.002 or more and less than 0.025, and the O / C ratio, which is the ratio of oxygen atoms to carbon atoms, is Carbon black that is 0.01 or more and less than 0.1.
前記カーボンブラックの表面には、C−OF基、C−OH基、及びCOOH基からなる群から選ばれる少なくとも一つの官能基が存在することを特徴とする請求項1に記載のカーボンブラック。   2. The carbon black according to claim 1, wherein at least one functional group selected from the group consisting of a C—OF group, a C—OH group, and a COOH group is present on the surface of the carbon black. F/C比が0.005以上であって0.02未満であり、かつ、O/C比が0.02以上であって0.08未満である請求項1又は2に記載のカーボンブラック。   The carbon black according to claim 1 or 2, wherein the F / C ratio is 0.005 or more and less than 0.02, and the O / C ratio is 0.02 or more and less than 0.08. 金属箔である集電体と、
前記集電体上に形成され、請求項1〜3に記載のカーボンブラックと、電極活物質とを含む電極層と、
からなる非水電解質二次電池用電極。
A current collector made of metal foil;
An electrode layer formed on the current collector and comprising the carbon black according to claim 1 and an electrode active material,
An electrode for a non-aqueous electrolyte secondary battery.
正極、負極、及び電解質を有し、
前記正極及び前記負極の何れか又は両方が請求項4に記載の非水電解質二次電池用電極である非水電解質二次電池。
Having a positive electrode, a negative electrode, and an electrolyte;
The nonaqueous electrolyte secondary battery in which any one or both of the said positive electrode and the said negative electrode are the electrodes for nonaqueous electrolyte secondary batteries of Claim 4.
BET比表面積が25m/g以上であって95m/g以下のカーボンブラックを、10℃から50℃において、フッ素ガス及び不活性ガスからなる処理ガスと接触させるフッ素処理工程と、ここで、前記処理ガス中のフッ素ガスの濃度が0.01〜5体積%であり、
フッ素処理後のカーボンブラックを気体の水と接触させる後処理工程と、
を含む、請求項1又は2記載のカーボンブラックの製造方法。
Carbon black having a BET specific surface area of 95 m 2 / g or less be at at 25m 2 / g or more and at 50 ° C. from 10 ° C., and the fluorine treatment step of contacting a process gas consisting of fluorine gas and inert gas, wherein, The concentration of fluorine gas in the processing gas is 0.01 to 5% by volume;
A post-treatment step of contacting the carbon black after fluorine treatment with gaseous water;
The manufacturing method of the carbon black of Claim 1 or 2 containing this.
前記後処理工程において、フッ素処理後のカーボンブラックを、相対湿度で30〜80%の大気に2時間以上48時間以内暴露することを特徴とする請求項6に記載のカーボンブラックの製造方法。   The method for producing carbon black according to claim 6, wherein in the post-treatment step, the carbon black after the fluorine treatment is exposed to an atmosphere of 30 to 80% relative humidity for 2 hours or more and 48 hours or less. 前記後処理工程において、フッ素処理後のカーボンブラックを、水蒸気に30分以上2時間以内暴露することを特徴とする請求項6に記載のカーボンブラックの製造方法。   The method for producing carbon black according to claim 6, wherein in the post-treatment step, the carbon black after the fluorine treatment is exposed to water vapor within 30 minutes to 2 hours. フッ素処理工程の後であって後処理工程の前に、カーボンブラックを減圧環境下におくことにより脱気工程を行う工程を含む、請求項6〜8のいずれか1項に記載のカーボンブラックの製造方法。   The carbon black according to any one of claims 6 to 8, comprising a step of performing a degassing step by placing the carbon black in a reduced pressure environment after the fluorine treatment step and before the post-treatment step. Production method. 前記後処理工程の後に、カーボンブラックを減圧環境下におくことにより脱気工程を行う工程を含む、請求項6〜9のいずれか1項に記載のカーボンブラックの製造方法。   The method for producing carbon black according to any one of claims 6 to 9, including a step of performing a deaeration step by placing the carbon black in a reduced pressure environment after the post-treatment step. 請求項1又は2記載のカーボンブラックと電極活物質を分散媒に分散させてペーストを作成する工程と、
前記ペーストを集電体に塗布し、乾燥する工程と、
を含む非水電解質二次電池用電極の製造方法。
A step of creating a paste by dispersing the carbon black according to claim 1 or 2 and an electrode active material in a dispersion medium;
Applying the paste to a current collector and drying;
The manufacturing method of the electrode for nonaqueous electrolyte secondary batteries containing.
前記ペーストに、さらに、結着剤と粘度調整剤とを含ませる請求項11に記載の非水電解質二次電池用電極の製造方法。
The method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 11, further comprising a binder and a viscosity modifier in the paste.
JP2017178927A 2017-09-19 2017-09-19 Carbon black and method for manufacturing the same Pending JP2019053953A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017178927A JP2019053953A (en) 2017-09-19 2017-09-19 Carbon black and method for manufacturing the same
PCT/JP2018/033564 WO2019059035A1 (en) 2017-09-19 2018-09-11 Carbon black and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178927A JP2019053953A (en) 2017-09-19 2017-09-19 Carbon black and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2019053953A true JP2019053953A (en) 2019-04-04

Family

ID=65810347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178927A Pending JP2019053953A (en) 2017-09-19 2017-09-19 Carbon black and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2019053953A (en)
WO (1) WO2019059035A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940881A (en) * 1995-07-27 1997-02-10 Mitsubishi Chem Corp Method for modifying surface of carbon black
JP2005317447A (en) * 2004-04-30 2005-11-10 Sony Corp Battery
JP5783029B2 (en) * 2011-12-16 2015-09-24 トヨタ自動車株式会社 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2016204398A (en) * 2013-10-03 2016-12-08 東洋炭素株式会社 Inorganic pigment particle and production method therefor
JP5971279B2 (en) * 2014-05-30 2016-08-17 エス・イー・アイ株式会社 Method for producing electrode material

Also Published As

Publication number Publication date
WO2019059035A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP4725594B2 (en) Method for manufacturing lithium secondary battery
JP5856609B2 (en) Solid composite material used for positive electrode of lithium-sulfur current generation cell, method for producing the same, and lithium-sulfur current generation cell
CN107017385B (en) Positive electrode active material, method for producing same, and lithium secondary battery
JP5462445B2 (en) Lithium ion secondary battery
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
KR20150067049A (en) Conductive composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JPWO2017217408A1 (en) Lithium ion secondary battery
WO2013183530A1 (en) Negative electrode for lithium ion secondary cell, negative electrode slurry for lithium ion secondary cell, and lithium ion secondary cell
US11152621B2 (en) Negative electrode active material and method of preparing the same
JP5504614B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JPWO2018110263A1 (en) Composite graphite particles, production method thereof and use thereof
JP5357517B2 (en) Lithium ion secondary battery
Lin et al. Improving cyclic stability and rate capability of LiNi 0.5 Mn 1.5 O 4 cathode via protective film and conductive polymer formed from thiophene
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2011181387A (en) Manufacturing method of electrode mixture for electrochemical element
JP2010198858A (en) Lithium ion secondary battery
KR101796248B1 (en) Cathode active material for lithium secondary battery and method of preparing the same
JP2010049872A (en) Composition for battery
JP2019053953A (en) Carbon black and method for manufacturing the same
CN115152048A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6864849B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2019053960A (en) Carbon black and method for manufacturing the same
JP2019053954A (en) Fibrous carbon material and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190709