JP5504614B2 - Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material - Google Patents

Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material Download PDF

Info

Publication number
JP5504614B2
JP5504614B2 JP2008290277A JP2008290277A JP5504614B2 JP 5504614 B2 JP5504614 B2 JP 5504614B2 JP 2008290277 A JP2008290277 A JP 2008290277A JP 2008290277 A JP2008290277 A JP 2008290277A JP 5504614 B2 JP5504614 B2 JP 5504614B2
Authority
JP
Japan
Prior art keywords
negative electrode
nitrogen
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290277A
Other languages
Japanese (ja)
Other versions
JP2010118243A (en
Inventor
晴洋 浅見
純一 安丸
直樹 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008290277A priority Critical patent/JP5504614B2/en
Publication of JP2010118243A publication Critical patent/JP2010118243A/en
Application granted granted Critical
Publication of JP5504614B2 publication Critical patent/JP5504614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極材料とその製造方法、及び、その負極材料を用いたリチウムイオン二次電池に関するものである。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a production method thereof, and a lithium ion secondary battery using the negative electrode material.

近年、電子機器の小型化および軽量化の要求に伴い、鉛蓄電池やニッケル・カドミウム電池に替わる高容量二次電池として、黒鉛を負極材料に用いたリチウムイオン二次電池が実用化されている。   In recent years, with the demand for downsizing and weight reduction of electronic devices, lithium ion secondary batteries using graphite as a negative electrode material have been put to practical use as high-capacity secondary batteries that replace lead-acid batteries and nickel-cadmium batteries.

しかしながら、このようなリチウムイオン二次電池には、初回の充放電時に、充電されたリチウムが完全に放電されないという問題があった。このような現象は、負極表面で電解液が電気分解されるためであると考えられた。このため、負極表面での電解液の電気分解反応を抑制することは、不可逆容量を小さくして電池特性を改善する一つの対策として有効である。また、このような対策は、リチウムイオン二次電池の負荷特性、充電特性、サイクル特性など、様々な電池特性を改善する方法としても有効である。   However, such a lithium ion secondary battery has a problem that the charged lithium is not completely discharged during the first charge / discharge. Such a phenomenon was considered to be due to electrolysis of the electrolyte solution on the negative electrode surface. For this reason, suppressing the electrolytic reaction of the electrolytic solution on the negative electrode surface is effective as one measure for reducing the irreversible capacity and improving the battery characteristics. Such a countermeasure is also effective as a method for improving various battery characteristics such as load characteristics, charging characteristics, and cycle characteristics of the lithium ion secondary battery.

これまで、本発明者らは、負極表面での電解液の電気分解反応を抑制して、不可逆容量を小さくするために、電解液との反応性の低い低結晶性炭素で表面を被覆した黒鉛を用いた負極材料を開示している(例えば、特許文献1参照)。   In the past, the present inventors have been able to suppress the electrolysis reaction of the electrolyte solution on the negative electrode surface and reduce the irreversible capacity, so that the graphite coated on the surface with low crystalline carbon having low reactivity with the electrolyte solution. Discloses a negative electrode material using, for example, Patent Document 1.

具体的には、黒鉛粒子(1)の表面に、ポリエチレンまたはポリスチレンの粒子(2)の熱分解成分による被覆層が形成された複合粒子からなることを特徴とするリチウムイオン二次電池用負極材料を開示している。
特開2002−151069号公報
Specifically, a negative electrode material for a lithium ion secondary battery comprising composite particles in which a coating layer of a pyrolysis component of polyethylene or polystyrene particles (2) is formed on the surface of graphite particles (1) Is disclosed.
JP 2002-151069 A

しかしながら、近年、自動車や工具等への用途として、従来よりも一層急速に充放電できるリチウムイオン二次電池が求められており、さらなる性能向上が求められている。   However, in recent years, lithium ion secondary batteries that can be charged and discharged more rapidly than before have been demanded for use in automobiles and tools, and further performance improvements have been demanded.

本発明は上記事情に鑑みてなされたものであり、負極表面での電解液の電気分解反応をより一層抑制することのできる負極材料とその製造方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the negative electrode material which can suppress further the electrolysis reaction of the electrolyte solution on the negative electrode surface, and its manufacturing method.

上記課題を解決することができた本発明のリチウムイオン二次電池用負極材料は、窒素含有材料の炭化物による被覆層が黒鉛粒子の表面に形成された複合粒子を含有することを特徴とする。このように、黒鉛粒子の表面に窒素含有材料の炭化物による被覆層が形成された複合粒子を負極材料として用いることにより、負極表面と電解液との電気分解反応をより一層抑制することができる。また、複合粒子中における炭化物の含有率を減らしても、負極表面と電解液との反応性を十分に低くすることができる。さらに、負極表面が若干親水性になることから、負極表面と電解液との濡れ性が向上する。   The negative electrode material for a lithium ion secondary battery of the present invention that has solved the above-mentioned problems is characterized by containing composite particles in which a coating layer made of a carbide of a nitrogen-containing material is formed on the surface of graphite particles. Thus, the electrolysis reaction between the negative electrode surface and the electrolytic solution can be further suppressed by using, as the negative electrode material, composite particles in which the coating layer of the nitrogen-containing material is formed on the surface of the graphite particles. Moreover, even if the carbide content in the composite particles is reduced, the reactivity between the negative electrode surface and the electrolytic solution can be sufficiently lowered. Furthermore, since the negative electrode surface becomes slightly hydrophilic, the wettability between the negative electrode surface and the electrolytic solution is improved.

本発明のリチウムイオン二次電池用負極材料において、前記黒鉛粒子と前記窒素含有材料との混合比が99.5/0.5〜70/30(質量比)であることが、好ましい実施態様である。   In the negative electrode material for a lithium ion secondary battery of the present invention, it is preferable that the mixing ratio of the graphite particles and the nitrogen-containing material is 99.5 / 0.5 to 70/30 (mass ratio). is there.

また、前記窒素含有材料が、尿素、ウレタン樹脂、尿素樹脂、及びABS樹脂よりなる群から選択される少なくとも1種であることが好ましい実施態様である。   In another preferred embodiment, the nitrogen-containing material is at least one selected from the group consisting of urea, urethane resin, urea resin, and ABS resin.

本発明には、上記負極材料を用いたことを特徴とするリチウムイオン二次電池が包含される。   The present invention includes a lithium ion secondary battery using the above negative electrode material.

さらに、尿素、ウレタン樹脂、尿素樹脂、及びABS樹脂よりなる群から選択される少なくとも1種の窒素含有材料と黒鉛粒子とを物理的に混合し、不活性ガス雰囲気中500℃〜2000℃で熱処理して、前記窒素含有材料の炭化物による被覆層が前記黒鉛粒子の表面に形成された複合粒子を得ることを特徴とするリチウムイオン二次電池用負極材料の製造方法も、本発明に包含される。   Further, at least one nitrogen-containing material selected from the group consisting of urea, urethane resin, urea resin, and ABS resin and graphite particles are physically mixed and heat treated at 500 ° C. to 2000 ° C. in an inert gas atmosphere. A method for producing a negative electrode material for a lithium ion secondary battery is also included in the present invention, wherein composite particles in which a coating layer of a carbide of the nitrogen-containing material is formed on the surface of the graphite particles are obtained. .

本発明のリチウムイオン二次電池用負極材料の製造方法において、前記黒鉛粒子と前記窒素含有材料との混合比が99.5/0.5〜70/30(質量比)であることが、好ましい態様である。   In the method for producing a negative electrode material for a lithium ion secondary battery of the present invention, the mixing ratio of the graphite particles and the nitrogen-containing material is preferably 99.5 / 0.5 to 70/30 (mass ratio). It is an aspect.

本発明によれば、電解液の電気分解反応をより一層抑制することができるリチウムイオン二次電池用負極材料を得ることができた。   According to the present invention, a negative electrode material for a lithium ion secondary battery that can further suppress the electrolytic reaction of the electrolytic solution can be obtained.

<リチウムイオン二次電池用負極材料>
本発明のリチウムイオン二次電池用負極材料は、窒素含有材料の炭化物による被覆層が黒鉛粒子の表面に形成された複合粒子を含有することを特徴とする。以下、本発明の負極材料について詳細に説明する。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery according to the present invention is characterized in that it includes composite particles in which a coating layer made of a carbide of a nitrogen-containing material is formed on the surface of graphite particles. Hereinafter, the negative electrode material of the present invention will be described in detail.

(被覆層)
本発明の複合粒子は、黒鉛粒子の表面に窒素含有材料の炭化物による被覆層が形成されてなることから、この複合粒子から得られる負極の表面と電解液との電気分解反応をより一層抑制することができる。また、黒鉛粒子に対する窒素含有材料の配合量を減らして被覆層を形成しても、負極表面と電解液との反応を十分に抑制することができる。その結果、複合粒子中の黒鉛粒子の含有率を高くすることができるため、これを用いて得られる電池の容量を大きくすることができる。また、負極表面と電解液との濡れ性が向上することから、電池の容量をさらに向上させることができる。
(Coating layer)
Since the composite particle of the present invention has a coating layer formed of a carbide of a nitrogen-containing material on the surface of the graphite particle, the electrolytic reaction between the surface of the negative electrode obtained from the composite particle and the electrolytic solution is further suppressed. be able to. Moreover, even if the coating amount is formed by reducing the blending amount of the nitrogen-containing material with respect to the graphite particles, the reaction between the negative electrode surface and the electrolytic solution can be sufficiently suppressed. As a result, since the content of the graphite particles in the composite particles can be increased, the capacity of the battery obtained using this can be increased. Moreover, since the wettability between the negative electrode surface and the electrolytic solution is improved, the capacity of the battery can be further improved.

本発明の複合粒子における被覆層は、黒鉛粒子と窒素含有材料とを99.5/0.5〜70/30(質量比)で混合して形成されることが好ましく、かかる混合比は、より好ましくは99/1〜80/20(質量比)、さらに好ましくは98/2〜85/15(質量比)である。黒鉛粒子と窒素含有材料との混合比が上記範囲にあることにより、黒鉛粒子の活性の高いサイト(特にエッジ面)を窒素含有材料の炭化物(より詳細には、窒素含有官能基)で被覆することができるため、これを負極材料として用いた際に、負極表面と電解液との反応を十分に抑制することができる。また、粒子としての嵩密度が向上するため、これを負極材料として用いた際には、黒鉛としてのすぐれた特性は維持したまま電解液との反応性が低くなって、不可逆容量の小さい、かつ初期効率、負荷特性、充電特性、及びサイクル特性にすぐれた負極極板を得ることができる。   The coating layer in the composite particles of the present invention is preferably formed by mixing graphite particles and a nitrogen-containing material at 99.5 / 0.5 to 70/30 (mass ratio). Preferably it is 99 / 1-80 / 20 (mass ratio), More preferably, it is 98 / 2-85 / 15 (mass ratio). When the mixing ratio of the graphite particles and the nitrogen-containing material is within the above range, the highly active sites (particularly the edge surface) of the graphite particles are coated with the carbide of the nitrogen-containing material (more specifically, the nitrogen-containing functional group). Therefore, when this is used as the negative electrode material, the reaction between the negative electrode surface and the electrolytic solution can be sufficiently suppressed. Further, since the bulk density as particles is improved, when this is used as a negative electrode material, the reactivity with the electrolyte solution is reduced while maintaining excellent characteristics as graphite, and the irreversible capacity is small. A negative electrode plate excellent in initial efficiency, load characteristics, charging characteristics, and cycle characteristics can be obtained.

黒鉛粒子に対する窒素含有材料の混合比が99.5/0.5より高い場合には、黒鉛粒子表面への被覆層の形成が不充分となるため、本発明の複合粒子を用いて得られる負極の表面と電解液との反応を十分に抑制することができない場合がある。また、黒鉛粒子に対する窒素含有材料の混合比が70/30未満の場合には、複合粒子中の、高容量/高エネルギー密度に寄与する黒鉛粒子の含有率が低くなるため、これを用いて得られる電池の容量を大きくできない場合がある。   When the mixing ratio of the nitrogen-containing material to the graphite particles is higher than 99.5 / 0.5, the formation of a coating layer on the surface of the graphite particles becomes insufficient, so that the negative electrode obtained using the composite particles of the present invention In some cases, the reaction between the surface and the electrolyte solution cannot be sufficiently suppressed. In addition, when the mixing ratio of the nitrogen-containing material to the graphite particles is less than 70/30, the content of the graphite particles contributing to high capacity / high energy density in the composite particles is low. Battery capacity may not be increased.

本発明で用いる窒素含有材料は、尿素や、ウレタン樹脂(例えば、エーテル系ポリウレタンやエステル系ポリウレタン等)、尿素樹脂、ABS樹脂等であることが好ましい。これらの窒素含有材料は、単独で用いても、2種以上を組み合わせて用いてもよい。なお、本発明の窒素含有材料には、含窒素環化合物(例えば、ポリビニルピロリドン)やイミド樹脂は含まない。   The nitrogen-containing material used in the present invention is preferably urea, urethane resin (for example, ether polyurethane or ester polyurethane), urea resin, ABS resin or the like. These nitrogen-containing materials may be used alone or in combination of two or more. The nitrogen-containing material of the present invention does not contain a nitrogen-containing ring compound (for example, polyvinyl pyrrolidone) or an imide resin.

本発明で用いる窒素含有材料は、粒子であることが好ましい。これは、本発明の複合粒子から得られる負極材料と電解液との反応抑制効果や、負極材料を製造する際の経済性の観点から最適であるからである。   The nitrogen-containing material used in the present invention is preferably particles. This is because it is optimal from the viewpoint of suppressing the reaction between the negative electrode material obtained from the composite particles of the present invention and the electrolytic solution and the economical efficiency in producing the negative electrode material.

本発明で用いる窒素含有材料の粒子の平均粒子径は、0.1μm以上が好ましく、1μm以上がより好ましく、20mm以下が好ましく、10mm以下がより好ましい。粒子径がこのような範囲にある窒素含有材料を用いることにより、黒鉛粒子との混合効率を高めることができる。   The average particle diameter of the particles of the nitrogen-containing material used in the present invention is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 20 mm or less, and more preferably 10 mm or less. By using a nitrogen-containing material having a particle diameter in such a range, the mixing efficiency with the graphite particles can be increased.

本発明で用いる窒素含有材料の粒子の粒子径は、例えば、窒素含有材料としてウレタン樹脂を用いる場合には、レーザー回折式粒度分布測定装置を用いて測定されるメジアン径(D50)が1μm以上であることが好ましく、10μm以上であることがより好ましく、10mm以下であることが好ましく、5mm以下であることがより好ましい。また、窒素含有材料として尿素を用いる場合には、光学顕微鏡や電子顕微鏡を用いて任意の尿素粒子100個を測定したときの粒子径の範囲が1μm〜5mmであることが好ましく、5μm〜1mmであることがより好ましい。また、窒素含有材料としてABS樹脂を用いる場合には、ノギスや光学顕微鏡や電子顕微鏡により任意のABS樹脂粒子30個を測定したときの平均粒子径が1μm以上であることが好ましく、5μm以上であることがより好ましく、20mm以下であることが好ましく、10mm以下であることがより好ましい。   The particle diameter of the nitrogen-containing material particles used in the present invention is, for example, when a urethane resin is used as the nitrogen-containing material, the median diameter (D50) measured using a laser diffraction particle size distribution measuring device is 1 μm or more. It is preferably 10 μm or more, more preferably 10 mm or less, and even more preferably 5 mm or less. Moreover, when using urea as a nitrogen-containing material, it is preferable that the range of the particle diameter when measuring 100 arbitrary urea particles using an optical microscope or an electron microscope is 1 μm to 5 mm, and 5 μm to 1 mm. More preferably. When an ABS resin is used as the nitrogen-containing material, the average particle diameter when measuring 30 arbitrary ABS resin particles with a caliper, an optical microscope, or an electron microscope is preferably 1 μm or more, and preferably 5 μm or more. More preferably, it is preferably 20 mm or less, and more preferably 10 mm or less.

(黒鉛粒子)
本発明で用いる黒鉛粒子としては、天然黒鉛または人造黒鉛が挙げられる。これらは、適当な方法で粉砕したものであってもよく、球形化などの改質を行ったものであってもよい。球形化改質の例は、本出願人の出願にかかる特開平11−263612号公報に開示されている。また、黒鉛粒子のメジアン径(D50)は、特に限定されるものではないが、1μm以上が好ましく、10μm以上がより好ましく、60μm以下が好ましく、50μm以下がより好ましい。
(Graphite particles)
Examples of the graphite particles used in the present invention include natural graphite and artificial graphite. These may be pulverized by an appropriate method or may be subjected to modification such as spheroidization. An example of spheroidization modification is disclosed in Japanese Patent Application Laid-Open No. 11-263612, which is filed by the present applicant. The median diameter (D50) of the graphite particles is not particularly limited, but is preferably 1 μm or more, more preferably 10 μm or more, preferably 60 μm or less, and more preferably 50 μm or less.

(複合粒子の含有率)
本発明のリチウムイオン二次電池用負極材料には、上記複合粒子が好ましくは50質量%以上含まれることが好ましく、80質量%以上含まれることが好ましく、100質量%含まれることが最も好ましい。複合粒子の含有率が50質量%未満の場合には、負極表面と電解液との反応を十分に抑制することができない場合がある。
(Content of composite particles)
In the negative electrode material for a lithium ion secondary battery of the present invention, the composite particles are preferably contained in an amount of 50% by mass or more, preferably 80% by mass or more, and most preferably 100% by mass. When the content of the composite particles is less than 50% by mass, the reaction between the negative electrode surface and the electrolytic solution may not be sufficiently suppressed.

(他の成分)
本発明のリチウムイオン二次電池用負極材料には、上記複合粒子以外の他の成分が含まれてもよい。他の成分としては、例えば上記黒鉛粒子や導電剤等が挙げられる。
(Other ingredients)
The negative electrode material for a lithium ion secondary battery of the present invention may contain components other than the composite particles. Examples of other components include the above graphite particles and conductive agents.

<リチウムイオン二次電池用負極材料の製造方法>
(複合粒子の製造方法)
本発明の複合粒子は、黒鉛粒子と窒素含有材料とを物理的に混合し、不活性ガス雰囲気中500℃〜2000℃で熱処理して、窒素含有材料の炭化物による被覆層を黒鉛粒子の表面に形成することによって製造される。黒鉛粒子と窒素含有材料との混合比は、上記の通りである。
<Method for producing negative electrode material for lithium ion secondary battery>
(Method for producing composite particles)
The composite particles of the present invention are obtained by physically mixing graphite particles and a nitrogen-containing material, heat-treating them in an inert gas atmosphere at 500 ° C. to 2000 ° C., and forming a coating layer made of carbide of the nitrogen-containing material on the surface of the graphite particles. Manufactured by forming. The mixing ratio of the graphite particles and the nitrogen-containing material is as described above.

黒鉛粒子と窒素含有材料とを物理的に混合して得られる混合物の熱処理は、500℃以上で行われることが好ましく、600℃以上で行われることがより好ましく、2000℃以下で行われることが好ましく、1300℃以下で行われることがより好ましい。上記温度範囲で熱処理することにより、昇温の過程で生成した窒素含有材料の分解成分は、気相で黒鉛粒子の隅々にまで拡散し、黒鉛表面の活性な部分と反応して添着し、薄くて均一な被膜層を形成する。そしてこれをさらに熱処理することにより、被膜層は炭化し、安定な被覆層を形成する。   The heat treatment of the mixture obtained by physically mixing the graphite particles and the nitrogen-containing material is preferably performed at 500 ° C. or more, more preferably at 600 ° C. or more, and at 2000 ° C. or less. Preferably, it is carried out at 1300 ° C. or lower. By performing the heat treatment in the above temperature range, the decomposition component of the nitrogen-containing material generated in the temperature rising process diffuses to every corner of the graphite particles in the gas phase, reacts with and adheres to the active part of the graphite surface, A thin and uniform coating layer is formed. And when this is further heat-treated, the coating layer is carbonized to form a stable coating layer.

上記熱処理が500℃未満で行われる場合には、窒素含有材料の炭化物による黒鉛粒子上への被覆層の形成が不充分となる場合がある。また、熱処理が2000℃を超える温度で行われる場合には、設備面および所要電力の点で不利となる。   When the heat treatment is performed at less than 500 ° C., the formation of a coating layer on the graphite particles by the carbide of the nitrogen-containing material may be insufficient. In addition, when the heat treatment is performed at a temperature exceeding 2000 ° C., it is disadvantageous in terms of equipment and required power.

上記の熱処理は、N、Ar、He、CO等の不活性ガス雰囲気中で行う。この際、密閉雰囲気中で行うことが好ましい。これにより、窒素含有材料の熱分解により生じた熱分解成分が滞留して、黒鉛粒子の表面を被覆し易くなる。 The above heat treatment is carried out in N 2, Ar, He, an inert gas atmosphere such as CO 2. At this time, it is preferably performed in a sealed atmosphere. Thereby, the thermal decomposition component generated by the thermal decomposition of the nitrogen-containing material stays, and the surface of the graphite particles is easily covered.

(リチウムイオン二次電池用負極材料)
本発明の複合粒子は、例えば、これにポリフッ化ビニリデンなどのバインダーと、N−メチルピロリドンなどの溶剤とを加えてスラリーとし、銅箔等の金属製の集電体の基板にこのスラリーを塗布して乾燥することにより、リチウムイオン二次電池用の負極とすることができる。
(Anode material for lithium ion secondary battery)
The composite particles of the present invention are made, for example, by adding a binder such as polyvinylidene fluoride and a solvent such as N-methylpyrrolidone to the slurry, and applying the slurry to a substrate of a metal current collector such as a copper foil. And it can be set as the negative electrode for lithium ion secondary batteries by drying.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池に用いる正極材料としては、特に限定されるものではなく、改質MnO2、LiCoO2、LiNiO2、LiNi1-yCoy2、LiMnO2、LiMn24、LiFeO2などが用いられる。電解液としては、エチレンカーボネートなどの有機溶媒や、この有機溶媒とジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6、LiBF4、LiClO4、LiCF3SO3などの電解液溶質を溶解した溶液が用いられる。セパレーターについても、特に限定されるものではなく、公知の材料を適宜用いることができる。
<Lithium ion secondary battery>
The positive electrode material used for the lithium ion secondary battery of the present invention is not particularly limited, and is modified MnO 2 , LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 , LiMnO 2 , LiMn 2 O 4. LiFeO 2 or the like is used. As an electrolytic solution, an organic solvent such as ethylene carbonate, or a mixed solvent of this organic solvent and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, ethoxymethoxyethane, etc. In addition, a solution in which an electrolyte solute such as LiPF 6 , LiBF 4 , LiClO 4 , or LiCF 3 SO 3 is dissolved is used. The separator is not particularly limited, and a known material can be appropriately used.

以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。なお下記実施例および比較例において「部」、「%」とあるのは、それぞれ質量部、質量%を意味する。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples, and all modifications and embodiments without departing from the gist of the present invention are not limited thereto. Included in range. In the following examples and comparative examples, “parts” and “%” mean parts by mass and mass%, respectively.

先ず、実施例および比較例で用いた測定方法、及び評価方法について、以下説明する。   First, measurement methods and evaluation methods used in Examples and Comparative Examples will be described below.

(黒鉛粒子の平均粒子径の測定)
株式会社島津製作所製のレーザー回折式粒度分布測定装置SALD−2000を用いて測定を行い、体積基準メジアン径(D50)を求めた。
(Measurement of average particle diameter of graphite particles)
Measurement was performed using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation, and a volume-based median diameter (D50) was obtained.

(窒素含有材料の粒子径の測定)
実施例1で用いたウレタン樹脂については、株式会社島津製作所製のレーザー回折式粒度分布測定装置SALD−2000を用いて測定を行い、体積基準メジアン径(D50)を求めた。
(Measurement of particle diameter of nitrogen-containing material)
The urethane resin used in Example 1 was measured using a laser diffraction particle size distribution analyzer SALD-2000 manufactured by Shimadzu Corporation, and a volume-based median diameter (D50) was obtained.

実施例2で用いた尿素については、光学顕微鏡を用いて任意の100個の尿素粒子の粒子径を測定し、その範囲を求めた。   Regarding urea used in Example 2, the particle diameter of 100 arbitrary urea particles was measured using an optical microscope, and the range was determined.

他の実施例及び比較例で用いた窒素含有材料については、任意の30個の窒素含有材料の粒子径をノギスにより測定し、その平均を求めた。   For the nitrogen-containing materials used in other examples and comparative examples, the particle diameters of any 30 nitrogen-containing materials were measured with calipers, and the average was obtained.

<電極性能の評価>
(初期効率)
負極材料(複合粒子)100質量部と、バインダーとしてのポリフッ化ビニリデン3質量部と、溶剤としてのN−メチルピロリドンの適量とを混合し、液相で均一に撹拌した。得られたスラリーを銅箔上に塗布し、乾燥後、プレス機により加圧成形し、負極極板を作成してから、150℃で6時間真空乾燥を行った。リチウム箔をステンレス板に圧着したものをセパレーターを介して対極とし、2極式セルを組み立てた。組み立ては、水分値20ppm以下に調整したドライボックス内で行い、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との容積比1:1の混合溶媒にLiPF6を1Mの割合で溶解したものを用いた。
<Evaluation of electrode performance>
(Initial efficiency)
100 parts by mass of a negative electrode material (composite particles), 3 parts by mass of polyvinylidene fluoride as a binder, and an appropriate amount of N-methylpyrrolidone as a solvent were mixed and stirred uniformly in a liquid phase. The obtained slurry was applied onto a copper foil, dried, and then pressure-formed with a press machine to prepare a negative electrode plate, followed by vacuum drying at 150 ° C. for 6 hours. A bipolar electrode was assembled by bonding a lithium foil to a stainless steel plate as a counter electrode through a separator. The assembly is performed in a dry box adjusted to a moisture value of 20 ppm or less. As an electrolyte, LiPF 6 is mixed at a ratio of 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1. The dissolved one was used.

充電は、0.424mA/cm2(0.2C)の定電流値で7mVになるまで充電した後、7mVの定電位で電流値が0.0425mA/cm2となるまで行った。放電は、0.424mA/cm2の電流値で2.0Vになるまで行った。各サンプルの1回目の充電容量と放電容量とにより、
初期効率(%)=100×放電容量/充電容量を計算した。
Charging was performed until a constant current value of 0.424 mA / cm 2 (0.2 C) reached 7 mV, and then at a constant potential of 7 mV until the current value became 0.0425 mA / cm 2 . Discharging was performed until the voltage reached 2.0 V at a current value of 0.424 mA / cm 2 . By the first charge capacity and discharge capacity of each sample,
Initial efficiency (%) = 100 × discharge capacity / charge capacity was calculated.

(出力特性)
50%充電時において、2.12mA/cm2(1C)、6.36mA/cm2(3C)、10.6mA/cm2(5C)にて10秒間放電後の電圧と放電電流との関係から単位電圧あたりの出力電流を算出することにより求めた。
(Output characteristics)
From the relationship between the voltage and discharge current after 10 seconds of discharge at 2.12 mA / cm 2 (1C), 6.36 mA / cm 2 (3C), 10.6 mA / cm 2 (5C) at 50% charge It was determined by calculating the output current per unit voltage.

(実施例1)
メジアン径(D50)12μmの球状天然黒鉛270gに、メジアン径(D50)200μmのウレタン樹脂粒子(出光テクノファイン株式会社製ウレタンパウダー)30gを添加後、撹拌混合(粒子同士で物理的に混合)し、次いで窒素雰囲気下800℃にて2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ウレタン樹脂の炭化物による被覆層が形成された複合粒子を得た。
Example 1
After adding 30 g of urethane resin particles (urethane powder manufactured by Idemitsu Techno Fine Co., Ltd.) having a median diameter (D50) of 200 μm to 270 g of spherical natural graphite having a median diameter (D50) of 12 μm, the mixture is stirred and mixed (physically mixed between particles). Then, heat treatment was performed at 800 ° C. for 2 hours under a nitrogen atmosphere. By this heat treatment, composite particles in which a coating layer of urethane resin carbide was formed on the surface of the graphite particles were obtained.

(実施例2)
メジアン径(D50)12μmの球状天然黒鉛291gに、粒子径10μm〜500μmの尿素粒子(キシダ化学株式会社製尿素)9gを添加後、撹拌混合し、窒素雰囲気下800℃にて2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、尿素の炭化物による被覆層が形成された複合粒子を得た。
(Example 2)
To 291 g of spherical natural graphite with a median diameter (D50) of 12 μm, 9 g of urea particles (urea manufactured by Kishida Chemical Co., Ltd.) with a particle diameter of 10 μm to 500 μm are added, mixed with stirring, and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere. It was. By this heat treatment, composite particles in which a coating layer of urea carbide was formed on the surface of the graphite particles were obtained.

(実施例3)
メジアン径(D50)12μmの球状天然黒鉛291gに、平均粒子径2mmのABS樹脂粒子(株式会社サンプラテック製ABS樹脂)9gを添加後、撹拌混合し、窒素雰囲気下800℃にて2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ABS樹脂の炭化物による被覆層が形成された複合粒子を得た。
(Example 3)
After adding 9 g of ABS resin particles (ABS resin manufactured by Sun Platec Co., Ltd.) having an average particle diameter of 2 mm to 291 g of spherical natural graphite having a median diameter (D50) of 12 μm, the mixture is stirred and mixed, and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere. It was. By this heat treatment, composite particles in which a coating layer of carbide of ABS resin was formed on the surface of the graphite particles were obtained.

(比較例1)
メジアン径(D50)12μmの球状天然黒鉛270gに、平均粒子径1mmのポリスチレン粒子(キシダ化学株式会社製スチレンポリマー)30gを添加後、撹拌混合し、窒素雰囲気下800℃にて2時間熱処理を行った。この熱処理により、黒鉛粒子の表面に、ポリスチレンの炭化物による被覆層が形成された複合粒子を得た。
(Comparative Example 1)
30 g of polystyrene particles (styrene polymer manufactured by Kishida Chemical Co., Ltd.) with an average particle diameter of 1 mm are added to 270 g of spherical natural graphite with a median diameter (D50) of 12 μm, followed by stirring and mixing, followed by heat treatment at 800 ° C. for 2 hours in a nitrogen atmosphere. It was. By this heat treatment, composite particles in which a coating layer of polystyrene carbide was formed on the surface of the graphite particles were obtained.

(比較例2)
実施例1で用いた球状天然黒鉛を、窒素含有材料を用いたコート処理をすることなく、そのまま複合粒子として用いた。
(Comparative Example 2)
The spherical natural graphite used in Example 1 was used as composite particles as it was without being coated with a nitrogen-containing material.

実施例、及び比較例で得られた複合粒子を用いてリチウムイオン二次電池を作製し、初期効率と出力特性を求めた。結果を表1に示す。   Lithium ion secondary batteries were fabricated using the composite particles obtained in the examples and comparative examples, and the initial efficiency and output characteristics were determined. The results are shown in Table 1.

Figure 0005504614
Figure 0005504614

表1から、本発明の複合粒子を用いて得られるリチウムイオン二次電池は、ポリスチレン粒子の炭化物による被覆層が黒鉛粒子の表面に形成された複合粒子(比較例1)、及び黒鉛粒子(比較例2)を用いて得られるリチウムイオン二次電池に比して初期効率に優れること、すなわち、電解液と負極表面との反応がより一層抑制されていることがわかる。   From Table 1, the lithium ion secondary battery obtained by using the composite particles of the present invention is composed of composite particles (Comparative Example 1) in which a coating layer of carbide of polystyrene particles is formed on the surface of graphite particles, and graphite particles (Comparison) It can be seen that the initial efficiency is superior to the lithium ion secondary battery obtained using Example 2), that is, the reaction between the electrolytic solution and the negative electrode surface is further suppressed.

また、本発明の複合粒子を用いて得られるリチウムイオン二次電池は、出力特性にも優れていることから、高出力を必要とする用途、例えば、車載用途や工具用途に適用することができる。   In addition, since the lithium ion secondary battery obtained using the composite particles of the present invention is excellent in output characteristics, it can be applied to uses requiring high output, for example, in-vehicle use and tool use. .

本発明のリチウムイオン二次電池は、不可逆容量が小さく、また、負荷特性、充電特性、サイクル特性など、様々な電池特性に優れているため、自動車や工具等、従来よりも一層急速に充放電できる性能が求められる用途に好適に用いることができる。   The lithium ion secondary battery of the present invention has a small irreversible capacity and is excellent in various battery characteristics such as load characteristics, charging characteristics, and cycle characteristics. It can be suitably used for applications that require high performance.

Claims (6)

窒素含有材料の炭化物(ホウ素及び窒素を含有している炭化物、並びにアセトニトリルの炭化物を除く)による被覆層が、球形化改質によって得られた球状天然黒鉛粒子の表面に形成された複合粒子を含有することを特徴とするリチウムイオン二次電池用負極材料。 Nitrogen-containing material carbide layer (excluding boron and nitrogen-containing carbides and acetonitrile carbide) contains composite particles formed on the surface of spherical natural graphite particles obtained by spheroidization modification A negative electrode material for a lithium ion secondary battery. 前記球状天然黒鉛粒子と前記窒素含有材料との混合比が99.5/0.5〜70/30(質量比)である請求項1に記載のリチウムイオン二次電池用負極材料。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein a mixing ratio of the spherical natural graphite particles and the nitrogen-containing material is 99.5 / 0.5 to 70/30 (mass ratio). 前記窒素含有材料が、尿素、ウレタン樹脂、尿素樹脂、及びABS樹脂よりなる群から選択される少なくとも1種である請求項1または2に記載のリチウムイオン二次電池用負極材料。   The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the nitrogen-containing material is at least one selected from the group consisting of urea, urethane resin, urea resin, and ABS resin. 請求項1から3のいずれか一項に記載の負極材料を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the negative electrode material according to any one of claims 1 to 3. 尿素、ウレタン樹脂、尿素樹脂、及びABS樹脂よりなる群から選択される少なくとも1種の窒素含有材料と、球形化改質によって得られた球状天然黒鉛粒子とを物理的に混合し、不活性ガス雰囲気中500℃〜2000℃で熱処理して、前記窒素含有材料の炭化物(ホウ素及び窒素を含有している炭化物を除く)による被覆層が前記球状天然黒鉛粒子の表面に形成された複合粒子を得ることを特徴とするリチウムイオン二次電池用負極材料の製造方法。 An inert gas obtained by physically mixing at least one nitrogen-containing material selected from the group consisting of urea, urethane resin, urea resin, and ABS resin, and spherical natural graphite particles obtained by spheronization modification Heat treatment is performed at 500 ° C. to 2000 ° C. in an atmosphere to obtain composite particles in which a coating layer of carbides of the nitrogen-containing material (excluding carbides containing boron and nitrogen) is formed on the surface of the spherical natural graphite particles. The manufacturing method of the negative electrode material for lithium ion secondary batteries characterized by the above-mentioned. 前記球状天然黒鉛粒子と前記窒素含有材料との混合比が99.5/0.5〜70/30(質量比)である請求項5に記載のリチウムイオン二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium ion secondary battery according to claim 5, wherein a mixing ratio of the spherical natural graphite particles and the nitrogen-containing material is 99.5 / 0.5 to 70/30 (mass ratio).
JP2008290277A 2008-11-12 2008-11-12 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material Expired - Fee Related JP5504614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290277A JP5504614B2 (en) 2008-11-12 2008-11-12 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290277A JP5504614B2 (en) 2008-11-12 2008-11-12 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Publications (2)

Publication Number Publication Date
JP2010118243A JP2010118243A (en) 2010-05-27
JP5504614B2 true JP5504614B2 (en) 2014-05-28

Family

ID=42305795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290277A Expired - Fee Related JP5504614B2 (en) 2008-11-12 2008-11-12 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material

Country Status (1)

Country Link
JP (1) JP5504614B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101117624B1 (en) 2010-05-07 2012-02-29 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP5516732B2 (en) * 2010-07-05 2014-06-11 独立行政法人産業技術総合研究所 ELECTRODE MATERIAL AND ELECTRODE CONTAINING THE SAME, BATTERY, METHOD FOR PRODUCING ELECTRODE MATERIAL PRECURSOR, AND METHOD FOR PRODUCING ELECTRODE MATERIAL USING SAME
CN102569804B (en) * 2010-12-21 2016-04-13 上海杉杉科技有限公司 A kind of graphite composite material and its production and use
JP5886875B2 (en) * 2010-12-31 2016-03-16 エギョン ペトロケミカル カンパニー リミテッドAekyung Petrochemical Co., Ltd. Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US20160006034A1 (en) 2013-03-25 2016-01-07 Jsr Corporation Electrode active material, electrode and electrical storage device
WO2015111954A1 (en) * 2014-01-24 2015-07-30 애경유화 주식회사 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
KR101729001B1 (en) * 2015-07-23 2017-04-24 애경유화주식회사 Negative active material for lithium secondary battery, preparing method thereof and lithium secondary battery using the same
JP2018067455A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Lithium ion secondary battery
CN106744916A (en) * 2016-12-21 2017-05-31 上海杉杉科技有限公司 A kind of method of modifying of high rate lithium ionic cell cathode material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633257B2 (en) * 1997-02-04 2005-03-30 三菱化学株式会社 Lithium ion secondary battery
JP2000001306A (en) * 1998-06-10 2000-01-07 Sumitomo Durez Co Ltd Nitrogen-containing carbon material
JP2000012020A (en) * 1998-06-23 2000-01-14 Nippon Steel Corp Carbon material for lithium secondary battery negative electrode
JP3973300B2 (en) * 1998-09-10 2007-09-12 三菱化学株式会社 Non-aqueous secondary battery
JP4130048B2 (en) * 1999-05-25 2008-08-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
KR100570648B1 (en) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP5731732B2 (en) * 2007-10-17 2015-06-10 日立化成株式会社 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2010118243A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5504614B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP5155172B2 (en) How to use electrochemical cells
JP4725594B2 (en) Method for manufacturing lithium secondary battery
US8951448B2 (en) Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
WO2015098551A1 (en) Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
CN104603993A (en) Negative electrode active material for non-aqueous electrolyte rechargeable battery, and non-aqueous electrolyte rechargeable battery using negative electrode active material
WO2012121110A1 (en) Electrode active substance and method for producing same
JP2012178269A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
WO2011052533A1 (en) Lithium secondary battery
JP2008257963A (en) Non-aqueous electrolyte secondary battery
JP2010009799A (en) Nonaqueous electrolyte secondary battery
JP2012178327A (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
TW201422526A (en) Highly dispersible graphene composition, the preparation method thereof, and electrode for lithium ion secondary battery containing the highly dispersible graphene composition
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
US20140287310A1 (en) Electrode material, electrode and lithium ion battery
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
KR100873578B1 (en) Anode active material for secondary battery with high capacity
JP2015049997A (en) Electrode material for lithium ion batteries, manufacturing method thereof, electrode for lithium ion batteries and lithium ion battery
JP6273868B2 (en) Negative electrode active material for power storage device and method for producing the same
CN116259735A (en) Negative electrode material, negative electrode sheet and battery
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5504614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees