JP2019040800A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2019040800A
JP2019040800A JP2017163345A JP2017163345A JP2019040800A JP 2019040800 A JP2019040800 A JP 2019040800A JP 2017163345 A JP2017163345 A JP 2017163345A JP 2017163345 A JP2017163345 A JP 2017163345A JP 2019040800 A JP2019040800 A JP 2019040800A
Authority
JP
Japan
Prior art keywords
shaft
workpiece
shaft member
induction heating
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017163345A
Other languages
Japanese (ja)
Inventor
勇輝 田渕
Yuki Tabuchi
勇輝 田渕
慎太郎 鈴木
Shintaro Suzuki
慎太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017163345A priority Critical patent/JP2019040800A/en
Publication of JP2019040800A publication Critical patent/JP2019040800A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide an induction heating apparatus, capable of heating a work-piece efficiently and precisely, at a low cost.SOLUTION: An induction heating apparatus 2 includes a transport device 10 for transporting a rotatable work-piece W, and a heating coil 3 for induction heating the work-piece W being transported, where the transport device 10 has first and second ceramic shaft members 11, 12 placed in parallel while spaced apart from each other, and cooperating with the mating side to form a linear work-piece conveyance path, and a rolling mechanism 6 for rotary driving at least one of both shaft members 11, 12 about the axis line thereof. The second shaft member 12 consists of a screw shaft having a spiral protrusion, and the work-piece W is placed in a spiral groove defined in the second shaft member 12 by the spiral protrusion. Each of the shaft members 11, 12 consists of a division shaft conjugate provided continuously in the axial direction, and is supported by a support unit 30 provided at a specific place in the axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、誘導加熱装置に関し、特に、ワークを搬送しながら誘導加熱する誘導加熱装置に関する。   The present invention relates to an induction heating device, and more particularly to an induction heating device that performs induction heating while conveying a workpiece.

例えば、転がり軸受を構成する転動体のように、高い機械的強度や硬度を要求されるワークの製造過程においては、ワークに必要とされる機械的強度等を付与するための熱処理が実施される。この熱処理は、熱処理対象のワークを狙い温度に加熱する加熱工程や、加熱されたワークを冷却する冷却工程などを含む。加熱工程は、メッシュベルト型連続炉などの雰囲気加熱炉、あるいは、誘導加熱装置を用いて実施することができる(例えば、特許文献1)。特に、誘導加熱であれば、ワークのみを直接加熱することができるために高いエネルギー効率を達成できることに加え、コンパクトな熱処理設備を実現できる、という利点がある。   For example, in the process of manufacturing a workpiece that requires high mechanical strength and hardness, such as a rolling element that constitutes a rolling bearing, heat treatment is performed to impart the mechanical strength required for the workpiece. . This heat treatment includes a heating step for heating the workpiece to be heat-treated to a target temperature, a cooling step for cooling the heated workpiece, and the like. A heating process can be implemented using atmosphere heating furnaces, such as a mesh belt type continuous furnace, or an induction heating apparatus (for example, patent documents 1). In particular, induction heating has the advantage that a compact heat treatment facility can be realized in addition to achieving high energy efficiency because only the workpiece can be directly heated.

特許文献1の誘導加熱装置は、ワークを案内移動させる案内管と、案内管内を移動するワークを誘導加熱する加熱コイルと、案内管の入口側に配置され、案内管内にワークを順次押し込む押し込み手段とを備える。この誘導加熱装置では、後続のワークが案内管内に押し込まれるのに伴って案内管内のワークに送り力が付与される。   The induction heating device of Patent Document 1 is a guide tube that guides and moves a workpiece, a heating coil that induction-heats the workpiece that moves in the guide tube, and a pushing means that is arranged on the inlet side of the guide tube and sequentially pushes the workpiece into the guide tube With. In this induction heating apparatus, a feeding force is applied to the workpiece in the guide tube as the subsequent workpiece is pushed into the guide tube.

特開2005−331005号公報JP 2005-331005 A 特開2009−84664号公報JP 2009-84664 A

特許文献1の誘導加熱装置では、ワークが一定姿勢で案内管内を移動しながら誘導加熱されるため、ワークのうち、案内管との接触領域と、それ以外の領域との間で加熱温度に差が生じ易い。このため、加熱完了後のワークに温度ムラが発生し易く、その結果、ワークに所望の機械的強度を付与することができない可能性がある。係る問題は、例えば特許文献2に記載されているように、ワークの姿勢を変化させ得るような振動を案内管に与えることによって可及的に解消し得るとも考えられる。しかしながら、案内管に振動を与えたとしても、ワークの姿勢を適切に変化させながらワークを誘導加熱できるとは限らない。   In the induction heating device of Patent Document 1, since the work is induction-heated while moving in the guide tube in a fixed posture, the heating temperature difference between the contact area of the work with the guide pipe and the other areas is different. Is likely to occur. For this reason, temperature unevenness is likely to occur in the workpiece after completion of heating, and as a result, there is a possibility that desired mechanical strength cannot be imparted to the workpiece. For example, as described in Patent Document 2, it is considered that such a problem can be solved as much as possible by giving the guide tube vibration that can change the posture of the workpiece. However, even if the guide tube is vibrated, the workpiece cannot always be induction-heated while appropriately changing the posture of the workpiece.

そこで、本発明者らは、鋭意検討を重ね、ワーク(詳細には、転がり軸受の転動体のように回転(自転)可能なワーク。以下同様。)を搬送しながら誘導加熱する誘導加熱装置であって、上記の問題を可及的に解消し得る誘導加熱装置を着想した。具体的には、相互に離間して平行に配置され、相手側と協働して直線状のワーク搬送路を形成する非磁性材料製の第1軸部材及び第2軸部材と、両軸部材の径方向外側に配置された加熱用コイルとを備え、両軸部材の少なくとも一方が、外周に沿って螺旋状凸部が設けられたねじ軸で構成されると共に軸線回りに回転駆動され、かつ、螺旋状凸部によってねじ軸の外周に画成される螺旋溝内にワークを配置可能とした誘導加熱装置である(この誘導加熱装置の詳細構造は、後述する本発明の実施形態で説明する)。係る構成を有する誘導加熱装置であれば、螺旋溝内にワークを配置した状態でねじ軸を回転駆動すると、ワークに対し、ワークをワーク搬送路に沿って搬送するための送り力と、ワークを回転させるための回転力とを同時に付与することができる。従って、ワークを搬送・回転させながら誘導加熱することが可能となり、ワークを効率良く、かつ精度良く加熱することが可能となる。   Therefore, the present inventors have made extensive studies and inductively heating an induction heating apparatus that conveys a work (specifically, a work that can be rotated (rotated) like a rolling element of a rolling bearing; the same applies hereinafter). Thus, an inductive heating device that can eliminate the above-mentioned problems as much as possible was conceived. Specifically, a first shaft member and a second shaft member made of a non-magnetic material that are arranged in parallel and spaced apart from each other to form a linear workpiece conveyance path in cooperation with the other side, and both shaft members And at least one of both shaft members is constituted by a screw shaft provided with a spiral convex portion along the outer periphery, and is driven to rotate around the axis, and This is an induction heating device in which a work can be arranged in a spiral groove defined on the outer periphery of the screw shaft by a spiral convex portion (the detailed structure of this induction heating device will be described in an embodiment of the present invention described later) ). In the induction heating apparatus having such a configuration, when the screw shaft is rotationally driven in a state where the work is arranged in the spiral groove, a feeding force for transporting the work along the work transport path with respect to the work, and a work A rotational force for rotating can be simultaneously applied. Accordingly, it is possible to perform induction heating while conveying and rotating the workpiece, and it is possible to efficiently and accurately heat the workpiece.

上記の誘導加熱装置においては、複数のワークを効率良くかつ精度良く加熱するために、ワークよりも大幅に長寸の加熱用コイルが使用される場合がある。具体例を挙げると、例えば全長寸法が10mm程度のワークを加熱するために、全長寸法が2000mmを超える加熱用コイルが使用される場合がある。この場合には、少なくとも加熱用コイルと同程度の全長寸法を有する長寸の軸部材を使用する必要があり、以下に示すような種々の問題が生じ得る。   In the induction heating apparatus described above, in order to heat a plurality of workpieces efficiently and accurately, a heating coil that is significantly longer than the workpiece may be used. When a specific example is given, for example, in order to heat a workpiece having a total length of about 10 mm, a heating coil having a total length exceeding 2000 mm may be used. In this case, it is necessary to use a long shaft member having at least the same overall length as the heating coil, and various problems as described below may occur.

まず、両軸部材は、ワークが搬送される直線状のワーク搬送路を形成することから、各種非磁性材料の中でも特に高い耐熱性と剛性を併せ持つセラミックスで作製される。しかしながら、セラミックスは一般に難加工材料であるため、長寸の軸部材を一部品で作製しようとすると、軸部材の作製に多大な手間とコストが必要になる。また、セラミックスが高剛性を有する材料であるといえども、長寸の軸部材を使用する場合には、軸部材がその自重等によって撓み易くなる。軸部材に撓みが生じると、ワークを適切に搬送する(ワークに送り力及び回転力を適切に付与する)ことができず、その結果、ワークを精度良く加熱できなくなる。   First, since both shaft members form a linear workpiece conveyance path through which workpieces are conveyed, they are made of ceramics having both particularly high heat resistance and rigidity among various nonmagnetic materials. However, since ceramics is generally a difficult-to-process material, if an attempt is made to produce a long shaft member as a single part, a great amount of labor and cost are required for producing the shaft member. Moreover, even if ceramics is a material having high rigidity, when a long shaft member is used, the shaft member is easily bent due to its own weight or the like. If the shaft member bends, the workpiece cannot be properly conveyed (feed force and rotational force are appropriately applied to the workpiece), and as a result, the workpiece cannot be heated with high accuracy.

以上の実情に鑑み、本発明の目的は、ワーク(回転可能なワーク)を効率良くかつ精度良く加熱することのできる誘導加熱装置を低コストに提供することにある。   In view of the above circumstances, an object of the present invention is to provide an induction heating apparatus that can efficiently and accurately heat a work (a rotatable work) at low cost.

上記の目的を達成するために創案された本発明は、回転可能なワークを搬送する搬送装置と、搬送装置によって搬送されているワークを誘導加熱する加熱用コイルとを備えた誘導加熱装置であって、搬送装置が、相互に離間して平行に配置され、相手側と協働して直線状のワーク搬送路を形成するセラミックス製の第1軸部材及び第2軸部材と、両軸部材の少なくとも一方をその軸線回りに回転駆動させる回転機構とを有し、少なくとも上記一方の軸部材が、外周に沿って螺旋状凸部が設けられたねじ軸からなり、かつ、螺旋状凸部によってねじ軸の外周に画成される螺旋溝内にワークを配置可能に構成されており、両軸部材のそれぞれが、その軸方向に連ねて設けられた分割軸の結合体で構成されると共に、その軸方向の所定箇所に設けた支持ユニットにより支持されていることを特徴とする。   The present invention devised to achieve the above object is an induction heating apparatus including a conveyance device that conveys a rotatable workpiece and a heating coil that induction-heats the workpiece conveyed by the conveyance device. The first and second shaft members made of ceramics, which are arranged in parallel and spaced apart from each other and form a linear workpiece transport path in cooperation with the other side, A rotation mechanism that rotates and drives at least one of the shaft members around the axis thereof, and at least the one shaft member includes a screw shaft provided with a spiral convex portion along the outer periphery, and is screwed by the spiral convex portion. The workpiece can be arranged in a spiral groove defined on the outer periphery of the shaft, and each of the shaft members is composed of a combination of split shafts provided continuously in the axial direction, and Provided at a predetermined position in the axial direction Characterized in that it is supported by the lifting unit.

なお、本発明でいう回転可能なワークとしては、例えば、転がり軸受の転動体を挙げることができる。ここでいう転がり軸受とは、玉軸受、円筒ころ軸受、円すいころ軸受、針状ころ軸受などを含む概念である。従って、転動体とは、玉(ボール)、円筒ころ、円すいころおよび針状ころなどを含む概念である。   In addition, as a rotatable workpiece | work said by this invention, the rolling element of a rolling bearing can be mentioned, for example. The rolling bearing here is a concept including a ball bearing, a cylindrical roller bearing, a tapered roller bearing, a needle roller bearing and the like. Therefore, the rolling element is a concept including a ball, a cylindrical roller, a tapered roller, a needle roller, and the like.

上記のように、セラミックス製の第1軸部材及び第2軸部材のそれぞれを、複数の分割軸の結合体で構成すれば、分割軸同士の結合作業は追加的に必要になるものの、各分割軸は、その軸方向寸法が第1(第2)軸部材を一部品で作製する場合よりも短くなる分、その作製コストは第1(第2)軸部材を一部品で作製する場合よりも大幅に少なくて済む。そして、この作製コストの低減分は、分割軸同士の結合作業が追加されることにより生じるコスト増大分を上回る。このため、長寸の第1及び第2軸部材を低コストに作製することが可能となる。また、両軸部材を支持する支持ユニットを設けておけば、特に、長寸の軸部材が使用される場合であっても、軸部材が撓み難くなる。これにより、ワークを精度良く支持・搬送することが可能となり、ワークを精度良く加熱することができる。以上に示す作用効果が相俟って、本発明によれば、ワークを効率良くかつ精度良く加熱することのできる誘導加熱装置を低コストに提供することができる。   As described above, if each of the first shaft member and the second shaft member made of ceramics is composed of a combination of a plurality of split shafts, the split shafts need to be joined additionally. Since the axial dimension of the shaft is shorter than that in the case where the first (second) shaft member is manufactured with one component, the manufacturing cost is higher than that in the case where the first (second) shaft member is manufactured with one component. Significantly less. The reduction in the manufacturing cost exceeds the cost increase caused by adding the work of joining the split axes. For this reason, it becomes possible to produce long 1st and 2nd shaft members at low cost. In addition, if a support unit for supporting both shaft members is provided, the shaft member is difficult to bend even when a long shaft member is used. As a result, the workpiece can be supported and conveyed with high accuracy, and the workpiece can be heated with high accuracy. Combined with the effects described above, according to the present invention, it is possible to provide an induction heating device that can efficiently and accurately heat a workpiece at low cost.

隣り合う2つの分割軸の結合部を上記支持ユニットで支持すれば、両軸部材の撓み防止を図る上で特に有利である。   Supporting the joint portion of two adjacent split shafts with the support unit is particularly advantageous in preventing deflection of both shaft members.

隣り合う2つの分割軸は、両分割軸の軸線に沿って延びた穴部に嵌合される第1結合部材と、両分割軸の外周に嵌合される第2結合部材とを用いて結合することができる。このような構成によれば、分割軸相互間の芯出しを容易に行いつつ、分割軸同士を強固に結合することができる。   Two adjacent divided shafts are coupled using a first coupling member fitted in a hole extending along the axis of both divided shafts and a second coupling member fitted on the outer periphery of both divided shafts. can do. According to such a configuration, the split shafts can be firmly coupled to each other while easily centering the split shafts.

支持ユニットは、第1軸部材を支持する第1軸受と、第2軸部材を支持する第2軸受とを備えるものとすることができる。この場合、第1軸受及び第2軸受のそれぞれを、第1軸部材及び第2軸部材の周方向に離間した複数箇所に配置すれば、両軸部材を精度良く支持することができるので、ワークの支持・搬送精度を高める上で有利となる。   The support unit may include a first bearing that supports the first shaft member and a second bearing that supports the second shaft member. In this case, if each of the first bearing and the second bearing is disposed at a plurality of locations separated in the circumferential direction of the first shaft member and the second shaft member, both shaft members can be accurately supported. This is advantageous in improving the support / conveyance accuracy.

以上に示す本発明は、特に、全長寸法(軸方向寸法)が700mm以上の第1軸部材及び第2軸部材を使用する場合に好ましく適用することができる。   The present invention described above can be preferably applied particularly when the first shaft member and the second shaft member having a total length dimension (axial dimension) of 700 mm or more are used.

以上から、本発明によれば、熱処理対象のワークを効率良くかつ精度良く加熱することのできる誘導加熱装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide an induction heating apparatus that can efficiently and accurately heat a workpiece to be heat-treated at low cost.

(a)図は、本発明の一実施形態に係る誘導加熱装置を備えた熱処理設備の全体構造を示す模式図、(b)図は、支持ユニットの配置態様を説明するための模式図である。(A) A figure is a schematic diagram which shows the whole structure of the heat processing equipment provided with the induction heating apparatus which concerns on one Embodiment of this invention, (b) A figure is a schematic diagram for demonstrating the arrangement | positioning aspect of a support unit. . 本発明の実施形態に係る誘導加熱装置の部分正面図である。It is a partial front view of the induction heating apparatus which concerns on embodiment of this invention. 誘導加熱装置の左側面図である。It is a left view of an induction heating apparatus. 誘導加熱装置の部分拡大平面図である。It is a partial enlarged plan view of an induction heating device. (a)図は、搬送装置の部分拡大平面図、(b)図は、(a)図のA−A線矢視概略断面図である。FIG. 4A is a partially enlarged plan view of the transport device, and FIG. 4B is a schematic cross-sectional view taken along line AA in FIG. 搬送装置を構成する第1軸部材の部分拡大図である。It is the elements on larger scale of the 1st shaft member which comprises a conveying apparatus. 搬送装置を構成する第2軸部材の部分拡大図である。It is the elements on larger scale of the 2nd shaft member which comprises a conveying apparatus. (a)図は、支持ユニットを図2中の矢印B方向から見た図、(b)図は、(a)図を同図中に示す矢印C方向から見た図である。(A) The figure which looked at the support unit from the arrow B direction in FIG. 2, (b) The figure which looked at (a) figure from the arrow C direction shown in the figure. (a)図は、搬送装置の部分拡大平面図であって、搬送されるワークの姿勢を異ならせた場合を示す図、(b)図は、(a)図のA−A線矢視概略断面図である。(A) A figure is a partial enlarged plan view of a conveyance device, and is a figure showing the case where the posture of the work conveyed is changed, (b) figure is an AA line schematic view of (a) figure. It is sectional drawing. 本発明の他の実施形態に係る搬送装置の要部横断面図である。It is a principal part cross-sectional view of the conveying apparatus which concerns on other embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)は、本発明の一実施形態に係る誘導加熱装置2を備えた熱処理設備1の全体構造を示す模式図である。同図に示す熱処理設備1は、ワークWに焼入硬化処理を施すために使用されるものであって、ワークWを直線状のワーク搬送路Pに沿って搬送しながら狙い温度に誘導加熱し、その後、ワークWを冷却するように構成されている。なお、以下では、転がり軸受の一種である円すいころ軸受の転動体(円すいころ)に焼入硬化処理を施す場合を代表例にとり、本発明の実施形態を説明する。要するに、本実施形態のワークWは、図4及び図5(a)(b)等に示すような円すいころ(の基材)であり、その全長寸法(軸方向寸法)Yは10mm程度である。   Fig.1 (a) is a schematic diagram which shows the whole structure of the heat processing equipment 1 provided with the induction heating apparatus 2 which concerns on one Embodiment of this invention. The heat treatment equipment 1 shown in the figure is used for subjecting the workpiece W to quench hardening. The workpiece W is conveyed by induction heating to a target temperature while being conveyed along the linear workpiece conveyance path P. Thereafter, the workpiece W is cooled. In the following, an embodiment of the present invention will be described by taking as a representative example a case where a rolling element (conical roller) of a tapered roller bearing which is a kind of rolling bearing is subjected to quench hardening. In short, the workpiece W of the present embodiment is a tapered roller (base material) as shown in FIGS. 4 and 5A, 5B, etc., and its full length dimension (axial dimension) Y is about 10 mm. .

図1(a)に示すように、熱処理設備1は、ワークWを直線状のワーク搬送路Pに沿って搬送しながら狙い温度に誘導加熱する誘導加熱装置2と、誘導加熱装置2から排出されたワークWを冷却する冷却装置としての冷却部20とを備える。冷却部20は、例えば、焼入油等の冷却液が貯留された冷却液漕で構成される。   As shown in FIG. 1 (a), the heat treatment facility 1 is discharged from the induction heating device 2 that induction heats to a target temperature while conveying the workpiece W along the linear workpiece conveyance path P, and the induction heating device 2. And a cooling unit 20 as a cooling device for cooling the workpiece W. The cooling unit 20 is composed of a cooling liquid tank in which a cooling liquid such as quenching oil is stored, for example.

図1(a)及び図2に示すように、誘導加熱装置2は、直線状のワーク搬送路Pに沿ってワークWを搬送する搬送装置10と、搬送装置10によって搬送されているワークWを誘導加熱する加熱用コイル3と、加熱用コイル3に高周波電流を供給する高周波電源4と、高周波電源4の出力等を制御する制御装置5と、加熱用コイル3等を支持した枠体9とを備える。加熱用コイル3は、導電性金属からなる管状体(例えば、銅管)を螺旋状に巻き回すことで形成された、いわゆる多巻きコイルである。なお、図2は、誘導加熱装置2の一部(ワークWの投入側の一部)を抜き出して示す部分正面図であり、同図では加熱用コイル3を一つだけ詳細に示しているが、本実施形態の誘導加熱装置2は、図1(a)(b)に示すように、ワーク搬送路P(ワークWの搬送方向)に沿って連ねて設けられた複数(4つ)の加熱用コイル3を備える。   As shown in FIG. 1A and FIG. 2, the induction heating device 2 includes a transport device 10 that transports a work W along a linear work transport path P, and a work W that is transported by the transport device 10. A heating coil 3 for induction heating, a high-frequency power source 4 for supplying a high-frequency current to the heating coil 3, a control device 5 for controlling the output of the high-frequency power source 4 and the like, and a frame 9 for supporting the heating coil 3 and the like Is provided. The heating coil 3 is a so-called multi-turn coil formed by spirally winding a tubular body (for example, a copper tube) made of a conductive metal. FIG. 2 is a partial front view showing a part of the induction heating device 2 (a part on the input side of the workpiece W). In FIG. 2, only one heating coil 3 is shown in detail. As shown in FIGS. 1 (a) and 1 (b), the induction heating device 2 of the present embodiment has a plurality (four) of heating provided continuously along the workpiece conveyance path P (the conveyance direction of the workpiece W). A coil 3 is provided.

図1(b)及び図2に示すように、枠体9は、相互に離間して立設された複数(6つ)の基枠9Aを備え、各加熱用コイル3は、その両端位置に立設された基枠9Aに対し、基枠9A同士を連結する横桟9B及び横桟9Bに取り付け固定されたボルト部材を介して固定的に支持されている。加熱用コイル3の全長寸法L[図1(a)参照)]や配置個数は、ワークWの狙いの加熱温度、大きさ、搬送速度等に応じて決定付けられるが、各加熱用コイル3の全長寸法Lは例えば700mm程度とされる。従って、ワークWの搬送方向に沿って4つの加熱用コイル3が連ねて設けられた本実施形態の誘導加熱装置2は、全長寸法が3000mmを超える。   As shown in FIGS. 1B and 2, the frame body 9 includes a plurality of (six) base frames 9 </ b> A that are erected apart from each other, and each heating coil 3 is located at both end positions. The base frame 9A that is erected is fixedly supported via a horizontal beam 9B that connects the base frames 9A to each other and a bolt member that is attached and fixed to the horizontal beam 9B. The overall length L of the heating coil 3 [see FIG. 1A]] and the number of arrangement are determined according to the target heating temperature, size, conveyance speed, etc. of the workpiece W. The total length L is, for example, about 700 mm. Therefore, the overall length of the induction heating device 2 of the present embodiment in which the four heating coils 3 are provided continuously along the conveyance direction of the workpiece W exceeds 3000 mm.

図2及び図4に示すように、搬送装置10は、相互に離間して平行に延び、加熱用コイル3の内周に配置された第1軸部材11及び第2軸部材12と、両軸部材11,12の少なくとも一方(本実施形態では双方。詳細は後述する。)をその軸線回りに回転駆動させる回転機構6とを備える。両軸部材11,12は、図5(b)に示すように、その中心を同一平面上(同一高さ)に位置させた状態で枠体9に対して回転自在に支持されている。両軸部材11,12の軸方向寸法(全長寸法)は、少なくとも加熱用コイル3の全長寸法と同程度とされ、本実施形態の両軸部材11,12は、図1(a)に示すように、加熱用コイル3よりも長寸である。   As shown in FIGS. 2 and 4, the conveying device 10 includes a first shaft member 11 and a second shaft member 12 that extend in parallel to each other and are arranged on the inner periphery of the heating coil 3, and both shafts. A rotation mechanism 6 is provided for rotating at least one of the members 11 and 12 (both in the present embodiment, details will be described later) around its axis. As shown in FIG. 5B, the shaft members 11 and 12 are rotatably supported with respect to the frame body 9 with their centers positioned on the same plane (same height). The axial dimension (full length dimension) of both the shaft members 11 and 12 is set to be at least the same as the full length dimension of the heating coil 3, and both the shaft members 11 and 12 of this embodiment are as shown in FIG. In addition, it is longer than the heating coil 3.

図4及び図5(a)に示すように、第1軸部材11は、外径面11aが径一定の円筒面に形成された円柱軸からなり、第2軸部材12は、外周に沿って螺旋状凸部13が設けられたねじ軸からなる。第1軸部材11及び第2軸部材12は、何れも、全体が非磁性材料の一種であるセラミックスで形成される。セラミックスとしては、例えば、アルミナ、窒化ケイ素、ジルコニア、炭化ケイ素等を使用することができる。   As shown in FIGS. 4 and 5 (a), the first shaft member 11 is composed of a cylindrical shaft having an outer diameter surface 11a formed on a cylindrical surface having a constant diameter, and the second shaft member 12 is formed along the outer periphery. It consists of a screw shaft provided with a spiral projection 13. The first shaft member 11 and the second shaft member 12 are both made of ceramics, which is a kind of nonmagnetic material as a whole. As ceramics, for example, alumina, silicon nitride, zirconia, silicon carbide and the like can be used.

図4及び図5(a)(b)に示すように、螺旋状凸部13によって第2軸部材12の外周に画成される螺旋溝14の溝底面15は、これに対向する第1軸部材11の外径面11aと協働してワーク支持部16を形成し、本実施形態では、このワーク支持部16でワークWの外周面が接触支持される。螺旋状凸部13のピッチ及び幅寸法は、螺旋溝14の溝幅X1とワークWの軸方向寸法Yとの間に、Y<X1の関係式が成立するように設定されている。以上から、搬送装置10には、第1軸部材11と第2軸部材12の協働により、それぞれがワークWを接触支持可能なワーク支持部16がワークWの搬送方向に離間した複数箇所に形成される。   As shown in FIGS. 4 and 5A and 5B, the groove bottom surface 15 of the spiral groove 14 defined on the outer periphery of the second shaft member 12 by the spiral convex portion 13 is the first shaft facing the first shaft. The workpiece support portion 16 is formed in cooperation with the outer diameter surface 11a of the member 11, and in this embodiment, the outer peripheral surface of the workpiece W is contact-supported by the workpiece support portion 16. The pitch and width dimension of the spiral protrusion 13 are set so that the relational expression of Y <X1 is established between the groove width X1 of the spiral groove 14 and the axial dimension Y of the workpiece W. From the above, in the conveying device 10, the work supporting portions 16 that can contact and support the workpiece W are provided at a plurality of locations separated in the conveying direction of the workpiece W by the cooperation of the first shaft member 11 and the second shaft member 12. It is formed.

図2〜図4に示すように、回転機構6は、サーボモータ等の電動モータ7と、電動モータ7の回転動力を両軸部材11,12に伝達する動力伝達機構8とを備える。動力伝達機構8は、図3及び図4に示すように、小ギヤ8aを有し、連結ピン17を介して第1軸部材11の軸方向一方側の端部に連結されたギヤ軸18Aと、小ギヤ8bを有し、連結ピン17を介して第2軸部材12の軸方向一方側の端部に連結されたギヤ軸18Bと、枠体9に回転自在に支持され、両小ギヤ8a,8bに噛合した大ギヤ8cと、電動モータ7の出力軸に連結された駆動プーリ8dと、大ギヤ8cに連結された従動プーリ8eと、両プーリ8d,8eの外周面に架け渡された無端状のベルト部材(チェーンでも良い)8fとを備える。小ギヤ8a,8bの歯面のピッチは同一であり、また、大ギヤ8cのうち、小ギヤ8aに噛合する歯面のピッチと小ギヤ8bに噛合する歯面のピッチは同一である。以上の構成を有する動力伝達機構8により、電動モータ7が駆動されると、両軸部材11,12は同一方向に同一速度で回転駆動される。電動モータ7は、図示外の電源および図1に示す制御装置5と電気的に接続されており、制御装置5から出力される信号に基づいて所定の速度で回転駆動される。   As shown in FIGS. 2 to 4, the rotation mechanism 6 includes an electric motor 7 such as a servo motor, and a power transmission mechanism 8 that transmits the rotational power of the electric motor 7 to both shaft members 11 and 12. As shown in FIGS. 3 and 4, the power transmission mechanism 8 includes a gear shaft 18 </ b> A having a small gear 8 a and connected to an end portion on one axial side of the first shaft member 11 via a connection pin 17. The small shaft 8B has a small gear 8b and is rotatably supported by a frame 9 and a gear shaft 18B connected to one end of the second shaft member 12 in the axial direction via a connecting pin 17. , 8b meshed with the large gear 8c, the drive pulley 8d coupled to the output shaft of the electric motor 7, the driven pulley 8e coupled to the large gear 8c, and the outer peripheral surfaces of both pulleys 8d, 8e. And an endless belt member (which may be a chain) 8f. The pitches of the tooth surfaces of the small gears 8a and 8b are the same, and among the large gear 8c, the pitch of the tooth surfaces meshing with the small gear 8a and the pitch of the tooth surfaces meshing with the small gear 8b are the same. When the electric motor 7 is driven by the power transmission mechanism 8 having the above configuration, both shaft members 11 and 12 are rotationally driven in the same direction at the same speed. The electric motor 7 is electrically connected to a power supply (not shown) and the control device 5 shown in FIG. 1, and is driven to rotate at a predetermined speed based on a signal output from the control device 5.

以上の構成を有する熱処理設備1を用いた場合、ワークWに対する焼入硬化処理は以下の態様で実施される。   When the heat treatment facility 1 having the above configuration is used, the quench hardening treatment for the workpiece W is performed in the following manner.

まず、電動モータ7を駆動することにより、両軸部材11,12をこれらの軸線回りに同一方向に回転駆動させ(図4中の白抜き矢印参照)、併せて、加熱用コイル3に通電する。そして、図4中に示すワーク投入位置から搬送装置10に対してワークWを投入し、ワークWの外周面をワーク支持部16で接触支持する。ワーク支持部16は、ねじ軸からなる第2軸部材12に画成された螺旋溝14の溝底面15で形成されることから、電動モータ7が駆動されて両軸部材11,12がその軸線回りに回転駆動している間、ワーク支持部16で接触支持されたワークWには、これをワーク搬送路Pに沿って搬送するための送り力が連続的に付与される。これにより、ワークWは、ワーク搬送路Pに沿って搬送されながら、通電状態の加熱用コイル3の対向領域を通過することによって狙い温度に誘導加熱される。加熱用コイル3から排出されたワークWは、冷却部20に貯留された冷却液中に投下され、所定の温度域に冷却されて焼入硬化する。   First, by driving the electric motor 7, both shaft members 11 and 12 are driven to rotate in the same direction around these axes (see the white arrow in FIG. 4), and the heating coil 3 is energized together. . Then, the workpiece W is loaded into the transport apparatus 10 from the workpiece loading position shown in FIG. Since the work support portion 16 is formed by the groove bottom surface 15 of the spiral groove 14 defined in the second shaft member 12 formed of a screw shaft, the electric motor 7 is driven and the shaft members 11 and 12 are moved to the axis thereof. While being rotationally driven around, the workpiece W supported by the workpiece support unit 16 is continuously given a feeding force for conveying the workpiece W along the workpiece conveyance path P. Thereby, the work W is induction-heated to a target temperature by passing through the opposed region of the energized heating coil 3 while being transported along the work transport path P. The work W discharged from the heating coil 3 is dropped into the coolant stored in the cooling unit 20, cooled to a predetermined temperature range, and hardened and hardened.

上記態様でワークWを搬送する際、ワークWを接触支持した両軸部材11,12が同一方向に回転駆動されることから、ワークWには、図5(a)(b)中に黒塗り矢印で示すように、ワークWをその軸線回りに回転させる回転力が連続的に付与される。   When the workpiece W is transported in the above-described manner, the shaft members 11 and 12 that contact and support the workpiece W are rotationally driven in the same direction, and therefore the workpiece W is painted black in FIGS. 5 (a) and 5 (b). As indicated by the arrows, a rotational force that rotates the workpiece W about its axis is continuously applied.

以上より、搬送装置10の駆動中、ワーク支持部16で接触支持されたワークWには、ワーク搬送路Pに沿う方向の送り力に加え、ワークWをその軸線回りに回転させるための回転力が連続的に付与される。このため、ワーク搬送路Pに沿って搬送されるワークWは、その軸線回りに回転しながら誘導加熱されることになる。これにより、ワークWの各部を均一に誘導加熱することができ、加熱完了後のワークWに温度ムラが発生するのを効果的に防止することができる。従って、加熱完了後のワークWを冷却すると、周方向及び断面方向の各部で機械的強度に差がない高品質のワークWを得ることができる。   As described above, in addition to the feed force in the direction along the workpiece conveyance path P, the rotational force for rotating the workpiece W around its axis is applied to the workpiece W supported by the workpiece support unit 16 while the conveyance device 10 is being driven. Is given continuously. For this reason, the work W conveyed along the work conveyance path P is induction-heated while rotating around its axis. Thereby, each part of the workpiece | work W can be induction-heated uniformly, and it can prevent effectively that temperature nonuniformity generate | occur | produces in the workpiece | work W after completion of a heating. Therefore, when the work W after completion of heating is cooled, a high-quality work W having no difference in mechanical strength in each part in the circumferential direction and the cross-sectional direction can be obtained.

特に、本実施形態の回転機構6は、両軸部材11,12を同一方向に同一速度で回転駆動させるように構成されていることから、ワーク支持部16で接触支持されたワークWを滑らかに連続回転させることができる。また、両軸部材11,12が非磁性材料であるセラミックスで形成されることから、ワークWと両軸部材11,12の接触部分で伝熱冷却が生じるのを可及的に防止することができる。従って、加熱完了後のワークWに温度ムラが生じるのを一層効果的に防止することができる。   In particular, the rotation mechanism 6 of the present embodiment is configured to rotationally drive both shaft members 11 and 12 in the same direction and at the same speed, so that the workpiece W supported by the workpiece support portion 16 is smoothly supported. Can be rotated continuously. Moreover, since both the shaft members 11 and 12 are formed of ceramics which are nonmagnetic materials, it is possible to prevent heat transfer cooling from occurring at the contact portion between the workpiece W and the both shaft members 11 and 12 as much as possible. it can. Therefore, it is possible to more effectively prevent temperature unevenness from occurring in the workpiece W after the heating is completed.

本実施形態では、図4中に示すワーク投入位置から、搬送装置10に対して所定の間隔を空けてワークWを一個ずつ投入することにより、複数のワークWを相互に離間した状態で搬送しながら、複数のワークWを同時に誘導加熱するようにしている。この場合、搬送中のワークWが相互に接触してワークW同士が溶着する、各ワークWが隣接するワークWの熱影響を受ける、などといった問題発生を可及的に防止することができるので、ワークWを一層精度良く加熱することができる。なお、例えば、螺旋溝14の溝幅X1とワークWの軸方向寸法Yとの間に、X1<2Yの関係式が成立するようにしておけば、各ワーク支持部16では単一のワークWのみが接触支持されることになる。この場合、複数のワークWを確実に相互に離間した状態で搬送・加熱することができるので、各ワークWが隣接するワークWの熱影響を受ける可能性を一層効果的に低減することができる。   In the present embodiment, a plurality of workpieces W are transported in a state of being separated from each other by feeding the workpieces W one by one with a predetermined interval from the workpiece loading position shown in FIG. However, a plurality of workpieces W are simultaneously induction-heated. In this case, it is possible to prevent the occurrence of problems such as the workpieces W being transported coming into contact with each other and welding the workpieces W, and each workpiece W being affected by the heat of the neighboring workpieces W as much as possible. The workpiece W can be heated with higher accuracy. For example, if a relational expression of X1 <2Y is established between the groove width X1 of the spiral groove 14 and the axial dimension Y of the workpiece W, each workpiece support section 16 has a single workpiece W. Only the contact will be supported. In this case, since the plurality of workpieces W can be reliably transported and heated in a state of being separated from each other, the possibility that each workpiece W is affected by the heat of the adjacent workpieces W can be further effectively reduced. .

また、以上で説明した搬送装置10であれば、特許文献1のように後続のワークによる押し込みがなくても、ワークWを搬送することができる。そのため、誘導加熱装置2は、加熱対象のワークWが一個又は数個程度の小ロットである場合にも好ましく適用することができる汎用性に優れたものであり、しかも各ワークWを精度良く加熱することができる。   Moreover, if it is the conveying apparatus 10 demonstrated above, even if there is no pushing by a subsequent workpiece | work like patent document 1, the workpiece | work W can be conveyed. Therefore, the induction heating device 2 has excellent versatility that can be preferably applied even when the work W to be heated is one or several small lots, and heats each work W with high accuracy. can do.

以上で説明した誘導加熱装置2においては、搬送装置10を構成する第1軸部材11及び第2軸部材12の形状精度や枠体9に対する回転精度が、ワークWの搬送精度、ひいてはワークWの加熱精度に大きく影響する。特に、本実施形態の誘導加熱装置2は、前述したように、全長寸法が長大であることから、全体が難加工材料であるセラミックスで形成される第1軸部材11及び第2軸部材12のそれぞれを単一部品で構成することは、両軸部材11,12に必要とされる形状精度や両軸部材11,12の作製コスト等を考慮すると現実的ではない。また、セラミックスは高い剛性を有する材料ではあるものの、軸部材11,12の両端を支持するだけでは、両軸部材11,12に撓みが生じてワークWの搬送精度に悪影響が及ぶ。   In the induction heating device 2 described above, the shape accuracy of the first shaft member 11 and the second shaft member 12 constituting the transport device 10 and the rotational accuracy with respect to the frame body 9 are the transport accuracy of the work W, and consequently the work W. It greatly affects the heating accuracy. In particular, the induction heating device 2 of the present embodiment, as described above, has a long overall length dimension, so that the first shaft member 11 and the second shaft member 12 are formed of ceramics that are difficult to process as a whole. It is not realistic to configure each of them as a single part in consideration of the shape accuracy required for both shaft members 11 and 12, the production cost of both shaft members 11 and 12, and the like. In addition, although ceramic is a material having high rigidity, if only the both ends of the shaft members 11 and 12 are supported, the shaft members 11 and 12 are bent, and the conveyance accuracy of the workpiece W is adversely affected.

そこで、本実施形態の誘導加熱装置2は、搬送装置10を構成する第1軸部材11及び第2軸部材12のそれぞれを、その軸方向に連ねて設けられた複数の分割軸の結合体(本実施形態では4つの分割軸の結合体)で構成すると共に、搬送装置10に、両軸部材11,12を支持(回転自在に支持)するための支持ユニット30をワークWの搬送方向に離間した複数箇所に設けている。以下、このような特徴的構成について詳細に説明する。   Therefore, in the induction heating device 2 of the present embodiment, each of the first shaft member 11 and the second shaft member 12 constituting the transport device 10 is a combined body of a plurality of split shafts provided in the axial direction ( In the present embodiment, the support unit 30 is configured to be a combined body of four split shafts), and the support unit 30 for supporting (rotatably supporting) both shaft members 11 and 12 is separated from the transport device 10 in the transport direction of the workpiece W. Provided at a plurality of locations. Hereinafter, such a characteristic configuration will be described in detail.

まず、図6に示す第1軸部材11の部分拡大図に基づき、第1軸部材11の特徴的構成を説明する。同図に示すように、第1軸部材11を構成する分割軸21は、外径面が径一定の円筒面に形成された円柱軸からなり、その軸方向寸法は例えば700mm程度とされる。隣り合う2つの分割軸21,21は、両分割軸21,21(第1軸部材11)の軸線に沿って延びる穴部21aに嵌合された第1結合部材としての連結ピン23と、両分割軸21,21の外周に嵌合された筒状の第2結合部材24とを用いて結合一体化されている。   First, a characteristic configuration of the first shaft member 11 will be described based on a partially enlarged view of the first shaft member 11 shown in FIG. As shown in the figure, the split shaft 21 constituting the first shaft member 11 is formed of a columnar shaft formed on a cylindrical surface having a constant outer diameter surface, and its axial dimension is, for example, about 700 mm. Two adjacent split shafts 21 and 21 are connected to a connecting pin 23 as a first connecting member fitted in a hole 21a extending along the axis of both split shafts 21 and 21 (first shaft member 11), They are coupled and integrated using a cylindrical second coupling member 24 fitted to the outer periphery of the split shafts 21 and 21.

分割軸21のうち、隣接する分割軸21と結合される端部には、上記の穴部21aと、筒状の第2結合部材24が嵌合される小径部21bとが設けられており、小径部21bは、分割軸21の外周部を所定厚み肉取りすることで形成されている。第2結合部材24の外径面は、第2結合部材24を分割軸21の小径部21bに嵌合した際、第1軸部材11の外径面11aと同一面上に位置する。以上のような連結構造を採用することにより、分割軸21相互間での芯出しが適切になされると共に分割軸21同士が強固に結合され、しかも外周面11aにワークWの円滑搬送を阻害するような段差が存在しない高精度の第1軸部材11を容易に得ることができる。   Of the split shafts 21, the hole 21 a and the small-diameter portion 21 b into which the cylindrical second connecting member 24 is fitted are provided at the end connected to the adjacent split shaft 21. The small diameter portion 21b is formed by removing the outer peripheral portion of the split shaft 21 by a predetermined thickness. The outer diameter surface of the second coupling member 24 is located on the same plane as the outer diameter surface 11 a of the first shaft member 11 when the second coupling member 24 is fitted to the small diameter portion 21 b of the split shaft 21. By adopting the connection structure as described above, centering between the divided shafts 21 is appropriately performed, the divided shafts 21 are firmly coupled to each other, and the smooth conveyance of the workpiece W to the outer peripheral surface 11a is hindered. A highly accurate first shaft member 11 that does not have such a step can be easily obtained.

隣り合う2つの分割軸21,21の間で回転トルクを適切に伝達可能とするため(隣り合う2つの分割軸21,21が相対回転するのを防止するため)、両分割軸21,21は第1軸部材11の回転方向で互いに係合している。本実施形態では、隣り合う2つの分割軸21,21のうち、一方の分割軸21の端部に設けた半円筒状の凸部21c(及び凹部21d)と、他方の分割軸21の端部に設けた半円筒状の凹部21d(及び凸部21c)とを互いに嵌合することにより、両分割軸21,21が第1軸部材11の回転方向で互いに係合している。また、分割軸21と第2結合部材24とが相対回転するのを防止するため、分割軸21と第2連結部材24とは第1軸部材11の回転方向で互いに係合している。本実施形態では、分割軸21の端部に設けた半円筒状の凸部(及び凹部)と、第2連結部材24の端部に設けた半円筒状の凹部(及び凸部)とを互いに嵌合することにより、分割軸21と第2連結部材24とが第1軸部材11の回転方向で互いに係合している。   In order to appropriately transmit the rotational torque between the two adjacent split shafts 21 and 21 (to prevent the two adjacent split shafts 21 and 21 from rotating relative to each other), both split shafts 21 and 21 are The first shaft members 11 are engaged with each other in the rotational direction. In the present embodiment, the semi-cylindrical convex portion 21 c (and the concave portion 21 d) provided at the end portion of one split shaft 21 among the two adjacent split shafts 21 and 21, and the end portion of the other split shaft 21. By fitting the semi-cylindrical recesses 21 d (and the projections 21 c) provided on each other, the two split shafts 21 and 21 are engaged with each other in the rotation direction of the first shaft member 11. Further, in order to prevent the split shaft 21 and the second coupling member 24 from rotating relative to each other, the split shaft 21 and the second connecting member 24 are engaged with each other in the rotational direction of the first shaft member 11. In the present embodiment, the semicylindrical convex portion (and the concave portion) provided at the end portion of the split shaft 21 and the semicylindrical concave portion (and the convex portion) provided at the end portion of the second connecting member 24 are mutually connected. By fitting, the split shaft 21 and the second connecting member 24 are engaged with each other in the rotation direction of the first shaft member 11.

次に、図7に示す第2軸部材12の部分拡大図に基づき、第2軸部材12の特徴的構成を説明する。同図に示すように、第2軸部材12を構成する分割軸22は、外周に螺旋状凸部13が設けられた中実のねじ軸からなり、その軸方向寸法は例えば700mm程度とされる。隣り合う2つの分割軸22,22は、両分割軸22,22の軸線に沿って延びる穴部22aに嵌合された第1結合部材としての連結ピン23と、両分割軸22,22の外周に嵌合された筒状の第2結合部材25とを用いて結合一体化されている。   Next, a characteristic configuration of the second shaft member 12 will be described based on a partially enlarged view of the second shaft member 12 shown in FIG. As shown in the figure, the split shaft 22 constituting the second shaft member 12 is formed of a solid screw shaft provided with a spiral convex portion 13 on the outer periphery, and its axial dimension is, for example, about 700 mm. . Two adjacent split shafts 22, 22 are connected to a pin 23 as a first connecting member fitted in a hole 22 a extending along the axis of both split shafts 22, 22, and the outer periphery of both split shafts 22, 22. And a cylindrical second coupling member 25 fitted to each other.

分割軸22のうち、隣接する分割軸22と結合される端部には、上記の穴部22aと、筒状の第2結合部材25が嵌合される小径部22bとが設けられており、小径部22bは、螺旋状凸部13を含め、分割軸22の外周部を所定厚み肉取りすることで形成されている。一方、第2結合部材25は、分割軸22の小径部22bに嵌合される筒部25aと、螺旋状凸部13を構成する凸状のねじ部25bとを一体に有し、筒部25aの外径面は、第2結合部材25を分割軸22の小径部22bに嵌合した際、第2軸部材12に画成される螺旋溝14の溝底面15と同一面上に位置する。以上のような構造を採用することにより、分割軸22相互間での芯出しが適切になされると共に分割軸22同士が強固に結合され、しかも螺旋溝14の溝底面15にワークWの円滑搬送を阻害するような段差が存在しない高精度の第2軸部材12を容易に得ることができる。   Of the split shafts 22, the end portions coupled to the adjacent split shafts 22 are provided with the hole portions 22 a and the small diameter portions 22 b into which the cylindrical second coupling members 25 are fitted. The small diameter portion 22b is formed by removing the outer peripheral portion of the dividing shaft 22 including the spiral convex portion 13 with a predetermined thickness. On the other hand, the second coupling member 25 integrally includes a cylindrical portion 25a fitted to the small diameter portion 22b of the split shaft 22 and a convex screw portion 25b constituting the helical convex portion 13, and the cylindrical portion 25a. When the second coupling member 25 is fitted to the small diameter portion 22 b of the split shaft 22, the outer diameter surface is located on the same plane as the groove bottom surface 15 of the spiral groove 14 defined in the second shaft member 12. By adopting the structure as described above, centering between the divided shafts 22 is appropriately performed, the divided shafts 22 are firmly coupled to each other, and the workpiece W is smoothly conveyed to the groove bottom surface 15 of the spiral groove 14. It is possible to easily obtain a highly accurate second shaft member 12 that does not have a step that hinders the above.

隣り合う2つの分割軸22,22が相対回転するのを防止するため、両分割軸22,22は第2軸部材12の回転方向で互いに係合している。本実施形態では、隣り合う2つの分割軸22,22のうち、一方の分割軸22の端部に設けた半円筒状の凸部22c(及び凹部22d)と、他方の分割軸22の端部に設けた半円筒状の凹部22d(及び凸部22c)とを互いに嵌合することにより、両分割軸22,22が第2軸部材12の回転方向で互いに係合している。また、分割軸22と第2結合部材25が相対回転するのを防止するため、分割軸22と第2結合部材25とは第2軸部材12の回転方向で互いに係合している。本実施形態では、分割軸22の端部に設けた半円筒状の凸部(及び凹部)と、第2結合部材25の端部に設けた半円筒状の凹部(及び凸部)とを互いに嵌合することにより、分割軸22と第2結合部材25とが第2軸部材12の回転方向で互いに係合している。   In order to prevent two adjacent split shafts 22 and 22 from rotating relative to each other, the split shafts 22 and 22 are engaged with each other in the rotational direction of the second shaft member 12. In the present embodiment, the semi-cylindrical convex portion 22 c (and the concave portion 22 d) provided at the end of one of the two divided shafts 22, 22 and the end of the other divided shaft 22. By fitting the semi-cylindrical concave portion 22d (and the convex portion 22c) provided to each other, the two split shafts 22 and 22 are engaged with each other in the rotational direction of the second shaft member 12. Further, in order to prevent the split shaft 22 and the second connecting member 25 from rotating relative to each other, the split shaft 22 and the second connecting member 25 are engaged with each other in the rotational direction of the second shaft member 12. In the present embodiment, the semicylindrical convex portion (and concave portion) provided at the end of the split shaft 22 and the semicylindrical concave portion (and convex portion) provided at the end of the second coupling member 25 are mutually connected. By fitting, the split shaft 22 and the second coupling member 25 are engaged with each other in the rotational direction of the second shaft member 12.

上記の支持ユニット30は、少なくとも、第1軸部材11を構成する分割軸21同士の結合部、および第2軸部材12を構成する分割軸22同士の結合部を支持するように設けられている。逆に言えば、第1軸部材11を構成する分割軸21は、支持ユニット30の軸方向範囲内で隣接する分割軸21と結合され、第2軸部材12を構成する分割軸22は、支持ユニット30の軸方向範囲内で隣接する分割軸22と結合される。本実施形態では、図1(b)に模式的に示すように、枠体9を構成する一部の基枠9Aに支持ユニット30が取り付け固定されている。   The support unit 30 is provided so as to support at least the coupling portion between the divided shafts 21 constituting the first shaft member 11 and the coupling portion between the divided shafts 22 constituting the second shaft member 12. . In other words, the split shaft 21 constituting the first shaft member 11 is coupled to the adjacent split shaft 21 within the axial range of the support unit 30, and the split shaft 22 constituting the second shaft member 12 is supported. It is combined with the adjacent split shaft 22 within the axial range of the unit 30. In this embodiment, as schematically shown in FIG. 1B, the support unit 30 is attached and fixed to a part of the base frame 9 </ b> A constituting the frame body 9.

図8(a)は、支持ユニット30を図2中の矢印B方向から見た図であり、図8(b)は、図8(a)を同図中に示す矢印C方向から見た図である。なお、図8(b)においては、図8(a)中に示す第1軸受31と第2軸受32のうち、最上部に位置する軸受31,32の図示を省略している。図8(a)(b)に示すように、支持ユニット30は、第1軸部材11の外径面11aを支持する第1軸受31と、第2軸部材12の外径面(螺旋状凸部13の外径面)を支持する第2軸受32と、両軸受31,32を回転自在に支持したケーシング33とを備える。   8A is a view of the support unit 30 as viewed from the direction of arrow B in FIG. 2, and FIG. 8B is a view of FIG. 8A as viewed from the direction of arrow C shown in FIG. It is. In FIG. 8B, the bearings 31 and 32 positioned at the top of the first bearing 31 and the second bearing 32 shown in FIG. 8A are not shown. As shown in FIGS. 8A and 8B, the support unit 30 includes a first bearing 31 that supports the outer diameter surface 11a of the first shaft member 11, and an outer diameter surface (spiral convexity) of the second shaft member 12. A second bearing 32 that supports the outer diameter surface of the portion 13, and a casing 33 that rotatably supports the bearings 31 and 32.

ケーシング33は、ワークWの搬送方向に離間して配置された一対の板状部材33a,33aと、両板状部材33a,33aを連結するボルト33b及びナット33cとを有し、各板状部材33aには、その表裏両面に開口した貫通穴33a1が設けられている。この貫通穴33a1は、両軸部材11,12を挿通させるための穴として、また、ワークWを通過させるための穴として活用される。板状部材33a、ボルト33b及びナット33cは、何れも、非磁性材料で形成される。非磁性材料としては、両軸部材11,12と同様のセラミックス、あるいは耐熱性に優れた樹脂材料(例えばPEEK)を使用することができ、ここでは樹脂材料を使用している。   The casing 33 includes a pair of plate-like members 33a and 33a that are arranged apart from each other in the conveyance direction of the workpiece W, and a bolt 33b and a nut 33c that connect the plate-like members 33a and 33a. 33a is provided with through-holes 33a1 opened on both front and back surfaces. The through hole 33a1 is utilized as a hole for inserting the shaft members 11 and 12 and as a hole for allowing the workpiece W to pass therethrough. The plate-like member 33a, the bolt 33b, and the nut 33c are all made of a nonmagnetic material. As the non-magnetic material, ceramics similar to the both shaft members 11 and 12, or a resin material having excellent heat resistance (for example, PEEK) can be used. Here, the resin material is used.

第1軸受31は、第1軸部材11の周方向に離間した複数箇所(本実施形態では3箇所)に配置され、また、第2軸受32は、第2軸部材12の周方向に離間した複数箇所(本実施形態では3箇所)に配置されている。従って、第1軸部材11の外径面11a及び第2軸部材12の外径面は、それぞれ、その周方向に離間した3箇所が支持ユニット30によって支持(接触支持)される。第1軸受31及び第2軸受32は、何れも、セラミックスや樹脂材料等の非磁性材料で形成され、ここではセラミックスで形成される。   The first bearings 31 are arranged at a plurality of locations (three locations in the present embodiment) spaced apart in the circumferential direction of the first shaft member 11, and the second bearings 32 are spaced apart in the circumferential direction of the second shaft member 12. It is arranged at a plurality of places (three places in the present embodiment). Therefore, the outer diameter surface 11a of the first shaft member 11 and the outer diameter surface of the second shaft member 12 are supported (contact supported) by the support unit 30 at three locations spaced in the circumferential direction. The first bearing 31 and the second bearing 32 are both made of a nonmagnetic material such as ceramics or a resin material, and are here made of ceramics.

なお、ねじ軸からなる第2軸部材12の外径面(螺旋状凸部13の外径面)を適切に支持するため、第2軸受32のうち、第2軸部材12の外径面を実質的に支持する軸受面の軸方向寸法Zは、螺旋状凸部13のピッチ寸法X2[図5(a)参照]よりも大きく設定される(Z>X2)。また、本実施形態では、図8(b)に示すように、いわゆる中逃げ形状の第1軸受31を採用しているが、これは、隣接する第2軸受32(の軸受面)との干渉を避けるための措置である。すなわち、本実施形態では、両軸部材11,12の支持精度を考慮すると、3つの第1軸受31のうち、図8(a)中、最も下側に配置された第1軸受31を、これが第2軸部材12を下方側から支持する第2軸受32[図8(a)中、最も下側に配置された第2軸受32]に接触する程度に近接配置する必要があったため、中逃げ形状の第1軸受31を採用している。従って、両軸部材11,12の形状等によっては、他の形状の軸受31,32が採用される場合も当然に有り得る。要するに、第1軸受31及び第2軸受32の形状、配置箇所および配置個数等は、第1軸部材11及び第2軸部材12の形状、質量および回転速度などに応じて適宜設定される。   In addition, in order to appropriately support the outer diameter surface of the second shaft member 12 made of a screw shaft (the outer diameter surface of the spiral convex portion 13), the outer diameter surface of the second shaft member 12 of the second bearing 32 is used. The axial dimension Z of the bearing surface that is substantially supported is set to be larger than the pitch dimension X2 [see FIG. 5 (a)] of the spiral convex portion 13 (Z> X2). Further, in the present embodiment, as shown in FIG. 8B, a so-called middle relief-shaped first bearing 31 is employed, which is an interference with the adjacent second bearing 32 (bearing surface thereof). It is a measure to avoid. That is, in the present embodiment, considering the support accuracy of both shaft members 11 and 12, of the three first bearings 31, the first bearing 31 disposed on the lowermost side in FIG. Since the second shaft member 12 needs to be disposed close enough to contact the second bearing 32 [the second bearing 32 disposed at the lowest side in FIG. A first bearing 31 having a shape is employed. Accordingly, depending on the shape of the shaft members 11 and 12, the bearings 31 and 32 having other shapes may naturally be employed. In short, the shape, the arrangement location, the arrangement number, and the like of the first bearing 31 and the second bearing 32 are appropriately set according to the shape, mass, rotational speed, and the like of the first shaft member 11 and the second shaft member 12.

以上で説明したように、本実施形態に係る誘導加熱装置2には、ワークWの支持・搬送用治具として使用される第1軸部材11及び第2軸部材12を支持するための支持ユニット30が設けられる。このような支持ユニット30を設けておけば、本実施形態のように、軸方向寸法が長大な第1軸部材11及び第2軸部材12が使用される場合であっても、両軸部材11,12が撓み難くなる。これにより、ワークWを精度良く支持・搬送することが可能となり、複数のワークWを効率良くかつ精度良く加熱することができる。   As described above, in the induction heating apparatus 2 according to the present embodiment, the support unit for supporting the first shaft member 11 and the second shaft member 12 used as jigs for supporting and conveying the workpiece W. 30 is provided. If such a support unit 30 is provided, even if the first shaft member 11 and the second shaft member 12 having a long axial dimension are used as in the present embodiment, both the shaft members 11 are used. , 12 are difficult to bend. As a result, the workpiece W can be supported and transported with high accuracy, and the plurality of workpieces W can be efficiently and accurately heated.

また、第1軸部材11及び第2軸部材12は、それぞれ、その軸方向に連ねて設けられた分割軸21,22の結合体で構成される。この場合、分割軸同士の結合作業は追加的に必要となるものの、各分割軸21(22)は、その軸方向寸法が第1軸部材11(第2軸部材12)を一部品で作製する場合よりも短くなる分、その作製コストは、第1軸部材11(第2軸部材12)を一部品で作製する場合よりも大幅に少なくてすむ。そして、この作製コストの低減分は、分割軸21(22)同士の結合作業が追加されることにより生じるコスト増大分を大幅に上回る。   Moreover, the 1st shaft member 11 and the 2nd shaft member 12 are respectively comprised by the coupling body of the split shafts 21 and 22 provided in the axial direction. In this case, although the work of joining the split shafts is additionally required, each split shaft 21 (22) has the axial dimension of the first shaft member 11 (second shaft member 12) made as a single component. The manufacturing cost is much less than the case where the first shaft member 11 (second shaft member 12) is manufactured as a single component because it is shorter than the case. And the reduction of this production cost greatly exceeds the cost increase which arises when the joint operation | work of the split shafts 21 (22) is added.

特に、本実施形態では、隣り合う2つの分割軸21(22)を、両分割軸の軸線に沿って延びた穴部21a(22a)に嵌合される第1結合部材としての連結ピン23と、両分割軸の外周に嵌合される第2結合部材24(25)とを用いて連結したので、分割軸21(22)相互間の芯出しを行いつつ、分割軸21(22)同士を強固にかつ精度良く結合することができる。従って、軸方向寸法が長大でありながら、各部の精度に優れ、ワークWを適切に支持・搬送可能な第1及び第2軸部材11,12を低コストに作製することが可能となる。   In particular, in the present embodiment, two adjacent split shafts 21 (22) are connected to connecting pins 23 as first connecting members that are fitted into holes 21a (22a) extending along the axis of both split shafts. Since the second coupling members 24 (25) fitted to the outer circumferences of the two split shafts are connected, the split shafts 21 (22) are aligned with each other while centering between the split shafts 21 (22). It is possible to bond firmly and accurately. Accordingly, it is possible to manufacture the first and second shaft members 11 and 12 that are excellent in accuracy of each part and can appropriately support and transport the workpiece W at a low cost while having a long axial dimension.

以上で述べた作用効果が相俟って、本発明によれば、ワークWを効率良くかつ精度良く加熱することのできる誘導加熱装置2を低コストに提供することが可能となる。   Combined with the effects described above, according to the present invention, it is possible to provide the induction heating device 2 that can heat the workpiece W efficiently and accurately at low cost.

以上で説明した実施形態では、図5(a)(b)に示すようにワーク支持部16でワークWの外周面を接触支持し、ワークWをその軸方向に沿って搬送するようにしたが、ワーク支持部16によるワークWの支持態様はこれに限られない。   In the embodiment described above, as shown in FIGS. 5 (a) and 5 (b), the outer peripheral surface of the workpiece W is contact-supported by the workpiece support portion 16, and the workpiece W is conveyed along its axial direction. The support mode of the workpiece W by the workpiece support unit 16 is not limited to this.

すなわち、ワークWは、例えば図9(a)(b)に示すように、その一端面を第2軸部材12の螺旋溝14の溝底面15で接触支持すると共に、その外周面を円柱軸からなる第1軸部材11の外径面11aで接触支持するようにしても構わない。この場合、ワークWは、その軸線をワーク搬送路Pの延びる方向に対して交差(直交)させた状態でワーク搬送路Pに沿って搬送されることになる。   That is, for example, as shown in FIGS. 9A and 9B, the workpiece W is in contact with and supported by one end surface thereof at the groove bottom surface 15 of the spiral groove 14 of the second shaft member 12, and the outer peripheral surface thereof from the cylindrical shaft. You may make it contact-support with the outer diameter surface 11a of the 1st shaft member 11 which becomes. In this case, the work W is transported along the work transport path P in a state where the axis of the work W intersects (orthogonals) the direction in which the work transport path P extends.

図5(a)(b)に示したように、ワーク支持部16でワークWの外周面を接触支持した場合、ワークWは、その外周面が第1軸部材11の外径面11aおよび第2軸部材12の溝底面15に対してすべり接触しながら搬送される。これに対し、図9(a)(b)に示す態様でワークWを支持した場合には、ワークWは、その外周面が第1軸部材11の外径面11a及び第2軸部材12の螺旋状凸部13に対して主に転がり接触しながら搬送される。このため、図9(a)(b)に示す態様でワークWを支持・搬送した場合には、ワークWの外周面と両軸部材11,12との接触範囲(接触面積)を、図5(a)(b)に示す態様でワークWを支持・搬送する場合よりも減じることができる。従って、加熱完了後のワークWの外周面に温度ムラが発生するのを防止する上で、また、ワークWの外周面にキズ等の微小欠陥が生じるのを防止する上で有利となる。特に、ワークWが、本実施形態のように円すいころ(の基材)、あるいは円筒ころ(の基材)である場合などには、図9(a)(b)に示す態様でワークWを支持・搬送するのが好ましい。円すいころや円筒ころの外周面は、転がり軸受を構成する内輪および外輪の軌道面に沿って転動する面であり、高い形状精度や機械的強度を要求される面であるからである。   As shown in FIGS. 5A and 5B, when the outer peripheral surface of the work W is contact-supported by the work support portion 16, the outer peripheral surface of the work W is the outer diameter surface 11 a of the first shaft member 11 and the first outer surface. The biaxial member 12 is conveyed while being in sliding contact with the groove bottom surface 15. On the other hand, when the workpiece W is supported in the manner shown in FIGS. 9A and 9B, the outer periphery of the workpiece W is the outer diameter surface 11 a of the first shaft member 11 and the second shaft member 12. It is conveyed while mainly in rolling contact with the spiral convex portion 13. For this reason, when the workpiece W is supported and transported in the mode shown in FIGS. 9A and 9B, the contact range (contact area) between the outer peripheral surface of the workpiece W and the shaft members 11 and 12 is shown in FIG. (A) It can reduce compared with the case where the workpiece | work W is supported and conveyed in the aspect shown to (b). Therefore, it is advantageous for preventing the occurrence of temperature unevenness on the outer peripheral surface of the work W after completion of heating, and for preventing the occurrence of minute defects such as scratches on the outer peripheral surface of the work W. In particular, when the workpiece W is a tapered roller (base material) or a cylindrical roller (base material) as in the present embodiment, the workpiece W is formed in the manner shown in FIGS. 9A and 9B. It is preferable to support and convey. This is because the outer peripheral surface of the tapered roller or cylindrical roller is a surface that rolls along the raceway surfaces of the inner ring and outer ring that constitute the rolling bearing, and is a surface that requires high shape accuracy and mechanical strength.

以上、本発明の一実施形態に係る誘導加熱装置2について説明を行ったが、誘導加熱装置2には、本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。   As mentioned above, although the induction heating apparatus 2 which concerns on one Embodiment of this invention was demonstrated, it is possible to give an appropriate change to the induction heating apparatus 2 in the range which does not deviate from the summary of this invention.

例えば、以上で説明した実施形態のように、両軸部材11,12を回転駆動させる場合、両軸部材11,12の軸線回りの回転速度は、必ずしも同一とする必要はなく、互いに異ならせても構わない。両軸部材11,12の回転速度を互いに異ならせるには、例えば、第1軸部材11に連結される小ギヤ8aおよびこれに噛合う大ギヤ8cの歯面のピッチと、第2軸部材12に連結される小ギヤ8bおよびこれに噛合う大ギヤ7cの歯面のピッチとを互いに異ならせれば良い。また、両軸部材11,12を回転駆動させる場合でも、上述した回転機構6とは異なる構成の回転機構6を採用しても構わない。例えば、電動モータを2つ設け、一方の電動モータの出力軸に第1軸部材11を連結すると共に、他方の電動モータの出力軸に第2軸部材12を連結することも可能である。   For example, as in the embodiment described above, when the shaft members 11 and 12 are rotationally driven, the rotational speeds around the axis of the shaft members 11 and 12 do not necessarily have to be the same, but are different from each other. It doesn't matter. In order to make the rotational speeds of the two shaft members 11 and 12 different from each other, for example, the pitch of the tooth surfaces of the small gear 8a connected to the first shaft member 11 and the large gear 8c meshed therewith, and the second shaft member 12 The pitches of the tooth surfaces of the small gear 8b connected to the large gear 7c and the large gear 7c meshing with the small gear 8b may be made different from each other. Even when both the shaft members 11 and 12 are driven to rotate, a rotating mechanism 6 having a configuration different from that of the rotating mechanism 6 described above may be employed. For example, it is possible to provide two electric motors, connect the first shaft member 11 to the output shaft of one electric motor, and connect the second shaft member 12 to the output shaft of the other electric motor.

また、以上で説明した実施形態では、第1軸部材11及び第2軸部材12を同一方向に同一速度で回転駆動(同期回転)させることにより、ワーク支持部16で支持したワークWにその軸線回りの回転力を付与するようにしたが、このような回転力は、ねじ軸からなる軸部材(以上で説明した実施形態では第2軸部材12)のみを回転駆動させることによってもワークWに付与することができる。従って、回転機構6は、ねじ軸からなる軸部材のみを回転駆動させるものであっても構わない。この場合、回転機構6には、両軸部材11,12を同期回転させるための複雑な機構(動力伝達機構8)を設けずとも足りるので、搬送装置10の簡素化・低コスト化を図ることができる。   In the embodiment described above, the first shaft member 11 and the second shaft member 12 are rotationally driven (synchronously rotated) in the same direction at the same speed, so that the workpiece W supported by the workpiece support portion 16 has its axis line. The rotating force is applied to the workpiece W. However, such a rotating force can also be applied to the workpiece W by rotationally driving only the shaft member (the second shaft member 12 in the embodiment described above) including the screw shaft. Can be granted. Therefore, the rotation mechanism 6 may be configured to rotate only the shaft member including the screw shaft. In this case, since it is not necessary to provide the rotation mechanism 6 with a complicated mechanism (power transmission mechanism 8) for synchronously rotating the shaft members 11 and 12, the transport device 10 can be simplified and reduced in cost. Can do.

また、以上で説明した実施形態では、第1及び第2軸部材11,12のうち、一方の軸部材(第2軸部材12)のみをねじ軸で構成したが、他方の軸部材(第1軸部材11)もねじ軸で構成することが可能である。   In the embodiment described above, only one shaft member (second shaft member 12) of the first and second shaft members 11 and 12 is configured with a screw shaft, but the other shaft member (first shaft member) is used. The shaft member 11) can also be constituted by a screw shaft.

また、支持ユニット30は、第1軸部材11及び第2軸部材12のうち、分割軸21(22)同士の連結部のみならず、連結部以外の部位を支持するように設けることも可能である。   Further, the support unit 30 can be provided so as to support not only the connecting portion between the divided shafts 21 (22) of the first shaft member 11 and the second shaft member 12, but also a portion other than the connecting portion. is there.

さらに、以上で説明した実施形態では、第1軸部材11及び第2軸部材12を両者の中心が同一平面上(同一高さ)に位置するように配置したが、両軸部材の配置高さは、例えば図10に示すように、相互に異ならせても構わない。図10では、相対的に下方側に配置した断面略L字状の第1軸部材11’のみでワークWを接触支持し、相対的に上方側に配置したねじ軸からなる第2軸部材12をその軸線回りに回転駆動させることにより、第1軸部材11’で支持され、第2軸部材12の螺旋溝14内に配置されたワークWに送り力および回転力を付与するようにしている。この場合、第1軸部材11’とワークWの接触面積を極力減じる観点から、第1軸部材11’のワーク支持面を図示例のような凹凸形状とし、ワークWを点接触支持するようにするのが好ましい。   Further, in the embodiment described above, the first shaft member 11 and the second shaft member 12 are arranged so that the centers of both are located on the same plane (same height). These may be different from each other as shown in FIG. In FIG. 10, the work W is contacted and supported only by the first shaft member 11 ′ having a substantially L-shaped cross section disposed on the relatively lower side, and the second shaft member 12 including the screw shaft disposed on the relatively upper side. Is rotated around the axis thereof, and feed force and rotational force are applied to the work W supported by the first shaft member 11 ′ and disposed in the spiral groove 14 of the second shaft member 12. . In this case, from the viewpoint of reducing the contact area between the first shaft member 11 ′ and the work W as much as possible, the work support surface of the first shaft member 11 ′ is formed in an uneven shape as shown in the example, so that the work W is supported by point contact. It is preferable to do this.

また、以上では、誘導加熱装置2による加熱対象のワークWとして、円すいころ軸受を構成する円すいころを例示したが、誘導加熱装置2は、他の回転可能なワークW、例えば、玉軸受を構成する玉(ボール)、円筒ころ軸受を構成する円筒ころ、あるいは針状ころ軸受を構成する針状ころ等、その他の転がり軸受の転動体を誘導加熱する場合にも好ましく用いることができる。また、本発明の実施形態に係る誘導加熱装置2は、上述した各種転動体等の中実のワークWのみならず、中空のワークWを誘導加熱する場合にも好ましく用いることができる。   Moreover, although the tapered roller which comprises a tapered roller bearing was illustrated as the workpiece | work W of the heating object by the induction heating apparatus 2 above, the induction heating apparatus 2 comprises another rotatable workpiece W, for example, a ball bearing. It can also be preferably used for induction heating of rolling elements of other rolling bearings such as a ball, a cylindrical roller constituting a cylindrical roller bearing, or a needle roller constituting a needle roller bearing. In addition, the induction heating device 2 according to the embodiment of the present invention can be preferably used not only for the solid workpiece W such as the various rolling elements described above but also for the induction heating of the hollow workpiece W.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得る。すなわち、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention. That is, the scope of the present invention is defined by the terms of the claims, and includes the equivalent meanings recited in the claims and all modifications within the scope.

1 熱処理設備
2 誘導加熱装置
3 加熱用コイル
6 回転機構
10 搬送装置
11 第1軸部材
12 第2軸部材
13 螺旋状凸部
14 螺旋溝
15 溝底面
16 ワーク支持部
21 分割軸
21a 穴部
22 分割軸
22a 孔部
23 連結ピン(第1結合部材)
24 第2結合部材
25 第2結合部材
30 支持ユニット
31 第1軸受
32 第2軸受
P ワーク搬送路
W ワーク
DESCRIPTION OF SYMBOLS 1 Heat processing equipment 2 Induction heating apparatus 3 Heating coil 6 Rotating mechanism 10 Conveying apparatus 11 1st shaft member 12 2nd shaft member 13 Helical convex part 14 Spiral groove 15 Groove bottom face 16 Work support part 21 Dividing shaft 21a Hole part 22 Dividing Shaft 22a Hole 23 Connecting pin (first coupling member)
24 Second coupling member 25 Second coupling member 30 Support unit 31 First bearing 32 Second bearing P Work conveyance path W Workpiece

Claims (5)

回転可能なワークを搬送する搬送装置と、該搬送装置によって搬送されている前記ワークを誘導加熱する加熱用コイルとを備えた誘導加熱装置であって、
前記搬送装置が、相互に離間して平行に配置され、相手側と協働して直線状のワーク搬送路を形成するセラミックス製の第1軸部材及び第2軸部材と、両軸部材の少なくとも一方をその軸線回りに回転駆動させる回転機構とを有し、
両軸部材のうち、少なくとも前記一方の軸部材が、その外周に沿って螺旋状凸部が設けられたねじ軸で構成され、かつ、前記螺旋状凸部によって前記ねじ軸の外周に画成される螺旋溝内に前記ワークが配置可能に構成されており、
両軸部材のそれぞれが、その軸方向に連ねて設けられた分割軸の結合体で構成されると共に、その軸方向の所定箇所に設けた支持ユニットにより支持されていることを特徴とする誘導加熱装置。
An induction heating apparatus comprising a conveyance device that conveys a rotatable workpiece, and a heating coil that induction-heats the workpiece being conveyed by the conveyance device,
The conveying device is arranged in parallel and spaced apart from each other, and cooperates with the other side to form a linear workpiece conveying path, and the first and second shaft members made of ceramic, and at least of both shaft members A rotation mechanism for rotating one of the axes around its axis,
Of the two shaft members, at least one of the shaft members is composed of a screw shaft provided with a spiral convex portion along the outer periphery thereof, and is defined on the outer periphery of the screw shaft by the spiral convex portion. The workpiece can be arranged in the spiral groove,
Each of the shaft members is composed of a combination of split shafts provided continuously in the axial direction, and is supported by a support unit provided at a predetermined location in the axial direction. apparatus.
隣り合う2つの前記分割軸の結合部が前記支持ユニットで支持されている請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein a joint portion between two adjacent split shafts is supported by the support unit. 隣り合う2つの前記分割軸は、両分割軸の軸線に沿って延びた穴部に嵌合された第1結合部材と、両分割軸の外周に嵌合された第2結合部材とを用いて結合されている請求項1又は2に記載の誘導加熱装置。   The two adjacent split shafts use a first connecting member fitted in a hole extending along the axis of both split shafts, and a second connecting member fitted on the outer periphery of both split shafts. The induction heating device according to claim 1 or 2, which is coupled. 前記支持ユニットは、前記第1軸部材を支持する第1軸受と、前記第2軸部材を支持する第2軸受とを備え、
前記第1軸受は、前記第1軸部材の周方向に離間した複数箇所に配置され、前記第2軸受は、前記第2軸部材の周方向に離間した複数箇所に配置されている請求項1〜3の何れか一項に記載の誘導加熱装置。
The support unit includes a first bearing that supports the first shaft member, and a second bearing that supports the second shaft member,
The first bearing is disposed at a plurality of locations spaced in the circumferential direction of the first shaft member, and the second bearing is disposed at a plurality of locations spaced in the circumferential direction of the second shaft member. The induction heating device according to any one of?
前記ワークが、転がり軸受の転動体である請求項1〜4の何れか一項に記載の誘導加熱装置。   The induction heating device according to any one of claims 1 to 4, wherein the workpiece is a rolling element of a rolling bearing.
JP2017163345A 2017-08-28 2017-08-28 Induction heating apparatus Pending JP2019040800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017163345A JP2019040800A (en) 2017-08-28 2017-08-28 Induction heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017163345A JP2019040800A (en) 2017-08-28 2017-08-28 Induction heating apparatus

Publications (1)

Publication Number Publication Date
JP2019040800A true JP2019040800A (en) 2019-03-14

Family

ID=65725737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163345A Pending JP2019040800A (en) 2017-08-28 2017-08-28 Induction heating apparatus

Country Status (1)

Country Link
JP (1) JP2019040800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369231A (en) * 2022-08-22 2022-11-22 攀枝花钢城集团瑞矿工业有限公司 Steel ball continuous quenching system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369231A (en) * 2022-08-22 2022-11-22 攀枝花钢城集团瑞矿工业有限公司 Steel ball continuous quenching system and method

Similar Documents

Publication Publication Date Title
KR101995588B1 (en) Heating apparatus, heat treatment apparatus, heating method and jig of heating apparatus
JP2005325409A (en) High frequency heat treatment method and device for ring-shaped product
US20110240633A1 (en) Electric Induction Heat Treatment of Workpieces Having Circular Components
US20190239291A1 (en) Induction heating apparatus and induction heating method
JP2019040800A (en) Induction heating apparatus
KR100670158B1 (en) High frequency - heat treatment apparatus of horizontally feeding type
WO2017221635A1 (en) Heat treatment method of rod-shape workpiece
WO2018155043A1 (en) Heat treatment equipment and heat treatment method
WO2017150627A1 (en) Heat-processing device and heat-processing method
JP6767144B2 (en) Heat treatment equipment and heat treatment method
JP6263231B2 (en) Heat treatment equipment and heat treatment method
JP6426386B2 (en) Tube welding equipment
WO2017221789A1 (en) Induction heating apparatus and induction heating method
WO2018056066A1 (en) Work piece conveyance jig and conveyance device provided with same, and induction heating device
JP2018080397A (en) Heat treatment facility and heat treatment method
JP6568696B2 (en) Heating apparatus and heating method
KR200401076Y1 (en) High frequency - heat treatment apparatus of horizontally feeding type
JP6535440B2 (en) Transport structure
JP5089246B2 (en) Automatic workpiece changeover mechanism in quenching equipment
JP2011168829A (en) High-frequency induction heating apparatus
JP6767134B2 (en) Heat treatment equipment and heat treatment method
JP2022074970A (en) High frequency induction heating device
JP2005336598A (en) High frequency induction-hardening apparatus
JPH07233412A (en) Hardening and tempering apparatus