JP2019041311A - 電力増幅回路 - Google Patents

電力増幅回路 Download PDF

Info

Publication number
JP2019041311A
JP2019041311A JP2017163096A JP2017163096A JP2019041311A JP 2019041311 A JP2019041311 A JP 2019041311A JP 2017163096 A JP2017163096 A JP 2017163096A JP 2017163096 A JP2017163096 A JP 2017163096A JP 2019041311 A JP2019041311 A JP 2019041311A
Authority
JP
Japan
Prior art keywords
frequency
power amplifier
filter circuit
amplifier circuit
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017163096A
Other languages
English (en)
Inventor
山田 孝
Takashi Yamada
孝 山田
悠里 本多
Yuri Honda
悠里 本多
田中 聡
Satoshi Tanaka
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2017163096A priority Critical patent/JP2019041311A/ja
Priority to CN201810957438.7A priority patent/CN109428561B/zh
Priority to US16/112,998 priority patent/US10637409B2/en
Publication of JP2019041311A publication Critical patent/JP2019041311A/ja
Priority to US16/829,776 priority patent/US11336234B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/318A matching circuit being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3215To increase the output power or efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

【課題】 高調波を広帯域に減衰可能な電力増幅回路を提供すること。【解決手段】 電力増幅回路は、入力信号を増幅して出力端子から増幅信号を出力する電力増幅器と、増幅信号のN倍波(Nは2以上の整数)を減衰させる周波数特性を有する第1フィルタ回路と、増幅信号のN倍波を減衰させる周波数特性を有する第2フィルタ回路と、を備え、第1フィルタ回路は、出力端子と接地との間に直列接続された第1キャパシタ及び第1インダクタを含み、第2フィルタ回路は、出力端子と接地との間に直列接続された第2キャパシタ及び第2インダクタを含む。【選択図】図1

Description

本発明は、電力増幅回路に関する。
携帯電話等の移動体通信機においては、一般的に、トランジスタを用いた電力増幅回路が搭載されている。このような電力増幅回路においては、増幅された送信信号に含まれる高調波成分を減衰させることにより、送信信号の線形性が向上することが知られている。
例えば、特許文献1には、増幅器の出力側に送信信号の2倍波、3倍波、4倍波等の高調波成分を接地に短絡させる複数の高調波終端回路が設けられた構成が開示されている。
米国特許出願公開第2013/0029619号明細書
このような高調波終端回路の一具体例として、減衰させるべき高調波の周波数において低インピーダンスとなるような周波数特性を有するフィルタ回路がある。しかしながら、近年は、携帯電話等における伝送容量の増加のため、例えばCA(Carrier Aggregation)技術に見られるように、使用される周波数帯の数はますます増加している。従って、減衰させるべき高調波の帯域も広くなっており、特許文献1に示される構成によると、減衰される高調波の帯域が不十分となる可能性がある。
本発明は、かかる事情に鑑みてなされたものであり、高調波を広帯域に減衰可能な電力増幅回路を提供することを目的とする。
かかる目的を達成するため、本発明の一側面に係る電力増幅回路は、入力信号を増幅して出力端子から増幅信号を出力する電力増幅器と、増幅信号のN倍波(Nは2以上の整数)を減衰させる周波数特性を有する第1フィルタ回路と、増幅信号のN倍波を減衰させる周波数特性を有する第2フィルタ回路と、を備え、第1フィルタ回路は、出力端子と接地との間に直列接続された第1キャパシタ及び第1インダクタを含み、第2フィルタ回路は、出力端子と接地との間に直列接続された第2キャパシタ及び第2インダクタを含む。
本発明によれば、高調波を広帯域に減衰可能な電力増幅回路を提供することができる。
本発明の第1実施形態に係る電力増幅回路の回路図である。 構成例Bに係るフィルタ回路HT1,HT2の周波数特性のシミュレーション結果を示す図である。 構成例Cに係るフィルタ回路HT1,HT2の周波数特性のシミュレーション結果を示す図である。 構成例B及び比較例におけるトランジスタQ2のコレクタの負荷インピーダンスの軌跡を示すスミスチャートである。 構成例A、構成例B及び比較例におけるACLR特性のシミュレーション結果を示すグラフである。 構成例A及び構成例Bにおける基本波付近の周波数特性のシミュレーション結果を示す図である。 構成例A及び構成例Bにおける電力付加効率のシミュレーション結果の一例を示すグラフである。 本発明の第2実施形態に係る電力増幅回路の回路図である。 電力増幅回路100BにおけるトランジスタQ2のコレクタの負荷インピーダンスの軌跡を示すスミスチャートである。 本発明の第3実施形態に係る電力増幅回路の回路図である。 電力増幅回路100C及び比較例における周波数特性のシミュレーション結果を示す図である。 本発明の第1実施形態に係る電力増幅回路が形成された半導体チップにおける各構成要素の配置例を示す図である。 本発明の第1実施形態に係る電力増幅回路が形成された半導体チップにおける各構成要素の他の配置例を示す図である。
以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本発明の第1実施形態に係る電力増幅回路の回路図である。図1に示される電力増幅回路100Aは、無線周波数(RF:Radio Frequency)信号である入力信号を増幅し、増幅信号を出力する回路である。電力増幅回路100Aは、例えば複数の周波数帯の送信信号を増幅する。以下では、電力増幅回路100Aは3G(第3世代移動通信システム)のローバンドに含まれる各バンド(例えば、バンド5、バンド6、バンド8、バンド12〜14、バンド17〜20、バンド26〜28、バンド44、バンド68等)の送信信号を増幅するものとして説明する。この場合、ローバンドに含まれる複数の周波数帯のうち最も低い周波数帯はバンド12(送信帯域:699MHz〜716MHz)であり、最も高い周波数帯はバンド8(送信帯域:880MHz〜915MHz)である。従って、ローバンドの送信周波数の下限値はバンド12の下限値(699MHz)であり、上限値はバンド8の上限値(915MHz)となる。なお、電力増幅回路100Aが増幅する送信信号の周波数帯はローバンドに限られず、ベリーローバンド、ミドルバンド、ハイバンド又はウルトラハイバンド等の他の周波数帯であってもよい。また、送信信号の通信規格は3Gに限られず、2G(第2世代移動通信システム)、4G(第4世代移動通信システム)又は5G(第5世代移動通信システム)等の他の通信規格であってもよい。
図1に示される電力増幅回路100Aは、例えば、トランジスタQ1,Q2、整合回路10〜12、フィルタ回路HT1,HT2及びインダクタ20,21を備える。
トランジスタQ1,Q2は、それぞれ、RF信号の増幅を行う。本実施形態では、トランジスタQ1,Q2は、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のバイポーラトランジスタである。なお、トランジスタは、例えば電界効果トランジスタ(MOSFET:Metal−oxide−semiconductor Field−Effect Transistor)等の他のトランジスタであってもよい。
トランジスタQ1は初段(ドライブ段)の電力増幅器を構成し、トランジスタQ2は後段(パワー段)の電力増幅器を構成する。具体的には、トランジスタQ1は、ベースに整合回路10を経由して入力信号RFinが供給され、コレクタにインダクタ20を経由して電源電圧Vccが供給され、エミッタが接地される。トランジスタQ1は、入力信号RFinを増幅して、コレクタから増幅信号RFout1を出力する。トランジスタQ2は、ベースに整合回路11を経由して増幅信号RFout1が供給され、コレクタにインダクタ21を経由して電源電圧Vccが供給され、エミッタが接地される。トランジスタQ2は、増幅信号RFout1をさらに増幅して、コレクタ(出力端子)から増幅信号RFout2を出力する。なお、図示は省略されているが、トランジスタQ1,Q2のベースには、それぞれ、バイアス回路からバイアス電流又は電圧が供給される。また、本実施形態においては、電力増幅器の段数が2段である例が示されているが、増幅器の段数は2段に限られず、1段であってもよく、3段以上であってもよい。
整合回路(MN:Matching Network)10〜12は、それぞれ、トランジスタQ1,Q2の前後に設けられている。整合回路10〜12は、例えば、キャパシタやインダクタを用いて構成され、回路間のインピーダンスを整合させる。
インダクタ20,21は、RF信号の電源側への漏出を抑制するチョークインダクタである。なお、インダクタ20,21は、説明のためにインダクタンス素子の記号が用いられているが、インダクタンス成分を有する他の要素により構成されていてもよい。インダクタンス成分を有する他の要素とは、例えば、ワイヤボンディングにより形成されたボンドワイヤ等である。後述するインダクタL1,L2についても同様である。
フィルタ回路HT1(第1フィルタ回路),HT2(第2フィルタ回路)は、それぞれ、トランジスタQ2のコレクタから出力される増幅信号RFout2に含まれる高調波成分を減衰させる周波数特性を有する回路である。具体的には、フィルタ回路HT1は、トランジスタQ2の出力端子と接地との間に直列接続されたキャパシタC1(第1キャパシタ)及びインダクタL1(第1インダクタ)を含む。同様に、フィルタ回路HT2は、トランジスタQ2の出力端子と接地との間に直列接続されたキャパシタC2(第2キャパシタ)及びインダクタL2(第2インダクタ)を含む。
キャパシタC1は、一端がトランジスタQ2のコレクタに接続され、他端がインダクタL1を経由して接地される。インダクタL1は、一端がキャパシタC1の他端に接続され、他端が接地される。これにより、フィルタ回路HT1は、キャパシタC1のキャパシタンス値C及びインダクタL1の自己インダクタンス値Lによって定められる共振周波数f01(=1/2π√LC)(Hz)を有する直列共振回路となる。従って、フィルタ回路HT1の共振周波数f01が、増幅信号RFout2のN倍波(Nは2以上の整数)の周波数と一致するようにキャパシタC1及びインダクタL1の定数を定めることにより、フィルタ回路HT1はN倍波成分を接地に短絡する高調波終端回路として機能する。なお、フィルタ回路HT2については、フィルタ回路HT1と同様であるため、詳細な説明を省略する。
フィルタ回路HT1,HT2は、いずれもN倍波(例えば、いずれも2倍波)の高調波成分を減衰させるが、その周波数特性は全く同じであってもよく、異なっていてもよい。この点について、以下に様々な構成例(構成例A〜構成例C)を挙げつつ詳細に説明する。なお、以下の説明においては、フィルタ回路HT1,HT2が減衰対象とする高調波がいずれも2倍波である場合を例とする。なお、上述の通りローバンドの送信帯域が699MHz〜915MHzであるため、2倍波の帯域は1.398GHz〜1.830GHzとなる。
構成例Aは、キャパシタC1とキャパシタC2のキャパシタンス値が等しく、インダクタL1とインダクタL2の自己インダクタンス値も等しい構成である。すなわち、構成例Aでは、フィルタ回路HT1,HT2の周波数特性が同じであり、従って共振周波数も等しい。このように、周波数特性が等しい2つのフィルタ回路HT1,HT2を備えることにより、同様のフィルタ回路を1つしか備えない構成に比べて、2倍波を広帯域に減衰させることができる。また、2つのフィルタ回路HT1,HT2が並列接続されることとなるため、インダクタL1,L2に起因する抵抗成分がおよそ半減される。これにより、同様のフィルタ回路を1つしか備えない構成に比べて、フィルタ回路の2倍波におけるインピーダンスをさらに短絡側に近付けることができる。
構成例Bは、キャパシタC1のキャパシタンス値がキャパシタC2のキャパシタンス値より小さく、インダクタL1の自己インダクタンス値がインダクタL2の自己インダクタンス値より大きく、かつフィルタ回路HT1,HT2の共振周波数が等しい構成である。構成例Bでは、インダクタL1の自己インダクタンス値がインダクタL2の自己インダクタンス値より大きいため、フィルタ回路HT1のQ値がフィルタ回路HT2のQ値より高くなる。ここで、構成例Aでは、例えばQ値が比較的高い2つのフィルタ回路を備えると、減衰される高調波の帯域幅が不十分となり得る。一方、例えばQ値が比較的低い2つのフィルタ回路を備えると、高調波は広帯域に減衰されるものの、基本波の減衰量まで増大するおそれがある。この点、構成例Bでは、Q値が比較的高いフィルタ回路HT1とQ値が比較的低いフィルタ回路HT2を備えることにより、高調波を広帯域に減衰させつつ、基本波の損失を抑制することができる。
図2は、構成例Bに係るフィルタ回路HT1,HT2の周波数特性のシミュレーション結果を示す図である。具体的には、図2は、フィルタ回路HT1のみを備える構成と、フィルタ回路HT2のみを備える構成と、フィルタ回路HT1,HT2の双方を備える構成において、トランジスタQ2の出力のSパラメータS21のシミュレーション結果を示す。図2に示されるグラフにおいて、縦軸はSパラメータS21(dB)を示し、横軸は周波数(GHz)を示している。なお、当該グラフでは、フィルタ回路HT1,HT2の共振周波数が、いずれも減衰させるべき2倍波の帯域(1.398GHz〜1.830GHz)における中央付近の周波数となるように設計されている。
図2に示されるように、フィルタ回路HT1の周波数特性は、フィルタ回路HT2の周波数特性に比べてQ値が高い。一方、フィルタ回路HT2の周波数特性は、フィルタ回路HT1の周波数特性に比べて広帯域である。これは、インダクタL1の自己インダクタンス値がインダクタL2の自己インダクタンス値より大きいためである。このように、特性の異なるフィルタ回路HT1,HT2を組み合わせることにより、高調波が広帯域に減衰されることが分かる。
構成例Cは、キャパシタC1,C2のキャパシタンス値及びインダクタL1,L2の自己インダクタンス値の調整により、フィルタ回路HT1とフィルタ回路HT2の共振周波数がずらされた構成である。共振周波数が少し異なる複数のフィルタ回路を備えることにより、減衰される帯域をさらに広げることができる。
図3は、構成例Cに係るフィルタ回路HT1,HT2の周波数特性のシミュレーション結果を示す図である。具体的には、図3は、フィルタ回路HT1のみを備える構成と、フィルタ回路HT2のみを備える構成と、フィルタ回路HT1,HT2の双方を備える構成において、トランジスタQ2の出力のSパラメータS21のシミュレーション結果を示す。図3に示されるグラフにおいて、縦軸はSパラメータS21(dB)を示し、横軸は周波数(GHz)を示している。本実施形態において、送信信号のうち最も低い周波数帯(バンド12)の2倍波の周波数の下限値(第1周波数)fMINは1.398GHzであり、最も高い周波数帯(バンド8)の2倍波の周波数の上限値(第2周波数)fMAXは1.830GHzである。従って、これらの平均値(中心周波数)fAVEは1.614GHzである。当該シミュレーションでは、フィルタ回路HT1の共振周波数f01が下限値と平均値の間(fMIN<f01<fAVE)となり、フィルタ回路HT2の共振周波数f02が平均値と上限値の間(fAVE<f02<fMAX)となるように、各フィルタ回路HT1,HT2が設計されている。
図3に示されるように、共振周波数f01,f02が異なるフィルタ回路HT1,HT2を組み合わせることにより、減衰量が近傍より大きくなる極を2つ備える周波数特性となっている。これにより、構成例Cでは、共振周波数が等しい2つのフィルタ回路を備える構成例A又は構成例Bに比べて、2倍波の下限値fMIN及び上限値fMAX付近における減衰量が向上していることが分かる。
なお、構成例Cにおいて、インダクタL1,L2の自己インダクタンス値は異なっていてもよいし、等しくてもよい。
図4は、構成例B及び比較例におけるトランジスタQ2のコレクタの負荷インピーダンスの軌跡を示すスミスチャートである。比較例とは、電力増幅回路がフィルタ回路HT1と同様のフィルタ回路を1つのみ備えた構成である。図4に示される軌跡400は比較例における軌跡であり、軌跡401は構成例Bにおける軌跡である。なお、信号の周波数は2倍波の帯域(1.398GHz〜1.830GHz)の範囲で変化させている。
図4に示されるように、構成例Bの軌跡401は比較例の軌跡400に比べて、2倍波の帯域の全体にわたってインピーダンスが短絡側(すなわち、円周側)に近付いていることが分かる。これは、上述の通り、2つのフィルタ回路HT1,HT2が並列に接続されることにより抵抗成分が半減され、インピーダンスの実部が低下するためである。
図5は、構成例A、構成例B及び比較例におけるACLR特性のシミュレーション結果を示すグラフである。比較例とは、電力増幅回路がフィルタ回路HT1と同様のフィルタ回路を1つのみ備えた構成である。図5に示されるグラフにおいて、縦軸は隣接チャネル漏洩電力比(ACLR:Adjacent Channel Leakage Ratio)特性(dBc)を表し、横軸はトランジスタQ2の出力電力Pout(dBm)を示している。
図5に示されるように、比較例に比べて構成例A又は構成例Bでは、いずれもACLR特性が向上している。具体的には、例えば出力電力Poutが29dBmの場合では、構成例Aは比較例に比べてACLRが4dB程度低い。また、構成例Aと構成例Bを比べると、構成例Bは構成例Aに比べてACLR特性がさらに1dB程度低い。すなわち、2つのフィルタ回路HT1,HT2を備えることによって、図2及び図3に示されるように2倍波が広帯域に減衰され、これにより出力信号の歪みが改善することが分かる。
図6は、構成例A及び構成例Bにおける基本波付近の周波数特性のシミュレーション結果を示す図である。具体的には、図6に示されるグラフは、構成例A又は構成例Bにおけるフィルタ回路HT1,HT2を併せた場合の基本波付近における減衰量を示している。図6に示されるグラフにおいて、縦軸はSパラメータS21(dB)(すなわち、挿入損失)を示し、横軸は周波数(GHz)を示している。なお、図6においては、ローバンドの送信信号の帯域(699MHz〜915MHz)に該当する範囲が太線で示されている。また、当該シミュレーションは、図1に示される整合回路12も含めた挿入損失が算出されている。
図6に示されるように、構成例Bは構成例Aより挿入損失が改善している。これは、2つのフィルタ回路HT1,HT2のうち一方のフィルタ回路のQ値を上げることにより、2つのフィルタ回路HT1,HT2を併せた構成のQ値が向上するためである。
図7は、構成例A及び構成例Bにおける電力付加効率のシミュレーション結果の一例を示すグラフである。図7に示されるグラフにおいて、横軸は出力電力(dBm)を示し、縦軸は電力付加効率(PAE:Power Added Efficiency)(%)を示している。
図7に示されるように、構成例Aに比べて構成例BはPAEが1〜2%程度向上している。これは、図6に示されるように、構成例BではQ値が高いことにより基本波の帯域における挿入損失が改善することに起因している。
上述の結果から、電力増幅回路100Aは、構成例A〜構成例Cのいずれであっても、フィルタ回路を1つしか備えない構成に比べて、2倍波を広帯域に減衰させることができる。また、インダクタL1,L2に起因する抵抗成分がおよそ半減されるため、フィルタ回路の2倍波におけるインピーダンスをさらに短絡側に近付けることができる。これにより、構成例A〜構成例Cによると、出力信号の歪みを改善することができる。また、構成例Bによると、特性が等しい2つのフィルタ回路を備える構成例Aに比べて、高調波を広帯域に減衰させつつ、基本波の損失を抑制することができる。これにより、電力負荷効率を向上させることができる。さらに、構成例Cによると、共振周波数が等しい2つのフィルタ回路を備える構成例A又は構成例Bに比べて、2倍波の下限値fMIN及び上限値fMAX付近における減衰量が増大する。
なお、図1においては、パワー段の電力増幅器にフィルタ回路HT1,HT2が接続される例が示されているが、フィルタ回路HT1,HT2が接続される電力増幅器はパワー段に限られない。例えば、ドライブ段の電力増幅器に同様のフィルタ回路が設けられていてもよい。
図8は、本発明の第2実施形態に係る電力増幅回路の回路図である。なお、図1に示される電力増幅回路100Aと同一の要素には同一の符号を付して説明を省略する。また、第2実施形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
図8に示される電力増幅回路100Bは、電力増幅回路100Aに比べて、m個(mは3以上の整数)のフィルタ回路HT1〜HTmを備える点において相違する。
m個のフィルタ回路HT1〜HTmは、それぞれ、フィルタ回路HT1,HT2と同様に、トランジスタQ2のコレクタと接地との間に直列接続されたキャパシタC1〜Cm及びインダクタL1〜Lmを備える。また、m個のフィルタ回路HT1〜HTmは、それぞれ、N倍波を減衰させる周波数特性を有する。このように、N倍波を減衰させるフィルタ回路の個数は、2つに限られず、3つ以上であってもよい。並列接続されるフィルタ回路の個数が増えることにより、抵抗成分がさらに低減されるため、フィルタ回路HT1〜HTmのインピーダンスをさらに短絡側に近付けることができる。なお、フィルタ回路HT1〜HTmのそれぞれの周波数特性は特に限定されない。例えば、m個のフィルタ回路HT1〜HTmの各々に、上述の構成例A〜構成例Cのいずれかが適用されてもよい。
図9は、電力増幅回路100BにおけるトランジスタQ2のコレクタの負荷インピーダンスの軌跡を示すスミスチャートである。具体的には、図9に示される軌跡900〜903は、それぞれ、フィルタ回路HT1と同様のフィルタ回路を1個〜4個備えた場合における各軌跡を示している。信号の周波数は、送信信号の2倍波の帯域(1.398GHz〜1.830GHz)の範囲で変化させている。
図9に示されるように、フィルタ回路の個数の増加に伴い、インピーダンスが短絡側(すなわち、円周側)に近付いている。この結果からも、複数のフィルタ回路が並列に接続されることにより、抵抗成分が低減していることが分かる。
図10は、本発明の第3実施形態に係る電力増幅回路の回路図である。なお、図1に示される電力増幅回路100Aと同一の要素には同一の符号を付して説明を省略する。また、図10では、トランジスタQ2以降の構成要素のみを示し、前段の構成については図示を省略する。
図10に示される電力増幅回路100Cは、図1に示される電力増幅回路100Aに含まれる整合回路12の具体的な構成を示したものである。具体的には、整合回路12Aは、例えば、ローパスフィルタ回路30及びハイパスフィルタ回路31を含む。
ローパスフィルタ回路30は、インダクタ22及びキャパシタ23を含む。インダクタ22は、トランジスタQ2のコレクタに接続されて増幅信号RFout2を通す信号線路に直列接続される。キャパシタ23は、インダクタ22の出力側の一端と接地との間に接続される。ローパスフィルタ回路30は、増幅信号RFout2に含まれる高調波成分を減衰させ、基本波成分を通過させる周波数特性を有する。
ハイパスフィルタ回路31は、キャパシタ24及びインダクタ25を含む。キャパシタ24は、トランジスタQ2のコレクタに接続されて増幅信号RFout2を通す信号線路に直列接続される。インダクタ25は、キャパシタ24の出力側の一端と接地との間に接続される。ハイパスフィルタ回路31は、増幅信号RFout2に含まれる基本波成分及び高調波成分を通過させる周波数特性を有する。
図10に示されるように、整合回路12Aがハイパスフィルタ回路31を含む場合、高調波成分が当該ハイパスフィルタ回路31を通過するため、高調波成分の減衰が不十分となるおそれがある。このような構成において2つのフィルタ回路HT1,HT2が適用されることにより、高調波を広帯域に減衰させる効果がより高まる。
なお、整合回路12Aの構成はこれに限られない。例えば、整合回路12Aは、ローパスフィルタ回路30及びハイパスフィルタ回路31の組み合わせの代わりに、2つのローパスフィルタ回路30の組み合わせにより構成されていてもよい。
図11は、電力増幅回路100C及び比較例における周波数特性のシミュレーション結果を示す図である。当該シミュレーションにおける比較例とは、電力増幅回路がフィルタ回路HT1と同様の回路を全く備えない構成である。図11に示されるグラフにおいて、縦軸はSパラメータS21(dB)を示し、横軸は周波数(GHz)を示している。
図11に示されるように、電力増幅回路100Cは、フィルタ回路HT1,HT2を備えることにより、基本波をほぼ損失させることなく、2倍波を大きく減衰させている。
図12は、本発明の第1実施形態に係る電力増幅回路が形成された半導体チップにおける各構成要素の配置例を示す図である。なお、図12に示される構成要素のうち、図1に示される電力増幅回路100Aに含まれる構成要素に対応するものについては、説明の便宜上、図1において用いた符号と同様の符号を用いる。
図12に示される半導体チップ1000Aには、例えば、トランジスタQ1,Q2、整合回路10,11、バイアス回路1100、キャパシタC1,C2が形成される。
半導体チップ1000Aは、互いに交差する(図12においては直交する)X軸及びY軸によって規定される平面に平行な矩形状の主面を有するチップである。当該主面は、Y軸(第1方向)に平行な辺S1(第1辺),S2(第2辺)と、X軸(第2方向)に平行な辺S3,S4と、を有する。半導体チップ1000Aには、HBTや他の素子等が形成され、例えばモジュール基板(不図示)に実装される。
トランジスタQ1,Q2は、それぞれ、例えばトランジスタを構成する最小単位であるフィンガが複数個並列に接続され、整列配置されることにより形成される。
バイアス回路1100は、図1では図示が省略されているが、トランジスタQ1,Q2のそれぞれのベースにバイアス電流又は電圧を供給する回路である。
フィルタ回路HT1,HT2にそれぞれ含まれるキャパシタC1,C2は、例えば、半導体チップ1000Aに直接形成されたオンチップキャパシタにより構成される。キャパシタC1,C2は、半導体チップ1000Aの主面の平面視において、当該半導体チップ1000AのY軸方向に延びる中心線CLを基準としてX軸方向に対称に配置されている。また、本実施形態においては、キャパシタC1は、X軸負方向側の辺S1に隣接して配置され、キャパシタC2は、X軸正方向側の辺S2に隣接して配置されている。また、キャパシタC1,C2はいずれも、X軸に平行な辺S3に隣接して配置されている。このように、キャパシタC1,C2が中心線CLを基準として対称に配置されることにより、トランジスタQ2を構成する複数のフィンガのうち、キャパシタC1,C2付近のフィンガへの熱の集中が抑制され、トランジスタの破壊が防止される。
また、本実施形態において、フィルタ回路HT1,HT2にそれぞれ含まれるインダクタL1,L2は、例えば半導体チップ1000Aがモジュール基板(不図示)に実装される際のボンドワイヤにより構成される。例えば、インダクタL1,L2を構成するボンドワイヤは、それぞれ、キャパシタC1,C2から半導体チップ1000Aの外側に向かってY軸に略平行となるように引き出されている。図12に示されるように、キャパシタC1,C2が中心線CLを隔てて両端側に配置されることにより、インダクタL1とインダクタL2との間の距離が確保される。これにより、インダクタL1とインダクタL2との結合によるインダクタンスのばらつきを抑制することができる。なお、ボンドワイヤは、Y軸に略平行となるように引き出される代わりに、例えばX軸に略平行となるように引き出されていてもよい。
インダクタL1の他端及びインダクタL2の他端には、それぞれ、接地電位が供給される。ここで、インダクタL1の他端に供給される接地電位と、インダクタL2の他端に供給される接地電位とは、それぞれ、異なる電極を経由して供給されてもよい。例えば、インダクタL1の他端及びインダクタL2の他端は、それぞれ、半導体チップ1000Aが実装されるモジュール基板の下層に設けられた異なる接地電極に電気的に接続されてもよい。これにより、他の構成要素から受ける寄生成分の影響を抑制することができる。なお、図12におけるフィルタ回路HT1,HT2の接地電位の記号の相違は、これらの接地電位が異なる電極を経由して供給されることを模式的に示したものである。
図13は、本発明の第1実施形態に係る電力増幅回路が形成された半導体チップにおける各構成要素の他の配置例を示す図である。図13に示される半導体チップ1000Bは、ボンドワイヤの代わりにバンプ構造によりモジュール基板(不図示)に実装される場合の構成例である。具体的には、半導体チップ1000Bは、図12に示される半導体チップ1000Aに比べてバンプB1〜B10をさらに備える。
バンプB1,B2は、それぞれ、キャパシタC1,C2を半導体チップ1000Bの外部と電気的に接続するバンプである。具体的には、バンプB1は、半導体チップ1000Bの角部においてキャパシタC1に隣接するように配置される。キャパシタC1は、バンプB1を経由して、モジュール基板に形成されたインダクタL1と電気的に接続される。バンプB2は、半導体チップ1000Bの他の角部においてキャパシタC2に隣接するように配置される。キャパシタC2は、バンプB2を経由して、モジュール基板に形成されたインダクタL2と電気的に接続される。
バンプB3は、トランジスタQ2と辺S3との間に配置される。バンプB3は、例えば、トランジスタQ2を構成する各フィンガのコレクタが接続されるバンプである。これにより、バンプB3から増幅信号RFout2が出力される。なお、バンプB4〜B10は、特に限定されないが、例えば電源電圧、入力信号、又は接地電位等の供給のための端子として機能する。
インダクタL1,L2は、例えば、モジュール基板(不図示)に形成された配線やSMD(Surface Mount Device)等により構成される。なお、半導体チップ1000Aと同様に、インダクタL1の他端に供給される接地電位と、インダクタL2の他端に供給される接地電位とが、それぞれ異なる電極を経由して供給されてもよい。
このように、半導体チップ1000Bにおいても、半導体チップ1000Aと同様にフィルタ回路HT1,HT2が中心線CLを基準として対称に配置されることにより、トランジスタQ2を構成する複数のフィンガへの熱の影響が均一となる。
なお、バンプB1〜B10は、特に限定されないが、例えばCuピラーバンプであってもよく、あるいははんだバンプ等であってもよい。
また、半導体チップ1000A,1000BにおけるトランジスタQ1,Q2、バイアス回路1100及び整合回路10,11の配置は例示であり、これに限定されない。
また、半導体チップ1000A,1000Bにおいて、インダクタL1の他端及びインダクタL2の他端に供給される接地電位は、それぞれ同じ電極を経由して供給されてもよい。
以上、本発明の例示的な実施形態について説明した。電力増幅回路100A〜100Cは、入力信号(増幅信号RFout1)を増幅して増幅信号RFout2を出力するトランジスタQ2と、増幅信号RFout2のN倍波(Nは2以上の整数)を減衰させる周波数特性を有するフィルタ回路HT1,HT2と、を備え、フィルタ回路HT1は、トランジスタQ2のコレクタと接地との間に直列接続されたキャパシタC1及びインダクタL1を含み、フィルタ回路HT2は、トランジスタQ2のコレクタと接地との間に直列接続されたキャパシタC2及びインダクタL2を含む。これにより、同様のフィルタ回路を1つしか備えない構成に比べてN倍波を広帯域に減衰させることができる。また、フィルタ回路HT1,HT2が並列接続されるため、抵抗成分がおよそ半減される。従って、フィルタ回路のインピーダンスを短絡側に近付けることができ、出力信号の歪みを改善することができる。
また、電力増幅回路100A〜100Cにおいて、インダクタL1の自己インダクタンス値は、インダクタL2の自己インダクタンス値より大きくてもよい。これにより、特性が等しい2つのフィルタ回路を備える構成に比べて、高調波を広帯域に減衰させつつ、基本波の損失を抑制することができる。従って、電力負荷効率を向上させることができる。
また、電力増幅回路100A〜100Cにおいて、フィルタ回路HT1とフィルタ回路HT2の共振周波数が異なっていてもよい。特に、フィルタ回路HT1の共振周波数f01はN倍波の帯域の下限値fMINと平均値fAVEの間であり、フィルタ回路HT2の共振周波数f02はN倍波の帯域の平均値fAVEと上限値fMAXの間であってもよい。これにより、共振周波数が等しい2つのフィルタ回路を備える構成に比べて、下限値fMIN及び上限値fMAX付近における減衰量が向上する。
また、電力増幅回路100A〜100Cにおいて、フィルタ回路HT1とフィルタ回路HT2の共振周波数は等しくてもよい。
また、電力増幅回路100Cは、ハイパスフィルタ回路31を備える。高調波成分の減衰が不十分となり得る構成にフィルタ回路HT1,HT2を適用することにより、高調波を広帯域に減衰させる効果がより高まる。
また、電力増幅回路100A〜100Cが形成される半導体チップ1000A,1000Bの主面の平面視において、キャパシタC1,C2は、それぞれ中心線CLを基準としてX軸方向に対称に配置されている。これにより、トランジスタQ2を構成する複数のフィンガのうち、キャパシタC1,C2付近のフィンガへの熱の集中が抑制され、トランジスタの破壊が防止される。
また、電力増幅回路100A〜100Cが形成される半導体チップ1000A,1000Bの主面の平面視において、キャパシタC1,C2は、それぞれ半導体チップの両端の辺S1,S2に隣接して配置されている。これにより、インダクタL1とインダクタL2との間の距離が確保される。従って、インダクタL1とインダクタL2との結合によるインダクタンスのばらつきを抑制することができる。
また、電力増幅回路100A〜100Cにおいて、フィルタ回路HT1におけるインダクタL1の一端、及びフィルタ回路HT2におけるインダクタL2の一端には、異なる電極を経由して接地電位が供給されてもよい。これにより、他の構成要素から受ける寄生成分の影響を抑制することができる。
以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るととともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
100A〜100C…電力増幅回路、10〜12…整合回路、20〜22,25,L1〜Lm…インダクタ、23,24,C1〜Cm…キャパシタ、30…ローパスフィルタ回路、31…ハイパスフィルタ回路、1000A,1000B…半導体チップ、1100…バイアス回路、Q1,Q2…トランジスタ、HT1〜HTm…フィルタ回路、S1〜S4…辺、CL…中心線、B1〜B10…バンプ

Claims (9)

  1. 入力信号を増幅して出力端子から増幅信号を出力する電力増幅器と、
    前記増幅信号のN倍波(Nは2以上の整数)を減衰させる周波数特性を有する第1フィルタ回路と、
    前記増幅信号の前記N倍波を減衰させる周波数特性を有する第2フィルタ回路と、
    を備え、
    前記第1フィルタ回路は、前記出力端子と接地との間に直列接続された第1キャパシタ及び第1インダクタを含み、
    前記第2フィルタ回路は、前記出力端子と接地との間に直列接続された第2キャパシタ及び第2インダクタを含む、
    電力増幅回路。
  2. 前記第1インダクタの自己インダクタンス値は、前記第2インダクタの自己インダクタンス値より大きい、
    請求項1に記載の電力増幅回路。
  3. 前記第1フィルタ回路の共振周波数と前記第2フィルタ回路の共振周波数は異なる、
    請求項1又は2に記載の電力増幅回路。
  4. 前記入力信号は、複数の周波数帯の送信信号を含み、
    前記複数の周波数帯のうち最も低い周波数帯の前記N倍波の周波数の下限値を第1周波数とし、
    前記複数の周波数帯のうち最も高い周波数帯の前記N倍波の周波数の上限値を第2周波数とし、
    前記第1周波数と前記第2周波数の平均値を中心周波数とした場合、
    前記第1フィルタ回路の共振周波数は、前記第1周波数と前記中心周波数の間であり、
    前記第2フィルタ回路の共振周波数は、前記中心周波数と前記第2周波数の間である、
    請求項3に記載の電力増幅回路。
  5. 前記第1フィルタ回路の共振周波数と前記第2フィルタ回路の共振周波数は略等しい、
    請求項1又は2に記載の電力増幅回路。
  6. 前記電力増幅回路は、前記出力端子の後段にハイパスフィルタ回路をさらに備える、
    請求項1から5のいずれか一項に記載の電力増幅回路。
  7. 前記電力増幅回路は、
    互いに交差する第1方向及び第2方向により規定される平面に平行な主面を有するチップをさらに備え、
    前記第1及び第2キャパシタは、それぞれ、前記チップの主面の平面視において、前記チップの前記第1方向に延びる中心線を基準として前記第2方向に対称に配置された、
    請求項1から6のいずれか一項に記載の電力増幅回路。
  8. 前記チップの主面は、前記第1方向に平行な第1辺及び第2辺を有する矩形状であり、
    前記第1及び第2キャパシタは、それぞれ、前記第1辺及び第2辺に隣接して配置された、
    請求項7に記載の電力増幅回路。
  9. 前記第1フィルタ回路に供給される接地電位と、前記第2フィルタ回路に供給される接地電位とが、それぞれ、異なる電極を経由して供給される、
    請求項1から8のいずれか一項に記載の電力増幅回路。
JP2017163096A 2017-08-28 2017-08-28 電力増幅回路 Pending JP2019041311A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017163096A JP2019041311A (ja) 2017-08-28 2017-08-28 電力増幅回路
CN201810957438.7A CN109428561B (zh) 2017-08-28 2018-08-21 功率放大电路
US16/112,998 US10637409B2 (en) 2017-08-28 2018-08-27 Power amplifier circuit
US16/829,776 US11336234B2 (en) 2017-08-28 2020-03-25 Power amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163096A JP2019041311A (ja) 2017-08-28 2017-08-28 電力増幅回路

Publications (1)

Publication Number Publication Date
JP2019041311A true JP2019041311A (ja) 2019-03-14

Family

ID=65434436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163096A Pending JP2019041311A (ja) 2017-08-28 2017-08-28 電力増幅回路

Country Status (3)

Country Link
US (2) US10637409B2 (ja)
JP (1) JP2019041311A (ja)
CN (1) CN109428561B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20161824A1 (it) * 2016-03-18 2017-09-18 Eggtronic S R L Circuito e metodo per pilotare carichi elettrici
CN112039448A (zh) * 2019-06-04 2020-12-04 株式会社村田制作所 功率放大电路
CN117040477B (zh) * 2022-12-16 2024-01-23 北京芯溪半导体科技有限公司 一种滤波器、多工器和通信设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300895A (en) * 1992-10-01 1994-04-05 Texas Instruments Incorporated Method for terminating harmonics of transistors
US6236274B1 (en) * 2000-01-04 2001-05-22 Industrial Technology Research Institute Second harmonic terminations for high efficiency radio frequency dual-band power amplifier
US20030015767A1 (en) * 2001-07-17 2003-01-23 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices with integrated control components
US7372334B2 (en) * 2005-07-26 2008-05-13 Infineon Technologies Ag Output match transistor
CN101939912A (zh) * 2008-02-05 2011-01-05 日本电波工业株式会社 滤波器、便携式终端和电子部件
JP2011120105A (ja) * 2009-12-04 2011-06-16 Renesas Electronics Corp 半導体装置
JP2012049758A (ja) * 2010-08-26 2012-03-08 Taiyo Yuden Co Ltd フィルタ及びデュープレクサ
WO2013009640A2 (en) 2011-07-08 2013-01-17 Skyworks Solutions, Inc. Signal path termination
JP5679061B2 (ja) * 2011-08-01 2015-03-04 株式会社村田製作所 高周波モジュール
WO2013071152A2 (en) 2011-11-11 2013-05-16 Skyworks Solutions, Inc. Flip-chip linear power amplifier with high power added efficiency
US8803615B2 (en) * 2012-01-23 2014-08-12 Qualcomm Incorporated Impedance matching circuit with tunable notch filters for power amplifier
CN103066932B (zh) * 2012-12-17 2016-01-13 广州慧智微电子有限公司 一种可降低对ism频段干扰的多级射频功率放大器电路
US9537452B2 (en) * 2014-04-29 2017-01-03 Skyworks Solutions, Inc. Broadband power amplifier systems and methods
US9503025B2 (en) * 2014-07-11 2016-11-22 Skyworks Solutions, Inc. Power amplifier with termination circuit and resonant circuit

Also Published As

Publication number Publication date
US10637409B2 (en) 2020-04-28
US20200228067A1 (en) 2020-07-16
US20190068132A1 (en) 2019-02-28
CN109428561B (zh) 2022-12-30
US11336234B2 (en) 2022-05-17
CN109428561A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
JP4743077B2 (ja) 高周波電力増幅器
US10637413B2 (en) Semiconductor device
US9531328B2 (en) Amplifiers with a short phase path, packaged RF devices for use therein, and methods of manufacture thereof
US7567128B2 (en) Power amplifier suppressing radiation of second harmonic over wide frequency band
US9979357B2 (en) Power amplifier module
US11336234B2 (en) Power amplifier circuit
US20230006609A1 (en) Amplification circuit
US10931246B2 (en) High-frequency amplifier circuitry and semiconductor device
CN106656069A (zh) 一种应用于gsm射频功率放大器的多频输出匹配网络
CN108364946B (zh) 半导体芯片
US10692982B2 (en) Semiconductor apparatus
JP6316512B1 (ja) 半導体装置
US11824499B2 (en) Power amplifier circuit
US20190165751A1 (en) Transceiver circuit and configuration method thereof
JP2020039053A (ja) 電力増幅回路
US11302659B2 (en) Semiconductor device
US10637405B2 (en) Wideband biasing of high power amplifiers
CN110011626A (zh) 功率放大电路
US20220278652A1 (en) Doherty amplifier
JP2020129712A (ja) 電力増幅回路
US20240162862A1 (en) Amplifier device with low frequency resonance decoupling circuitry
US20140103447A1 (en) Power rf amplifiers